
TD-NUCA: Runtime Driven Management of NUCA
Caches in Task Dataflow Programming Models

Paul Caheny†1

paul.caheny@intel.com
Lluc Alvarez‡§

lluc.alvarez@bsc.es
Marc Casas‡§

marc.casas@bsc.es
Miquel Moreto‡§

miquel.moreto@bsc.es

†Intel Corporation
Leixlip, Ireland

‡Barcelona Supercomputing Center (BSC)
Barcelona, Spain

§Polytechnic University of Catalonia
Barcelona, Spain

Abstract—In high performance processors, the design of on-
chip memory hierarchies is crucial for performance and energy
efficiency. Current processors rely on large shared Non-Uniform
Cache Architectures (NUCA) to improve performance and reduce
data movement. Multiple solutions exploit information available
at the microarchitecture level or in the operating system to
optimize NUCA performance. However, existing methods have
not taken advantage of the information captured by task dataflow
programming models to guide the management of NUCA caches.

In this paper we propose TD-NUCA, a hardware/software co-
designed approach that leverages information present in the run-
time system of task dataflow programming models to efficiently
manage NUCA caches. TD-NUCA identifies the data access and
reuse patterns of parallel applications in the runtime system and
guides the operation of the NUCA caches in the hardware. As
a result, TD-NUCA achieves a 1.18x average speedup over the
baseline S-NUCA while requiring only 0.62x the data movement.

Index Terms—cache memory, data flow computing, parallel
architectures

I. INTRODUCTION

Since the end of Dennard scaling [36], the increase in the
number of cores has caused an expansion in the size of the
on-chip Last-Level Caches (LLCs) to supply the cores with
data. Due to this trend, physical and manufacturing constraints
have demanded that LLCs are organized in multiple banks
that are physically distributed across the die area [9]. Such
organization gives rise to varying access latencies between
the cores and the LLC banks, leading to a Non-Uniform
Cache Access (NUCA) organization, where the latency of a
cache access depends on the physical distance between the
requesting core and the location of the data.

Different solutions have been proposed to manage shared
NUCA LLCs. Modern commercial processors implement
Static NUCA (S-NUCA), which uses a simple static address
interleaving approach to uniquely place cache blocks among
the banks. This approach maximizes the capacity of the cache
and simplifies cache coherence, but results in a sub-optimal
distribution of cache blocks across the banks from an access
latency perspective. To overcome this limitation, many works
in the literature propose Dynamic NUCA (D-NUCA) designs
that dynamically change the bank location of cache blocks

1Paul Caheny contributed to this work prior to joining Intel.

to minimize the latency of cache accesses. To do so, D-
NUCA designs decide the best allocation strategy for each
cache block based on its access pattern and apply well-known
strategies such as allocating private cache blocks close to the
accessing core, replicating shared read-only cache blocks in
multiple banks, and bypassing the LLC for non-reused cache
blocks. Although many proposals perform these actions at the
microarchitectural level [13], [14], [31], [32], [35], [45], [56],
[98], state-of-the-art techniques such as Reactive NUCA (R-
NUCA) [48], [49] rely on Operating System (OS) support
to identify the data access patterns [34], [48], [49], [59],
[79], [80], which has important drawbacks [41]–[43]. OS-
based approaches identify shared and private data, but they
are unable to identify temporarily private and non-reused data.
Moreover, they operate at the page granularity, so they suffer
from misclassified cache blocks, and they require extensive
changes in the TLBs and costly TLB invalidations.

The era of parallelism and specialization has also motivated
important innovations in parallel programming, as traditional
fork-join programming models are too inflexible to take ad-
vantage of the potential performance of modern hardware.
Task dataflow programming models such as OpenMP 4.0 [72]
have emerged as a promising solution to the programmability
problems of complex architectures. In these programming
models, parallelism is expressed by simply dividing the code
into tasks with data inputs and outputs. In the task dataflow ex-
ecution model, the tasks are created in program order, and the
runtime system constructs a Task Dependency Graph (TDG)
by analyzing the data inputs and outputs of the tasks, dynami-
cally schedules tasks on the available hardware resources, and
synchronizes the tasks respecting their dependencies.

This paper proposes TD-NUCA, a hardware/software co-
designed approach that leverages the information present in the
runtime system of task dataflow programming models to effi-
ciently manage NUCA LLCs. TD-NUCA works transparently
to the applications, without any source code modifications.
At the runtime system level, TD-NUCA identifies the access
and reuse patterns of the data in a parallel application, and
drives the management of the NUCA LLC accordingly. To
this end, the runtime system monitors the creation, execution
and finalization of tasks to classify the data they access as
private, shared read-only or shared, as well as predicting which

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works. DOI 10.1109/SC41404.2022.00085

data will not be reused in future tasks. With this information,
the runtime system orchestrates the allocation, migration,
replication and flushing of the data in the NUCA LLC. The
decisions taken by the runtime system are communicated to
the hardware, which introduces a lightweight directory per
core to map task dependencies to their location in the NUCA
LLC. When a private cache requests or writes back a cache
block from/to the LLC, it looks up its directory to determine
which LLC bank the request/writeback will be sent to. To
communicate between the runtime system and the architecture,
TD-NUCA introduces three simple ISA instructions that allow
the runtime system to manage the directories and to trigger the
necessary cache flushes when data is relocated in the NUCA
LLC. This paper makes the following contributions:

• We demonstrate that current approaches to manage
NUCA LLCs do not cope well with task dataflow pro-
grams. The dynamic nature of these applications prevents
existing approaches from efficiently managing the LLC.

• We propose low-overhead extensions to the runtime sys-
tems of task dataflow programming models to detect data
access and reuse patterns to manage the NUCA LLC.

• We propose minimal hardware support to allow the
runtime system to communicate NUCA management
decisions to the architecture. The hardware modifications
consist of a lightweight directory per core and simple ISA
instructions to trigger operations in the NUCA cache.

• We model in detail TD-NUCA in gem5 [16] and we
demonstrate that, in a 16-core processor with a 4x4 mesh,
TD-NUCA outperforms S-NUCA by an average speedup
of 1.18x while reducing data movement by 0.62x on
average.

II. BACKGROUND AND MOTIVATION

A. Management of NUCA Caches

The foundational work on NUCA caches was presented
in 2002 by Kim et al. [58]. NUCA caches are comprised
of multiple discrete physical cache banks distributed across
a chip and connected together by a NoC. Figure 1 shows
an example of a tiled architecture with a NUCA LLC. The
main advantages of NUCA designs over monolithic caches
are their improved scalability, reduced contention per bank,
and increased overall bandwidth. NUCA designs differ in two
crucial design choices pertinent to all NUCA caches:

• NUCA Mapping: How to decide which cache bank a
particular cache block is placed in on allocation.

• NUCA Search: When requested by a core, how to locate
a particular cache block within the multiple cache banks.

Modern commercial processors employ S-NUCA, which is
the simplest NUCA variant both in conception and implemen-
tation. This design distributes the sets of the cache across the
banks and places all the ways of each set within the same
bank. The address of a memory reference uniquely maps a
cache block to a particular cache bank via a static function. To
this end, an address interleaving approach distributes the cache
blocks among all the banks based on their physical address.

Memory, network and I/O controllers

tile

tile

tile

tile

tile

tile

tile

tile

tile

tile

tile

tile

tile

tile

tile

tile

tile

tile

tile

tile

tile

tile

tile

tile

tile

CPU

L1I L1D MMU

LLC bank

NoC
ctrl

Fig. 1: Tiled architecture with a NUCA LLC.

As a result, NUCA Mapping and Search are trivial, the LLC
capacity is maximized, and the utilization of the banks is
balanced. However, the main drawback of S-NUCA caches
is the sub-optimal distance traversed in the NoC between an
accessing core and the required cache block in the LLC, which
we call NUCA distance. Sub-optimal NUCA distance results
in sub-optimal latency for LLC accesses.

Pioneering work on D-NUCA caches for multicore systems
by Beckmann et al. [14] and Huh et al. [50] minimize NUCA
distance and access latency by dynamically choosing which
bank a given cache block is mapped to. As a result, the
NUCA Mapping and Search components of the design are
more complex. Also, D-NUCA caches pave the way for two
additional features to be introduced to the NUCA design:

• Block Migration: Dynamically change the bank a cache
block is mapped to, based on the cores accessing it.

• Block Replication: Replicate a cache block among multi-
ple banks if it is shared read-only among multiple cores.

D-NUCA caches combine dynamic NUCA mapping, block
migration and replication to minimize the NUCA distance
between cache blocks and their requesting cores. As a result,
the NUCA Search function becomes more complex and costly,
and additional intelligence is required to decide when and
where to map, migrate or replicate cache blocks. This is
typically done by monitoring the access and sharing patterns
of the cache blocks and using this information to drive such
decisions in a sound manner. Ideally, private cache blocks
only accessed by one core should be placed in the local bank
to minimize access latency; shared read-only cache blocks
accessed by many cores could be replicated to reduce access
latency; shared cache blocks that are read and written by
multiple cores should be uniquely placed in a single bank
to simplify coherence and the block search function; and
cache blocks without reuse can bypass the LLC to increase its
effective capacity without affecting performance [57], [68].

B. OS-based Dynamic NUCA

Despite the large body of work on hardware managed D-
NUCA caches, none of the proposals have overcome their
fundamental problems without introducing significant com-
plexity and cost in either area or latency. For this reason, state-
of-the-art proposals pursue a hardware/software co-designed
approach. Among all the solutions, the most well-known and

compelling one is Reactive-NUCA (R-NUCA) [48], [49]. The
biggest breakthrough of R-NUCA with respect to previous
works is to identify data sharing patterns at the OS level, com-
municate them to the hardware via the TLB, and leverage them
with simple NUCA Mapping and NUCA Search functions.

R-NUCA monitors data at a page granularity and classi-
fies pages into three types: (i) instruction pages, which are
read-only and typically shared across cores, (ii) private data
pages, which have been accessed only by a single core, and
(iii) shared data pages, which have been accessed by multiple
cores. With this classification, R-NUCA proposes a simple and
effective mechanism to manage the NUCA cache: (i) cache
blocks belonging to instruction pages are replicated across
banks, (ii) cache blocks belonging to private data pages are
placed in the local bank of the core accessing them, and
(iii) cache blocks belonging to shared data pages are address
interleaved among all the banks of the NUCA cache. To
balance cache capacity and NUCA distance with replication,
R-NUCA proposes a rotational interleaving technique that
allows for a statically configurable degree of replication for
cache blocks belonging to instruction pages (a maximum of 4
copies across the 16 banks used in the R-NUCA study).

C. OS-based Data Classification

Identifying data sharing patterns in the OS as in R-NUCA
and other works [34], [59], [79], [80] has important drawbacks.
This approach categorizes pages as private, shared, or shared
read-only. A page is categorized as private when it is accessed
for the first time, and the OS sets a private bit in the Page
Table and the TLB of the accessing core. When another
core accesses the page, the OS marks the page as shared
and flushes the cache blocks and the TLB entry of the page
in the first core. A page is classified as shared read-only
if it is shared and the dirty bit is not set. A limitation of
this approach is that, once a page has been categorized as
shared, it can never transition back to private. As a result,
pages that are temporarily private to different cores in different
execution phases are categorized as shared. This problem is
particularly important in the presence of dynamic schedulers,
where computations and the data they access often migrate
across cores. In addition, this technique operates at page
granularity, which leads to misclassified blocks if a block in
the page is shared or even if two distinct core-private blocks
within the same page are accessed by different cores.

Extensive and costly modifications are required to identify
temporarily private data in OS-based approaches [41]–[43].
The idea is to, upon a TLB miss, check if the page is present
in any other TLB and, if the page is not present in any TLB,
categorize the page as private. This approach requires TLB-L1
inclusivity, complex hardware support to perform TLB-to-TLB
miss resolution, and costly TLB shootdowns during page re-
classifications. In addition, this solution suffers from a lack
of temporal precision because TLB entries experience dead
time, that is, the time between the last access to a page and its
eviction from the TLB. This can be solved by adding a decay
mechanism that predicts if the page is going to be accessed

float A[N][N][M][M];

for (int j = 0; j<N; j++) {
 for (int k = 0; k<j; k++)

 for (int i = j+1; i<N;i++)
 #pragma omp task depend(in:A[i][k][:][:])

 depend(in:A[j][k][:][:])
 depend(inout:A[i][j][:][:])

 sgemm(A[i][k],A[j][k],A[i][j]);

 for (int i = j+1; i<N;i++)
 #pragma omp task depend(in:A[j][i][:][:])

 depend(inout:A[j][j][:][:])
 ssyrk(A[j][i],A[j][j]);

 #pragma omp task depend(inout:A[j][j][:][:])
 spotrf(A[j][j]);

 for (int i= j+1; i<N; i++)
 #pragma omp task depend(in:A[j][j][:][:])

 depend(inout:A[i][j][:][:])
 strsm(A[j][j], A[i][j]);

}

Fig. 2: Cholesky task dependency graph and task-based code.

again and invalidates decayed TLB entries during the TLB-to-
TLB miss resolutions, which introduces additional hardware
costs and performance overheads due to TLB misses. Note
that R-NUCA and other works [34], [59], [79], [80] do not
use this approach to identify temporarily private data.

D. Task Dataflow Programming Models

Task dataflow programming models such as OpenMP
4.0 [72] conceive the execution of a parallel program as a
set of tasks with data dependencies between them. Typically,
the programmer writes sequential code and adds annotations
to define the tasks and the data they access. The annotations
specify the range of data accessed by each task using array
sections and also whether the data is read, written, or both
(labelled in, out and inout, respectively). The runtime system
dynamically executes tasks by means of a Task Dependency
Graph (TDG), a directed acyclic graph where the nodes
represent tasks and the edges are data dependencies between
tasks. Figure 2 shows the task dataflow implementation of a
Cholesky factorization algorithm and its corresponding TDG.
The code uses OpenMP 4.0 clauses to specify tasks and their
data dependencies (#pragma omp task depend(in/out/inout)).

Following an execution model that decouples the static
specification of the code from its dynamic execution, threads
first execute the application code (creating all the tasks they
encounter) until they reach a global synchronization point.
Then, they execute tasks asynchronously. When tasks are
created they are inserted into the TDG based on their data
dependencies. Only when all the input dependencies of a task
have been satisfied, a task moves from created to ready and
stored in a ready queue. The dynamic task scheduler distributes
ready tasks among all threads for asynchronous execution.
This decoupling of the specification of the program from its
dynamic execution eases programmability and enables many
optimizations at the runtime system level in a generic and
application-agnostic way [22], [24], [65], [75], [93].

E. Opportunity for Runtime System Driven NUCA Caches

The code annotations and the execution model of task
dataflow programming models provide the runtime system
abundant and very valuable information on the data access

Fig. 3: Categorization of access and reuse patterns of LLC
cache blocks in R-NUCA and TD-NUCA.

behavior, which can be exploited to efficiently manage NUCA
caches. In particular, the runtime system knows what data is
going to be read and written by each task before the task is
executed, so it can easily identify private, shared read-only and
shared data. In addition, the runtime system is also in charge
of scheduling task to cores, so it knows which cores are going
to access which data at what time. On top of this, the runtime
system also has knowledge of how tasks will access data in the
future due to the presence of created, but not yet ready tasks in
the TDG. Thus, it can predict if data will not be reused. Thanks
to these properties, the runtime system can precisely identify
the sharing and reuse patterns of data without the hardware
complexity or accuracy problems of other approaches. This
information can be exploited to efficiently manage NUCA
caches at the runtime system level.

Figure 3 shows the opportunity for both R-NUCA and
TD-NUCA to perform NUCA management for a set of task
dataflow benchmarks. Section IV describes in detail the ex-
perimental methodology. The figure shows a pair of stacked
bars per benchmark. The left bar shows the percentage of
unique cache blocks that R-NUCA identifies as private and
shared read-only. A cache block is recorded as private if it is
only accessed by a single core during the execution, and it is
recorded as shared read-only if it has been accessed by more
than one core during the execution, but never been written.
The right bar shows the percentage of unique cache blocks
made up of task dependencies in task dataflow programming
models, and is broken down into four types: cache blocks
belonging to dependencies that are only used as writable (Out),
cache blocks belonging to dependencies that are only used
as readable (In), cache blocks belonging to dependencies that
are used as both readable and writable (Both In and Out),
and cache blocks belonging to dependencies that are predicted
to be non-reused (NotReused). In both bars, the portion of
cache blocks not inside the bars are classified as shared. On
average, 96% of the cache blocks belong to task dependencies
in TD-NUCA, whereas R-NUCA categorizes as shared 64%
of the total cache blocks, so it can only optimize the placement
of 36% of the cache blocks. Moreover, R-NUCA categorizes
as shared more than 90% of the cache blocks in 4 of the 8
benchmarks. The low coverage of R-NUCA is caused by its
inability to identify temporarily private cache blocks, which
are abundant in many task dataflow programs due to the
dynamic task schedulers used in the runtime system. Note that
R-NUCA categorizes less than 1% of cache blocks as shared

read-only in all the benchmarks because, after reading a cache
block, most often it is never accessed by another core (in which
case it is categorized as private) or it is later written by another
core (in which case it is categorized as shared). In TD-NUCA,
the runtime system is able to predict that a very large amount
of cache blocks are not going to be reused, 72% on average,
while the OS-based approach is unable to capture data reuse
patterns. In conclusion, compared to OS-based approaches, the
runtime system of task dataflow programming models is able
to capture much more precise information about the sharing
and reuse patterns of the data, and thus has significantly more
potential to optimize the management of NUCA caches.

III. TD-NUCA: TASK DATAFLOW NUCA

This section presents TD-NUCA, a hardware/software co-
designed approach to optimizing the utilization of NUCA
caches by leveraging the information present in the runtime
system of task dataflow programming models.

At the runtime system level, TD-NUCA monitors the cre-
ation, execution and finalization of tasks to identify the access
and reuse patterns of the task dependencies. With this infor-
mation, the runtime system dynamically decides the best data
placement strategy for the dependencies of the tasks before
they are executed. TD-NUCA makes the following placement
decisions: (i) predicted NotReused dependencies bypass the
LLC; (ii) Out and InOut dependencies are private to the task,
so they are allocated in the local LLC bank of executing core
for the duration of the task; (iii) In dependencies are read-only
and usually shared by multiple tasks, so they are replicated
in multiple LLC banks; and (iv) data not specified in task
dependencies is not tracked by TD-NUCA, so it is address
interleaved across banks as in an S-NUCA organization.

In the architecture, TD-NUCA introduces a lightweight
structure per core called Runtime Region Table (RRT) to store
the mappings of task dependencies to LLC banks. Three
new ISA instructions are added to achieve the necessary co-
operation between the runtime system and the RRTs. The first
ISA instruction allows the runtime system to register in the
RRTs the address ranges of the task dependencies and the LLC
banks that will store their cache blocks. The second instruction
is used by the runtime system to invalidate RRT entries, and
the third one invalidates all the cache blocks belonging to a
dependency in the desired LLC bank or private cache.

To control the amount of replication of shared read-only
data, we propose an LLC Cluster Replication scheme that
divides the LLC banks into clusters. In our setup with a
tiled architecture with 16 tiles, TD-NUCA divides the chip in
quadrants, defining 4 clusters of 4 tiles each. A shared read-
only task dependency can be replicated up to 4 times, once
in each cluster. This way, the cores sharing a dependency can
access the replica in their local cluster, reducing the worst
case NUCA distance from the chip-wide NoC diameter to the
cluster-wide NoC diameter. When a dependency is mapped to
a cluster, its cache blocks are address interleaved across the
LLC banks that belong to the cluster, balancing the contention
and the storage requirements among the banks in the cluster.

L1 D-cache

Tag DataFlags

RRT

Start@ End@

CPU

Core

LLC bank

BankMask

Fig. 4: Architectural support for TD-NUCA.

A. Software - Hardware Interface

TD-NUCA defines an interface between the runtime system
and the hardware architecture so they can co-operate in the
management of memory regions. The interface consists of
three new ISA instructions. The instructions use the concept
of BankMask and CoreMask, which are bit vectors that specify
to which tiles the operation is applied. In our 16-core experi-
mental setup the masks contain 16 bits, one per tile.

• tdnuca_register(initial_address, size,
BankMask) registers an entry in the RRT of the core
executing the instruction with the initial virtual address
of a task dependency, its size, and a BankMask that
specifies the LLC banks the task dependency will be
mapped to.

• tdnuca_invalidate(initial_address,
size, CoreMask) invalidates the entries of a task
dependency from the RRTs of the cores specified in the
CoreMask.

• tdnuca_flush(initial_address, size,
cache_level, CoreMask) flushes the cache
blocks belonging to a task dependency from the private
caches or the LLC banks of the cores specified in the
CoreMask.

In addition, TD-NUCA introduces a memory mapped reg-
ister with 1 bit per core that the hardware uses to signal the
completion of a tdnuca_flush to the runtime system. The
architecture also exposes the number of LLC banks and their
placement in the NoC to the runtime system.

B. Hardware Extensions

TD-NUCA introduces simple and efficient hardware support
to manage task dependency memory regions. The hardware
storage structures and their operation are described next.

1) Microarchitectural Storage Structures: The hardware
additions, shown shaded in Figure 4, consist of a new per-
core structure called the Runtime Region Table (RRT). The
RRT stores the information of the memory regions belonging
to task dependencies. The RRT is managed by the runtime
system with the instructions detailed in Section III-A. The
entries of the RRT have three fields: the start and end physical
address of a memory region and its associated BankMask,
which specifies the LLC banks the memory region is mapped
to. Our experimental setup uses 42-bit physical addresses.

The RRTs perform range lookups to determine if a memory
address belongs to a memory region. Current systems typi-
cally use Ternary Content-Addressable Memories (TCAM) to

RRT

Start@ End@

TLB

Virt PhysStart@ : 0xaa044

0xaa000

0xab000

0xac000

0xad000

0xb2000

0xb3000

0xb7000

0xb8000

0xb2044 0xb3fff

0xb7000 0xb8087

End@ : 0xad088

Page size : 0x1000

BankMask

00 ... 10

00 ... 10

Fig. 5: Address translation for RRT entries.

perform this operation. These structures can be implemented
in numerous ways [30], [71], [73], [74], [92], with different
latency, area and power consumption trade-offs. Thus, the
implementation of the RRTs can be adapted to meet the desired
design constraints. The proposed design assumes a latency of
1 cycle, and Section V-E evaluates the performance impact of
varying the latency of the RRTs between 0 and 4 cycles.

2) Registering and De-registering RRT Entries: The run-
time system manages the contents of the RRTs by execut-
ing the tdnuca_register and tdnuca_invalidate
instructions. When the tdnuca_register instruction is
executed, the address range specified in the instruction is
registered in the RRT of the executing core. The specified
address range is in the virtual address space, so it must be
translated to the physical address space before being registered
in the RRT. Figure 5 shows an example of this process.

To translate the virtual address range to a physical address
range, the execution of the tdnuca_register instruction
follows an iterative process. The start address is iteratively
incremented by the page size to generate a list of virtual
pages that belong to the virtual address range. At every
iteration, the virtual page is looked up in the TLB to retrieve
the corresponding physical page. Contiguous physical pages
retrieved in consecutive iterations are collapsed in the same
physical address range in the RRT. When a non-contiguous
physical page is retrieved or the whole virtual address range is
traversed, the physical address range is registered in the RRT.
This iterative process can take multiple cycles to register a
memory region in the RRT. The example in Figure 5 requires
4 TLB accesses and registers 2 collapsed regions in the RRT.

The RRTs have a limited size so, when a virtual address
range of a dependency spans over multiple physical address
ranges, some physical address ranges may not fit in the RRT.
The RRTs do not implement any replacement policy, so no
RRT entry is evicted to make room for the exceeding physical
address ranges. Instead, when there are no free entries in the
RRT, the exceeding physical address ranges are not registered
in the RRT, so they are not tracked by TD-NUCA. This
loses opportunities for optimization, but it does not break
the functionality of TD-NUCA because the cache blocks
belonging to these physical address ranges fall back to a static
address interleaved allocation across banks.

RRT entries are de-registered by the runtime system using
the tdnuca_invalidate instruction. The execution of this
instruction follows the same process of virtual to physical

address translation as the tdnuca_register instruction.
By iterating over the virtual address range specified in the
instruction parameters, the respective physical addresses are
looked-up and removed from the RRTs.

3) Memory Accesses Under TD-NUCA: Memory accesses
issued by a core first look for the data in the private cache
of the core. Upon private cache misses, the RRT of the core
is consulted to determine whether the memory reference is
within the address range of an RRT entry. Note that this
operation adds a delay to the private cache misses. If the
address of the memory access is not found in the RRT, the
memory reference proceeds as it would in the baseline S-
NUCA system. If the address of the memory access is found
in the RRT, the BankMask of the RRT entry is checked to
identify the LLC bank the request will be sent to. The runtime
system guarantees that the contents of the BankMask field in
the RRT entries conforms to one of the following conditions:

• If all the bits of the BankMask are set to zero, the
memory access bypasses the LLC. TD-NUCA triggers
an LLC bypass variant of the coherence transaction
directly to the memory controller, and this replies to
such a request by forwarding the cache block directly to
the requesting private cache, bypassing the LLC. Note
that modern architectures already support uncacheable
memory accesses.

• If exactly one bit of the BankMask is set, the memory
access is served by that LLC bank. To communicate with
the LLC bank, the private cache sets the destination bank
for its coherence message to the position of the single set
bit in the BankMask and sends the request to that LLC
bank.

• If exactly 4 bits of the BankMask are set, the task
dependency is spread among a cluster of 4 LLC banks.
The cache blocks belonging to the task dependency are
address interleaved among the 4 banks of the cluster, and
the last two bits of the block address of the memory
access identify the bank where the block is mapped to
within the cluster. Based on this, the hardware calculates
the destination LLC bank and sends to it the correspond-
ing coherence message.

Note that the RRT is also checked before initiating coher-
ence messages and writebacks from the private caches to the
LLC to identify the LLC bank the requests will be sent to.

4) Cache Flushing: The tdnuca_flush instruction
flushes the cache blocks of a task dependency from the
specified cache level and cores. The initial_address
and size identify the task dependency to be flushed, the
CoreMask parameter indicates the tiles which will be flushed,
and the cache_level parameter specifies whether the flush
is applied to the LLC banks or to the private caches of
the specified tiles. The address range of the dependency is
translated from the virtual to the physical address space and
a flush transaction for all the cache blocks belonging to the
physical address range is initiated in the specified caches.

To synchronize with the tdnuca_flush instructions, TD-
NUCA uses a memory mapped register that keeps 1 bit per

RUNTIME SYSTEM
TDG

Ready Queue

Thread
RTCacheDirectory

Start @ UseDescSize MapMask

Fig. 6: Runtime system with additions for TD-NUCA.

core. The bit of a core is set when a flush on that core starts,
and the bit is unset when the flush finishes. The memory
mapped register is accessible by all the threads. The runtime
system uses a polling loop on this register to check which bits
are set and wait for the completion of the desired flushes.

C. Runtime System Extensions

TD-NUCA extends the runtime system of task dataflow
programming models with a new software structure that cap-
tures relevant characteristics of the dependencies and with new
logic that uses this information to drive NUCA management
decisions and communicates them to the hardware layer.

1) Runtime System Data Structures: Figure 6 shows the
components of the runtime system, with the new component
added by TD-NUCA as shaded. The runtime system is aug-
mented with the RTCacheDirectory structure to track access
and reuse patterns of task dependencies. The information
stored in the RTCacheDirectory is used by the runtime system
as outlined in Section III-C2 to make decisions about which
TD-NUCA operations to apply to each task dependency.

The RTCacheDirectory contains a unique entry for each task
dependency, and it has 4 fields: the start address and the size
of the dependency, the MapMask is a bitvector that encodes
which LLC banks the dependency is mapped to, and the use
descriptor (UseDesc) counts how many times the dependency
will be used in the future. The UseDesc is incremented when
a task using the dependency is created and decremented when
a task using the dependency starts to execute.

2) Runtime System Operational Model: TD-NUCA extends
the operational model of task dataflow programming models
to decide which TD-NUCA data placement to apply to task
dependencies. After the runtime system has scheduled a task to
a core, but before the task starts executing, it iterates over the
dependencies of the task. For each dependency, the runtime
system decides the data placement for the dependency and
then communicates to the hardware the characteristics of the
dependency through the tdnuca_register instruction: the
dependency start address, the dependency size, and the depen-
dency BankMask. The runtime system uses the information
in the RTCacheDirectory to make a decision on which data
placement to apply as outlined in the flowchart in Figure 7.

LLC Bypass: If the use descriptor of the dependency shows
that there are no outstanding tasks in the TDG that use
the dependency (i.e., UseDesc=0), then the runtime system
chooses the Bypass LLC data placement for the dependency.

Fig. 7: Runtime decision for LLC data placement.

Zero bits are set in the BankMask communicated with the
tdnuca_register instruction and in the MapMask of the
RTCacheDirectory entry for that dependency. On task end, the
runtime system executes the tdnuca_flush instruction to
flush the dependency from the L1 cache of the executing core,
and then it executes the tdnuca_invalidate instruction
to clear the entry from the RRT of that core.

Local LLC Bank Mapping: If the dependency is Output
(write-only) or Input/Output (read-write), the runtime system
chooses to map the dependency in the local LLC bank of the
core that is going to execute the task. Before the task starts, the
tdnuca_register instruction is issued with exactly 1 bit
set in the BankMask, specifically the bit in the mask position
corresponding to the local LLC bank, and the MapMask
field of the RTCacheDirectory is updated accordingly. On
task end, the runtime system executes the tdnuca_flush
instruction to flush the dependency from the LLC bank and
the private caches of the core the data is mapped to (specified
in the MapMask of the RTCacheDirectory field), and then it
executes a tdnuca_invalidate instruction to clear the
corresponding RRT entry of that same core.

Cluster Replicated Mapping: If the dependency has not been
assigned to LLC Bypass or Local LLC Bank Mapping, then
the dependency is an Input (read-only) that is reused in the
future, and the runtime system applies the Cluster Replicated
Mapping. Before the task execution, the runtime system issues
the tdnuca_register instruction with 4 bits set in the
BankMask, which correspond to the 4 LLC banks of the local
cluster of the core executing the task. These bits are also
set in the MapMask field of the RTCacheDirectory entry for
that dependency. At the end of the task, the mapping of the
dependency remains in the RRT to be used by future tasks.

This operational model, combined with the pre-existing
task synchronization enforced by the runtime system, ensures
that no coherence issues will arise during the execution.
Task dependencies that are bypassed or written to are always
eagerly invalidated at the end of the task. In contrast, the
cluster replicated data is invalidated lazily. When a depen-
dency transitions from read-only to written, the instructions
tdnuca_invalidate and tdnuca_flush are issued to
invalidate all the cache blocks from all the caches and all
the RRT entries from all the cores associated with that
dependency. Thus, neither the caches nor the RRTs contain
stale data when a subsequent task uses the same dependency.

D. Additional Considerations

Task dataflow programming models guarantee no data races
will occur for data that is only accessed from within tasks
that specify the data as a dependency. OpenMP allows the
programmer to step outside this guarantee by accessing such
data from code outside a task specification. However, when
doing so, OpenMP puts the responsibility on the programmer
to avoid inconsistencies by explicitly adding code annotations
(#pragma omp flush) to flush the data from the private caches.
This means OpenMP already guarantees that data accessed
as both a task dependency and non-task dependency will only
exist in the LLC or memory at the time of a transition between
task dependent and non-task dependent, and thus presents no
obstacle to the correct operation of TD-NUCA

To ensure correct operation, TD-NUCA only operates on
cache blocks that are entirely contained within the start and
end address of a dependency. To comply with this requirement,
if the dependency start or end address is not aligned to a cache
block boundary, the runtime system leaves the first and last
cache block outside of the address range of the dependency.
This ensures only cache blocks that are entirely contained
within the bounds of the task dependency start and end address
have their behavior modified in the caches. Note that this
mechanism loses optimization opportunities for a negligible
amount of the data specified in the dependencies, since they
typically have sizes of at least hundreds of kilobytes and this
mechanism excludes at most 128 bytes (two cache blocks).

TD-NUCA does not require any modifications in the ap-
plication source code. All the changes in the software are
enclosed in the runtime system, so applications only need
to link against the library (re-compiling or using library
interposition) to capitalize on the benefits of TD-NUCA. For
legacy code and non task dataflow programs, the hardware
support of TD-NUCA can be powered down, so the only
overhead introduced is the small area of the RRTs.

The proposed hardware support for TD-NUCA can be
extended to support context switches and multiprogrammed
workloads by tagging the RRTs with the OS process ID. This
way, different processes can use the RRTs concurrently and
the RRTs do not need to be saved and restored at context
switches. When the OS migrates a thread between cores, the
RRT entries belonging to the thread must also be migrated,
and the data in the private cache of the source core must be
invalidated with a tdnuca_invalidate instruction.

IV. EXPERIMENTAL FRAMEWORK

We evaluate TD-NUCA with the gem5 [16] simulator, using
the x86 out-of-order CPU model and the Ruby memory model.
The execution-driven, full-system and cycle-accurate simula-
tions model in detail all the components of the architecture,
including the cache coherence protocol and the architectural
support for TD-NUCA, and they run a complete software stack
including the benchmarks, the runtime system, libraries, and
the OS. Table I specifies the main architectural parameters.

The software environment runs Ubuntu 14.04 with kernel
version 4.3. The default Linux page allocator is simulated in

TABLE I: gem5 simulator configuration parameters.

Cores 16 Out-of-order cores, 4 inst. wide, 2.0GHz

Branch predictor
Tournament: 2K local pred., 8K global and choice
pred., 4-way BTB 4K entries, RAS 16 entries

Execution
ROB 128 entries. IQ 64 entries, 4 INT ALU,
2 FP ALU, 2 LD/ST units, 256/256 INT/FP RegFile.

L1I / L1D cache Each 32KB, 8-way, 64B/line, 2 cycles

ITLB / DTLB Each 64 entries fully-associative, 1 cycle

LLC
Inclusive shared unified 32MB, banked 2MB/core
64B/line, 15 cycles, 16-way, pseudoLRU

Coherence Protocol MESI with blocking states, silent evictions

Cache Directory
Total 512K entries, banked 32K entries/core
15 cycles, 16-way, pseudoLRU

NoC 4x4 mesh, link 1 cycle, router 1 cycle

RRT 64 entries/core, 1 cycle access time

TABLE II: Benchmarks, problem and task sizes.

Bench Problem set
Input set Num AVG task
size (MB) tasks size (KB)

Gauss 2D Matrix N2 = 58982400, 2 iters. 488.04 3200 294

Histo 1500x1500 pixels, 50x50 blocks, 50 bins 478.75 1800 528

Jacobi 2D Matrix N2 = 16777216, 5 iters. 264.34 320 4112

Kmeans 450000 pts., 90 dims, 6 clusters, 1 iter. 314.37 228 1404

KNN 512/229376 training/input pts, 8 classes 85.01 448 318

LU 2D Matrix N2 = 9437184 73.45 1188 318

MD5 128× 4 MB buffers 513.39 128 4096

Redblack N2 = 28901376, 5 iters. 223.96 320 3549

detail. We use the Nanos++ 0.10 [39] runtime system, which
supports OpenMP 4.0 [72]. The runtime system communicates
with TD-NUCA using the instructions described in Section III.
For the new TD-NUCA instructions, we extend the ISA and
simulate their execution and their latency in cycle-by-cycle
detail, including the iterative process for the virtual to physical
address translation of the address regions and the cache flushes
triggered by the tdnuca_flush instruction.

The evaluation uses a set of task dataflow parallel bench-
marks programmed with OpenMP 4.0. These benchmarks are
representative of a wide range of important problems from
a variety of computational domains, with significant diversity
in their data access patterns. Table II shows the benchmarks
and the input set sizes used in the experiments. The input
set sizes of all the benchmarks exceed the total capacity of
the LLC. For the task granularities, we do an exhaustive
exploration for each benchmark and select the best performing
configuration on the S-NUCA baseline. The benchmarks are
run from start to completion, and the evaluation results are
collected from the entire post-initialisation parallel execution
phase of the benchmarks. The benchmarks are compiled with
Mercurium 1.99 source-to-source compiler [10], using gcc
4.6.4 as backend.

Power consumption is evaluated with McPAT [62] using a
process technology of 22 nm, voltage of 0.6V and the default
clock gating scheme. We add the changes suggested by Xi et
al. [94] to improve the accuracy of the models. The hardware
structures of TD-NUCA are modeled using CACTI 6.0 [70].

Fig. 8: Performance speedup normalized to S-NUCA.

Fig. 9: LLC accesses normalized to S-NUCA.

V. EVALUATION

This section evaluates TD-NUCA, comparing it to S-NUCA
and R-NUCA. Unless stated otherwise, all the results of this
section are normalized to a baseline S-NUCA LLC system.

The original R-NUCA proposal [48] only allows replication
of shared read-only cache blocks belonging to instruction
pages. To make a fair and more competitive comparison, we
augment R-NUCA to also perform replication for shared read-
only data pages. An important difference between instruction
pages and read-only data pages is that the latter may transition
to shared read-write during the execution. When a shared
read-only data page is written, the cache blocks belonging to
the page are flushed from all the caches. This mechanism is
consistent with the approach used in R-NUCA for flushing the
caches on private to shared read-write page transitions. This
enhancement allows R-NUCA to optimize data placement for
shared read-only data and further reduce the NUCA distance.

A. Performance Improvements and Cache Behavior

Figure 8 reports the speedup for R-NUCA and TD-NUCA
over S-NUCA. TD-NUCA greatly outperforms S-NUCA in 3
of the 8 benchmarks, Gauss, LU and Redblack, with respective
speedups of 1.26x, 1.59x and 1.20x. In 3 other benchmarks,
Histo, Jacobi and Kmeans, TD-NUCA achieves significant
speedups of 1.09x to 1.10x, while in KNN and MD5 TD-
NUCA achieves moderate speedups of 1.04x. The speedups
of R-NUCA are lower in all cases, at 1.11x for Gauss and
below 1.05x in the rest of benchmarks. On average across
all benchmarks, TD-NUCA and R-NUCA achieve respective
speedups of 1.18x and 1.02x over S-NUCA.

Figure 9 shows the number of accesses to the LLC in R-
NUCA and TD-NUCA compared to S-NUCA. TD-NUCA
reduces the number of accesses required versus both S-NUCA
and R-NUCA in all the benchmarks, from 0.99x in KNN down
to 0.14x in MD5. This is because TD-NUCA bypasses the
LLC for accesses to dependencies predicted to not be reused.
The number of accesses to the LLC in R-NUCA is within

Fig. 10: LLC hit ratio.

Fig. 11: Average NUCA distance.

0.02x those of S-NUCA in all benchmarks. On average over
all the benchmarks, TD-NUCA performs 0.48x the accesses
to the LLC compared to S-NUCA, whereas R-NUCA makes
0.99x the number of accesses to the LLC as S-NUCA.

Figure 10 shows the LLC hit ratio achieved by S-NUCA,
R-NUCA and TD-NUCA, without any normalization. It can
be observed that there are very small differences between S-
NUCA and R-NUCA. TD-NUCA however shows significantly
higher hit ratios in 6 of the 8 benchmarks. This is due to the
lower demand of TD-NUCA for LLC capacity due to LLC
bypassing, which causes the non-bypassed data allocated in
the LLC to experience fewer conflicts and, thus, an increased
hit ratio. In LU and KNN all three approaches have very high
hit ratios, close to 100% and within 2% of each other. On
average, the LLC hit ratio in TD-NUCA is 74%, while in
S-NUCA and R-NUCA it is 41% and 40% respectively.

The TLB hit ratios for S-NUCA, R-NUCA and TD-NUCA
are over 99% across all benchmarks. TD-NUCA incurs ad-
ditional TLB accesses to perform the virtual to physical
address translations required to manage the RRTs. However,
the amount of TLB accesses added is negligible, below 0.01%
in all benchmarks. In addition, we observe that most of these
TLB accesses do not cause extra misses because most of the
virtual to physical translations triggered by the TD-NUCA
instructions happen immediately before or after the execution
of a task that requires the same translations. On average across
the benchmarks, TD-NUCA marginally decreases the TLB
hit ratio from 99.8646% to 99.8636%, so the TLB accesses
introduced by TD-NUCA have negligible impact.

B. NUCA Distance and Data Movement

Figure 11 shows the NUCA distance travelled for messages
from the requesting cores to the LLC banks, without any
normalization. In this metric, a core accessing its local LLC
bank counts as distance 0, a core accessing a neighbor LLC
bank (i.e., directly adjacent to its north, south, east, or west)
is counted as distance 1, and so on for greater distances.

Fig. 12: Data movement in the NoC normalized to S-NUCA.

Accesses to blocks that bypass the LLC in TD-NUCA are not
included in the calculation of the metric. Results show that
S-NUCA achieves a perfectly uniform distribution of cache
blocks among the LLC banks, with an average NUCA distance
of 2.49. Note that the theoretical average NUCA distance in a
4x4 mesh is 2.5. R-NUCA reduces the NUCA distance, down
to 1.46 on average, by mapping private blocks into the local
LLC bank of the accessing cores and by replicating shared
read-only blocks in multiple LLC banks. The average NUCA
distance for TD-NUCA is 1.91, which represents an important
improvement over S-NUCA. However, the NUCA distance
for TD-NUCA is higher than R-NUCA because this metric
does not count the blocks that bypass the LLC, which make
up a majority of the working set in Gauss, Jacobi, Kmeans,
MD5 and Redblack, as shown in Figure 3. Although R-NUCA
achieves a lower NUCA distance than TD-NUCA in these
benchmarks, bypassing the LLC provides larger performance
improvements. In the benchmarks with smaller proportions of
bypassed blocks (Histo, KNN and LU), TD-NUCA achieves
significantly lower average NUCA distances than R-NUCA.

Figure 12 presents the total data movement in the NoC.
This metric is computed as the aggregate number of bytes
transferred through all routers in the NoC, including LLC by-
passed blocks under TD-NUCA that travel from the DRAM to
the private L1 caches. TD-NUCA reduces the data movement
in the NoC by between 0.58x (MD5) and 0.70x (Gauss and
Histo) versus S-NUCA, achieving an average reduction over
all benchmarks of 0.62x. On average, R-NUCA only achieves
0.84x the data movement in S-NUCA. These reductions of
both TD-NUCA and R-NUCA are mostly caused by the
reduced average NoC distances between the LLC banks and
the requesting cores, and by the reduction of LLC misses,
which saves data requests and writebacks to the DRAM.

C. Energy Consumption

TD-NUCA and R-NUCA modify the operation of the LLC,
which impacts the energy consumption within both the LLC
and the NoC. Figures 13 and 14 present, respectively, the
dynamic energy consumed in the LLC and in the NoC.

Figure 13 shows that TD-NUCA significantly reduces the
dynamic energy consumed in the LLC for all benchmarks
except LU. The largest saving is achieved in Jacobi, which
consumes only 0.10x the dynamic energy in the LLC con-
sumed by S-NUCA. This is due to the LLC bypass feature of
TD-NUCA, which also reduces dynamic energy significantly
in Gauss, Histo, Kmeans, MD5 and Redblack. In contrast,

Fig. 13: LLC dynamic energy normalized to S-NUCA.

Fig. 14: NoC dynamic energy normalized to S-NUCA.

the replication of read-only data causes an increased energy
consumption in LU. Although this operation is costly in terms
of energy, it enables less data movement in the NoC and
better performance, as shown previously. On average across
all the benchmarks, TD-NUCA consumes 0.52x the dynamic
energy of S-NUCA. Conversely, R-NUCA consumes the same
dynamic energy as S-NUCA in the LLC on average.

Figure 14 shows the dynamic energy consumption in the
NoC. TD-NUCA consumes between 0.55x (Redblack) and
0.80x (LU) the energy compared to S-NUCA for an average
of 0.64x, while R-NUCA consumes between 0.68x (MD5)
and 0.98x (LU) over S-NUCA for an average of 0.88x. These
results follow the same trends as those for data movement in
the NoC, which is the main cause of the energy consumption.

D. Effectiveness of LLC Bypassing

Figure 15 quantifies the effectiveness of the LLC bypassing
feature of TD-NUCA. The plot compares the performance of
S-NUCA, TD-NUCA, and a variant of TD-NUCA that only
performs LLC bypassing for the cache blocks that the runtime
system predicts are not going to be reused. This variant, which
is labeled as TD-NUCA (Bypass Only) in the figure, does not
map private cache blocks to the local LLC banks nor performs
cluster replication of read-only cache blocks.

Results show that the TD-NUCA variant that only does
LLC bypassing does not provide any benefit in Histo, KNN
and LU. As shown in Figure 3, these 3 benchmarks present a
low percentage of cache blocks predicted not to be reused. In
these cases the LLC bypass optimization is not effective, while
the complete TD-NUCA design is able to achieve notable
performance gains by mapping private blocks to the local LLC
banks and by applying cluster replication to read-only blocks.
The opposite situation happens in Jacobi, Kmeans, MD5 and
Redblack, where the percentage of cache blocks predicted
not to be reused is over 97%, and the speedups obtained by
the TD-NUCA variant that only does LLC bypassing match
the speedups obtained by the complete TD-NUCA design.
In Gauss we observe that the complete TD-NUCA is much

Fig. 15: Performance speedup of a TD-NUCA variant that only
performs LLC bypassing normalized to S-NUCA.

more effective than the TD-NUCA variant that only does LLC
bypassing. In this benchmark, 94% of the cache blocks are
predicted not to be reused, but only 32% of the L1 cache
misses are caused by accesses to these blocks, while there is
a 2% of unique cache blocks that are used both as input and
output dependencies which are responsible for 41% of the total
L1 cache misses. Due to this circumstance, the LLC bypassing
policy of TD-NUCA provides some benefits in Gauss, but its
combination with the cluster replication and the local LLC
bank mapping policies further increases the performance gains.
On average across all the benchmarks, the speedup of the TD-
NUCA variant that only does LLC bypassing is 1.06x, while
the complete TD-NUCA design reaches 1.18x.

E. TD-NUCA Design Trade-offs and Overheads

TD-NUCA introduces minimal hardware overheads. In
terms of storage requirements, TD-NUCA introduces a 64-
entry RRT per core, which require a chip-wide total storage
of 12.5KB. We model each RRT in CACTI as an SRAM and
we multiply its energy consumption by 30 [92] to approximate
the cost of a real TCAM implementation. We observe that
all the RRTs combined add negligible overheads in energy
consumption, as they consume less than 0.1% of the total
energy consumed by the architecture.

Although the RRTs add a delay of 1 cycle to the private
cache misses and writebacks, this has a negligible impact on
performance. Compared to an ideal RRT with zero latency,
the average performance overhead is 0.1%, and augmenting
the latency of the RRTs to 2, 3 and 4 cycles adds average
performance overheads of 0.5%, 1.1%, and 1.9%, respectively.

The performance impact of the cache flushing required
by TD-NUCA is also negligible. We observe that, in all
benchmarks but Histo, less than 0.1% of the total execution
time is spent in flushing cache blocks. Histo spends 0.49% of
the total execution time in flushing cache blocks, as it has the
highest proportion of Out dependencies of any benchmark.

The occupancy of the RRTs is 14.71 entries per RRT on
average during the whole execution of all the benchmarks.
In Gauss, Histo, Kmeans and KNN, the maximum occupancy
of any RRT never exceeds 23 entries. However, in the other
benchmarks (Jacobi, LU, MD5, and Redblack) we observe a
higher occupancy of the RRTs, up to 59 entries of the RRT
of a core in Redblack. The occupancy of the RRTs is directly
related to the size of the tasks, shown in Table II. In LU, which
uses task sizes of 318KB on average, the RRT occupancy

reaches a maximum of 37 entries due to the presence of
shared read-only data, which is not invalidated at the end of
the execution of the tasks and, thus, adds capacity pressure
on the RRTs. In Jacobi, MD5 and Redblack, which use larger
task sizes of around 4MB, some dependencies require multiple
entries in the RRT because the virtual address ranges of
the dependencies are not contiguous in the physical address
space. Altogether, using 64-entry RRTs per core is sufficient to
always track all the address ranges of all the dependencies. In
addition, our setup uses 4KB pages, so larger page sizes could
be leveraged to reduce the capacity pressure on the RRTs.

Finally, we measure the performance overhead of the run-
time systems extensions of TD-NUCA. To do so, we modify
the runtime system to include all the TD-NUCA extensions
to manage the RTCacheDirectory and to decide the LLC
placement of task dependencies, but it never executes the TD-
NUCA ISA instructions. Thus, the cache hierarchy behaves as
in S-NUCA. The overhead of the runtime system extensions
is 0.01% on average and it is below 0.03% in all benchmarks.
The biggest source of overhead is the algorithm that maps the
task dependencies to the LLC banks before tasks execute.

VI. RELATED WORK

A. Hardware-Managed NUCA Caches

Many works propose to improve the management of NUCA
caches using specific operations at the microarchitecture level.

Some works propose relocating cache blocks in NUCA
LLCs. Beckmann et al. [14] show that block relocations benefit
performance but increase the complexity of lookups, and they
propose a two-step lookup that first checks if the block is
present in the close banks and, if this search fails, the lookup
is multicasted to the remaining banks. Kandemir et al. [56]
present relocation algorithms to improve block placement, and
Ricci et al. [78] use Bloom Filters to optimize the lookups.

Other works propose to replicate cache blocks across banks.
NuRAPID [31] and CMPNuRAPID [32] introduce block
replication by decoupling physical placement from logical
organization. To do so, tags are re-organized in per-core
private storage so that they point to their associated blocks
in the NUCA banks, which requires forwards and backwards
pointers from the tag entries to the cache blocks. Victim
Replication [98] replicates blocks evicted from the L1 in
the local LLC bank if there is spare capacity, providing a
constrained level of replication at low cost. Huh et al. [50] add
a configurable degree of replication and a directory to manage
coherence among the replicas within the LLC. ASR [13] con-
trols the amount of replication of shared read-only blocks with
a probabilistic cost-benefit measure, and SLIP [35] introduces
block reuse counters to avoid power-inefficient migrations and
replications of blocks that are not reused.

Other works classify private and shared data at the microar-
chitecture level to allocate private blocks near their requesting
cores at the granularity of pages [45], coarse-grained [67],
[96] or fine-grained [40] memory regions. Zhao et al. [100]
dedicate different cache ways to private and shared data.

B. Software-Managed NUCA Caches

Some works propose to manage NUCA caches by identi-
fying shared and private data at the OS level. Cho et al. [33]
change the virtual to physical page mappings to place shared
and private virtual pages in particular LLC banks. Chaudhuri et
al. [29] and Awasthi et al. [8] extend this scheme by allowing
page migrations and formalising the cost/benefit decision
making for page spreading. In these approaches, the NUCA
operations require relocating and invalidating pages in the
physical address space, which is very costly. To minimize over-
heads, R-NUCA and other works use the OS to identify shared
and private pages and use this information in the hardware to
perform the NUCA operations without changing the virtual to
physical page mappings. Jigsaw [15] proposes a system-level
algorithm that uses OS-based page classification and extensive
hardware monitoring to orchestrate the placement, relocation
and replication of pages in LLC banks. The decisions made by
the algorithm are communicated to the hardware and stored
in a structure similar to the RRTs of TD-NUCA. Jenga [91]
extends Jigsaw to manage DRAM cache banks and to consider
memory bandwidth in the algorithm. Jumanji [83] extends
Jigsaw in the context of data centers, improving tail latency by
reserving enough cache space for latency-critical applications
to meet their deadlines, and reinforcing security by placing
data from untrusted applications in different LLC banks. The
main limitation of OS-based approaches is that they suffer
from inaccurate classification of shared and private pages.

Other works propose compile-time approaches to minimize
the NUCA distance. Zhang et al. [99] propose combining array
tiling, computation-to-core mapping and layout customization
in parallelized loop nests. Tang et al. [89] partition the com-
putations of loop nests into subcomputations and schedule the
resulting subcomputations on cores. Kislal et al. [60] refine the
computation-to-core mapping strategy by also considering the
distances to the memory controllers and by using an inspector-
executor paradigm for irregular applications.

C. Task Dataflow Programming Models

Although TD-NUCA targets OpenMP 4.0 [72], it can be
applied to any runtime-managed task dataflow programming
model that specifies task dependencies either using real data
addresses or some abstraction from which the runtime system
can extract the addresses [7], [11], [39], [46], [55], [84], [101].
Similar properties are present in streaming programming mod-
els [3], [12], [90] and in offload programming models [1], [38],
which could also benefit from TD-NUCA. However, in task
programming models where the runtime system does not know
the addresses of the data that is going to be accessed by the
tasks [17], [77], TD-NUCA is not directly applicable.

Many works exploit the characteristics of task dataflow
programming models to perform optimizations [24], [93]. The
runtime system can transparently manage GPUs [7], [76],
FPGA accelerators [18], [85], multi-node clusters [20], [27],
[28], heterogeneous memories [4], [63], scratchpad memo-
ries [5], NUMA [81], [82] and cache coherent NUMA [21],
[23] systems. Adding hardware support, the runtime system

can guide cache replacement [37], [65], cache coherence
deactivation [22], cache prefetching [47], [75], cache com-
munication mechanisms in producer-consumer task relation-
ships [64], [66], reliability and resilience [51]–[53], value
approximation [19], and DVFS to accelerate critical tasks [26].

Other works [25], [44], [61], [69], [87], [88], [95] propose
implementing performance critical elements of the runtime
system of task dataflow programming models in hardware
instead of in software. These approaches drastically reduce
the overheads of the runtime system, which can significantly
improve the performance of task-based applications. More
importantly, implementing the runtime system in hardware
increases the viability of using sophisticated parallelization
strategies that today are seldom used due to the high overheads
they incur, such as speculative parallelization [2], [6], [54],
[97] or fine-grained nested parallelization [86].

All together, task dataflow programming models bring the
opportunities for architectural optimizations to an unprece-
dented level. Crucially, TD-NUCA and most of the aforemen-
tioned proposals are highly compatible, so one can envision an
architectural solution that integrates many of these techniques.
Such architecture would be specifically designed for high-
performance computing systems, and it could capitalize on
the benefits of advanced architectural techniques while being
easy to program with task dataflow programming models.

VII. CONCLUSIONS

This paper proposes TD-NUCA, a runtime-driven NUCA
management approach for task dataflow programming models.
State-of-the-art solutions to manage NUCA caches are not
effective in the presence of dynamic task schedulers, given
the strong limitations of OS-based techniques to detect data
sharing and reuse patterns. Instead, the runtime system of task
dataflow programming models can exploit the rich information
it possesses to accurately identify these properties. TD-NUCA
leverages this information to decide the best allocation strategy
for cache blocks in NUCA caches, guiding placement, migra-
tion and replication operations. The decisions made by the
runtime system are communicated to the hardware using new
ISA instructions, and the architecture only requires a simple
directory per core to direct memory accesses to the appropriate
LLC bank. As a result, TD-NUCA provides multiple benefits
compared to S-NUCA and R-NUCA, achieving an average
speedup of 1.18x over S-NUCA and R-NUCA while reducing
the utilization of the NoC to 0.62x of that caused by S-NUCA.

ACKNOWLEDGEMENTS

This work has been supported by the Spanish Ministry of
Science and Technology (contract PID2019-107255GB-C21)
and the Generalitat de Catalunya (contract 2017-SGR-1414).
M. Casas has been partially supported by the Grant RYC-
2017-23269 funded by MCIN/AEI/10.13039/501100011033
and ESF ‘Investing in your future’. M. Moreto has been
partially supported by the Spanish Ministry of Economy,
Industry and Competitiveness under Ramon y Cajal fellowship
No. RYC-2016-21104.

REFERENCES

[1] “The OpenACC Application Programming Interface. 2015.”
[2] M. Abeydeera and D. Sanchez, “Chronos: Efficient speculative paral-

lelism for accelerators,” in International Conference on Architectural
Support for Programming Languages and Operating Systems (ASP-
LOS), 2020, p. 1247–1262.

[3] M. Aldinucci, M. Danelutto, P. Kilpatrick, M. Meneghin, and
M. Torquati, “Accelerating code on multi-cores with fastflow,” in In-
ternational Conference on Parallel and Distributed Computing (Euro-
Par), 2011, pp. 170–181.

[4] L. Alvarez, M. Casas, J. Labarta, E. Ayguade, M. Valero, and
M. Moretó, “Runtime-guided management of stacked DRAM mem-
ories in task parallel programs,” in International Conference on Super-
computing (ICS), 2018, pp. 379–391.

[5] L. Alvarez, M. Moretó, M. Casas, E. Castillo, X. Martorell, J. Labarta,
E. Ayguade, and M. Valero, “Runtime-guided management of scratch-
pad memories in multicore architectures,” in International Conference
on Parallel Architectures and Compilation (PACT), 2015, pp. 379–391.

[6] S. Apostolakis, Z. Xu, G. Chan, S. Campanoni, and D. I. August, “Per-
spective: A sensible approach to speculative automatic parallelization,”
in International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2020, p. 351–367.

[7] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “StarPU:
A unified platform for task scheduling on heterogeneous multicore
architectures,” in International Conference on Parallel and Distributed
Computing (Euro-Par), 2009, pp. 863–874.

[8] M. Awasthi, K. Sudan, R. Balasubramonian, and J. Carter, “Dynamic
hardware-assisted software-controlled page placement to manage ca-
pacity allocation and sharing within large caches,” in International
Symposium on High Performance Computer Architecture (HPCA),
2009, pp. 250–261.

[9] M. Azimi, N. Cherukuri, D. N. Jayasimha, A. Kumar, P. Kundu,
S. Park, I. Schoinas, and A. S. Vaidya, “Integration challenges and
tradeoffs for tera-scale architectures,” Intel Technology Journal, vol. 11,
no. 3, pp. 173–184, Aug. 2007.

[10] J. Balart, A. Duran, M. Gonzàlez, X. Martorell, E. Ayguadé, and
J. Labarta, “Nanos mercurium: a research compiler for OpenMP,” in
European Workshop on OpenMP (EWOMP), 2004, pp. 103–109.

[11] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion: Express-
ing locality and independence with logical regions,” in International
Conference on High Performance Computing, Networking, Storage and
Analysis (SC), 2012, pp. 66:1–66:11.

[12] J. C. Beard, P. Li, and R. D. Chamberlain, “Raftlib: A c++ template li-
brary for high performance stream parallel processing,” in International
Workshop on Programming Models and Applications for Multicores
and Manycores (PMAM), 2015, pp. 96–105.

[13] B. M. Beckmann, M. R. Marty, and D. A. Wood, “Asr: Adaptive
selective replication for cmp caches,” in International Symposium on
Microarchitecture (MICRO), 2006, pp. 443–454.

[14] B. M. Beckmann and D. A. Wood, “Managing wire delay in large
chip-multiprocessor caches,” in International Symposium on Microar-
chitecture (MICRO), 2004, pp. 319–330.

[15] N. Beckmann and D. Sanchez, “Jigsaw: Scalable software-defined
caches,” in International Conference on Parallel Architectures and
Compilation Techniques (PACT), 2013, pp. 213–224.

[16] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5
simulator,” SIGARCH Computer Architure News, vol. 39, no. 2, pp.
1–7, Aug. 2011.

[17] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson,
K. H. Randall, and Y. Zhou, “Cilk: An efficient multithreaded run-
time system,” in Symposium on Principles and Practice of Parallel
Programming (PPoPP), 1995, pp. 207–216.

[18] J. Bosch, X. Tan, A. Filgueras, M. Vidal, M. Mateu, D. Jiménez-
González, C. Álvarez, X. Martorell, E. Ayguade, and J. Labarta,
“Application acceleration on fpgas with ompss@fpga,” in International
Conference on Field-Programmable Technology (FPT), 2018, pp. 70–
77.

[19] I. Brumar, M. Casas, M. Moretó, M. Valero, and G. S. Sohi, “ATM:
approximate task memoization in the runtime system,” in International
Parallel and Distributed Processing Symposium (IPDPS), 2017, pp.
1140–1150.

[20] J. Bueno, X. Martorell, R. M. Badia, E. Ayguadé, and J. Labarta,
“Implementing OmpSs support for regions of data in architectures with
multiple address spaces,” in International Conference on Supercomput-
ing (ICS), 2013, pp. 359–368.

[21] P. Caheny, L. Alvarez, S. Derradji, M. Valero, M. Moretó, and
M. Casas, “Reducing cache coherence traffic with a numa-aware
runtime approach,” IEEE Trans. Parallel Distribut. Syst., vol. 29, no. 5,
pp. 1174–1187, May 2018.

[22] P. Caheny, L. Alvarez, M. Valero, M. Moretó, and M. Casas, “Runtime-
assisted cache coherence deactivation in task parallel programs,” in In-
ternational Conference for High Performance Computing, Networking,
Storage, and Analysis (SC), 2018, pp. 35:1–35:12.

[23] P. Caheny, M. Casas, M. Moretó, H. Gloaguen, M. Saintes, E. Ayguadé,
J. Labarta, and M. Valero, “Reducing cache coherence traffic with
hierarchical directory cache and NUMA-aware runtime scheduling,”
in International Conference on Parallel Architectures and Compilation
(PACT), 2016, pp. 275–286.

[24] M. Casas, M. Moretó, L. Alvarez, E. Castillo, D. Chasapis, T. Hayes,
L. Jaulmes, O. Palomar, O. Unsal, A. Cristal, E. Ayguade, J. Labarta,
and M. Valero, “Runtime-aware architectures,” in International Con-
ference on Parallel and Distributed Computing (Euro-Par), 2015, pp.
16–27.

[25] E. Castillo, L. Alvarez, M. Moretó, M. Casas, E. Vallejo, J. L. Bosque,
R. Beivide, and M. Valero, “Architectural support for task dependence
management with flexible software scheduling,” in International Sym-
posium on High Performance Computer Architecture (HPCA), 2018,
pp. 283–295.

[26] E. Castillo, M. Moretó, M. Casas, L. Alvarez, E. Vallejo, K. Chronaki,
R. Badia, J. L. Bosque, R. Beivide, E. Ayguadé, J. Labarta, and
M. Valero, “CATA: Criticality aware task acceleration for multicore
processors,” in International Parallel and Distributed Processing Sym-
posium (IPDPS), 2016, pp. 413–422.

[27] D. Chasapis, M. Casas, M. Moretó, M. Schulz, E. Ayguadé, J. Labarta,
and M. Valero, “Runtime-guided mitigation of manufacturing variabil-
ity in power-constrained multi-socket numa nodes,” in International
Conference on Supercomputing (ICS), 2016.

[28] D. Chasapis, M. Moretó, M. Schulz, B. Rountree, M. Valero, and
M. Casas, “Power efficient job scheduling by predicting the impact
of processor manufacturing variability,” in International Conference
on Supercomputing (ICS), 2019, pp. 296–307.

[29] M. Chaudhuri, “Pagenuca: Selected policies for page-grain locality
management in large shared chip-multiprocessor caches,” in Inter-
national Symposium on High Performance Computer Architecture
(HPCA), 2009, pp. 227–238.

[30] H. Che, Z. Wang, K. Zheng, and B. Liu, “Dres: Dynamic range en-
coding scheme for tcam coprocessors,” IEEE Trans. Comput., vol. 57,
no. 7, pp. 902–915, 2008.

[31] Z. Chishti, M. D. Powell, and T. N. Vijaykumar, “Distance associa-
tivity for high-performance energy-efficient non-uniform cache archi-
tectures,” in International Symposium on Microarchitecture (MICRO),
2003, pp. 55–66.

[32] Z. Chishti, M. D. Powell, and T. N. Vijaykumar, “Optimizing repli-
cation, communication, and capacity allocation in CMPs,” in Interna-
tional Symposium on Computer Architecture (ISCA), 2005, pp. 357–
368.

[33] S. Cho and L. Jin, “Managing distributed, shared l2 caches through
os-level page allocation,” in International Symposium on Microarchi-
tecture (MICRO), 2006, pp. 455–468.

[34] B. A. Cuesta, A. Ros, M. E. Gómez, A. Robles, and J. F. Duato, “In-
creasing the effectiveness of directory caches by deactivating coherence
for private memory blocks,” in International Symposium on Computer
Architecture (ISCA), 2011, pp. 93–104.

[35] S. Das, T. M. Aamodt, and W. J. Dally, “Slip: Reducing wire energy
in the memory hierarchy,” in International Symposium on Computer
Architecture (ISCA), 2015, pp. 349–361.

[36] R. H. Dennard, F. H. Gaensslen, H. nien Yu, V. L. Rideout, E. Bassous,
Andre, and R. Leblanc, “Design of ion-implanted MOSFETs with
very small physical dimensions,” IEEE Journal of Solid-State Circuits,
vol. 9, no. 5, pp. 256–268, oct 1974.

[37] V. Dimic, M. Moretó, M. Casas, and M. Valero, “Runtime-assisted
shared cache insertion policies based on re-reference intervals,” in
European Conference on Parallel and Distributed Computing (Euro-
Par), 2017, pp. 247–259.

[38] R. Dolbeau, S. Bihan, and F. Bodin, “Hmpp: A hybrid multi-core
parallel programming environment,” in Workshop on General-Purpose
Computation on Graphics Processing Units (GPGPU), 2007.

[39] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell, X. Mar-
torell, and J. Planas, “OmpSs: A proposal for programming heteroge-
neous multi-core architectures,” Parallel Processing Letters, vol. 21,
no. 2, pp. 173–193, 2011.

[40] H. Dybdahl and P. Stenström, “An adaptive shared/private nuca cache
partitioning scheme for chip multiprocessors,” in High Performance
Computer Architecture (HPCA), 2007, pp. 2–12.

[41] A. Esteve, A. Ros, M. E. Gómez, A. Robles, and J. Duato, “Efficient
tlb-based detection of private pages in chip multiprocessors,” IEEE
Trans. Parallel Distribut. Syst., vol. 27, no. 3, pp. 748–761, Mar. 2016.

[42] A. Esteve, A. Ros, M. E. Gómez, A. Robles, and J. Duato, “Tlb-based
temporality-aware classification in cmps with multilevel tlbs,” IEEE
Trans. Parallel Distrib. Syst., vol. 28, no. 8, pp. 2401–2413, Jan. 2017.

[43] A. Esteve, A. Ros, A. Robles, M. E. Gómez, and J. Duato, “Tokentlb: A
token-based page classification approach,” in International Conference
on Supercomputing (ICS), 2016, pp. 26:1–26:13.

[44] Y. Etsion, F. Cabarcas, A. Rico, A. Ramirez, R. M. Badia, E. Ayguadé,
J. Labarta, and M. Valero, “Task superscalar: An out-of-order task
pipeline,” in International Symposium on Microarchitecture (MICRO),
2010, pp. 89–100.

[45] B. Falsafi and D. A. Wood, “Reactive numa: A design for unifying
s-coma and cc-numa,” in International Symposium on Computer Ar-
chitecture (ISCA), 1997, pp. 229–240.

[46] K. Fatahalian, D. R. Horn, T. J. Knight, L. Leem, M. Houston, J. Y.
Park, M. Erez, M. Ren, A. Aiken, W. J. Dally, and P. Hanrahan,
“Sequoia: Programming the memory hierarchy,” in International Con-
ference on High Performance Computing, Networking, Storage and
Analysis (SC), 2006, pp. 83:1–83:11.

[47] V. Garcia, A. Rico, C. Villavieja, P. Carpenter, N. Navarro, and
A. Ramirez, “Adaptive runtime-assisted block prefetching on chip-
multiprocessors,” International Journal of Parallel Programming, pp.
1–21, 2016.

[48] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Reactive
nuca: Near-optimal block placement and replication in distributed
caches,” in International Symposium on Computer Architecture (ISCA),
2009, pp. 184–195.

[49] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Near-
optimal cache block placement with reactive nonuniform cache archi-
tectures,” IEEE Micro Top Picks, vol. 30, no. 1, pp. 20–28, 2010.

[50] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. W. Keckler,
“A NUCA substrate for flexible CMP cache sharing,” in International
Conference on Supercomputing (ICS), 2005, pp. 31–40.

[51] L. Jaulmes, M. Casas, M. Moretó, E. Ayguadé, J. Labarta, and
M. Valero, “Exploiting asynchrony from exact forward recovery for
DUE in iterative solvers,” in International Conference for High Per-
formance Computing, Networking, Storage and Analysis (SC), 2015.

[52] L. Jaulmes, M. Moretó, E. Ayguade, J. Labarta, M. Valero, and
M. Casas, “Asynchronous and exact forward recovery for detected
errors in iterative solvers,” IEEE Trans. Parallel Distrib. Syst., vol. 29,
pp. 1961–1974, 2018.

[53] L. Jaulmes, M. Moretó, M. Valero, and M. Casas, “A vulnerability
factor for ECC-protected memory,” in International Symposium on On-
Line Testing and Robust System Design (IOLTS), 07 2019, pp. 176–181.

[54] M. C. Jeffrey, S. Subramanian, C. Yan, J. Emer, and D. Sanchez,
“A scalable architecture for ordered parallelism,” in International
Symposium on Microarchitecture (MICRO), 2015, p. 228–241.

[55] L. V. Kale and S. Krishnan, “CHARM++: A portable concurrent object
oriented system based on C++,” in Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), 1993, pp. 91–108.

[56] M. Kandemir, F. Li, M. J. Irwin, and S. W. Son, “A novel migration-
based nuca design for chip multiprocessors,” in Conference on Super-
computing (SC), 2008, pp. 1–12.

[57] S. M. Khan, Y. Tian, and D. A. Jimenez, “Sampling dead block
prediction for last-level caches,” in International Symposium on Mi-
croarchitecture (MICRO), 2010, p. 175–186.

[58] C. Kim, D. Burger, and S. W. Keckler, “An adaptive, non-uniform cache
structure for wire-delay dominated on-chip caches,” in International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2002, pp. 211–222.

[59] D. Kim, J. Ahn, J. Kim, and J. Huh, “Subspace snooping: Filtering
snoops with operating system support,” in International Conference on
Parallel Architectures and Compilation (PACT), 2010, pp. 111–122.

[60] O. Kislal, J. Kotra, X. Tang, M. T. Kandemir, and M. Jung, “Enhancing
computation-to-core assignment with physical location information,”
in Conference on Programming Language Design and Implementation
(PLDI), 2018, pp. 312–327.

[61] S. Kumar, C. J. Hughes, and A. Nguyen, “Carbon: Architectural
support for fine-grained parallelism on chip multiprocessors,” in In-
ternational Symposium on Computer Architecture (ISCA), 2007, pp.
162–173.

[62] S. Li, J. H. Ahn, R. Strong, J. Brockman, D. Tullsen, and N. Jouppi,
“McPAT: An integrated power, area, and timing modeling framework
for multicore and manycore architectures,” in International Symposium
on Microarchitecture (MICRO), 2009, pp. 469–480.

[63] H. Liu, Y. Chen, X. Liao, H. Jin, B. He, L. Zheng, and R. Guo, “Hard-
ware/software cooperative caching for hybrid DRAM/NVM memory
architectures,” in International Conference on Supercomputing (ICS),
2017, pp. 26:1–26:10.

[64] M. Manivannan, A. Negi, and P. Stenström, “Efficient forwarding
of producer-consumer data in task-based programs,” in International
Conference on Parallel Processing (ICPP), 2013, pp. 517–522.

[65] M. Manivannan, V. Papaefstathiou, M. Pericàs, and P. Stenström,
“RADAR: runtime-assisted dead region management for last-level
caches,” in International Symposium on High Performance Computer
Architecture (HPCA), 2016, pp. 644–656.

[66] M. Manivannan and P. Stenstrom, “Runtime-guided cache coherence
optimizations in multi-core architectures,” in International Parallel and
Distributed Processing Symposium (IPDPS), 2014, pp. 625–636.

[67] J. Merino, V. Puente, P. Prieto, and J. A. Gregorio, “SP-NUCA: A cost
effective dynamic non-uniform cache architecture,” SIGARCH Comput.
Archit. News, vol. 36, no. 2, pp. 64–71, May 2008.

[68] S. Mittal, “A survey of cache bypassing techniques,” Journal of Low
Power Electronics and Applications, vol. 6, no. 2, 2016.

[69] L. Morais, V. Silva, A. Goldman, C. Alvarez, J. Bosch, M. Frank,
and G. Araujo, “Adding tightly-integrated task scheduling acceleration
to a risc-v multi-core processor,” in International Symposium on
Microarchitecture (MICRO), 2019, p. 861–872.

[70] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “CACTI 6.0:
A tool to understand large caches,” Tech. Rep., 2009.

[71] H. Noda, K. Inoue, M. Kuroiwa, F. Igaue, K. Yamamoto, H. Mattausch,
T. Koide, A. Amo, A. Hachisuka, S. Soeda, I. Hayashi, F. Morishita,
K. Dosaka, K. Arimoto, K. Fujishima, K. Anami, and T. Yoshihara,
“A cost-efficient high-performance dynamic tcam with pipelined hier-
archical searching and shift redundancy architecture,” IEEE Journal of
Solid-State Circuits, vol. 40, no. 1, pp. 245–253, 2005.

[72] “OpenMP Application Program Interface. Version 4.0. July 2013.”
[73] K. Pagiamtzis and A. Sheikholeslami, “Content-addressable memory

(cam) circuits and architectures: a tutorial and survey,” IEEE Journal
of Solid-State Circuits, vol. 41, no. 3, pp. 712–727, 2006.

[74] R. Panigrahy and S. Sharma, “Reducing tcam power consumption and
increasing throughput,” in Symposium on High Performance Intercon-
nects, 2002, pp. 107–112.

[75] V. Papaefstathiou, M. G. Katevenis, D. S. Nikolopoulos, and D. Pnev-
matikatos, “Prefetching and cache management using task lifetimes,”
in International Conference on Supercomputing (ICS), 2013, pp. 325–
334.

[76] J. Planas, R. M. Badia, E. Ayguade, and J. Labarta, “Self-adaptive
OmpSs tasks in heterogeneous environments,” in International Parallel
and Distributed Processing Symposium (IPDPS), 2013, pp. 138–149.

[77] J. Reinders, Intel threading building blocks - outfitting C++ for multi-
core processor parallelism. O’Reilly Media, 2007.

[78] R. Ricci, S. Barrus, D. Gebhardt, and R. Balasubramonian, “Leveraging
bloom filters for smart search within NUCA caches,” in Workshop on
Complexity-Effective Design (WCED), Jun. 2006.

[79] A. Ros, M. Davari, and S. Kaxiras, “Hierarchical private/shared clas-
sification: The key to simple and efficient coherence for clustered
cache hierarchies,” in International Symposium on High Performance
Computer Architecture (HPCA), 2015, pp. 186–197.

[80] A. Ros and S. Kaxiras, “Complexity-effective multicore coherence,”
in International Conference on Parallel Architectures and Compilation
(PACT), 2012, pp. 241–252.

[81] I. Sánchez-Barrera, M. Casas, M. Moretó, E. Ayguadé, J. Labarta, and
M. Valero, “Graph partitioning applied to dag scheduling to reduce

numa effects,” in Symposium on Principles and Practice of Parallel
Programming (PPoPP), 2018, pp. 419–420.

[82] I. Sánchez-Barrera, M. Moretó, E. Ayguadé, J. Labarta, M. Valero, and
M. Casas, “Reducing data movement on large shared memory systems
by exploiting computation dependencies,” in International Conference
on Supercomputing (ICS), 2018, pp. 207–217.

[83] B. C. Schwedock and N. Beckmann, “Jumanji: The case for dynamic
nuca in the datacenter,” in International Symposium on Microarchitec-
ture (MICRO), 2020, pp. 665–680.

[84] J. Shirako, J. M. Zhao, V. K. Nandivada, and V. N. Sarkar, “Chunking
parallel loops in the presence of synchronization,” in International
Conference on Supercomputing (ICS), 2009, pp. 181–192.

[85] L. Sommer, J. Korinth, and A. Koch, “Openmp device offloading to
fpga accelerators,” in International Conference on Application-specific
Systems, Architectures and Processors (ASAP), 2017, pp. 201–205.

[86] S. Subramanian, M. C. Jeffrey, M. Abeydeera, H. R. Lee, V. A. Ying,
J. Emer, and D. Sanchez, “Fractal: An execution model for fine-
grain nested speculative parallelism,” in International Symposium on
Computer Architecture (ISCA), 2017, p. 587–599.

[87] X. Tan, J. Bosch, D. Jiménez-González, C. Álvarez Martı́nez,
E. Ayguadé, and M. Valero, “Performance analysis of a hardware ac-
celerator of dependence management for task-based dataflow program-
ming models,” in International Symposium on Performance Analysis of
Systems and Software (ISPASS), 2016, pp. 225–234.

[88] X. Tan, J. Bosch, M. Vidal, C. Álvarez, D. Jiménez-González,
E. Ayguadé, and M. Valero, “General purpose task-dependence man-
agement hardware for task-based dataflow programming models,” in
International Parallel and Distributed Processing Symposium (IPDPS),
2017, pp. 244–253.

[89] X. Tang, O. Kislal, M. Kandemir, and M. Karakoy, “Data movement
aware computation partitioning,” in International Symposium on Mi-
croarchitecture (MICRO), 2017, pp. 730–744.

[90] W. Thies, M. Karczmarek, and S. P. Amarasinghe, “Streamit: A
language for streaming applications,” in International Conference on
Compiler Construction (CC), 2002, pp. 179–196.

[91] P.-A. Tsai, N. Beckmann, and D. Sanchez, “Jenga: Software-defined
cache hierarchies,” in International Symposium on Computer Architec-
ture (ISCA), 2017, pp. 652–665.

[92] Z. Ullah, M. K. Jaiswal, and R. C. C. Cheung, “Z-tcam: An sram-
based architecture for tcam,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 23, no. 2, pp. 402–406, 2015.

[93] M. Valero, M. Moretó, M. Casas, E. Ayguade, and J. Labarta,
“Runtime-aware architectures: A first approach,” International Journal
on Supercomputing Frontiers and Innovations, vol. 1, no. 1, pp. 29–44,
Jun. 2014.

[94] S. Xi, H. Jacobson, P. Bose, G.-Y. Wei, and D. Brooks, “Quantifying
sources of error in McPAT and potential impacts on architectural
studies,” in International Symposium on High Performance Computer
Architecture (HPCA), 2015, pp. 577–589.

[95] F. Yazdanpanah, C. Álvarez, D. Jiménez-González, R. M. Badia, and
M. Valero, “Picos: A hardware runtime architecture support for ompss,”
Future Generation Computing Systems, vol. 53, pp. 130–139, 2015.

[96] T. Y. Yeh and G. Reinman, “Fast and fair: Data-stream quality of
service,” in International Conference on Compilers, Architectures and
Synthesis for Embedded Systems (CASES), 2005, pp. 237–248.

[97] V. A. Ying, M. C. Jeffrey, and D. Sanchez, “T4: Compiling sequential
code for effective speculative parallelization in hardware,” in Interna-
tional Symposium on Computer Architecture (ISCA), 2020, p. 159–172.

[98] M. Zhang and K. Asanovic, “Victim replication: maximizing capacity
while hiding wire delay in tiled chip multiprocessors,” in International
Symposium on Computer Architecture (ISCA), 2005, pp. 336–345.

[99] Y. Zhang, W. Ding, M. Kandemir, J. Liu, and O. Jang, “A data layout
optimization framework for nuca-based multicores,” in International
Symposium on Microarchitecture (MICRO), 2011, pp. 489–500.

[100] L. Zhao, R. Iyer, M. Upton, and D. Newell, “Towards hybrid last level
caches for chip-multiprocessors,” SIGARCH Comput. Archit. News,
vol. 36, no. 2, pp. 56–63, May 2008.

[101] S. Zuckerman, J. Suetterlein, R. Knauerhase, and G. R. Gao, “Using
a ”Codelet” program execution model for exascale machines: Position
paper,” in Workshop on Adaptive Self-Tuning Computing Systems for
the Exaflop Era (EXADAPT), 2011, pp. 64–69.

Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
We run the benchmarks detailed in the paper using the
gem5 simulator (https://github.com/gem5/gem5) and the
Nanos++ runtime system from the OmpSs release 16.06
(https://pm.bsc.es/ftp/ompss/releases/). The modifications made to
the publicly available gem5 simulator and the publicly available
Nanos++ runtime system to support the submission are proprietary
to the authors’ affiliated institutions.

In gem5 we use a 16 core x86 out-of-order CPU model with the
Ruby memory system model with MESI coherence. L1I and L1D
sizes are 32KB each, L2 is 2MB per core and the NoC is a 4x4 mesh.
The execution-driven, full-system and cycle-accurate simulations
model in detail all the components of the architecture, including
the cache coherence protocol and the architectural support for
TD-NUCA, and they run a complete software stack including the
benchmarks, the runtime system libraries, and the OS. Power con-
sumption is evaluated with McPAT using a process technology of
22 nm, voltage of 0.6V and the default clock gating scheme. The
hardware structures of TD-NUCA are modeled using CACTI 6.0.

For the evaluation we use a set of task dataflow parallel bench-
marks programmed with OpenMP 4.0. Table I shows the bench-
marks and the input set sizes used in the experiments. The bench-
marks are run from start to completion, and the evaluation results
are collected from the entire post-initialisation parallel execution
phase of the benchmarks. The benchmarks are compiled with Mer-
curium 1.99 source-to-source compiler using gcc 4.6.4 as backend.

Table 1: Benchmarks, problem and task sizes.

2*Bench 2*Problem set Input set Num AVG task

size (MB) tasks size (KB)

Gauss 2D Matrix 𝑁 2 = 58982400, 2 iters. 488.04 3200 294

Histo 1500x1500 pixels, 50x50 blocks, 50 bins 478.75 1800 528

Jacobi 2D Matrix 𝑁 2 = 16777216, 5 iters. 264.34 320 4112

Kmeans 450000 pts., 90 dims, 6 clusters, 1 iter. 314.37 228 1404

KNN 512/229376 training/input pts, 8 classes 85.01 448 318

LU 2D Matrix 𝑁 2 = 9437184 73.45 1188 318

MD5 128 × 4 MB buffers 513.39 128 4096

Redblack 𝑁 2 = 28901376, 5 iters. 223.96 320 3549

Reproduction of the artifact without container: TD-NUCA mod-
ifications to the specified baseline runtime system and specified
baseline simulator are proprietary to the authors affiliated institu-
tions.

