
Verilog Implementation of a Low-cost Vector
AI Accelerator and Integration in a RISC-V

Processor

Author:
Christos Zarkos

Director:
Dr. Leonidas Kosmidis

A Thesis submitted in fulfilment
of the requirements of a Bachelor’s Degree

with specialization in Computer Engineering

Facultat d’ Informàtica de Barcelona
Universitat Polytècnica de Catalunya

Barcelona Supercomputing Center

Universitat Polytècnica de Catalunya
Barcelona, Spain

January 2023

https://www.bsc.es
https://www.fib.upc.edu/ca

C O N T E N T S

List of Figures . iv

List of Tables . v

Spanish Abstract . vi

English Abstract . vii

Acknowledgments . viii

1 context and scope . 1
1.1 Motivation . 1

1.1.1 Context . 1
1.1.2 Concepts . 2
1.1.3 Stakeholders . 3

1.2 Justification . 4
1.2.1 Previous Work . 4
1.2.2 Justification of my work . 4

1.3 Scope . 5
1.3.1 Objectives and sub-objectives . 5
1.3.2 Requirements . 5
1.3.3 Potential obstacles and risks . 6

1.4 Methodology and rigour . 6
1.4.1 Methodology . 6
1.4.2 Validation . 7

2 temporal planning . 8
2.1 Description of tasks . 8

2.1.1 Task Definition . 8
2.1.2 Resources . 10
2.1.3 Task Summary . 13

2.2 Estimates and the Gantt . 14
2.3 Risk management: alternative plans and obstacles 15

3 budget . 17
3.1 Identification of costs . 17

3.1.1 Staff Costs . 17
3.1.2 Generally Calculated Costs . 18
3.1.3 Contingencies and Incidentals . 20

ii

3.2 Final Budget . 21
3.3 Management Control . 21

4 sustainability . 22
4.1 Self-assessment . 22
4.2 Environmental Dimension . 23
4.3 Economic Dimension . 23
4.4 Social Dimension . 24

5 analysis of the implementation . 25
5.1 The SweRV Core EH1 and its pipeline . 25

5.1.1 A few words about DCCM and ICCM 25
5.2 The SPARROW design . 26

5.2.1 First stage . 27
5.2.2 Second stage . 28
5.2.3 General information . 29

5.3 Implementing SPARROW and Integrating SPARROW in EH1 29
5.3.1 Experience of Porting SPARROW from VHDL to SystemVerilog . . . 29
5.3.2 Experience integrating SPARROW in SweRV Core EH1 29

6 evaluation . 31
6.1 Matrix Multiplication benchmark . 32
6.2 Greyscale benchmark . 33
6.3 Filter (convolution) benchmark . 33
6.4 Polynomial benchmark . 35
6.5 Summary of the evaluation results . 36
6.6 Synthesis . 38

7 conclusions and future work . 39
7.1 Conclusions . 39
7.2 Future Work . 39

bibliography . 40

iii

L I S T O F F I G U R E S

Figure 2.1 Gantt Diagram . 14
Figure 5.1 Overview of the SweRV Core EH1 Pipeline 26
Figure 5.2 Overview of the SweRV Core EH1 Pipeline 28
Figure 6.1 Comparison of the speedups with and without the DCCM for the

matrix multiplication benchmark . 33
Figure 6.2 Comparison of the speedups with and without the DCCM for the

greyscale benchmark . 34
Figure 6.3 Comparison of the speedups with and without the DCCM for the

filter benchmark . 35
Figure 6.4 Comparison of the speedups with and without the DCCM for the

polynomial benchmark . 37

iv

L I S T O F TA B L E S

Table 2.1 Table of Task Summary. 13
Table 3.1 Summary of the roles and their salary. 18
Table 3.2 Estimated costs per task based on the roles responsible. 18
Table 3.3 Table of amortization costs. 19
Table 3.4 Summary of generic costs. 20
Table 3.5 Summary of Incidental costs. 21
Table 3.6 Table of the Final Budget. 21
Table 5.1 SPARROW first stage operation codes 27
Table 5.2 SPARROW second stage operation codes 28
Table 6.1 The EH1 hardware configurations used in the evaluation. 31
Table 6.2 Speedup results for the matrix multiplication benchmark. 32
Table 6.3 Speedup results for the matrix multiplication benchmark using the

DCCM. 32
Table 6.4 Speedup results for the greyscale benchmark. 34
Table 6.5 Speedup results for the greyscale benchmark using the DCCM. . . . 34
Table 6.6 Speedup results for the filter benchmark. 35
Table 6.7 Speedup results for the filter benchmark using the DCCM. 35
Table 6.8 Speedup results for the polynomial benchmark. 36
Table 6.9 Speedup results for the polynomial benchmark using the DCCM. . . 36
Table 6.10 SweRV Core EH1 resource utilization comparison for the NEXYS 4

DDR FPGA. 38

v

A B S T R A C T

El acelerador SPARROW AI portátil y de bajo costo se propuso y demostró recientemente
en VHDL en dos procesadores espaciales, el LEON3 y el NOEL-V. En este trabajo de
fin de grado se implementa SPARROW en SystemVerilog y se integra con un procesador
RISC-V escrito en SystemVerilog, el SweRV Core EH1. Esta implementación proporciona
tres resultados importantes. Demuestra la portabilidad de SPARROW, proporciona una
extensión útil a un procesador de grado industrial existente y nos brinda la capacidad de
comparar las implementaciones de SPARC y RISC-V. Los resultados obtenidos demuestran
que SPARROW puede proporcionar aceleraciones significativas también en el núcleo EH1
de doble emisión.

vi

A B S T R A C T

The low-cost and portable SPARROW AI accelerator has been recently proposed and
demonstrated in VHDL in two space processors, the LEON3 and NOEL-V. In this Bach-
elor’s thesis, SPARROW is implemented in SystemVerilog and is integrated with a RISC-V
processor written in SystemVerilog, the SweRV Core EH1. This implementation provides
three important results. It proves the portability of SPARROW, provides a useful extension
to an existing industrial grade processor, and give us the ability to compare the SPARC and
RISC-V implementations. The obtained results demonstrate that SPARROW can provide
significant speedups also in the dual issue EH1 core.

vii

A C K N O W L E D G M E N T S

Firstly, I would like to thank my supervisor Dr. Leonidas Kosmidis for all he has done
for me. First of all, for giving me the opportunity to be part of this very interesting pro-
ject. Apart from that I want to thank him for giving the direction and guidance I needed
throughout the course of this project in order to complete it and also for always been there
to help and/or consult me whenever I needed him to. Even regarding matters outside
the scope of this thesis. Also, I would like to thank him for giving me the opportunity to
participate in the GPU4S project and work at the Barcelona Supercomputing Center in the
CAOS group.

I also want to thank Marc Solé Bonet for allowing to be a part of this very interesting
project, which is in some way his "baby". Furthermore, I want to thank him also for always
been eager to help me and explain his work to me.

Finally, I want to thank my family. They are the reason I am the person I am today.
They have given me everything, my education, and the priviledge to be able to focus on
my studies without neeeding to work. Bust most importantly, they all have offered me
constant love and support throughout the years. There are my biggest motivation.

viii

1
C O N T E X T A N D S C O P E

1.1 motivation

Artificial Intelligence (AI) applications are becoming more and more popular in our times.
This is completely justified since the use of AI and Machine Learning has already com-
pletely revolutionized many scientific fields. The problem is that AI workloads need a lot
of processing power and memory. In terms, of processing power the most popular solu-
tions are accelerators like (GP)GPUs, or other forms of specialized ASICs.

Space processing wants to also take advantage of AI and there already many efforts
made by agencies like the European Space Agency (ESA) and the National Aeronautics
and Space Adminstration (NASA). The problem is that space processors have many spe-
cial requirements for high reliability and a long and expensive process before they are
qualified. For this reason, they are based on older, mature and well-established techno-
logies, which are proven-in-use. For these reasons and to avoid the long and expensive
process of creating new technologies from scratch, it would be more beneficial to perform
minimal modifications on the existing ones.

Commercial off-the-shelf (COTS) accelerators could be of use but they are not designed
with radiation hardening, nor with support for real-time operating systems (RTOS).

The needs of space AI workloads could be met using a tightly integrated Single Instruc-
tion Multiple Data (SIMD) AI accelerator that would extend an already existing space
processor. This is exactly the capability SPARROW offers, although in this thesis the host
core is not designed for space. However, it has interesting features which make it a good
candidate for space use, such as Error Correction Code (ECC) protection and it is an
industrial-grade, fully verified processor used in the commercial sector, which increases
the confidence on its correctness.

The main goals for this project are to prove the portability of SPARROW, have the ability
to compare the different implementations, draw conclusions and expand on the capabilit-
ies of SPARROW either directly from this project or indirectly using its conclusions.

1.1.1 Context

This is a Bachelor’s Thesis of the Computer Science Degree, in the specialization of Com-
puting Engineering, in the Faculty of Informatics of Barcelona of the Polytechnic University
of Catalonia, directed by Dr. Leonidas Kosmidis. The work of this thesis has been per-

1

1.1 motivation 2

formed in the Barcelona Supercomputing Center (BSC) and also contributed in the GPU4S
project, in which SPARROW was first implemented [1]. The code and full implementa-
tion of this work can be found here [2]. The standalone SystemVerilog implementation of
SPARROW can be found here [3]

1.1.2 Concepts

In this section I mention the key concepts and background knowledge required in order
to fully comprehend the contents of this thesis. In addition, I provide a small summary
and/or reminder for each one, along with references to bibliography in case the reader
wants more information about a specific topic.

SPARROW[4] is a light, low-cost and portable AI accelerator designed to be integrated
with space processors (LEON3, NOEL-V). It is designed by Marc Solé Bonet as a
Master’s thesis project at FIB, UPC and BSC and it is written in VHDL. The code and
full implementation of his work can be found here [5].

RISC-V[6] is an open-source hardware instruction set architecture (ISA), based on estab-
lished reduced instruction set computer (RISC) principles. Although it is an academic
design, the designers planned that the RISC-V ISA be usable for practical computers.
Hardware designed based on the RISC-V ISA tends to be less complex to other ar-
chitectures, like x86, due to the (much) fewer possible instructions. RISC-V supports
many different extensions, which can be combined based on the needs of the target
domain in which the processor is going to be used. In addition, RISC-V core imple-
mentations which rely on standardized extensions, are compatible with each other,
so they can leverage the same software ecosystem.

Dual-issue[7] is when processors issue certain pairs of instructions simultaneously in or-
der to increase instruction througput. When this happens, the instruction with the
smaller cycle count is assumed to execute in zero cycles. Processors that support
dual-issue potentially have the capability of committing 2 instructions per cycle, at
least a good percentage of the time. Because dual-issue processors can execute mul-
tiple instructions simultaneously at the same clock cycle, they are also considered
superscalar.

Single instruction, multiple data (SIMD)[8] is a type of parallel processing in Flynn’s
taxonomy. SIMD can be internal (part of the hardware design) and it can be directly
accessible through an instruction set architecture (ISA), but it should not be confused
with an ISA. SIMD describes computers with multiple processing elements that per-
form the same operation on multiple data points simultaneously.

Vector processing is when a central processing unit can perform complete operations on
a vector input in an individual instruction.

An AI accelerator is a dedicated hardware module designed to accelerate machine learn-
ing computations. Machine learning, and particularly its subset, deep learning is

1.1 motivation 3

primarily composed of a large number of linear algebra computations, which can
be easily parallelized. AI accelerators are designed to improve performance and re-
duce the latency of machine learning based applications by accelerating these linear
algebra operations.

SweRV Cores [9] EH1, EH2 and EL2, are three 32-bit RISC-V cores developed by Western
digital. They are open source in the CHIPS Alliance github and they will be used in a
multitud of projects by Western Digital in the future. SweRV Core EH1 will be used
in this thesis. Recently they were renamed to Veer Cores, but because when I started
the work they were named SweRV, I will refer to the core I am using as SweRV Core
EH1 in this thesis, instead of VeeR Core EH1.

Lagarto[10] is the first academic RISC-V core implemented in silicon and also the first
chip with an open source ISA developed in Spain. The source code of the processor
is not yet open source but it will be in the (near) future. It is the result of a project
led by the Barcelona Supercomputing Center (BSC).

Hardware emulation is when one piece of hardware, most commonly an FPGA imit-
ates the behavior of another piece of hardware. Logically, this is very useful when
developing a project for debugging and functional verification.

RTL (Register Transfer Level) is a design abstraction, in modern digital design, used
for defining the digital portions of a design. It is based on synchronous logic and
contains three pieces, registers, combinatorial logic and clock. It is usually captured
using a hardware description language such as (System) Verilog and VHDL.

1.1.3 Stakeholders

There are various stakeholders in this project, both direct and indirect.

Direct

Dr. Leonidas Kosmidis who is the director of my thesis.

Marc Solé Bonet who implemented SPARROW in VHDL and it was his Master’s thesis.

Myself, because this project is going to help me get my degree, build my resume but also
get the valuable engineering and project management experience for my future.

Indirect

European Space Agency because the processor in which SPARROW will be integrated
has the potential to be used in a real space system and is a proven industry-grade
processor. Also, the existence of this project will provide an extra level of versatility
to the existing options for space processors, offering an extra solution for AI acceler-
ation for RISC-V processors written in SystemVerilog, and more importantly it will

1.2 justification 4

be a step towards "European Independence in space" which is something that ESA
strives to achieve.

Western Digital because one of my implementations will be on a western digital pro-
cessor and the company can afterwards use it freely.

RISC-V CHIPS Alliance because my implementation will involve only RISC-V pro-
cessors.

Barcelona Supercomputing Center, in the same way as Western Digital, if in the end
SPARROW will be also integrated with Lagarto which is a BSC creation.

Since the project is open-source, anyone else who would like to use a low-cost effective
RISC-V processor with AI acceleration.

1.2 justification

1.2.1 Previous Work

In recent years, the advancements and applications of AI technology are vast and rapid.
Thus, there has been an growing interest and demand in AI acceleration in terms of
hardware and more specifically there is the notion that RISC-V chips with AI accelerators
will be very popular in the near future. Already, there are convincing examples, such as
the work of the company esperanto[11] that is focusing on high performance acceleration
and also opensource project like Ztachip[12] that is a RISC-V AI accelerator for vision
and AI edge applications running on low-end FPGA devices. Of course, there is also
the VHDL version of SPARROW that this thesis is based upon. The differentiating
factor of SPARROW compared to other existing projects out there is that it is low-cost,
energy-efficient and it is suitable for use in space processors. Space processors have
requirements and are very difficult to get verified so an improved version of them is more
useful in terms of time and cost than making a new processor.

Another work that is related to SPARROW and my thesis is the RISC-V P-extension pro-
posal [13], which is a proposal for introducing packed-SIMD instructions as an instruction
set extension. Unlike many other SIMD instruction set extensions, the P-extension makes
use of general purpose registers to perform the SIMD operations on, rather than dedicated
registers. The utilization of the register file is something very innovative and useful and is
something that SPARROW also does in order to achieve such low cost and easy integration
within a CPU.

1.2.2 Justification of my work

First of all, the project is an AI accelerator, so the first reason of its creation is to include
AI acceleration into an existing industry-graded processor such as the SweRV Core EH1

1.3 scope 5

by Western Digital. Also, we may have already an implementation of SPARROW but this
one will be different and useful in many ways. First of all, this implementation proves
SPARROW’s portability. SPARROW is very efficient and low-cost and having such a RISC-
V implementation is very important, especially when taking into consideration the fact that
in the RISC-V community there is almost nothing to this day that focuses on embedded
cores, safety-critical systems and real-time systems. Lastly, we enable the comparison of
different implementations and draw useful conclusions.

1.3 scope

1.3.1 Objectives and sub-objectives

The main objective of this thesis is implementing the SPARROW AI accelerator and integ-
rate it into a RISC-V processor. But, we can divide the work into smaller sub-objectives,
both theoretical and practical, that the completion of each one of them will lead to the
successful completion of the whole project.

Theoretical part

a. Understand SPARROW (both the design and the implementation).

b. Master my understanding of writing RTL design .

c. Understand the base processor(s).

Practical part

a. Refresh SystemVerilog knowledge and learn VHDL.

b. Write the code for SPARROW in SystemVerilog.

c. Integrate it to an existing RISC-V processor.

d. Write RISC-V assembly tests for validation.

e. Validate the project using the existing sequential C code tests.

f. Draw conclusions.

1.3.2 Requirements

There are some crucial requirements that will guarantee the quality and correctness of the
project.

a. Write good, comprehensive and well-structured code with comments. This will help
debugging and remembering the logic of code segments in the future.

1.4 methodology and rigour 6

b. Use a thorough testbench, which is the test program that is run when simulating
the design. A good and thorough testbench is a step closer to RTL code that is both
simulatable and synthesizable.

c. Use thorough tests for assessing the validity of the project.

1.3.3 Potential obstacles and risks

Although I have faith in the completion of this project, there are some potential problems
and risks that I may face along the way. Here are the three issues I have recognized as
most important:

Time. This thesis must be completed within a semester which is just 4 months, which
is a tight time frame and forces the work to be done in a sharp manner because a
mistake that costs time can be detrimental to the completion of the project.

Hardware code simulating but not synthesizing. Unfortunately, writing hardware code
is not as easy as writing software since when the verification of its correctness is more
complex. It is not certain that a hardware program that simulates, will also synthesize.
The reasons for this are many, from poor testing to timing and physics related aspects
but the bottom line is that it is a very serious parameter of the development of the
project that can cause major time-consuming problems.

Inexperience on hardware projects of such scale. Although I am familiar with (System)
Verilog and have written programs, which both simulate and synthesize and have
emulated them on an FPGA and I have very good theoretical background and know-
ledge on hardware, I have never implemented a hardware project of such scale before,
thus it is going to be a challenge for me.

1.4 methodology and rigour

1.4.1 Methodology

The methodology I will use in order to manage the work I will have in this project is
the Kanban methodology of the Agile family of methodologies, which is a very famous
technique in the industry and focuses in visualizing the work, limiting work in progress,
and maximizing efficiency. I will have a Kanban board and the work I will have will be
seperated into tasks and each task will be put in one of 4 different columns of the board
depending on its state.

The 4 different states are:

• TODO: Here are tasks that I have not yet started implementing.

• DOING: Here are tasks that I have started implementing but are not completed.

1.4 methodology and rigour 7

• TESTING: Here are tasks that have been completed but not tested in terms of cor-
rectness yet.

• DONE: Here are task that have been completed and tested and should not be
bothered with again.

1.4.2 Validation

There will be multiple levels of validating the correctness of the project. First of all, Ver-
ilator will be used for simulating the code. This will make the design process faster and
easier but when a checkpoint is reached synthesis will be done on a Xilinx FPGA using
Xilinx Vivado as the tool for it. The synthesis is very important because as we discussed
earlier in the potential risks segment, it is possible that hardware code will simulate suc-
cessfully and seem correct but not synthesize and thus not actually work! For verifying
the correctness of the entire project at the end, we will compare its output with the scalar
C version of the benchmarks used for evaluating the VHDL version of SPARROW.

For managing the code of the project, BSC’s Gitlab will be used, as per usual in such
projects. A repository will be created containing the main code and different branches
for testing, making changes and developing. This will help a lot at keeping the work
well-organized and backed up.

Last but not least, a weekly meeting will be scheduled with my director where we will
make sure that everything goes according to plan.

2
T E M P O R A L P L A N N I N G

The start date I consider for the project is the 19th of September 2022, and the end date
as the 24th of January when it is my thesis’ defense. That is a total of 126 days over 18
weeks and the total amount of hours I am going to work based on my tasks is 265 hours. I
plan to usually work only on weekdays which are exactly 90 over this time period, so the
estimated amount of time I will work each day is 3 hours. Of course those are estimates
and changes based on more recent circumstances will be made.

2.1 description of tasks

2.1.1 Task Definition

In this section I will further analyze and define the tasks that I will complete, in order
to finish my thesis. This will include categorizing the tasks into groups, estimating how
much time each one will take and explain in short the reason and contents of each task. I
will categorize my work into 3 main groups: The planning and management of the project,
the theoretical studying for the project and the practical implementation of the project.

Project Management and Planning

This section mostly contains the work I will do in the start of the semester to manage my
work, plus some enhancements I will do with my director while time goes by. It is an
important part of the project because it is going to help me organize my work and clear
things out in my head in terms of the direction I will follow and how I will work on my
thesis.

a. Contextualization and project scope (T2). Here, I will define the scope of the project
in the context of its study. I will indicate the general objective of the TFG, the context,
the reason for selecting the subject area, how the project will be developed and using
which means. I have assigned 10 hours to this task

b. Time Planning (T3). Here I will plan the entire execution of the TFG. Also, I will
describe the project phases, the resources and requirements associated with each
one. I have assigned 7.5 hours to this task

8

2.1 description of tasks 9

c. Budget and sustainability (T4). Here, I will do an analysis of the sustainability of
the project and make a budget for the project. I have assigned 7.5 hours to this task.

d. Integration in final document (T5). Here, I will compose a written document sum-
marizing the whole project. I have assigned 10 hours to this task

e. Director Meetings (T6). Part of the management of the course will be weekly meet-
ings with my director to make sure everything goes according to plan and make
management changes when needed. I have assigned 20 hours to this task, since I
calculate about 20 meetings in total

Theoretical Study

The goal of the project is to implement a low-cost AI accelerator and integrate it into an
existing CPU. But before doing that there is some theoretical reading that is necessary to
be completed. More specifically:

a. Understand SPARROW (T8). Of course, one of the most important things I have to
do before implementing the code of SPARROW for my project is read the original
master thesis of Marc for SPARROW and understand perfectly not only its design,
but also its implementation. I have assigned 15 hours to this task

b. Master my understanding of writing RTL design (T9). I already have knowledge
and have written SystemVerilog, but in order to confidently continue working on my
project, I must have a strong understanding of philosophies and design patterns for
RTL on a bigger scale. I have assigned 20 hours to this task

c. Understand the base processor(s) (T10). To integrate my module into a processor I
have to have a good understanding of its pipeline, how are modules integrated/in-
serted to the cpu and lastly how interactions with the register file work (due to the
nature of my project). Generally, I will have to know a lot about the processor but
it not necessary to know everything about it as long as I understand the aforemen-
tioned key parts. I have assigned 15 hours to this task

Practical implementation

In this section I will describe the practical tasks of my project that will build step by step
the implementation of my project.

a. Refresh System Verilog knowledge and learn VHDL (T12). This may seem like
a theoretical task but anyone who has studied programming knows it is actually
practical. I need to know very well both languages since I will read a lot of VHDL
and both read and write a lot of System Verilog. I have assigned 20 hours to this task

2.1 description of tasks 10

b. Write the code for SPARROW in (System) Verilog (T13). With this task I will im-
plement the module of SPARROW and it should take a significant amount of time. I
have assigned 40 hours to this task

c. Integrate it to an existing RISC-V processor (T14). After completing the module of
SPARROW, I will integrate it to the base CPU. I have assigned 20 hours to this task

d. Write RISC-V assembly tests for validation (T15). Those tests are needed for low-
level testing and can be made at any time. I have assigned 10 hours to this task

e. Validate the project using the assembly tests and existing sequential C code tests
(T16). With this task I will verify that my job is actually correct. It is worth noting that
validation will be also done intermittently on smaller parts of the project that will
work as checkpoints. Those will be smaller tasks and will be decided later based on
the understanding I will have of the project after the theoretical studying and some
practical work. I have assigned 20 hours to this task

f. Draw conclusions (T17). I have assigned 10 hours to this task

Independent Tasks

In this section I will present 2 tasks that do not exactly fit into any of the other 3 main
categories of tasks.

• Keep documentation of my work throughout the semester (T19). This is a very
important task that needs to be carried out all semester long and in parallel of my
work and will help me easily compile my final thesis document. I have assigned
20 hours to this task, i.e. every meeting with my director will correspond to some
documentation collected for the portion of work between the 2 last meetings.

• Prepare the oral presentation (T20). After all my work is finished I still have to
present my thesis to the appointed committee, and the quality of the presentation
plays a big role in the overall viewing of the project, thus it must be good and well-
prepared. I have assigned 10 hours to this task

2.1.2 Resources

In this section I will analyze the resources needed in order to successfully complete my
thesis in all aspects, i.e. reading, implementation, managing, writing. These resources can
be divided into 4 main categories: Human, Hardware, Software and Other Material Re-
sources.

2.1 description of tasks 11

Human Resources

The first and most important human resource is, obviously, myself(HR1), since without my
individual good effort and productive work the project will not finish. Apart from that, the
contribution of my director, Dr. Leonidas Kosmidis(HR2), will be of great importance in
giving me guidance when needed in all aspects of the project, from what theory to read to
understand some concepts better, to a different approach on the practical end of the project
and even to how I should write a part of my thesis so that it is better understandable for
the reader. In all aspects the experience of my director in such work is far greater than
mine and his assistance will be priceless. Last but not least, my GEP tutor, Paola Lorenza
Pinto(HR3), will help me enhance the writing part of my thesis with her feedback.

Hardware Resources

This is a computer science project specialized in hardware, so its hardware resources are
very important albeit few in this case. The tw main resources I will use for the completion
of my project are my personal laptop and BSC’s server machines.

• My personal laptop, an M1 16GB RAM, 256GB SSD, MacBook Air 2020(R1)

• BSC’s servers(R2)

Software Resources

As any other computer science project, there will be a lot software resources needed to
assist its completion. Specifically:

• Gitlab will be used for managing the code base of the project (R3)

• Vim is my editor of choice and where I will write most, if not all, of my code (R4)

• Verilator will be used for simulating my project locally, on my personal machine (R5)

• Xilinx Vivado will be used for synthesizing the code(R6)

• Overleaf is used for writing my thesis through LateX (R7)

• Zoom and Google Meets will be used for online meetings with my director (R8)

Other Material Resources

Apart from the obvious hardware and software resources, other material resources will
also make themselves useful towards the completion of this project. I am talking about
research papers, manuals (e.g., the SweRV Core EH1 manual or Verilator manual) and
Marc Solé Bonet’s thesis for reading purposes in order to improve both my theoretical

2.1 description of tasks 12

understanding but also my practical skills. In integrating the module in the SweRV Core
EH1 the Imagination University Programme will be very helpful[14]. Nevertheless, my
practical skills will mostly be improved through tutorials whether they are video or web-
coding tutorials. Lastly, the GEP course material will help me improve my writing and
manage my project in a better way.

2.1 description of tasks 13

2.1.3 Task Summary

In this section I will summarize the tasks, their dependencies, the material resources they
use and their estimate time through a table. The hours given to each task and task category
are rough estimates and are likely to change throughout the course of the semester. For the
clarification, the second to last column refers to the human resources and the last column
refers to material resources.

Table 2.1: Table of Task Summary.

Tid Task Name Time(h) Dependencies H. Resources M. Resources

T1 Project Management and Planning 55 - - -

T2 Contextualization and project scope 10 - HR1,HR3 R1, R7

T3 Time planning 7.5 T2 HR1,HR3 R1, R7

T4 Budget and Sustainability 7.5 T3 HR1,HR3 R1, R7

T5 Integration in final document 10 T4 HR1,HR3 R1, R7

T6 Director Meetings 20 - HR1,HR2 R1, R8

T7 Theoretical Studying 50 - - -

T8 Understand SPARROW 15 - HR1 R1

T9 Understand RTL design 20 - HR1 R1

T10 Understand base CPU 15 - HR1 R1

T11 Practical implementation 130 - - -

T12 Refresh Verilog and learn VHDL 20 - HR1 R1

T13 Write the code for SPARROW 30 T8, T9, T11 HR1 R1-R6

T14 Integrate SPARROW to a CPU 40 T10, T13 HR1 R1-R6

T15 Write assembly tests 10 - HR1 R1, R4

T16 Validate the project 20 T14, T15 HR1 R1-R6

T17 Draw conclusions 10 T16 HR1 R1

T18 Independent tasks 30 - - -

T19 Keep documentation 20 - HR1 R1

T20 Prepare oral presentation 10 T16, T17, T18 HR1 R1

2.2 estimates and the gantt 14

2.2 estimates and the gantt

In this section I will present a Gantt diagram of my project’s timeline based upon the
descriptions and time estimates of the previous section.

1619 26 3 10 17 24 31 7 14 21 28 5 12 19 26 2 9 16 23
9/22 10/22 11/22 12/22 1/23

MyThesis start end

 Project Management and Planning 19/09/22 20/01/23
 Contextualization and project scope 19/09 26/09
 Time planning 27/09 03/10
 Budgeted Sustainability 04/10 10/10
 Integration in final document 11/10 17/10
 Director Meetings 26/09 20/01

 Theoretical Studying 03/10/22 21/10/22
 Understand SPARROW 03/10 07/10
 Understand RTL Design 10/10 14/10
 Understand base CPU 17/10 21/10

 Practical implementation 24/10/22 20/12/22
 Refresh System Verilog knowledge a... 24/10 28/10
 Write the code for SPARROW in (Syst... 31/10 11/11
 Integrate it to an existing CPU 14/11 18/11
 Write RISC-V assembly tests for valid... 21/11 25/11
 Validate the project 28/11 06/12
 Compare implementations 07/12 13/12
 Draw conclusions 14/12 20/12

 Independent tasks 19/09/22 24/01/23
 Prepare for the oral presentation 19/01 24/01
 Keep documentation 19/09 20/01

Powered by TCPDF (www.tcpdf.org)

Figure 2.1: Gantt Diagram of my project’s timeline

2.3 risk management : alternative plans and obstacles 15

2.3 risk management : alternative plans and obstacles

As we previously saw in the Potential obstacles and risks section, there are may occur some
obstacles along the way that will expose the completion of this project. For every one of
these risks/obstacles we will analyze its importance, the possibility of it happening and
an alternative plan in case of its occurrence.

Time

This is an obstacle that may cause a problem for many reasons. Whether that could be bad
time-planning of the tasks, or delay of the completion of a task for whatever reason or
even my inexperience on hardware projects of such scale. A lot of things can cause a setback,
whether that is minor or major and the time-planning of the project cannot be perfect from
the beginning, no matter how hard we try.

• Probability of happening: Very Low

• Impact: Very High

• Alternative Plan: Although, setbacks will occur for sure and the planning cannot be
perfect, this imperfect planning has already predicted some time for setbacks. Also,
if a task does not get completed in time that only means extra work for me and since
the hours of this project although tight, are reasonable, there will most probably
always be time to fix some setbacks. Lastly, a paradoxically good thing that usually
occurs with imperfect planning is that some tasks are overestimated, something that
will "give time back" for tasks that take for time.

Hardware code simulating but not synthesizing

This a very common obstacle that can occur from bad testing (primarily in simulation),
incorrect use of timing and delays in the code and physics and/or tool-related reasons.

• Probability of happening: Medium

• Impact: Medium

• Alternative Plan: From the start of the project, the goal will be to be very careful with
the development of the code and use thorough simulation testing before moving to
synthesizing. In this way it is possible that I will never see the project simulating
and not synthesizing. In the unfortunate event that this happens, I will have to make
an extra task, of a reasonable amount of time(8 hours), for debugging the project.
The worst case scenario here is not fixing the error. In that case, I will have to make
an extra task, which will be even more time-consuming(20 hours), for deleting and
redoing from scratch the part of the project that causes the problem.

2.3 risk management : alternative plans and obstacles 16

Inexperience on hardware projects of such scale

• Probability of happening: Medium

• Impact: Low to Medium

• Alternative Plan: It is certain that at some extent, my inexperience will affect my pro-
ductivity. But on the one hand, that is something common for a bachelor thesis and
on the other hand, guidance from my director will certainly help me short things out.
Usually, what I think will happen is having to create some extra (smaller) tasks (2-6
hours) to fill some gaps in my work and nothing more serious. This has also being
prevented by giving myself generous, but also on schedule, time for completing my
tasks.

3
B U D G E T

In this chapter I analyze the budget of my project in terms of the total costs and I mention
how I managed it throughout the course of the completion of my project.

3.1 identification of costs

To have a proper idea of the budget I will have to consider all its elements and estimate
their value. I have categorized the different costs in 4 groups, staff costs, generally calcu-
lated costs, contingencies and incidentals, which I will further analyze in this section.

3.1.1 Staff Costs

In order to estimate correctly and accurately the staff costs, I first have to define the staff
roles that would be needed for a real life project of such scale to be carried out, and I will
also define who will play these roles in the case of my project. First of all, a Project Man-
ager would be responsible for most the first part of the project as I have defined it, which
is Project Management and Planning(T1). In my case, this part will be carried out by me,
with the help of my director and my GEP tutor. Also, a Technical Writer would assist in
the composing of the final thesis document(T5). This project is of a reasonable scale so
most probably in a real life scenario (as in my case), only one person would be responsible
for all the rest of the tasks but I will further divide the work into roles for the sake of this
analysis. A Computer Engineer would do all of the Theoretical Studying(T7) and most
of the Practical Implementation(T11). Also, a Tester would write the tests(T15) and valid-
ate the project(T16) and lastly, an Analyst would draw conclusions(T17). As I mentioned
earlier, all these roles can be carried out by the same person, and that is what will happen
here with myself being responsible for all these tasks. The salaries I use later are averages
of the respective real life jobs, and my source for these averages is glassdoor[15]. The ac-
ronyms for the responsible roles as well as their salaries and analytically the division of
tasks along with their cost are displayed in the two following tables. It should be noted
that in the tables below I do not account for social security, which will be accounted for
later in the calculation of the final budget.

17

3.1 identification of costs 18

Table 3.1: Summary of the roles and their salary.

Role Yearly Salary (€) Hourly Salary (€)

Project Manager (PM) 37.250 17.91

Computer Engineer (CE) 39,184 18.84

Tester (T) 39,184 18.84

Analyst (A) 39,184 18.84

Technical Writer (TW) 36,342 17.47

Table 3.2: Estimated costs per task based on the roles responsible.

Tid Task Name Time(h) Role Responsible Cost(€)

T1 Project Management and Planning 55 - 1357,45

T2 Contextualization and project scope 10 PM 179,1

T3 Time planning 7.5 PM 134,325

T4 Budget and Sustainability 7.5 PM 134,325

T5 Integration in final document 10 TW 174,7

T6 Director Meetings 20 PM, CE 367,5+367,5=735

T7 Theoretical Studying 50 - 942

T8 Understand SPARROW 15 CE 282,6

T9 Understand RTL design 20 CE 376,8

T10 Understand base CPU 15 CE 282,6

T11 Practical implementation 130 - 2449,2

T12 Refresh System Verilog knowledge and learn VHDL 20 CE 376,8

T13 Write the code for SPARROW in (System) Verilog 30 CE 565,2

T14 Integrate it to an existing RISC-V processor 40 CE 753,6

T15 Write RISC-V assembly tests for validation 10 T 188,4

T16 Validate the project 20 T 376,8

T17 Draw conclusions 10 A 188,4

T18 Independent tasks 30 - 739,9

T19 Keep documentation 20 CE 376,8

T20 Prepare for the oral presentation 10 CE 363,1

- Total CPA Cost 265 - 5.538,55

3.1.2 Generally Calculated Costs

In this section I will consider costs that are not directly connected to the tasks and are
more general. For these costs I will consider amortization, work space and internet costs.

3.1 identification of costs 19

Amortization Costs

• Hardware

Throughout the course of the 5 months of my project I will use my personal laptop.
I will have to take into account the amortization of this resource into the cost of my
project. The price of my laptop is 1500€. I will use the laptop for all 5 months and
every day. I consider for this resource a useful lifetime of 5 years(60 months) and the
equation for amortization I will use is:

Amortization = ResourcePrice × TimeUsed × 1
li f etime

(3.1)

So we will get the following result:

Table 3.3: Table of amortization costs.

Resource Price(€) Lifetime Time Used Amortization(€)

M1 16GB RAM, 256GB SSD, MacBook Air 2020 1500 60 months 5 months 125

Total - - - 125

• Software

All software I will be using is free and opensource, so the amortization cost for my
software will be 0€.

Work Space Costs

Mainly, I will work from home but I will also do parts of my work at the Tillers Building
at BSC, where they are so kind to have me as a visitor. Thus, I will only consider the hours
I will be working from home as work space costs. Out of the 90 work days I have planned
to work, I consider that 60 of them will be done from home, and I have planned to work 3
hours every day. That is in total 180 hours or 7,5 whole 24-hour days. Considering a month
of rent without accounting the internet is 740€ for 30 days, the cost of the work space will
in the end be:

WorkSpaceCost = 740 × 7, 5
30

= 185 (3.2)

Internet Costs

Internet costs 30€ each month and as calculated in the previous section, it will be used for
7,5 whole 24-hour days in order to complete my work. Thus, the total internet cost will be:

InternetCost = 30 × 7, 5
30

= 7, 5 (3.3)

3.1 identification of costs 20

Total Generic Costs

Table 3.4: Summary of generic costs.

Case Cost (€)

Amortization 125

Work Space 185

Internet 7,5

Total 317,5

3.1.3 Contingencies and Incidentals

Contingencies

Throughout the course of this project there may occur some unpredicted events that will
cause the budget to increase or they may even be some bad estimations in the initial
budget we have now. Those possible extra costs, have to be taken into account beforehand
and thus we have to add a contingency margin which will be, as usually in the current
market, 15% of the total cost (CPA + generic costs). So we get:

ContingencyMargin = 0.15 × (5.538, 55 + 317, 5) = 878,4 (3.4)

Incidentals

As we have previously already discussed in the Potential obstacles and risks section, there
are some unfortunate events that can occur throughout the course of this project, that will
threat to derail its course. Those events will of course also cost, at the very least in terms
of work hours, which will have to be paid. Thus we have to take into account the potential
costs these risks can cause and see if our contingency margin can cover them.

• Time. In general I will give a maximum of 20 more hours of work in order to achieve
deadlines that will be tight, and I give a 20% chance of all them happening.

• Hardware code simulating but not synthesizing. As I explained in the previous
chapter, at the worst case scenario I believe no more than 28 more hours will be
given to this obstacle, with again a 20% chance of that happening.

• Inexperience on hardware projects of such scale. For this task I will give 20 hours
of more work with a 50% chance of that happening.

The total incidental costs will be:

3.2 final budget 21

Table 3.5: Summary of Incidental costs.

Risk Extra Hours Risk(%) Cost(€)/h Extra Cost(€)

Time 20 20 18,84 75,36

Hardware Code Problems 28 20 18,84 105,5

Inexperience 20 40 18,84 150,72

Total - - - 331,58

3.2 final budget

Based on the previous sections and also accounting for social security(35% of CPA) the
total final budget will be:

Table 3.6: Table of the Final Budget.

Activity Cost(€)

CPA 5.538,55

Social Security(35% of CPA) 1.938,5

Generic Costs 359,16

Contingency Margin 878,4

Incidental Costs 331,58

Total 9.046,19

3.3 management control

As I have mentioned before throughout this chapter the estimations made for this budget
are likely to be off, either positively (less cost actually needed) or negatively (more cost
actually needed). For this reason, at the end of each task, I will assess it in terms of cost
in order to manage accordingly. The process I follow is every time I finish a task, I will
measure the actual cost needed to complete it. If that cost is higher than the estimated
cost, I will take some capital off the contingency margin to feel that void. In the fortunate
case that that cost is less, I will just add the difference in the contingency margin.

4
S U S TA I N A B I L I T Y

In this chapter perform a self-assessment of my previous knowledge and capabilities in
terms of assessment and I answer some reflective questions referring the sustainability
of my project in terms of three different dimensions. Those dimensions are the Environ-
mental, the Economic and the Social Dimension.

4.1 self-assessment

In completing the questionnaire, I realized a lot about my knowledge on the topic of
sustainability. First of all, beforehand, I knew that there are many problems in our modern
world involving various dimensions that sustainability covers. On the environmental part,
I was aware of the most important issue that is climate change and an issue more connected
to computer science is the huge amount of energy that is consumed. On the social aspect,
it is no secret that we live in weird times and that many social issues have arose in the last
few years, most of them being directly linked to the IT industry like mental health crisis,
social media addiction and an increase in consumerism. Lastly, I understood that it would
be important for all parts involved in a project to reduce its costs as much as possible. But,
as I found out through the questionnaire, all this is just the tip of the iceberg.

Furthermore, I have always thought I have been sensitive to the effects that my personal
work and also the work of my field in general will have to society in whatever way that is.
Over the years I have contemplated about ethical issues, issues of social justice and many
more that it is not necessary to mention one by one. But, this questionnaire made me think
about how many issues there actually are to consider and how many different viewpoints
for each one.

Finally, I got to admit I was starstruck by the sheer amount of technical knowledge that
exists on the assessment of those fields that I really knew very little about. Knowledge
involving metrics, tools, strategies and many more. Thus, I have to say that filling that
questionnaire really opened my eyes about how much there is out there and how much
room for improvement there is for me in this aspect in terms of becoming practically better
at it as a professional in the near future, besides abstractly thinking about only part of the
topics included.

22

4.2 environmental dimension 23

4.2 environmental dimension

Have you estimated the environmental impact of undertaking the project? Have you considered how
to minimize impact, for example by reusing resources?

Yes, I have thought about the environmental impact of my project. It is a project of small to
reasonable scale that requires very few resources in order to complete, thus I consider its
direct environmental impact to be small, no great amount of energy (other than my one)
will be consumed nor the production of this project will directly affect the environment
in any other way. Indirectly, since the project is a very low-cost and energy-efficient AI
accelerator and it will be initially implemented on an also low-cost, small area base CPU,
we can say that it is environmentally friendly. It is difficult to calculate how big or small
its indirect impact will be at the end of the day.

How is the problem that you wish to address resolved currently (state of the art)? In what ways will
your solution environmentally improve existing solutions?

As I have mentioned in the first chapter, there are few solutions in the RISC-V community
that are low-cost and energy-efficient and the focus is more towards performance. In this
way, my project will environmentally improve the existing solutions at the state-of-the-
art since it will offer an environmentally friendly CPU processor with AI acceleration to
the RISC-V community. Also, it worth noting that RISC-V processors are by default more
energy efficient than their x86 counterparts due to the simplicity of the ISA.

4.3 economic dimension

Have you estimated the cost of undertaking the project (human and material resources)?

Yes, I have and very thoroughly and you can see it at the chapter about budget.

How is the problem that you wish to address resolved currently (state of the art)? In what ways will
your solution economically improve existing solutions?

SPARROW is targeting integration with existing space processors. Currently, to produce
a new space processor is a very difficult, tiring and expensive procedure that companies
would like to avoid. SPARROW being integrated into an existing processor, will make
it far easier in terms of both time and money to improve the performance of an existing
processor, and thus eliminating the need of going through the whole procedure of creating
a new one.

4.4 social dimension 24

4.4 social dimension

What do you think undertaking the project has contributed to you personally?

Personally, I seek to improve a lot as a person by undertaking this project. First of all, it
is one of the biggest projects I have undertaken so far in my life and I will get valuable
experience in a wide range of work activities from project managing and technical writing
to coding, analyzing and testing a project of such scale. I am in my Erasmus semester so
in order to enjoy it I will have to find a way to balance work and free time, a skill that will
be valuable for the rest of my adult life. Lastly, in order to complete such a project I will
need to improve my self-discipline and productivity. In general, I will learn a lot on my
way towards completing this project.

How is the problem that you wish to address resolved currently (state of the art)? In what ways will
your solution socially improve existing solutions?

I don’t think my project has much of a social impact. It is a portable and cheap AI accel-
erator that aims at being a good and easy-going solution for people in the industry and
research domains that would like to use a CPU with cheap and efficient AI acceleration.
Of course it will be open-source.

Is there a real need for the project?

From a social standpoint I don’t think there is one. From a research and industry stand-
point this project will definitely be useful to people in the future, so yes.

5
A N A LY S I S O F T H E I M P L E M E N TAT I O N

In this chapter I explain in detail the design and pipeline of SweRV Core EH1 and the
design of SPARROW. I also explain design decisions I have made throughout the progress
of the project and explain the process of integrating SPARROW in SweRV Core EH1.

5.1 the swerv core eh1 and its pipeline

The SweRV Core EH1 is a commercial open-source processor designed by Western Digital.
As it can be seen in Figure 5.1, it has a 9 stage pipeline and it is superscalar, having 2 ways.
Specifically, the stages of its pipeline are: Fetch1, Fetch2, Align, Decode, EX1/DC1/M1,
EX2/DC2/M2, EX3/DC3/M3, Commit and Writeback stages. SweRV has parallel paths
(load/store vs. integer vs. multiply pipes), and splits some stages into multiple stages
(Fetch is 2 stages and Execute is 3 stages). In terms of memory, besides Main Memory,
the open-source version of EH1 has an Instruction cache, an ICCM (Instruction Closely
Coupled Memory) and a DCCM (Data Closely Coupled Memory). The ICCM and the
DCCM are scratchpads for the instructions and the data respectively. The use of the In-
struction Cache, the ICCM and the DCCM is optional. It is important to note that during
the Execution Stages only one of the pipes actually works per way, the Decode stage has
decided which one that is based on the instruction that it currently going to run. All the
other pipes are disabled. At the end of the 3rd Execution stage the correct result between
the load/store, the multiply and the two integer pipes is selected through a multiplexer.
Again the value that the multiplexer will select has been determined at the Decode Stage.
There is a 34-cycle Out-of-Pipeline Divider. The aforementioned multiplexer does not take
into account the result of this divider. This result is selected, if necessary, during the Write-
back stage. It is also worth mentioning that EH1 understands where data is placed (Main
Memory or DCCM) based on a fixed address map. For this reason, in order to use the
DCCM, a different linker script has to be used in order to place the program data in the
address space mapped to the DCCM.

5.1.1 A few words about DCCM and ICCM

The Tightly Coupled Memories are known also as scratchpads[16]. Scratchpads are soft-
ware managed "cache" memories, in which the data which are written to them are guaran-
teed to be present when they are read. Therefore it is the programmer’s responsibility to

25

5.2 the sparrow design 26

manage their contents, unlike cache memories, which in case of a cache miss, the required
piece of memory is automatically requested from DRAM.

Scratchpad memories are used very frequently in real-time systems and in other sys-
tems which are latency sensitive, because they can provide low-latency and deterministic
execution time.

DCCM and ICCM in SweRV are two dedicated memories, one for instruction and the
other for data, that are tightly coupled to the core. These memories provide low-latency
access and SECDED ECC protection. Their respective sizes (4, 8, 16, 32, 48, 64, 128, 256, or
512KB) are set as arguments at build time of the core.

Figure 5.1: Overview of the SweRV Core EH1 Pipeline (image taken from [17])

5.2 the sparrow design

SPARROW [4][1] is a 2-stage SIMD accelerator. It is targeted for AI workloads and to be
integrated mainly with space processors. The main idea behind SPARROW is that it is
proven that for modern AI workloads, 8-bit values are enough [18]. This way SPARROW
just by having two 32-bit words as input can process simultaneously 4 different 8-bit input
values.

5.2 the sparrow design 27

5.2.1 First stage

In the first stage of SPARROW the same operation is executed for all pairs of values. The
operations supported for the first stage are arithmetic(add, sub, mul, etc, but not div), shifts
and logical. For the arithmetic operations there signed and unsigned versions of them and
also versions with built-in saturation. For saturation, the maximum and minimum value
depends on the sign, more specifically 0 to 255 for unsigned and -127 to 128 for signed,
since the output value must be 8 bits. In Table 5.1 we can analytically see the operations
supported for the first stage of the of SPARROW.

Table 5.1: SPARROW first stage operation codes (table taken from [1])

sd1 Name Operation

00000 nop rd′ = rs1 rd′ ∈ N

00001 add rd′i = rs1i + rs2i ∀i ∈ {0, ..., 3} rs1, rs2 ∈ Z

00010 sub rd′i = rs1i − rs2i ∀i ∈ {0, ..., 3} rs1, rs2 ∈ Z

00011 mul rd′i = rs1i × rs2i ∀i ∈ {0, ..., 3} rs1, rs2 ∈ Z

00101 max rd′i = max(rs1i, rs2i) ∀i ∈ {0, ..., 3} rs1, rs2 ∈ Z

00110 min rd′i = min(rs1i, rs2i) ∀i ∈ {0, ..., 3} rs1, rs2 ∈ Z

00111 and rd′i = rs1i ∧ rs2i ∀i ∈ {0, ..., 3} rs1, rs2 ∈ N

01000 or rd′i = rs1i ∨ rs2i ∀i ∈ {0, ..., 3} rs1, rs2 ∈ N

01001 xor rd′i = rs1i ⊕ rs2i ∀i ∈ {0, ..., 3} rs1, rs2 ∈ N

01010 nand rd′i = ¬(rs1i ∧ rs2i) ∀i ∈ {0, ..., 3} rs1, rs2 ∈ N

01011 nor rd′i = ¬(rs1i ∨ rs2i) ∀i ∈ {0, ..., 3} rs1, rs2 ∈ N

01100 xnor rd′i = ¬(rs1i ⊕ rs2i) ∀i ∈ {0, ..., 3} rs1, rs2 ∈ N

01101 sadd rd′i = max(−128, min(127, rs1i + rs2i)) ∀i ∈ {0, ..., 3} rs1, rs2 ∈ Z

01110 ssub rd′i = max(−128, min(127, rs1i − rs2i)) ∀i ∈ {0, ..., 3} rs1, rs2 ∈ Z

01111 smul rd′i = max(−128, min(127, rs1i × rs2i)) ∀i ∈ {0, ..., 3} rs1, rs2 ∈ Z

10000 merg rd′ = rs2 rd′ ∈ N

10001 shft rd′i = rs1i (≪ | ≫)1 rs2i/2 ∀i ∈ {0, ..., 3} rs1, rs2 ∈ Z

10011 umul rd′i = rs1i × rs2i ∀i ∈ {0, ..., 3} rs1, rs2 ∈ N

10101 umax rd′i = max(rs1i, rs2i) ∀i ∈ {0, ..., 3} rs1, rs2 ∈ N

10110 umin rd′i = min(rs1i, rs2i) ∀i ∈ {0, ..., 3} rs1, rs2 ∈ N

11001 sshft rd′i = max(−128, min(127, rs1i (≪ | ≫)1 rs2i/2)) ∀i ∈ {0, ..., 3} rs1 ∈ Z2

rd′i = max(0, min(255, rs1i (≪ | ≫)1 rs2i/2)) ∀i ∈ {0, ..., 3} rs1 ∈ N2

11101 usadd rd′i = max(0, min(255, rs1i + rs2i)) ∀i ∈ {0, ..., 3} rs1, rs2 ∈ N

11110 ussub rd′i = max(0, min(255, rs1i − rs2i)) ∀i ∈ {0, ..., 3} rs1, rs2 ∈ N

11111 usmul rd′i = max(0, min(255, rs1i × rs2i)) ∀i ∈ {0, ..., 3} rs1, rs2 ∈ N

1. The second operand sign determines the direction of the shift. Also its last bit identifies whether the shift is logic or
arithmetic.

2. If the shift is logical it treats the data as unsigned whereas if it’s arithmetic as signed.

5.2 the sparrow design 28

5.2.2 Second stage

In the second stage there are performed reduction operations using all 4 results from the
first stage. There is also the option of not performing any operation at all. The supported
reduction operations for the second stage are: sum, max, min, xor, usum, umax, umin. The
reduction operations also have a saturated version, but due to limited bits in the instruction
for the opcodes, the same saturation option as for the first stage is used. In Table 5.2 we
can analytically see the operations supported for the second stage of the of SPARROW.

Table 5.2: SPARROW second stage operation codes (table taken from [1])

sd2 Name Operation

000 nop rd = rd′ rd′ ∈ N

001 sum rd = ∑ rd′i ∀i ∈ {0, ..., 3} rd′ ∈ Z

010 max rd = max(rd′0, rd′1, rd′2, rd′3) rd′ ∈ Z

011 min rd = min(rd′0, rd′1, rd′2, rd′3) rd′ ∈ Z

100 xor rd = rd′0 ⊕ rd′1 ⊕ rd′2 ⊕ rd′3 rd′ ∈ N

101 usum rd = ∑ rd′i ∀i ∈ {0, ..., 3} rd′ ∈ N

110 umax rd = max(rd′0, rd′1, rd′2, rd′3) rd′ ∈ N

111 umin rd = min(rd′0, rd′1, rd′2, rd′3) rd′ ∈ N

r.s1
S1_ALU

+
S1_select

Input

sdi.ra

sdi.rb

sdi.rc_we

sdi.op1

sdi.op2

r.s1.ra

r.s1.sb

sdi

control signals

r.s2s1_res + control signals

S2_ALU
+

S2_select

r.s2.ra

r.s2.sat

~r.s2.op2(2)

r.s2.op2
(for s2_select)

r.s3s2_res

to_words1_res

Output

sdo.bp1

sdo.bp2

sdo.result

clk

clk

clk

Figure 5.2: Overview of the SPARROW design

5.3 implementing sparrow and integrating sparrow in eh1 29

5.2.3 General information

The most novel feature of SPARROW is that it reuses the register file of the host core. In
this way, SPARROW is very low cost in terms of area when integrated into a core and the
integration has to be very close. Lastly, there is compiler support[19] for the SPARROW
instructions which is very useful for testing of my hardware design, without the need to
modify the compiler.

5.3 implementing sparrow and integrating sparrow in eh1

5.3.1 Experience of Porting SPARROW from VHDL to SystemVerilog

The most challenging part of the implementation was learning VHDL and the correspond-
ences between VHDL and SystemVerilog. Features that SystemVerilog has - unlike Verilog -
regarding types were really helpful in achieving a similar design pattern. Apart from that,
the design of SPARROW is fairly simple using primitive operations and thus there was
no severe problems faced during the implementation. At the end, a simple, but thorough
testbench was used to validate the correctness of the design. All features supported by the
VHDL version are supported by the SystemVerilog version.

5.3.2 Experience integrating SPARROW in SweRV Core EH1

The most difficult part of this project was integrating the SystemVerilog implementation
of SPARROW into the SweRV Core EH1. The main reason for this is that the selected core
is an industry-ready, power, area and timing optimised processor instead of an academic
core written with clarity in mind and in order to be easily modified, like for example
the Ariane core from ETHZ [20]. To integrate SPARROW there were some key steps that
needed to be followed.

Support in the decode unit

First of all, the core needs to be able to decode the SPARROW assembly instructions. To do
that there had to be made various changes in data structures and logic in the decode unit.
Changes in the logic were optimized with the help of the espresso logic generator [21]
from UC Berkeley.

Support in the Execution Stage

Once, the instructions were recognizable by the decoding unit of the processor and the
correct control signals in terms of SPARROW were generated, the next step was to actually
integrate the module in the execution stage. For this, I had to understand in the code of
the core, which were the correct inputs for SPARROW and which were the correct outputs.
The biggest design decision made throughout the integration was the decision to integrate

5.3 implementing sparrow and integrating sparrow in eh1 30

SPARROW inside the multiplier pipe. There were various reasons for this. First of all,
that, and also making the processor recognize SPARROW instructions as a subset of mul
instructions, made the integration easier in terms of small things that the processor already
did for the existing pipes. The biggest takeaway from this decision was that now sparrow
had the same output signal as the multiplier pipe and the processor would do the handling
from there. Even in terms of bypassing the output of SPARROW, since for the core it was
like bypassing a mul instruction. Also, a very important consequence of this decision was
that SPARROW instructions would now take a fixed 3 cycles to complete, like the mul
instructions.

Bypassing support

As stated before the bypassing of the output is automatically handled by the core, because
SPARROW is integrated with the multiplier pipe. That was not the case for the input
though. In order for the SPARROW instructions to be able to run with no additional delays
than the ones that were absolutely necessary there had to be implemented some handling
of late inputs that were not already handled by the core. The way SweRV Core EH1 works
here is that when there is going to be a late input, a signal is raised inside the pipe (the
multiplier in our case). That late input comes at the first Execution Stage and usually there
is going to be an additional stall there. This means that all the signals inside the module
have to remain unchanged for the duration of the stall, in order not to lose information
that would change the result. When the stall (if there is actually one) is over, the correct
inputs for the module are available, and since all the control signal are correct, the correct
result can be computed without any problem.

6
E VA L U AT I O N

In this chapter I present and analyze the results from evaluating my SPARROW imple-
mentation within the EH1 core. To evaluate SPARROW in EH1, 4 benchmarks were used,
representative of AI application workloads. The same benchmarks were used to evaluate
SPARROW integrated with LEON3 and NOEL-V in [4][1]. One containing a program per-
forming a matrix multiplication algorithm, one containing a program converting an RGB
image to greyscale, one applying a 3x3 filter to a square matrix and lastly one performing
the calculation of N polynomial equations. For each benchmark many different sizes were
used, and the speedup between a version of the program with sequential C code and a
version of the program utilizing SPARROW instructions was measured. Also, 2 different
measurements were performed for all benchmarks, for 2 different configurations. One us-
ing the DCCM, and without it, in which the data are fetched from DRAM. Here is a good
place to remind that the open-source version of EH1 does not have a data cache. In order
to use the DCCM in the programs, only changes in the linker script needed to be made.
The size of the DCCM was also changed to be 512KB, from 64KB that is the default. For
everything else, the default configuration was used. In Table 6.1 we can see in detail the
configuration parameters used for obtaining the measurements.

Table 6.1: The EH1 hardware configurations used in the evaluation.

Dual-issue Enabled

Instruction Cache Enabled, 16KB

ICCM Enabled, 512KB

DCCM Enabled, 512KB

Even when enabled in the hardware configuration of the core, in order to actually
utilize the ICCM and DCCM from the software, the appropriate linker script must be
written, so that the data or instructions are mapped to the corresponding closely coupled
memories. In the benchmarks below, the ICCM was not used by the software, although it
was enabled in the processor configuration.

Moreover, it is important to note that the benchmark input arrays were not hardcoded
with static values, but they were (pseudo)randomly initialized dynamically inside the pro-
gram. Thus, the cycles corresponding to the initialization were calculated and subtracted
from the total program cycles, in order not to obscure the speedup measurements.

31

tab:table8

6.1 matrix multiplication benchmark 32

The 4 benchmarks used are the same (with some minor changes), that were used to eval-
uate the initial SPARROW implementation in Marc Sole Bonet’s Master’s thesis. Of course,
I have validated the correctness of the results when using SPARROW, which produces
identical results with the scalar version. It is also worth noting that these 4 benchmarks
were based on 4 benchmarks kindly provided by Mr. Mathew Johns, and were used in his
work [22].

6.1 matrix multiplication benchmark

In Tables 6.2 and 6.3 we can see the results of the matrix multiplication benchmark. We
can see significant speedups both when using and when not using the DCCM. But when
using the DCCM the speedups are even greater. It is also worth mentioning that for this
benchmark the multiplication is with saturation enabled. Saturation was implemented
with optimized (min, max) defines in the C code and for the SPARROW version, the
appropriate buillt-in instructions were used. This benchmark is a prime example of were
SPARROW can thrive, since we can take advantage of the fact that SPARROW can calculate
the dot product of 4 values with just a single instruction. The first stage calculates the
multiplication of the values and the second stage adds the results together. Also, the same
instruction can calculate the saturation with no additional cost.

Table 6.2: Speedup results for the matrix multiplication benchmark.

Size(N) SweRV Core EH1 cycles EH1+SPARROW cycles Speedup

4 9,168 4,294 2.13

8 61,996 21,366 2.90

16 468,450 145,630 3.22

32 3,764,663 1,092,748 3.44

64 32,622,775 8,503,118 3.83

128 273,189,693 69,192,579 4.03

Table 6.3: Speedup results for the matrix multiplication benchmark using the DCCM.

Size(N) SweRV Core EH1 cycles EH1+SPARROW cycles Speedup

4 4,078 1,581 2.58

8 26,778 7,327 3.65

16 199,875 46,751 4.28

32 1,631,891 340,255 4.80

64 12,614,395 2,603,426 4.85

128 99,734,715 20,369,698 4.90

6.2 greyscale benchmark 33

Size

S
pe

ed
up

0

1

2

3

4

5

4 8 16 32 64 128

no DCCM with DCCM

Figure 6.1: Comparison of the speedups with and without the DCCM for the matrix multiplication
benchmark

6.2 greyscale benchmark

In Tables 6.4 and 6.5 we can see the results for the greyscale benchmark. This is the bench-
mark with the lowest speedups, both when using the DCCM and when not using it. There
could be many reasons for this, but I have identified 2 main ones. The first reason is that
there are dependencies between consecutive SPARROW instructions in the same for-loop
of the SPARROW version of the program, something that could not be avoided. The second
reason is the fact that this is a very memory intensive program. The source array is a 3D
array of dimensions [N][4][N]. Basically, the 4 represents R,G,B,A. This array is enormous
and the initialization of this program was constantly 3/4 of the total runtime. I speculate
that the memory intensity of the program and the instruction dependencies don’t leave
much room for improvement. Lastly, it is important to note that although this algorithm
could work for RGBA, the input array is in fact RGB and only calculations about the 3
components were made by the C program. For SPARROW nothing changes depending
on whether we use 1, 2, 3, or 4 components, but for the C version a fair amount of less
instructions per for-loop were made. Had we used all 4 components the speedup would
certainly be greater and SPARROW would be fully utilized.

6.3 filter (convolution) benchmark

In Tables 6.6 and 6.7 we can see the results for the filter benchmark. This benchmark applies
a 3x3 convolution kernel over an image. For this benchmark we see similar speedups in
both configurations. For this benchmark, there has to be some data manipulation before

6.3 filter (convolution) benchmark 34

Table 6.4: Speedup results for the greyscale benchmark.

Size(N) SweRV Core EH1 cycles EH1+SPARROW cycles Speedup

4 2,363 2,111 1.12

8 7,027 5,227 1.34

16 25,485 17,418 1.46

32 98,860 65,736 1.50

64 395,624 258,251 1.53

Table 6.5: Speedup results for the greyscale benchmark using the DCCM.

Size(N) SweRV Core EH1 cycles EH1+SPARROW cycles Speedup

4 791 789 1.00

8 2,023 1,797 1.13

16 6,802 5,598 1.22

32 25,583 20,513 1.25

64 108,128 75,526 1.43

128 1,382,248 1,251,482 1.36

Size

S
pe

ed
up

0,0

0,5

1,0

1,5

2,0

4 8 16 32 64

no DCCM with DCCM

Figure 6.2: Comparison of the speedups with and without the DCCM for the greyscale benchmark

the data are able to be used by SPARROW, so it makes sense that we do not see extreme
speedups, although the speedups that we do see are still very satisfactory.

6.4 polynomial benchmark 35

Table 6.6: Speedup results for the filter benchmark.

Size(N) SweRV Core EH1 cycles EH1+SPARROW cycles Speedup

4 28,126 15,851 1.77

8 119,574 62,208 1.92

16 496,873 251,772 1.97

32 2,055,728 1,020,129 2.01

64 8,313,841 4,183,825 1.99

128 33,436,273 16,578,665 2.02

Table 6.7: Speedup results for the filter benchmark using the DCCM.

Size(N) SweRV Core EH1 cycles EH1+SPARROW cycles Speedup

4 8,783 5,733 1.53

8 35,223 21,102 1.67

16 142,912 82,703 1.73

32 720,580 330,025 2.18

64 2,833,171 1,359,283 2.08

Size

S
pe

ed
up

0,0

0,5

1,0

1,5

2,0

2,5

4 8 16 32 64

no DCCM with DCCM

Figure 6.3: Comparison of the speedups with and without the DCCM for the filter benchmark

6.4 polynomial benchmark

In Tables 6.8 and 6.9 we can see the results for the polynomial benchmark. For this bench-
mark we see similar speedups between the 2 configurations, and they are slightly worst
when using the DCCM. In this benchmark in the SPARROW version they are 4 continuous
SPARROW instructions in the main for-loop and they are dependent from the previous

6.5 summary of the evaluation results 36

one (the 2nd from the 1st, the 3rd from the 2nd and the 4rth from the 3rd). Again, it makes
sense that for this reason we don’t see extreme speedups, although again they are still very
satisfactory.

Table 6.8: Speedup results for the polynomial benchmark.

Size(N) SweRV Core EH1 cycles EH1+SPARROW cycles Speedup

4 524 252 2.08

8 932 386 2.41

16 1,748 654 2.67

32 3,390 1,191 2.84

64 6,653 2,263 2.94

128 13,174 4,407 2.99

256 26,230 8,695 3.02

512 52,342 17,271 3.03

1024 104,570 34,437 3.04

2048 209,020 68,733 3.04

4096 422,012 138,365 3.05

8192 843,900 276,605 3.05

Table 6.9: Speedup results for the polynomial benchmark using the DCCM.

Size(N) SweRV Core EH1 cycles EH1+SPARROW cycles Speedup

4 214 141 1.52

8 330 188 1.76

16 562 282 1.99

32 1,021 466 2.19

64 1,950 857 2.28

128 3,805 1,624 2.34

256 7,527 3,160 2.38

512 14,942 6,242 2.39

1024 29,792 12,390 2.40

2048 59,490 24,676 2.41

4096 122,978 49,256 2.50

8192 245,858 98,408 2.50

6.5 summary of the evaluation results

The results are completely satisfactory. There is noticeable speedup for every benchmark,
and there is no case where the program slows down. In the matrix multiplication bench-
mark where we take advantage of the saturation support of SPARROW the results are
the best. Theoretically, in a single-issue core, when using SPARROW the maximum spee-

6.5 summary of the evaluation results 37

Size

S
pe

ed
up

0

1

2

3

4

4 8 16 32 64 128 256 512 1024 2048 4096 8192

no DCCM with DCCM

Figure 6.4: Comparison of the speedups with and without the DCCM for the polynomial bench-
mark

dup we could get would be 4x. That is because one SPARROW instruction does the same
operation on 4 different values, something that would take 4 instructions in a simple C
program. When utilizing both stages the theoretical maximum speedup gets even higher.
But practically, that is not always applicable for various reasons. First of all, there most
likely needs to be done some data manipulation in the SPARROW version of the program
that will cause some overhead. Also, specifically in this integration of SPARROW in EH1,
all SPARROW instructions take a fixed 3 cycles to complete. This especially wastes cycles
of when some instructions are ready to go (for example an add that only utilizes the 1st
stage of SPARROW).

Furthermore, here we have a dual-issue core, something that reduces the theoretical
maximum speedup by a significant amount. It would be naive to say that it goes from 4 to
2, and it needs a very detailed and prolonged analysis to get a good estimation of the actual
theoretical maximum speedup, but it is certainly less than 4. Also, it is worth noting that
for compiling the benchmarks there was used the llvm version of the compiler support for
SPARROW. In Marc Solé Bonet’s Master thesis, it was shown that the speedups were worse
when using llvm compared to when using the gcc compiler support for SPARROW that
exists. It is unfortunate that the gcc compiler support is only for the SPARC ISA version
of the SPARROW instructions, and not the RISC-V ones. Considering, all of the above, we
can conclude that the results were indeed very good.

6.6 synthesis 38

6.6 synthesis

Something very important about the implementation of SPARROW in SystemVerilog and
its integration with the SweRV Core EH1 is that it is synthesizable. This reassures the
level of quality of the work and helps see the actual physical impact of the integration of
SPARROW in EH1. In table In Table 6.10 we can see the results of the synthesis in terms
of utilization.

In particular, SPARROW consumes 2,479 LUTs (Look up tables) and 232 flip-flops, which
represents an increase of 3.91% and 0.18% respectively over the original EH1 core version.
These results confirm that SPARROW’s implementation thanks to the reuse of the integer
registrer file is very low-cost compared to conventional vector processors.

Table 6.10: SweRV Core EH1 resource utilization comparison for the NEXYS 4 DDR FPGA.

Available SweRV Core EH1 SPARROW

LUT 63,400 32,847(51.81%) 35,326(55.72%)

LUTRAM 19,000 1,129(5,94%) 1,129(5.94%)

FF 126,800 20,425(16.11%) 20,657(16.29%)

BRAM 135 52(38.52%) 52(38.52%)

DSP 240 4(1.67%) 4(1.67%)

IO 210 12(5.71%) 12(5.71%)

MMCM 6 1(16.67%) 1(16.67%)

7
C O N C L U S I O N S A N D F U T U R E W O R K

7.1 conclusions

This project was completed successfully. SPARROW has been ported from VHDL to Sys-
temVerilog, and it has been integrated in the SweRV Core EH1 working flawlessly and
getting correct results with the 4 benchmarks used for evaluation in the initial SPARROW
Master thesis by Marc Solé Bonet. Something that was not necessarily planned at the be-
ginning of the project is that it supports internal bypassing inside the core making work
with only the absolutely necessary dependency-caused delays. This way there are achieved
noticeable speedups in every benchmark. From this work the portability of SPARROW has
been proved and there is now a new alternative in RISC-V embedded systems with an
integrated AI accelerator.

7.2 future work

Although this project achieved and even exceeded expectations, there is much more that
can be done based on this work. First of all, we will explore the possibility of achieving
even greater speedup and improving the integration and/or the implementation if it will
be proven helpful. Moreover, there are plans to compare this implementation of SPARROW
integrated with EH1, with the VHDL version of SPARROW integrated with LEON3 and
NOEL-V, which is going to provide insights about the different benefit achieved by the
microarchitecture of each core. Furthermore, there are plans to integrate SPARROW into
BSC’s Lagarto and SweRV Core variants, EH2 and EL2.

39

B I B L I O G R A P H Y

[1] M. S. Bonet, Hardware-Software Co-design for Low-cost AI processing in Space Processors. [Online]. Available:
https://upcommons.upc.edu/bitstream/handle/2117/361411/159828.pdf?sequence=1&isAllowed=y.

[2] C. Zarkos, Cores-Veer-EH1-SPARROW. [Online]. Available: https://gitlab.bsc.es/czarkos/cores-
veer-eh1-sparrow.

[3] C. Zarkos, sparrow-sv. [Online]. Available: https://gitlab.bsc.es/czarkos/sparrow-sv.

[4] M. S. Bonet and L. Kosmidis, ‘Sparrow: A low-cost hardware/software co-designed simd microarchitec-
ture for ai operations in space processors’, in 2022 Design, Automation Test in Europe Conference Exhibition
(DATE), 2022, pp. 1139–1142. doi: 10.23919/DATE54114.2022.9774730.

[5] M. S. Bonet, BCC-SPARROW. [Online]. Available: https://gitlab.bsc.es/msolebon/bcc-sparrow.

[6] A. Waterman, Design of the RISC-V Instruction Set Architecture, Jan. 2016. [Online]. Available: https:
//people.eecs.berkeley.edu/~krste/papers/EECS-2016-1.pdf.

[7] Zhang Hongsheng et al 2020 J. Phys.: Conf. Ser. 1693 012192, Design of a dual-issue RISC-V processor.
[Online]. Available: https://iopscience.iop.org/article/10.1088/1742-6596/1693/1/012192/pdf.

[8] M. Flynn, ‘Flynn’s taxonomy’, in Encyclopedia of Parallel Computing, D. Padua, Ed. Boston, MA: Springer
US, 2011, pp. 689–697, isbn: 978-0-387-09766-4. doi: 10.1007/978-0-387-09766-4_2. [Online]. Available:
https://doi.org/10.1007/978-0-387-09766-4_2.

[9] VeeR EH1 RISC-V Core. [Online]. Available: https://github.com/chipsalliance/Cores-VeeR-EH1/
tree/main.

[10] J. Abella et al., ‘An academic risc-v silicon implementation based on open-source components’, in 2020
XXXV Conference on Design of Circuits and Integrated Systems (DCIS), 2020, pp. 1–6. doi: 10 . 1109 /
DCIS51330.2020.9268664.

[11] esperanto.ai. [Online]. Available: https://www.esperanto.ai.

[12] GitHub - ztachip/ztachip: Opensource software/hardware platform to build edge AI solutions deployed on FPGA
or custom ASIC hardware. [Online]. Available: https://github.com/ztachip/ztachip.

[13] riscv-p-spec/P-ext-proposal.pdf at master · riscv/riscv-p-spec. [Online]. Available: https : / / github . com /
riscv/riscv-p-spec/blob/master/P-ext-proposal.pdf.

[14] Imagination University Programme. [Online]. Available: https://university.imgtec.com.

[15] Glassdoor, 2022. [Online]. Available: https://www.glassdoor.co.

[16] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan and P. Marwedel, ‘Scratchpad memory: Design altern-
ative for cache on-chip memory in embedded systems’, in Proceedings of the Tenth International Symposium
on Hardware/Software Codesign, ser. CODES ’02, Estes Park, Colorado: Association for Computing Ma-
chinery, 2002, pp. 73–78, isbn: 1581135424. doi: 10.1145/774789.774805. [Online]. Available: https:
//doi.org/10.1145/774789.774805.

[17] Programmer’s Reference Manual V1.9 for VeeR EH1 core. [Online]. Available: https : / / github . com /
chipsalliance/Cores-VeeR-EH1/tree/main/docs.

[18] N. P. Jouppi et al., ‘In-datacenter performance analysis of a tensor processing unit’, SIGARCH Comput.
Archit. News, vol. 45, no. 2, pp. 1–12, Jun. 2017, issn: 0163-5964. doi: 10.1145/3140659.3080246. [Online].
Available: https://doi.org/10.1145/3140659.3080246.

[19] M. S. Bonet, LLVM-SPARROW. [Online]. Available: https://gitlab.bsc.es/msolebon/llvm-sparrow.

[20] CVA6 RISC-V CPU. [Online]. Available: https://github.com/openhwgroup/cva6.

[21] Espresso: a Multi-valued PLA minimization. [Online]. Available: https : / / ptolemy . berkeley . edu /
projects/embedded/pubs/downloads/espresso/index.htm.

[22] M. Johns and T. J. Kazmierski, ‘A minimal risc-v vector processor for embedded systems’, in 2020 Forum
for Specification and Design Languages (FDL), 2020, pp. 1–4. doi: 10.1109/FDL50818.2020.9232940.

40

https://upcommons.upc.edu/bitstream/handle/2117/361411/159828.pdf?sequence=1&isAllowed=y
https://gitlab.bsc.es/czarkos/cores-veer-eh1-sparrow
https://gitlab.bsc.es/czarkos/cores-veer-eh1-sparrow
https://gitlab.bsc.es/czarkos/sparrow-sv
https://doi.org/10.23919/DATE54114.2022.9774730
https://gitlab.bsc.es/msolebon/bcc-sparrow
https://people.eecs.berkeley.edu/~krste/papers/EECS-2016-1.pdf
https://people.eecs.berkeley.edu/~krste/papers/EECS-2016-1.pdf
https://iopscience.iop.org/article/10.1088/1742-6596/1693/1/012192/pdf
https://doi.org/10.1007/978-0-387-09766-4_2
https://doi.org/10.1007/978-0-387-09766-4_2
https://github.com/chipsalliance/Cores-VeeR-EH1/tree/main
https://github.com/chipsalliance/Cores-VeeR-EH1/tree/main
https://doi.org/10.1109/DCIS51330.2020.9268664
https://doi.org/10.1109/DCIS51330.2020.9268664
https://www.esperanto.ai
https://github.com/ztachip/ztachip
https://github.com/riscv/riscv-p-spec/blob/master/P-ext-proposal.pdf
https://github.com/riscv/riscv-p-spec/blob/master/P-ext-proposal.pdf
https://university.imgtec.com
https://www.glassdoor.co
https://doi.org/10.1145/774789.774805
https://doi.org/10.1145/774789.774805
https://doi.org/10.1145/774789.774805
https://github.com/chipsalliance/Cores-VeeR-EH1/tree/main/docs
https://github.com/chipsalliance/Cores-VeeR-EH1/tree/main/docs
https://doi.org/10.1145/3140659.3080246
https://doi.org/10.1145/3140659.3080246
https://gitlab.bsc.es/msolebon/llvm-sparrow
https://github.com/openhwgroup/cva6
https://ptolemy.berkeley.edu/projects/embedded/pubs/downloads/espresso/index.htm
https://ptolemy.berkeley.edu/projects/embedded/pubs/downloads/espresso/index.htm
https://doi.org/10.1109/FDL50818.2020.9232940

bibliography 41

Verilog Implementation of a Low-cost Vector AI Accelerator and Integration in a RISC-V Processor,
© January 2023

Author:
Christos Zarkos

Supervisor:
Dr. Leonidas Kosmidis

Institute:
Universitat Polytècnica de Catalunya, Barcelona, Spain

	Contents
	List of Figures
	List of Tables
	Spanish Abstract
	English Abstract
	Acknowledgments
	Context and Scope
	Motivation
	Context
	Concepts
	Stakeholders

	Justification
	Previous Work
	Justification of my work

	Scope
	Objectives and sub-objectives
	Requirements
	Potential obstacles and risks

	Methodology and rigour
	Methodology
	Validation

	Temporal Planning
	Description of tasks
	Task Definition
	Resources
	Task Summary

	Estimates and the Gantt
	Risk management: alternative plans and obstacles

	Budget
	Identification of costs
	Staff Costs
	Generally Calculated Costs
	Contingencies and Incidentals

	Final Budget
	Management Control

	Sustainability
	Self-assessment
	Environmental Dimension
	Economic Dimension
	Social Dimension

	Analysis of the Implementation
	The SweRV Core EH1 and its pipeline
	A few words about DCCM and ICCM

	The SPARROW design
	First stage
	Second stage
	General information

	Implementing SPARROW and Integrating SPARROW in EH1
	Experience of Porting SPARROW from VHDL to SystemVerilog
	Experience integrating SPARROW in SweRV Core EH1

	Evaluation
	Matrix Multiplication benchmark
	Greyscale benchmark
	Filter (convolution) benchmark
	Polynomial benchmark
	Summary of the evaluation results
	Synthesis

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

