
Master Thesis Project

Ros-based control of a robotic leg for a
quadruped robot

January 20, 2023

Author: Roberto Carta

Supervisor: Alba Perez Gracia

Date of the call: February 2023

Escola Tècnica Superior
d’Enginyeria Industrial de Barcelona

pag. 1

Review
The sector of Autonomous Mobile Robots (AMR) has grown a lot during the last years. In the
literature an AMR is a robot able to move without any human operator control. With the im-
provements of the control systems, robots have gained a lot of dexterity and flexibility in the
movements, migrating from restrictive mechanical systems like wheeling.
AMR with wheels are very efficient on plane grounds, like conventional industrial environ-
ments. Nevertheless, they lose efficiency when dealing with rough terrains like the ones you
can find onmountain rescue, vineyards or building industry. A good alternative is to use legged
robots, which imitate animal walking behaviour, for these types of terrain since they are able to
easily overcome these obstacles.
The objective of this project is to create a control system for the robotic leg of a quadruped robot.
A mechanical leg was developed and implemented at the CDEI for a quadruped robot, aimed
for its locomotion in rugged and unknown terrain. This project will create the control system
for this leg, so that it can execute the desired motions and it can be later integrated in the com-
plete quadruped robot. The system will be designed so that it can be part of the stack of the
quadruped robot. In this sense, the control systems software will be developed using the Robot
Operating System (ROS) and MATLAB&Simulink.

pag. 2 Thesis

pag. 3

Contents
1 Preface 7

2 Introduction 11
2.1 Objectives . 11
2.2 State of the art . 11
2.3 AMRs in primary industrial sector . 12
2.4 Description of legged robots . 13
2.5 Quadruped robots and existing commercial solutions 14
2.6 Different types of gait . 16

2.6.1 Walk . 16
2.6.2 Trot . 17
2.6.3 Canter . 17
2.6.4 Gallop . 18

2.7 State of the art of control algorithms . 18

3 Mathematical model of the leg 21
3.1 Description of the leg . 21
3.2 Direct Kinematics . 23

3.2.1 Denavit - Hartenberg Method . 23
3.3 Inverse Kinematics . 26
3.4 Differential Kinematics . 26

4 Kinematic Control 29
4.1 Jacobian Inverse Algorithm . 29
4.2 Drawbacks and resolutions . 31

5 Experimental setup 33

6 Software 35
6.1 Robotic Operating System - ROS . 35

6.1.1 ROS vs ROS2 . 36
6.1.2 Communication between nodes and rqt_graph 36

6.2 Gazebo Simulator . 37
6.3 Launch file . 37
6.4 Generating the URDF model from the 3D model 38
6.5 Defining the controllers . 42
6.6 MATLAB&Simulink . 44

6.6.1 Integration between Simulink and ROS . 45
6.7 Operational space trajectory generation . 47

7 Simulation results 53

8 Experimental results 59

9 Temporary planning and costs 63
9.1 Cost of workers . 63
9.2 Energy Cost . 63
9.3 Software licenses cost . 64

pag. 4 Thesis

9.4 Total cost of the project . 64

10 Environmental Impact 65

11 Conclusions 67

Bibliography 69

A Appendix 71
A.1 URDF file of the robotic leg . 71
A.2 MATLAB Code . 80
A.3 C++ Code . 87
A.4 ROS launch files . 89

pag. 5

List of Figures
1 Guided robot (source: HepcoMotion) . 7
2 Mobile robot in a warehouse[Source: Robotics Business Review] 8
3 Spot robot by Boston Dynamics . 8
4 Robotic leg developed by CDEI - UPC . 9
5 "Salto" monopod robot developed by Biomimetic Mill Systems Lab 13
6 Tripod robot “Martian Petit Robot” developed by the University of Osaka 13
7 Atlas Robot is one of the most famous biped robots (source Boston Dynamics) . 14
8 "Spot" quadruped robot by Boston Dynamics . 15
9 ANYmal robot during an Industrial inspection task (source ANYbotics) 15
10 Cyberdog robot by Xiaomi[8] . 16
11 Walk pattern [9] . 17
12 Trot pattern [9] . 17
13 Canter pattern [9] . 17
14 Gallop pattern [9] . 18
15 3D model of the leg . 21
16 Schematic representation of the open chain kinematics of the robotic leg 22
17 Denavit–Hartenberg kinematic parameters [15] 23
18 Inverse kinematics algorithm with Jacobian inverse [15] 30
19 Robotic leg developed by CDEI - UPC . 34
20 Ingenia EVE-XCR-E driver employed to control one motor 34
21 Brushless motor employed in the leg to actuate a single joint 34
22 ROS logo . 35
23 rqt_graph of this project . 37
24 3D model of the leg visualized in Solidworks . 38
25 Simplified 3D model without the parallel structure represented in Gazebo 40
26 Tree representation of links connections in the simplified robotic leg description . 40
27 3D model of the leg including the transmission bar visualized in Gazebo 41
28 Tree representation of the URDF description considering the parallel structure

but not fully connected . 41
29 Simple Simulink implementation of the Jacobian Inverse algorithm 45
30 Hierarchy representing the communication between MATLAB&Simulink, ROS,

Gazebo simulator and the real hardware . 46
31 Implementation of the Jacobian Inverse algorithm interfacing Simulinkwith ROS

through routines of ROS-Toolbox . 47
32 Block scheme for publishing a topic in ROS network from Simulink 47
33 Block scheme for subscribing to a topic in ROS network from Simulink 47
34 rqt_graph of the whole control system . 47
35 Dog’s foot trajectory with respect to camera reference frame 48
36 Example of markers distribution on the body of a dog for motion capture high-

lighting the relevant markers used in this project [Source: DeepAI] 49
37 Generation of the source trajectory in Simulink to simulate the movement of a

real dog’s toe . 50
38 Dog foot trajectory represented with respect to the robot body reference frame . 51
39 Joint positions and velocities behaviour in Simulink simulation 54
40 Error norm in cartesian space in Simulink simulation 55
41 Comparison between desired trajectory xd and followed trajectory xe visualized

in the (x, z)-plane . 55

pag. 6 Thesis

42 Joint positions and velocities behaviour in Gazebo simulation 56
43 Error norm in cartesian space in Gazebo simulation 57
44 Comparison between desired trajectory xd and followed trajectory xe visualized

in the (x, z)-plane, during Gazebo simulation . 57
45 Joint positions and velocities during experimental test 60
46 Error norm in cartesian space during experimental test 61
47 Comparison between desired trajectory xd and achieved trajectory xe visualized

in the (x, z)-plane, during experimental simulation 61

pag. 7

1 Preface
This projectwas developed inside theCentre deDissenyd’Equips Industrials (CDEI) of theUni-
versitat Politecnica de Catalunya (UPC). The Center for Industrial Equipment Design, CDEI-
UPC is a technological innovation center of the Technical University of Catalonia, located in
Barcelona. It has more than 21 years of experience carrying out research projects, technology
transfer and training actions in the area of industrial equipment development and design as
well as collaborating with companies from different sectors in the design, optimization, im-
provement and innovation of industrial equipment design. Throughout its history, the CDEI
has had the opportunity to collaborate with small, medium and large companies, from differ-
ent sectors such as industrial laundry, food sector, automotive, agriculture, renewable energy,
public worksmachinery, metal coatings, packaging industrymachinery, mobile robotics and in-
door logistics, among many others. The Center has become an expert in connecting University
knowledge and research with the needs and challenges of industry. On the research side, the
Center is committed to research and innovation, especially in the area of applied mobile robotic
solutions.

A robot is called AutonomousMobile Robot (AMR) when it’s capable of moving in an environ-
ment without the intervention of human control. There are several types of mobile robots, but
we can essentially group them in 3 main categories depending on their type of locomotion:

1. Guided Robots

2. Wheeled Robots

3. Legged Robots

Guided robots are midway between industrial manipulators and AMRs. They are mainly con-
stituted by a robotic manipulator which doesn’t have a fixed base to the ground, but can move
alongmechanical guide, as reported in Figure 1. Themain disadvantage is that they are not free
to move in every directions but they are restricted to a predefined path.

Figure 1: Guided robot (source: HepcoMotion)

Wheeled robots are more dexterous so they can share their working space with other obsta-
cles or humans in a safe way, like in Figure 2. Using special wheels, some robots can achieve
omnidirectionality. These AMRs work well on simple terrains, like plane ones or small ramps.
Nevertheless, they lose their efficiency in situations which present irregular terrains, such vine-

pag. 8 Thesis

yards or alpine rescue.

Figure 2: Mobile robot in a warehouse[Source: Robotics Business Review]

Legged robots generally overcome the limitations introduced above as they can adapt to dif-
ferent terrains: like animals they can extend their legs in order to keep their body stable while
walking on rough terrains. Moreover their legs can be raised in order to pass over obstacles or
to jump over them. A simple example is when they have to walk up to a staircase, like in Figure
3. The throwback of this architecture is that it needs more actuators and the control is more
difficult to perform.

Figure 3: Spot robot by Boston Dynamics

During the last years, CDEI realized several projects regarding wheeled AMRs, due to high
demanding of this industrial sector. Following the development of many commercial legged
robots it’s worth to notice that many of them are limited to domestic use or inspection tasks.
For this reason it’s good to develop a robotic solution aimed to perform heavier tasks in the in-
dustrial and agricultural areas. The purpose of this whole research project, then, is to develop
a competitive technology for customers that need that.
At the beginning of this work, the mechanical design and the production of a robotic leg has
already been performed at CDEI, as shown in Figure 16, but without the implementation of any
kind of control algorithm. The aim of this work is to continue the development of the leg on
the software side, performing an high level control with the middleware ROS (Robot Operating
System).

pag. 9

Figure 4: Robotic leg developed by CDEI - UPC

pag. 11

2 Introduction

2.1 Objectives
At the beginning of this project, amechanical leg has already been developed at CDEI, as well as
the motor and relative drivers have already been implemented. Throughout this work a control
system for this equipment will be designed, following several steps. The control algorithm will
be designed considering that the leg will be implemented in a quadruped robot in the future.
On a first phase an analysis of the literature will be made to check the state of the art of similar
projects, including advanced control strategies and already existing commercial solutions. In
this sense it is worth to develop a cartesian control of the foot of the leg.

The Robotic Operating System (ROS)will be the coremiddleware used in thiswork. The project
will be divided in two major steps, namely simulation of the algorithm and implementation on
the real mechanical system.

For this reason it is very useful to first develop a digital twin of the robotic leg and then use this
model to perform some simulations in order to tune and correct the used algorithms. It will be
necessary to export the already existing 3Dmodel in an adequate format (URDF) which can be
then uploaded in a robotic graphical simulator like Gazebo. For this reason, part of the project
will be dedicated in building the accurate URDF model, to perform reliable tests.

Starting from themost naive objectives to the hardest ones, wewill target to perform single joint
movements (like position and velocity control) before applying higher level robotic algorithms.
A kinematic control will be performed, for this reason it will be necessary to perform an anal-
ysis aimed at retrieving an accurate kinematic mathematical model which takes into account
the leg parameters. To overcome the issue of coding the high level algorithm in a low level
programming language, MATLAB and Simulink will be used to communicate with the ROS
environment and perform the necessary control actions.

The implementation on the real mechanical system will be made with the aid of the low level
drivers written by the company Beta Robots, which will help in focusing on high level control
strategies. The final aim of the work will be to make the real system perform a trajectory similar
to the one quadruped animals do when walking.

The development of walking algorithms which can make a quadruped robot adapt to harsh ter-
rain won’t be part of the project. Apart from the aim of the project, an environmental and social
study, as well as a cost evaluation will be performed. A documentation will be also provided in
order to make further improvements of the project easier.

2.2 State of the art
Likementioned in the first section, improvements in control systems algorithms and the digital-
ization of factories in Industry 4.0 allowed autonomous mobile robots to gain some popularity
in recent years. Nowadays, many companies have smart warehouses which exploit the flexibil-
ity of these new technologies to improve their logistic system. In the marine sector as well as in
a warehouse environments the flow of materials is mainly performed in horizontal and plane
directions, meaning that vertical movements are punctual or, in the majority of the cases, don’t
exist. All these circumstances made the use of wheeled AMRs one of the best solutions.

pag. 12 Thesis

2.3 AMRs in primary industrial sector
In other areas, such as mining, agricultural and building industry as long as alpine rescue, it’s
possible to notice a growth in the digitalization and robotization ofmany processes even though
with a lower impact compared to the secondary industrial sector. As this project can bring some
improvements to the agricultural industry, it is worth to analyze this sector in this section. [1]
The main use of these robots in agricultural applications is for collecting data relative to plants
and vegetation (monitoring of weeds, sampling and health of the crops and of the fruits). All
this information can help in improving efficiency of the farm activity, by reducing the use of
resources and time waste due to inefficient organization. Recent progresses in computer vision
(CV), machine learning (ML) and artificial intelligence (AI) techniques allow to process RGB
images in order to get the information regarding thematurity of the fruits and their dimensions.

With the use of 3D data, especially given by LIDARs, it is possible to analyze the growth of trees
and other slowgrowing crops. Knowledge of the spatial (3D)distribution of fruits through their
detection and location, with different levels of resolution –within a specific tree and at plot level–
is of enormous interest in agriculture. Having this information allows harvest and production
estimates to bemade, which leads to better planning of harvesting, storage andmarketing tasks.
[2]

By exploiting these technologies, among the others, it is possible to analyze the effects of dif-
ferent agricultural activities, get an estimate of the most adequate process for every area of the
field or make useful predictions and estimations for scheduling fruit harvesting. All this sys-
tem allows to optimize the resources, save money and reduce the environmental impact due to
excessive use of pesticide and herbicide products.

Agriculture is currently undergoing a robotics revolution, but it is worth to notice that the ma-
jority of commercial AMRs nowadays uses wheeled locomotion systems. These robots suffer
from known disadvantages: they are unable to move over rubble and steep or loose ground,
and they trample continuous strips of land thereby reducing the viable crop area. [3]
For these reason legged robots seem better suited for these applications. To all this it must be
added that the legged locomotion causes less crushing of the earth than wheels or caterpillars,
thus avoiding the destruction of delicate crops such as native flora and pollinating fauna. [1]

Therefore, it can be concluded that, a robot with legs with sufficient autonomy to analyze large
areas of land, optimized for agricultural tasks and with a suitable load capacity to transport
sensors is a proposal that can offer added value to farmers and producers.

pag. 13

2.4 Description of legged robots
Robots with legs can be grouped according to the number of legs used. In principle a robot
with legs can have any arbitrary number of limbs, although generally, (probably for inspiration
from nature) designers usually choose even numbers. Monopod and tripods robots are not so
common but exist anyway (See Figures 5 and 6).

Figure 5: "Salto" monopod robot developed by Biomimetic Mill Systems Lab

Figure 6: Tripod robot “Martian Petit Robot” developed by the University of Osaka

The most common legged robots are bipeds or quadrupeds. Generally, the common challenges
of biped robots include, but are not limited to, the following:

• Unstable structures due to the passive joints located at the unilateral contact between the
foot and the ground

• Need of more complex control algorithm in order to balance their unstable structure

• Combination and transition between the different modes of bipedal locomotion: walking

pag. 14 Thesis

and running without falling

• Bipedal robots havemultiple degrees of freedom (DOFs). Most researchers use simplified
models to reach a trade-off between simplicity and the dexterity [4]

It is also very common for these types of robot to be equipped of large counterweights, gyro-
scopes or other systems to facilitate control of the whole.

Figure 7: Atlas Robot is one of the most famous biped robots (source Boston Dynamics)

On the other hand, robots with three or more legs can rest in a stable position even with the
lack of control and in some circumstances with low consumption by the actuators.
Quadrupedwalking robots provide better stability bothwhilewalking and resting, and payload
capacity over other legged robots. These kinds of robots can be used to travel in rocky, muddy
and sloped terrains.[5]

Hexapod robots require more independent actuators adding complexity to both the design and
to the control. In addition, a greater number of limbs also leads to an increase in the mass of
the robot. This alternative is suitable for robots where speed is not a priority and they must
guarantee a very stable gait and/or a lot of grip with the ground.

2.5 Quadruped robots and existing commercial solutions
The best-known example of a robot with legs is the quadruped "Spot" developed by Boston
Dynamics. This robot is capable of moving at speeds of 1.6 m/s and has a wide variety of acces-
sories for inspection or even a manipulator arm. It is capable of handling up to 14 kg payloads.
This robot has proven to be functional in a large number of situations, like alpine rescue, space

pag. 15

missions and exploration of other risky environments due to its bioinspired dynamic control.
It is very suitable also for inspecting dusty environments due to its IP54 degree of protection. It
can be remotely controlled by a human operator while also being able to navigate and perform
some tasks autonomously since it’s equipped with a 3D vision system with SLAM and obstacle
avoidance algorithms. Due to its Omni-directional walking and multiple walking and trotting
gaits it can climb and descend stairs.
One of the main disadvantages of this robot is the price ($74.500 in its simplest version with-
out add-ons). The maximum autonomy of a battery is 90 minutes of travel, which is why it is
important that the batteries are easily removable to be able to use spare parts. [6]

Figure 8: "Spot" quadruped robot by Boston Dynamics

ANYmal is a quadrupedal robot designed by the company ANYbotics for autonomous opera-
tion in challenging environments. . Thanks to incorporated laser sensors and cameras, the robot
can perceive its environment to continuously create maps and accurately localize. Based on this
information, it can autonomously plan its navigation path and carefully select footholds while
walking. It was first developed for industrial inspection of oil and gas sites. It carries batteries
for more than 2h autonomy and different sensory equipment such as optical and thermal cam-
eras, microphones, gas-detection sensors and active lighting. With this payload, the machine
weighs less than 30kg and can hence be easily transported and deployed by a single operator.
[7]

Figure 9: ANYmal robot during an Industrial inspection task (source ANYbotics)

pag. 16 Thesis

Other companies have also developed small-sized quadruped robots that mimic the movement
of the previously mentioned robots but at a much lower price. An example is the "Cyberdog"
(Figure 10) presented in August 2021 by the company Xiaomi. This 3 kg robot has several built-
in cameras and can move at speeds slightly above 3 m/s. Its selling price is slightly higher than
1,200 €. It should be noted that this model has no load-carrying capacity and the incorporated
sensors are limited to image and sound. This, along with the very limited production series,
makes its field applications few and it is considered that this product is a promotion campaign
for future models with more performance.[8]

Figure 10: Cyberdog robot by Xiaomi[8]

2.6 Different types of gait
Not all creatures move the same way; some gaits are better adapted to keeping up over longer
distance, others for explosive movement and sprinting. Clearly, Mother Nature had two main
concerns in evolving solid gait styles: how fast can we move and how energy-efficient is that
movement. Especially for predators, if they expend more energy than they stand to gain by
reaching the food, moving wouldn’t be worth it.
Quadrupeds can have different variations of gait based on a few variables: speed, personal
preference, and training. The analysis below of each stride will include a brief description of the
gait with some important notes; the footfall analysis of the gait (the sequence inwhich feet touch
and lift from the ground); a representation of the footfall and a reference of the gait. Each type
of gait can evolve to another faster or slower gait. Some types of faster gaits are more favorable
to transition into, depending on which gait the animal is coming from and the similarity of the
footfall pattern. [9] In quadrupeds we can distinguish basically between 4 types of gaits: walk,
trot, gallop, canter. [10]

2.6.1 Walk

The walk is the slowest and most energy-efficient gait. While walking, the animal always has
two to three points of contact with the ground. During the walk, each hind foot is alternately
replacing the front foot on the same side, switching, and repeating the same action on the op-
posite side. During the switch, the quadruped will necessarily have only two points of contact
with the ground for a split second. This is also the most stable gait, due to the fact that the
quadruped can always have three feet on the ground. [9]

pag. 17

Figure 11: Walk pattern [9]

2.6.2 Trot

With the trot, the animal begins to gain some speed, although still not committed to running,
and maintains an energy-efficient approach. We can compare it to the human version of jog-
ging—midway between walking and sprinting. Much like jogging, it’s the preferred way to
cover longer distances in a relatively short time, in contrast to the gallop in which a lot of en-
ergy is consumed in short bursts before being forced to stop. In a trained horse, a trot can be
sustained potentially for hours. The trot is a two-beat gait that follows a diagonal pattern, with
the limbs opposing diagonally hitting the ground simultaneously and then alternating. [9]

Figure 12: Trot pattern [9]

2.6.3 Canter

The canter is a three-beat gait that falls between the trot and the gallop in terms of speed, and
this is also reflected in the sequence of footfalls. With three beats on each stride, the canter is an
asymmetrical gait, whichmeans that each animal can have either a left or a right lead, depending
on which front limb is leaving the ground last on each stride. In the canter, we find the rhythm
of beats as one-two-one, followed by a suspension where all feet have left the ground. As the
speed increases, the period of suspension is longer until the animal reaches a speed where it is
forced to switch to a full gallop. [9]

Figure 13: Canter pattern [9]

pag. 18 Thesis

2.6.4 Gallop

The gallop is the fastest gait; each stride can cover more ground than in other gaits, but it’s also
very energy demanding and less useful for long-distance traveling. The footfall is an evolution
of the canter and its natural progression, except that the gallop becomes a four-beat gait. Each
footfall becomes equidistant from the others and is always followed by amoment of suspension
at the end. The two back legs hit the ground first with slightly different timing while the two
front follow in the same pattern immediately after. [9]

Figure 14: Gallop pattern [9]

2.7 State of the art of control algorithms
The control of a robotic leg poses several challenges, such as stability, accuracy, efficiency, and
robustness to uncertainty and disturbances. To address these challenges, various control algo-
rithms have been proposed and applied in the literature. In this chapter, we review the most
popular and effective control algorithms for robotic legs, and discuss their advantages and lim-
itations. Based on a model prediction, the Model Predictive Control(MPC) framework easily
incorporates system dynamics and constraints by transcribing the control law as a constrained
optimization problem. Recent applications of MPC on quadrupeds have shown the capability
ofMPC in planning and controlling complex dynamicmotionswhile embracing systemdynam-
ics and constraints arising from friction and motor saturation.[11] However, these controllers
assume accurate knowledge of the dynamic model, or in other words, do not address substan-
tial model uncertainty in the system. Many safetycritical missions, such as firefighting, disaster
response, exploration, require the robot to operate swiftly and stably while dealing with high
levels of uncertainty and large external disturbances.Adaptive control can address model un-
certainty in control systems. [12] Impedance control is a control strategy that regulates the
interaction between the robot and the environment. It adjusts the impedance of the robot to
match the impedance of the environment and reduce the external forces acting on the leg. The
objective of impedance control is not to directly control position or force, but the relationship
between them. This allows reducing or increasing apparent stiffness, damping, ormass depend-
ing on the task. Impedance control has been applied to various types of robotic legs involved
into bipedal robots, quadruped robots, and exoskeletons. [13] Reinforcement learning (RL) is
a type of machine learning technique that allows robots to learn from their own experience and
optimize their control strategies. The algorithm utilizes a reward function, which encodes the
desired performance of the robot, to adjust its control policy through trial and error. As the
robot learns and adapts to new experiences, it maximizes the reward function and improves its
overall control performance. This technique has been applied to control robotic legs with the
goal of making them more autonomous and efficient. If successfully applied, RL can automate
the controller design, completely removing the need for system identification, and resulting in
gaits that are directly optimized for a particular robot and environment. However, applying RL
to learning gaits in the real world is challenging, since current algorithms often require a large

pag. 19

number of samples—on the order of tens of thousands of trials. Moreover, such algorithms are
often highly sensitive to hyperparameter settings and require considerable tuning. [14] The
research on RL for controlling robotic legs is still ongoing and new advances are being made
regularly.

In conclusion, there are several state-of-the-art algorithms that are commonly used to control
a robotic leg, each with its own advantages and limitations. MPC can handle constraints and
take into account the dynamics of the leg, adaptive control is useful for uncertain or changing
environments, impedance control is efficient in regulating the interaction between the robot and
the environment, and reinforcement learning is useful to optimize robot trajectory generation
without needing a mathematical model. However, the choice of control algorithm depends on
the specific requirements of the robotic leg and the task it is meant to perform.

pag. 21

3 Mathematical model of the leg

3.1 Description of the leg
The robotic leg, as depicted in Figure 15, consists of six links, three revolute active joints and
three passive joints. Themechanical design presents a parallel structure that has been integrated
in order to regulate the movement of the joint between Link 2 and Link3B. This structure utilizes
a motor that is situated in proximity to the shoulder of the leg, with the intention of optimizing
the effort required by the initial two motors in order to move the first two joints. The parallel
structure in question connects the passive joint between Link2 and Link3Awith the joint between
Link2 and Link4, enabling the manipulation of the active joint to control the movement of the
passive joint. This design decision was made to improve the efficiency and performance of the
robotic leg, by optimizing the effort required by the motors and allowing for a more compact
design. From a mathematical and analytical standpoint, the parallel structure can be described
as a planar four-bar parallelogram. This classification leads to the conclusion that the passive
joint exhibits similar behavior to that of the controlled joint, as the movement of one joint can be
replicated through manipulation of the other. As a result, the kinematic analysis of the robotic
leg can be conducted using the simplified model of the leg reported in Figure 16.
It should be noticed that Link4 has its ownmoment of inertia, meaning the effort applied by the
motor is not the same as that applied at the passive joint in terms of dynamics. The kinematics
parameters of the links are reported in Table 1. Due to the mechanical structure of the leg it
has to be considered that there exist some physical limits on the joint positions: with reference
to the structure of the system shown in Figure 16, the joints operational ranges are reported in
Table 2.

Figure 15: 3D model of the leg

pag. 22 Thesis

Figure 16: Schematic representation of the open chain kinematics of the robotic leg

Parameter Value
l1,B 100 mm
l1,A 78,75 mm
l2 300 mm
l3 300 mm

Table 1: Kinematic parameters of the leg

Joint Range[rad]
θ1 [−π , 0,30]
θ2 [−π , 1,00]
θ3 [0,67 , 2,27]

Table 2: Operational limits of the joints

pag. 23

3.2 Direct Kinematics
In the following section, the kinematic equations of the leg will be derived. The objective of this
analysis is to establish the mathematical representation of the location of the toe of the leg at
point P with respect to the reference frame fixed to the body of the quadruped (RFR). This
reference frame, represented in Figure 16 by the coordinates (xR, yR, zR), is located at the shoul-
der of the leg and it has the same origin of the RF0. The kinematic equations will describe the
relationship between the position of the toe and the vector of generalized coordinates (q1, q2, q3)
that define the configuration of the leg. It is worth to notice that, since only revolute joints are
present in this mechanical structure then (q1, q2, q3) = (θ1, θ2, θ3). Also the equations which
determine the inverse kinematic will be presented, in order to find which values of (q1, q2, q3) in
the joint space are necessary to reach a certain point in the operational space. It must be noticed
that the point P is not the real contact point of the leg with the ground, instead it models the
center of a sphere with radius r, as the case of the gum ball in our leg. On ideal terrains, the
contact point can be modelled easily but this not the case for arbitrary type of terrains, indeed
the contact with the ground can deform the toe made of gum and this will depend on many
factors, such as robot’s payload and stiffness of the ground, among the others.

3.2.1 Denavit - Hartenberg Method

To express the kinematic equations of a chained robotic structure it is possible to use theDenavit-
Hartenberg method. This allows to represent the pose of the end-effector of a manipulator with
respect to a fixed reference frame through a recursive algorithm. Indeed it is possible to find
the kinematic relationship between 2 consecutive links describing their relative roto-translation
and represent it with a homogeneous transformation matrix:

[
R T
0T 1

]
∈ SE(3) (1)

Figure 17: Denavit–Hartenberg kinematic parameters [15]

With reference to Figure 17, let Axis i denote the axis of the joint connecting Link i− 1 to Link
i; the so-called Denavit–Hartenberg convention (DH) is adopted to define link Frame i:

• Choose axis zi along the axis of Joint i+ 1

pag. 24 Thesis

• Locate the originOi at the intersection of axis zi with the common normal to axes zi−1 and
zi . Also, locate Oi′ at the intersection of the common normal with axis zi−1.

• Choose axis xi along the common normal to axes zi−1 and zi with positive direction from
Joint i to Joint i+ 1.

• The yi axis is given by the outer product zi ⊗ xi in order to get a right-handed frame. [15]

With this procedure, to make a coordinate transformation from the first reference frame i − 1
to the reference frame i, two roto-translations are performed. First a roto-translation relative to
the zi−1 axis is made. This is described by the following homogeneous transformation matrix:

Ai−1
i′ =

cosθi −sinθi 0 0
sinθi cosθi 0 0
0 0 1 di
0 0 0 1

 (2)

Consequently a roto-translation relative to the axis xi′ is performed, which is represented by the
following homogeneous transformation matrix:

Ai′
i =

1 0 0 ai
0 cosαi −sinαi 0
0 sinαi cosαi 0
0 0 0 1

 (3)

The resulting coordinate transformation is obtained by postmultiplication of the single trans-
formations as:

Ai−1
i (qi) = Ai−1

i′ Ai′
i =

cosθi −sinθicosαi sinθisinαi aicosθi
sinθi cosθicosαi −cosθisinαi aisinθi
0 sinαi cosαi di
0 0 0 1

 (4)

Adopting this notation, the transformation matrices between consecutive reference frames in
this robotic leg are:

A0
1 =

−sin(q1) 0 cos(q1) 0
cos(q1) 0 sin(q1) 0

0 1 0 l1,B
0 0 0 1

 (5)

A1
2 =

cos(q2) sin(q2) 0 l2cos(q2)
sin(q2) −cos(q2) 0 l2sin(q2)

0 0 −1 l1,A
0 0 0 1

 (6)

pag. 25

A2
3 =

cos(q3) −sin(q3) 0 l3cos(q3)
sin(q3) cos(q3) 0 l3sin(q3)

0 0 1 0
0 0 0 1

 (7)

Finally, taking into account that the origin of the robot Reference Frame(RFR)will be coincident
to the origin of RF0 and it’s oriented with Axis xR representing the robot progressing direction
and the Axis zR normal to the ground, we can introduce an additional static homogeneous
transformation matrix:

AR
0 =

0 0 −1 0
1 0 0 0
0 −1 0 0
0 0 0 1

 (8)

Referring to sin(·) as s(·) and to cos(·) as c(·), the final transformation matrix will be given by:

AR
3 = AR

0 A
0
1A

1
2A

2
3 =

−s(q2 − q3) c(q2 − q3) 0 −l1,B − l3s(q2 − q3)− l2s(q2)
−c(q2 − q3)s(q1) −s(q2 − q3)s(q1) −c(q1) −l3s(q1)c(q2 − q3)− l2s(q1)c(q2) + l1,Ac(q1)
−c(q2 − q3)c(q1) −s(q2 − q3)c(q1) s(q1) −l3c(q1)c(q2 − q3)− l2c(q1)c(q2)− l1,As(q1)

0 0 0 1

 (9)

With these equations it is possible to express the position of the point P with respect to the Ref-
erence Frame of the robot, taking into account thatP is positioned at the origin of the Reference
Frame 3. In homogeneous coordinates we have:

P 3 =

0
0
0
1

 (10)

and consequently:

PR = AR
3 P

3 =

Px

Py

Pz

1

 =

−l1,B − l3s(q2 − q3)− l2s(q2)

−l3s(q1)c(q2 − q3)− l2s(q1)c(q2) + l1,Ac(q1)
−l3c(q1)c(q2 − q3)− l2c(q1)c(q2)− l1,As(q1)

1

 (11)

pag. 26 Thesis

Formula 11 expresses the equationswhich rule the point’s position forwad kinematics of the leg.
It is worth to notice that this defines a non-linear map xe = k(q) and relates the joint variables
(q1, q2, q3) to xe. As in this case we are describing only the end-effector position, then xe = pe.

3.3 Inverse Kinematics
Starting from the direct kinematics relationship in 11 it is possible to retrieve the vector of joint
variables (q1, q2, q3)which allow to position the robot end-effector in a predefined position in
the operational space xe.

q1 = arctan(
−Pz

Py
)± arccos(

l1,A√
P 2
y + P 2

z

) (12)

q2 = arctan(
2l2(l1,B + Px)

2(Pzc(q1) + Pys(q1)l2
)± arccos(

l23 − l22 − (l1,B + Px)2 − (Pzc(q1) + Pys(q1)
2√

(2l2(l1,B + Px))2 + (2(Pzc(q1) + Pys(q1)l2)2
)

(13)

q3 = arctan(
l2s(q2) + l1,B + Px

l2c(q2) + Pzc(q1) + Pys(q1)
)− q2 (14)

It is important to note that for any desired operational space position (Px, Py, Pz)
T , there exist

four possible sets of joint angles (q1, q2, q3)T that would result in the end-effector reaching that
position. To ensure that the robotic leg follows the desired cartesian trajectory, it is crucial to pro-
vide the correct initial condition for the inverse kinematics problem. This can be accomplished
through the use of constraints, and by properly initializing the inverse kinematics algorithm. As
long as the system does not pass through a singularity, the correct solution among the multiple
possible solutions can be determined.

3.4 Differential Kinematics
The goal of the differential kinematics is to find the relationship between the joint velocities
and the end-effector linear and angular velocities. In other words, it is desired to express the
end-effector linear velocity ṗe and angular velocityωe as a function of the joint velocities q̇. The
sought relations are both linear in the joint velocities, i.e.,

ṗe = JP (q)q̇ (15)

ωe = JO(q)q̇ (16)

In (15) JP is the (3 × n) matrix relating the contribution of the joint velocities q̇ to the end-
effector linear velocity ṗe, while in (16) JO is the (3 × n) matrix relating the contribution of the
joint velocities q̇ to the end-effector angular velocity ωe. In compact form, 15, 16 can be written
as

pag. 27

ve =

[
ṗe

ωe

]
= J(q)q̇ (17)

which represents the manipulator differential kinematics equation. The (6×n) matrix J is the
manipulator geometric Jacobian. The analytical Jacobian instead is obtained as:

JA(q) =
∂k(q)

∂q
(18)

In general the geometric and the analytical Jacobian are different since the following hold:

ṗe =
dpe

dt
(19)

ωe ̸=
dϕe

dt
(20)

but in this project we are not describing the orientation of the end-effector ϕe so the two Jaco-
bians are the same and they can be retrieved by time differentiation of k(q):

J(q) = JA(q) =
∂k(q)

∂q
=

 0 −l2c(q2)− l3c(q2 − q3) l3c(q2 − q3)
−l1,As(q1)− l2c(q1)c(q2)− l3c(q1)c(q2 − q3) s(q1)(l2s(q2) + l3s(q2 − q3)) −l3s(q2 − q3)s(q1)
l2c(q2)s(q1)− l1,Ac(q1) + l3s(q1)c(q2 − q3) c(q1)(l2s(q2) + l3s(q2 − q3)) −l3s(q2 − q3)c(q1)

(21)

The identification and analysis of Jacobian singularities will be presented in Section 4.2, along
with the methods and techniques used to prevent the system from falling into such singular
configurations. The singularities in Jacobian matrix can cause the loss of control of the robotic
arm and lead to unexpected behaviors, thus it is important to have a proper understanding of
these singularities and themethods to avoid them in order to achieve stable and accurate control
of the robotic leg.

pag. 29

4 Kinematic Control
The differential kinematics equation represents a linear mapping between the joint velocity
space and the operational velocity space, although it varies with the current configuration. This
fact suggests the possibility to utilize the differential kinematics equation to tackle the inverse
kinematics problem. [15] By considering equation (17) with J(q) square as in our case, the
joint velocities can be obtained via simple inversion of the Jacobian matrix:

q̇ = J−1(q)ve (22)

If the initialmanipulator posture q(0) is known, joints positions can be computed by integrating
velocities over time, i.e.,

q(t) =

∫ t

0
q̇(σ)dσ + q(0) (23)

The integration can be performed in discrete time by resorting to numerical techniques. The
simplest technique is based on the Euler integrationmethod; given an integration interval∆t, if
the joint positions and velocities at time tk are known, the joint positions at time tk+1 = tk +∆t
can be computed as

q(tk+1) = q(tk) + q̇(tk)∆t (24)

and so recalling 22 we have

q(tk+1) = q(tk) + J−1(q(tk))ve(tk)∆t (25)

It follows that the computed joint velocities q̇ do not coincide with those satisfying 22 in the
continuous time. Therefore, reconstruction of joint variables q is entrusted to a numerical inte-
gration which involves drift phenomena of the solution; as a consequence, the end-effector pose
corresponding to the computed joint variables differs from the desired one. For this reason it’s
necessary to introduce a control scheme that accounts for the operational space error between the
desired and the actual end-effector position.

4.1 Jacobian Inverse Algorithm
Let the operational space error between the desired and the actual end-effector position be:

e = xd − xe (26)

Consider the time derivative of such error:

ė = ẋd − ẋe (27)

which, according to the differential kinematics can be written as:

ė = ẋd − JA(q)q̇ (28)

pag. 30 Thesis

On the assumption that matrix JA is square and nonsingular, the choice

q̇ = J−1
A (q)(ẋd + Ke) (29)

leads to the equivalent linear system

ė + Ke = 0 (30)

If K is a positive definite (usually diagonal) matrix, the system (30) is asymptotically stable.
The error tends to zero along the trajectory with a convergence rate that depends on the eigen-
values of matrixK; the larger the eigenvalues, the faster the convergence.

The matrixK in this project was chosen to be:

K =

0.8 0 0
0 0.8 0
0 0 0.8

 (31)

which ensures the convergence to 0 of the error and at the same time keeps the joint velocities
q̇ limited.

Figure 18: Inverse kinematics algorithm with Jacobian inverse [15]

The block diagram corresponding to the inverse kinematics algorithm in equation (29) is shown
in Figure 18, wherek(·) represents the direct kinematics function. This diagram can be analyzed
in terms of standard feedback control schemes. Specifically, it can be seen that the nonlinear
block k(·) is required to calculate xe and therefore the tracking error e, while the block J−1

A (q)
has been included to compensate for JA(q) and make the system linear. The block diagram
illustrates the presence of a series of integrators in the forward loop, which ensures that the
steady-state error is zerowhen the reference (ẋd = 0) is constant. Additionally, the feedforward
action provided by ẋd for a time-varying reference ensures that the error remains zero (in the
case (e(0) = 0) throughout the entire trajectory, regardless of the type of desired reference
xd(t).

pag. 31

The scheme in Figure 18 can implement a kinematic control, provided that the integrator is re-
garded as a simplified model of the robot, thanks to the presence of single joint local servos,
which ensure a more or less accurate reproduction of the velocity commands. It is important to
note that the proposed kinematic control technique is suitable for achieving satisfactory perfor-
mance when the required motion is not too fast or the required accelerations are not too high.
This is because, under these conditions, the dynamics of the system can be ignored as the accel-
erations are relatively insignificant. However, when high-speed motions or rapid accelerations
are required, it is necessary to take the dynamics of the system into consideration and use a
more advanced control technique, such as a dynamic control technique, to achieve stable and
accurate control of the robotic leg.

4.2 Drawbacks and resolutions
Both solutions (22) and (29) can be computed only when the Jacobian has full rank. Hence,
they become meaningless when the manipulator is at a singular configuration; in such a case,
the system ve = Jq̇ contains linearly dependent equations. It is crucial to note that the inversion
of the Jacobian may not only be problematic at a singularity, but also in the neighborhood of a
singularity. For instance, the computation of the Jacobian inverse requires the calculation of the
determinant, which may become relatively small in the neighborhood of a singularity, leading
to potentially large joint velocities.

In our case the singularities are present in the following configurations when the Jacobian is
rank deficient:

q3 = 0 (32)

q3 = π (33)

This means that when the Link3A and the Link2 are alligned we can be in a singular configura-
tion. This practically can never happen due to physical limits in the joint movement but anyway
it is better to avoid configurations near to the singular ones. For this reason, it was decided to
start the robotic leg in the joint configuration (q1, q2, q3) = (0, 0, π2).

pag. 33

5 Experimental setup
The robotic leg, which has already been developed and is currently hosted at CDEI, is depicted
in Figure 19. It is equipped with three brushless motors, each of which is outfitted with a har-
monic drive to facilitate movement of the leg’s three joints. Each motor is equipped with an
incremental encoder, which is mounted on the motor side, and is actuated by an electronic
driver that utilizes the EtherCAT communication protocol to communicate with the associated
desktop PC. In Tables 5, 6, 7 some useful data regarding the motors, their gearboxes and the
electronic drivers are reported. The electricity source comes from a power supply with 48V
output voltage and 30A maximum current. It is worth to notice that, as already mentioned in
Section 3.1 each active joint in the leg presents physical limits due to the mechanical structure of
the system. These limits are reported in Table 4. Moreover the kinematics parameters for every
link of the leg are summarized in Table 3.

Parameter Value
l1,B 100 mm
l1,A 78,75 mm
l2 300 mm
l3 300 mm

Table 3: Kinematic parameters of the leg

Joint Range[rad]
θ1 [−π , 0,30]
θ2 [−π , 1,00]
θ3 [0,67 , 2,27]

Table 4: Operational limits of the joints

Producer Mavilor Motors
Model type BR-02
Mass [kg] 0,47

Maximum motor speed [rpm] 6000
Maximum encoder speed [rpm] 3000

Stall torque [Nm] 0,80
Peak torque [Nm] 2,60
Supply voltage [V] 48
Stall current [Arms] 7,87
Peak current [Arms] 25,58

Encoder resolution [pulses] 2048

Table 5: Motors technical data

Associated Motor Motor 1 Motor 2 Motor 3
Producer Datorker Datorker Datorker
Model WUT-PO 17 WUT-PO 17 WUT-PO 17

Reduction Ratio 50 80 50

Table 6: Gearboxes data

pag. 34 Thesis

Figure 19: Robotic leg developed by CDEI - UPC

Producer Ingenia
Part Number EVE-XCR-E

Continuous Current [A] 45
Peak Current [A] 60
Supply Voltage [V] [8 , 80]
Communications EtherCAT
Dimensions [mm] 42 x 29 x 23,2

Weight [g] 34

Table 7: Motor drivers technical data

Figure 20: Ingenia EVE-XCR-E driver em-
ployed to control one motor

Figure 21: Brushless motor employed in
the leg to actuate a single joint

pag. 35

6 Software
The control algorithm for the robotic systemwere implemented using the Robot Operating Sys-
tem (ROS) andMATLAB&Simulink. Simulink was able to communicate with ROS through the
use of the ROS Toolbox, which provided functions for sending and receiving ROSmessages and
calling ROS services. Before deploying the software on the physical robotic system, simulations
were performed using a physics simulator such as Gazebo, which allowed for visualization of
the 3D model of the leg as it was moved by the control algorithm. These simulations included
basic movements such as single joint control, as well as more complex trajectories. The high-
level control algorithm, which implemented the algorithm described in Section 4.1, has been
developed in Simulink, while the low-level communication with the hardware or simulator was
handled by ROS. To use the simulation environment in Gazebo, it was necessary to create a 3D
model of the robotic leg in a format that Gazebo could understand, such as URDF. The pro-
cess of generating the URDF file, coding the ROS nodes, and establishing the interconnection
between Simulink and ROS will be described in this chapter.

6.1 Robotic Operating System - ROS
Robot Operating System (ROS) is a powerful and flexible software platform for building robot
applications. It is composed of a set of libraries and tools that provide a wide range of func-
tionality for robotics, including hardware abstractions, low-level device control, and high-level
robot behaviors. ROS is designed to be modular and flexible, allowing developers to easily cre-
ate and integrate new robot applications by building on top of the existing ROS infrastructure.
It offers a range of drivers and algorithms that support a variety of hardware platforms and
sensor types, making it easy to connect and control hardware devices. In addition to its core
libraries and tools, ROS also provides a number of developer tools that make it easier to build
and debug robot applications. These include tools for visualizing data, debugging code, and
profiling performance. One of the key benefits of ROS is that it is open source, meaning that it
is freely available and can bemodified and extended by anyone. This makes it an ideal platform
for collaborative robotics projects, as developers can freely share and build upon each other’s
work.

Figure 22: ROS logo

In the Robot Operating System (ROS) environment, the basic units of computation are called
nodes. Each node is responsible for performing a specific, small task. In a ROS project, multiple
nodes work together to perform larger, distributed computing tasks. As an example, consider
a navigation robot that needs to perform motor control, perceive its environment, filter sensor
data, and execute high-level intelligent control. Each of these tasks can be assigned to a separate
node, and the project is assembled by connecting these nodes and allowing them to commu-
nicate with each other. If there is a need to modify part of the project in the future, it is only
necessary to modify a single node, rather than the entire codebase. This modular approach to
computing is particularly useful in cases where the robotic system may need to be integrated

pag. 36 Thesis

into a larger, more complex system, such as a quadruped robot.

One key feature of ROS is that nodes can be written in different programming languages, such
as C++ or Python, and still communicate with each other. C++ is a compiled language, which
means it executes faster than Python, which is an interpreted language. For this reason, it is
often preferred for real-time applications like the one described in this project, where high real
time performance was required.

6.1.1 ROS vs ROS2

One limitation of ROS is that it is only compatible with specific versions of Ubuntu Linux. This
means that it can only be installed and run on these specific versions of the operating system.
To address this issue, the developers of ROS have created a new version of the framework called
ROS2. ROS2 is designed to have awider range of compatibilitywith different operating systems,
including support for additional versions of Linux and even some non-Linux operating systems.
This increased compatibility can make it easier to use ROS2 on a wider variety of hardware
platforms and can also allow for more flexibility in terms of deployment options. Despite the
potential benefits of using ROS2, it is still a relatively new version of the framework and may
have less documentation and support available in the open-source community compared to the
original version of ROS. For this reason, the version of ROS used in this project (ROS noetic)
was chosen to run onUbuntu 20.04, a version of Linux that is supported by both ROS and ROS2.

6.1.2 Communication between nodes and rqt_graph

Nodes can communicate each others by exchanging data in 3 ways:

1. Topics: they are useful for continuous data streambetween 2 ormore nodes. This paradigm
is based on a publisher/subscribermechanism inwhich the first node sends amessage and
the second receives it.

2. Services: they are useful for sending instant request(once, not in continuous way) from a
node to another, by using a client/server mechanism.

3. Actions: they are useful for long term task and are also based on a client/server mech-
anism. They are executed asynchronously so other tasks can be performed in parallel.
Actions are the core of controllers implementation in ROS. They are basically constituted
by a collection of topics.

The rqt_graph tool allows users to see the relationships between nodes in a visual way, making
it easier to understand how the system is structured and how data is flowing between nodes.
This can be especially useful in larger, more complex systems where there may be many nodes
interacting with each other in different ways. Using the rqt_graph, users can see which nodes
are publishing and subscribing to which topics, as well as which nodes are providing and using
services. This information can help users identify potential bottlenecks or issues in the system
and can also provide insight into how the system is functioning overall.

In addition to its utility in understanding the structure and behavior of a ROS system, the
rqt_graph tool can also be useful for debugging and troubleshooting issues. By visualizing the
connections between nodes, users can more easily identify where problems may be occurring
and can take steps to resolve them.

pag. 37

Overall, the rqt_graph is a valuable tool for visualizing the connections between nodes in a ROS
system and can be helpful in understanding how the system is structured, identifying potential
issues, and debugging problems. The rqt_graph of this project is visualized in Figure 23 and it
will be explained better in the following sections.

Figure 23: rqt_graph of this project

6.2 Gazebo Simulator
Gazebo is a simulation tool for robotic systems that has a robust physics engine, high-quality
graphics, and convenient programmatic and graphical interfaces. It is a standalone application
that is also integrated as a ROS package. Gazebo can communicate with the ROS ecosystems
through several topics, services and actions. It is very convenient to perform some simulations
in a simulator like Gazebo before trying to control the real system. However it’s not always
true that if an algorithm works well in simulation, it will work well also in the real world. This
is due to many factors, but mainly due to the complexity of real scenarios. To visualize and
use a 3D model of a robot in Gazebo, it is requested to describe it in a file with the extension
.urdf. Unified Robotics Description Format, URDF, is an XML specification used in academia
and industry to model multibody systems such as robotic manipulator arms, mobile robotic
platforms and in this case the robotic leg. It uses a tree data structure to represent the hierarchy
between the links and their connections through joints. For this reason it is not the best solution
to represent parallel structures.

6.3 Launch file
When doing a ROS project, it can happen that several nodes have to be run. Since to run each
single node it’s necessary to open a new terminal, it is not so comfortable to have a lot of terminal
windows opened. To overcome this issue, it is possible to run the whole project by executing
a .launch file. The launch utility is very useful for large projects since it permits to run and
configure several nodes at the same time, do a remap of the topics, load 3D URDF models,
load controllers nodes and so on. A .launch file is written in .xml format and when called it
checks automatically whether the master is running or not, and if not it automatically calls it.
In this project, two launch files have been used. The first, called gazebo_parallel.launch, is
necessary to load the Gazebo empty world and spawn the leg 3Dmodel. The second launch file
is necessary to load all the controllers (trajectory and state controllers) as long as the ROS node
necessary for controlling the simulated system. The launch files are reported in the Appendix.

pag. 38 Thesis

6.4 Generating the URDF model from the 3D model
To use the physics simulator Gazebo, it was necessary to generate a 3D model of the leg in a
format that Gazebo can understand. One option for doing this was to create a Unified Robot
Description Format (URDF) file. A URDF file is an XML file that describes the kinematic and
dynamic properties of a robot, including its joints, links, and sensors. It is used to represent the
robot in simulation environments like Gazebo. To create a URDFmodel of the robotic leg, it was
needed to specify the geometry, mass, and inertial properties of each link, as well as the joints
that connect the links together. It was also requested to define any sensors or other hardware
components that are mounted on the leg. Once all these elements had been defined, it was
possible to use the URDF file to load the model into Gazebo and simulate the leg’s behavior.
Generating aURDFmodel of the robotic leg can be a complex process, but it is an important step
in using Gazebo for simulation and testing. With a properly defined URDFmodel, it is possible
to accurately simulate the leg’s behavior and fine-tune the control algorithms before deploying
them on a physical robot. The 3Dmodel of the mechanical structure of the leg had already been
developed by the CDEI and was available in .asm format. This model can be visualized and
modified using a mechanical design software such as SolidWorks, as shown in Figure 24.

Figure 24: 3D model of the leg visualized in Solidworks

The Solidworks to URDF exporter (SW2URDF) is a valuable add-on for creating a URDFmodel of
a robotic 3D structure from a Solidworks model. It can greatly simplify the process of defining
the tree structure of links and joints, as well as the properties of each joint. This can save a
significant amount of time compared to manually creating a URDF file, which can be a tedious
and error-prone process. The SW2URDF tool allows users to define the origin and orientation
of each joint, as well as the type of joint (e.g., revolute, prismatic, etc.) and the axis of rotation.
It also allows users to export the resulting URDF file and STL files for the meshes of the robotic
structure. This can be especially helpful for creating 3D models of complex systems with many
links and joints, as it can be difficult to manually define all of these properties in a URDF file.
Another advantage of using the SW2URDF tool is that it is a visual tool, whichmeans that users

pag. 39

do not need to manually enter values such as the origin of a joint with respect to its parent link.
Instead, they can simply use the graphical interface to define these properties, which can be
much faster and more intuitive. This can help to reduce the risk of errors and ensure that the
resulting URDF model is accurate and complete.
As mentioned previously, the mechanical system for the leg has a parallel structure, which may
not be well represented in a tree structure like that used in a URDF file. To address this issue,
initial simulationswere performedusing a simplified version of the 3Dmodel that only included
the three links Link1, Link2, Link3A connected by three revolute joints. This simplified model
can be visualized in Gazebo in Figure 25, and its tree representation is shown in Figure 26.

A closed chain structure, such as the one used in this project for the leg, can be more accurately
represented using a .sdf file rather than a .urdf file. This is because the .sdf format allows for
the use of a graph data structure, which can better capture the complex kinematic relationships
present in a closed chain system. However, in some cases it may be necessary or desirable to use
a .urdf file instead. One approach to represent a closed chain system in a .urdf file is to use a
workaround available in Gazebo. While this approach is not ideal for accurately capturing the
full kinematic behavior of the system, it can be a useful option in some cases where a .sdf file
is not practical or desired. The approach is the following:

1. Describe the robotic leg like in the simplified structure but adding an extra branch starting
from Link2 to Link5 to represent the transmission bar. The tree representation is showed
in Figure 28.

2. Add an extra fake joint of type fixed connecting Link3B to Link5 in order to close the tree
into a graph structure. This joint description has to be written in .sdf format inside a
<gazebo> tag, as following. In this case it was necessary to specify the pose of the joint
which was put at the origin of Link3B and the parent and child links which the joint con-
nects, namely Link3B and Link5:

<gazebo >
<joint name="fake_joint" type="fixed">

<pose>0 0 0 0 1.5708 0</pose>
<parent >link_3B </parent >
<child>link_5 </child>

</joint>
</gazebo >

An extra cuboidal shape has been added to the base link in order to work as a support structure.
The resulting 3DGazebo representation is shown in Figure 27. In Figure 28 it is possible to visu-
alize the tree representation of the complete URDF model but without the fake joint described
previously.

pag. 40 Thesis

Figure 25: Simplified 3D model without the parallel structure represented in Gazebo

Figure 26: Tree representation of links connections in the simplified robotic leg description

pag. 41

Figure 27: 3D model of the leg including the transmission bar visualized in Gazebo

Figure 28: Tree representation of the URDF description considering the parallel structure but
not fully connected

pag. 42 Thesis

6.5 Defining the controllers
Before implementing more complex control operations, small tasks were first performed, such
as single joint movements for each joint in the model. To achieve this, it is necessary to use
one or more controllers that will be used by a ROS node to communicate with Gazebo. Each
controllermust be defined in a filewith the .yaml extension, inwhich the namespace and type of
controller can be specified, alongwith other relevant parameters such as the joint names (which
must match those in the URDF file) and the PID parameters for each joint. It is important to
note that while the URDF model has six revolute joints, only three of them are active joints and
need to be included in the controller file.
To be able to control each joint independently, it is necessary to make some modifications to the
URDF file. Specifically, some Gazebo tags must be added.

• The <transmission> element has to be defined to link actuators to joints and it has be
defined only for the active joints. The important information in these transmission tags
are:

<joint name=”name”>: the name must match a joint name of the URDF file.
<type>: the type of transmission. transmission_interface/SimpleTransmission is the
only implemented interface.
<hardwareInterface>: within both the <joint> and <actuator> tags, this was able to tell
the gazebo_control plugin what hardware interface to load (position, velocity or effort
interfaces). Currently only position interfaces are implemented. The implementation for
a single joint is the following:

<transmission name="tran1">
<type>transmission_interface/SimpleTransmission </type>
<joint name="joint_0">

<hardwareInterface >PositionJointInterface </hardwareInterface >
</joint>
<actuator name="motor1">

<hardwareInterface >PositionJointInterface </hardwareInterface >
<mechanicalReduction >1</mechanicalReduction >

</actuator >
</transmission >

• A Gazebo plugin needs to be added to the URDF to actually parse the transmission tags
and load the appropriate hardware interfaces and controller manager, like this:

<gazebo >
<plugin filename="libgazebo_ros_control.so" name="gazebo_control">

<robotNamespace >/leg_controller </robotNamespace >
</plugin >

</gazebo >

where the parameter <robotNamespace> has to be the same of the namespace of the con-
trollers defined in the .yaml file

With these considerations inmind, it has been possible to define the file containing the controller
description. As reported in the following:

pag. 43

Listing 1: ".yaml file in which the controllers are defined"
1 leg_controller:
2 joint_traj_controller_parallel:
3 type: position_controllers/JointTrajectoryController
4 joints:
5 - joint_0
6 - joint_1
7 - joint_2
8
9 gains:
10 joint_0: {p: 100.0, i: 90.0, d: 3.0}
11 joint_1: {p: 100.0, i: 90.0, d: 3.0}
12 joint_2: {p: 60.0, i: 200.0, d: 3.0}
13
14 constraints:
15 goal_time: 0.6
16 stopped_velocity_tolerance: 0.05
17 joint_0: {trajectory: 0.1, goal: 0.1}
18 joint_1: {trajectory: 0.1, goal: 0.1}
19 joint_2: {trajectory: 0.1, goal: 0.1}
20
21
22 joint_state_controller:
23 type: joint_state_controller/JointStateController
24 joints:
25 - joint_0
26 - joint_1
27 - joint_2
28 publish_rate: 20

All the controllers defined in this file belong to the /leg_controller namespace. In the second
line it is defined the controller name /joint_traj_controller_parallelwhich belongs to the
family of type position_controllers/JointTrajectoryController. It is possible to notice also
the joints involved in this control and their relative PID gains. As mentioned before, only the
three active joints of our system have to be included in this description.
The second controller joint_state_controller has been defined in order to allow Gazebo to
publish a topic containing the current joint states in the ROS network. This will be very useful
later to have a feedback in the control process. The joint stateswill be contained in a topic named
/leg_controller/joint_states and will be used by Simulink as feedback, as discussed in the
next sections.

pag. 44 Thesis

6.6 MATLAB&Simulink
MATLAB and Simulink are popular engineering and research tools. MATLAB is a program-
ming language for numerical computation and data analysis, with built-in functions and tool-
boxes. Simulink is a model-based graphical simulation and design tool for building and sim-
ulating complex systems, like control systems, using block diagrams. In this project, we have
used MATLAB and Simulink to develop the control algorithms for the robotic leg. By using
these tools, we were able to design and test our algorithms in a simulated environment before
implementing them on the real hardware. This allowed us to iterate and optimize our designs,
and to ensure that they would behave as expected when deployed on the robotic leg. In particu-
lar, we used Simulink to build the high-level control logic, whichwas responsible for generating
the desired joint positions and velocities based on the desired trajectory of the leg.

To facilitate the integration of our control algorithms with the hardware, we used the ROS Tool-
box, which is a collection of tools and libraries that allow Simulinkmodels to communicate with
ROS nodes. This enabled us to easily send and receive data between our Simulink models and
the ROS nodes that were responsible for controlling the robotic leg. We also used Gazebo to
visualize the 3Dmodel of the leg as it moved according to our control algorithms. This allowed
us to see the performance of our algorithms in a realistic, 3D environment, and to fine-tune our
designs as needed. The hierarchy between these tools that we used is reported in Figure 30. Al-
ternatively to Gazebo, ROS can also communicate with the hardware of the mechanical system
in order to control the robotic leg in an experimental scenario.

Overall, the use of MATLAB and Simulink has been crucial to the success of this project. By
using these tools, we were able to design and test our control algorithms in a flexible and effi-
cient manner, and to quickly prototype and iterate on our designs. The integration with ROS
and Gazebo has also been valuable, as it has allowed us to easily connect our control algorithms
to the hardware and to visualize the performance of our algorithms in a realistic environment.
In the following sections, we will describe in detail the methods and techniques that we used
to develop the control algorithms for the robotic leg, and we will present the results of our
simulations and experiments. The Figure 29 represents the implementation in Simulink of the
Jacobian Inverse control scheme inspired by the algorithm discussed in the literature and re-
ported in Figure 18.

This scheme is useful for performing simulations in Simulink to see if the algorithm performs as
it has to and to fine-tune the controller. More complex schemes including the ROS integration
will be showed later. The main parts to be noticed in this scheme are the following:

• The Saturation block has been introduced to limit the joint positions matching to the phys-
ical limit of each joint in the mechanical system.

• The Jacobian_Inverse block useful to compute the inverse of the Jacobian matrix in each
simulation step: it takes as input the current joint configuration q = (q1, q2, q3) and it
has been implemented as a MATLAB function.

• The Forward Kinematics block which function is to compute the cartesian position xe (ex-
pressed inmeters [m]) of the end effector of the robot given the current joint configuration
q = (q1, q2, q3). Also this block has been implemented as a MATLAB function.

• The input trajectory has to be defined in the three coordinates of the cartesian space and

pag. 45

then put inside a Multiplexer block in order to be interpreted as a 3D column vector by
Simulink.

In this case it is represented a very simple trajectory where the foot of the leg oscillates along a
line in the z direction. More complex trajectories and their generation process will be explained
and discussed in the following sections.

Figure 29: Simple Simulink implementation of the Jacobian Inverse algorithm

6.6.1 Integration between Simulink and ROS

The integration between Simulink and the Robot Operating System (ROS) is facilitated by the
ROS Toolbox, which is a collection of tools and libraries that enable Simulink models to com-
municate with ROS nodes. Using the ROS Toolbox, users can send and receive data between
Simulink models and ROS nodes, and can use ROS services and parameters within Simulink
models. This allows users to easily incorporate sensor and actuator data from the robot into their
Simulink models, and to control the robot’s behavior based on the outputs of their Simulink
models. The ROS Toolbox also includes a set of pre-built Simulink blocks for common ROS
functionality, such as publishing and subscribing to ROS topics and calling ROS services. The
modified Simulink schematic is shown in Figure 31 where the integration with ROS environ-
ment has been added. It can be noticed that now the vector of joints positions q = (q1, q2, q3)

T

has been published into a rostopic. As shown better in Figure 32 the vector q = (q1, q2, q3)
T has

been put into an object of type geometry_msgs/Posewith the correspondence q = (q1, q2, q3)
T

= (Position.X , Position.Y , Position.Z) and then published inside a topic whose name
is /joint_state_publisher. The feedback in this case comes from an external sourcewhich can
be Gazebo joint states (if we are performing simulations with the digital twin) or the incremen-
tal encoders of the motors(if we want to use the experimental system). As shown in Figures
31,33 whenever a new rostopic of the type /leg_controller/joint_states is published, the
current joint states vector q = (q1, q2, q3)

T can be read and used as feedback by the control
loop. It is important in this case to set some additional parameters in Simulink Settings, among
the others:

pag. 46 Thesis

• Solver Type set to Fixed-step

• Fixed-step size set to 0.001 s. This time step has to be coherent with the ROS rate of all the
involved nodes in the network. The publisher and subscriber objects must have the same
rate.

A goodway to visualize the interconnection between Simulink, ROS and Gazebo is to look a the
rqt_graph reported in Figure 34. As explained before, the node /joint_control_node receives
the topic /joint_state_publisher from the Simulink model, containing the requested joint
positions. It then publishes these values by using the action controller described in Section 6.5
/leg_controller/joint_traj_controller_parallel/follow_joint_trajectorywhichwill be
used by the URDF model to move. Gazebo consequently can publish the current joint states in-
side the topic /leg_controller/joint_stateswhich will be used as feedback by the Simulink
model. In this sense we have a closed loop control system. For the experimental setup, we
utilized some ROS nodes written by the company Beta Robots to handle the low-level commu-
nication with the hardware. The software is designed to provide a communication interface
between the control algorithm and the robotic leg’s hardware, allowing us to send commands
and receive feedback from the robot. This software enabled us to easily interfacewith the robot’s
motors and to control the robot’s movements with high precision. The detailed description of
this software is not part of this works as at the high-level side, the ROS nodes topology is the
same as the one used during the simulations in Gazebo. By using the same node topology for
both the simulations and the experiments, we were able to easily transfer the control algorithm
from the simulation environment to the experimental setup. This greatly simplified the process
of testing the algorithm on the real robot and allowed us to quickly evaluate its performance in
a real-world scenario.

Figure 30: Hierarchy representing the communication between MATLAB&Simulink, ROS,
Gazebo simulator and the real hardware

pag. 47

Figure 31: Implementation of the Jacobian Inverse algorithm interfacing Simulink with ROS
through routines of ROS-Toolbox

Figure 32: Block scheme for publishing a
topic in ROS network from Simulink

Figure 33: Block scheme for subscribing to
a topic in ROS network from Simulink

Figure 34: rqt_graph of the whole control system

6.7 Operational space trajectory generation
In this project, a bioinspired approach was adopted for the real operational space trajectory,
with the specific aim of replicating the movement of a dog’s leg. There are various methods

pag. 48 Thesis

that can be employed for this purpose, however, utilizing pre-existing motion capture data is
considered the most simple and efficient method. Motion capture, or mocap, is a technique
that employs sensors and cameras to track and record the movement of an object or person in
3D space. This data can subsequently be used to produce detailed and precise animations or
simulations of the movement. In this project, motion capture data of a dog’s leg movement was
employed as a benchmark to replicate the movement in the robotic system. There are several
motion capture (mocap) datasets available on the internet that can be accessed for free. In this
case, we chose to use one of these datasets to obtain the trajectory data for the project. However,
there is an issue with the dataset as it represents the movement of a dog’s foot with respect to
the reference frame of the camera, rather than in the dog’s body reference frame. As a result, the
final trajectory of the dog’s movement, as shown in Figure 35 may not be accurate or correctly
representative of themovement. To use this data in our project it was necessary first to represent
the trajectory points with respect to the leg’s shoulder reference frame. To this purpose, when
dealing with motion capture data, at least three markers are put in the body of the dog or on the
shoulders: this way it is possible to perform a change of coordinate system in order to represent
the trajectory points with respect to the dog’s body. In the following section it is explained how
this procedure was performed and which are the obtained results.

Figure 35: Dog’s foot trajectory with respect to camera reference frame

pag. 49

Figure 36: Example ofmarkers distribution on the body of a dog formotion capture highlighting
the relevant markers used in this project [Source: DeepAI]

LetPC be the vector representing the three cartesian coordinates of the footmarkerwith respect
to the Camera Reference Frame(RFC).
LetLBC ,LFC , FRC be respectively the Left-Back, Left-Forward and the Right-Forwardmark-
ers coordinates represented with respect to RFC , as shown in Figure 36.
Wewant to perform a roto-translation of the data points, in order to have the origin of the Robot
Reference Frame(RFR) inLB. To this purpose it is necessary to build a reference frame having
its origin in LB. Let:

T = LBC (34)

be the translation vector from the RFC to the RFR. Let:

xCR = LFC − LBC (35)

be the first vector of the RFR. Let:

a = LFC − FRC (36)

be a coplanar vector to xCR in the robot body. Then to obtain the zCR normal to both the former
vectors, the following holds:

zCR = xCR ⊗ a (37)

To complete the right handed triplet it is sufficient to add the yCR vector, given by the outer
product:

pag. 50 Thesis

yCR = zCR ⊗ xCR (38)

At this point we have obtained a orthogonal basis, but to achieve an orthonormal basis a nor-
malization process is needed, so:

xCR =
xCR

||xCR||
(39)

yCR =
yCR

||yCR ||
(40)

zCR =
zCR

||zCR ||
(41)

The following then represents the rotation matrix from RFR to RFC :

RC
R =

[
xC
R yC

R zC
R

]
(42)

and consequently the homogeneous transformation matrix from RFR to RFC is:

MC
R =

[
RC

R T
0T 1

]
∈ SE(3) (43)

To represent then the point P with respect to the RFR then the following holds:

PR = MR
CPC = (MC

R)−1PC (44)

The previous process has been iterated for every trajectory point in order to obtain the foot
trajectory represented with respect to the robot body, as shown in Figure 38. The trajectory is
represented only into the (x, z)-plane and, as expected, it is a closed curve. After this preprocess-
ing in MATLAB, the trajectory points can be stored into a Structure with time to be consequently
used by a Simulink block as a Source Signal xd as shown in Figure 37. The y coordinate is kept
constant to the value l1,A for design choice: this way we are sure that the leg can simulate well
a dog walking movement.

Figure 37: Generation of the source trajectory in Simulink to simulate the movement of a real
dog’s toe

pag. 51

Figure 38: Dog foot trajectory represented with respect to the robot body reference frame

pag. 53

7 Simulation results
Before deploying the Jacobian Inverse algorithm into an experimental system, it was important
to perform simulations in order to check the correctness of the inverse kinematic algorithm and
to fine-tune the controller. This ensures that the algorithm is working as expected and that any
potential issues can be identified and resolved before the algorithm is implemented in a real-
world scenario. To accomplish this, the control system was first tested in Simulink without any
interconnection with ROS. This allowed for the algorithm to be tested in a controlled environ-
ment, where the simulation results could be easily analyzed and any issues could be quickly
identified and addressed. By testing the algorithm in Simulink, it was possible to verify that
the Jacobian Inverse algorithm was working correctly and that the controller was able to accu-
rately control the system. Once the algorithm had been tested in Simulink, a second simulation
was performed by simulating a real scenario in Gazebo. This allowed for the algorithm to be
tested in a more realistic environment, where the system would be subjected to the same types
of disturbances and noise that it would encounter in a real-world scenario. By simulating a real
scenario in Gazebo, it was possible to fine-tune the controller and to ensure that the algorithm
would perform well in a real-world scenario. The simulation results will be presented and dis-
cussed in this section. The results of the Simulink simulation will be compared with the results
of the Gazebo simulation to ensure that the algorithm works correctly in both environments.
Any discrepancies between the simulation results will be analyzed to identify the cause and to
determine the necessary adjustments to the algorithm or controller.

The evolution of the norm of the error between xe and xd is shown in Figure 40. As discussed in
Section 4.1 the error function has a converging exponential behaviour to zero with convergence
rate that depends on the controller matrixK. In this case the tuning of the matrixK was done
in an empirical way, taking into account that it had to be positive definite. The chosen matrix
guarantees that the error converges rapidly to 0 and at the same time that the joint velocities
assume limited values, as reported in Figure 39. It has to be noticed that the joint velocities
are limited also due to the fact that the system never falls in a singular configuration or near a
singularity, due to the design choices discussed in section 4.2. Consequently the joint positions
assume limited values. The y-coordinate’s initial condition of the leg’s foot had been set to l1,A,
which is the same constant setpoint chosen for the y-coordinate of the input trajectory. Since this
coordinate is controlled only by Joint 1, this joint never moves. We cannot say the same thing
for the Gazebo simulation since when the leg’s 3D model is spawned, due to gravity effect the
leg’s foot won’t have y-coordinate’s initial condition equal to l1,A. For this reason there is a small
amount of time in which the Joint 1 is being actuated to achieve the desired y-coordinate. At this
point the q1 will reach a steady state value different from zero, since the 0 point is calculated
as the initial joint position when Gazebo is started. Also in this case the joint velocities and
positions are kept limited as shown in Figure 42. The operational space error, as displayed in
Figure 43, converges to zero as expected, but not as good as in the Simulink simulation. Indeed
the maximum absolute displacement at steady state is 0.024m.

The comparison between the desired and achieved trajectory in Gazebo simulation is shown in
Figure 44 which, as expected is worse than the simulated result in Simulink, shown in Figure
41.

pag. 54 Thesis

Figure 39: Joint positions and velocities behaviour in Simulink simulation

pag. 55

Figure 40: Error norm in cartesian space in Simulink simulation

Figure 41: Comparison between desired trajectory xd and followed trajectory xe visualized in
the (x, z)-plane

pag. 56 Thesis

Figure 42: Joint positions and velocities behaviour in Gazebo simulation

pag. 57

Figure 43: Error norm in cartesian space in Gazebo simulation

Figure 44: Comparison between desired trajectory xd and followed trajectory xe visualized in
the (x, z)-plane, during Gazebo simulation

pag. 59

8 Experimental results
After performing the simulations in Simulink and in a more realistic setup through Gazebo,
we were ready to test the kinematic control algorithm in the experimental system present at
the CDEI. This experimental system allowed us to test the algorithm in a real-world scenario
and evaluate its performance under various conditions. The results of these experiments were
recorded and analyzed in detail to gain insights into the algorithm’s behavior and performance.
In the following section, the experimental results will be presented and discussed in detail.
These results will be compared with the simulation results obtained in Simulink and Gazebo
to evaluate the accuracy and validity of the simulation models. The comparison of simulation
and experimental results will also allow us to identify any discrepancies or limitations of the
algorithm and suggest modifications or improvements for future work.

In Figure 46, the error’s norm evolution between the current end-effector position xe and the
desired end-effector position xd is shown. As expected, it shows a converging behavior by de-
creasing exponentially to zero. It can be noticed that even at steady state, the error has some
small oscillations due to external disturbances to which a real system is always subjected. How-
ever, after an initial transient time, the leg achieved to follow the desired trajectory (as shown
in Figure 47) with a maximum absolute error of 4 mm. It is surprising to notice that the exper-
imental system performs way better than the Gazebo simulation.

It has to be noticed from Figure 45 that the joint positions and velocities are kept limited inside
the motor limits imposed by the algorithm and the experimental system. The evolution of q1
deserves particular attention as it is always constant to 0. This is because its electrical driver
didn’t work and for design choices, it was decided to not use its related motor. With a blocking
mechanism, the leg was put in a configuration such that its y-coordinate had been kept constant
to l1,A and the control was performed only by commanding Joint2 and Joint3. For this reason, it
makes more sense to visualize the followed trajectory in the (x, z)-plane as shown in Figure 47.

The results of the experiments demonstrate that the proposed algorithm is able to achieve a
satisfactory performance in the experimental system, despite the limitations imposed by the
malfunctioning motor and the presence of external disturbances. The comparison of simula-
tion results obtained in Simulink and Gazebo with the experimental results also allowed us to
evaluate the accuracy and validity of the simulation models, and to identify any discrepancies
or limitations of the algorithm. These findings have important implications for the design and
optimization of similar systems in the future, and lay the foundation for further research in this
area. Furthermore, the results also demonstrate that the proposed kinematic control algorithm
is robust and able to perform well in real-world scenarios, despite the presence of external dis-
turbances and limitations imposed by the experimental system.

pag. 60 Thesis

Figure 45: Joint positions and velocities during experimental test

pag. 61

Figure 46: Error norm in cartesian space during experimental test

Figure 47: Comparison between desired trajectory xd and achieved trajectory xe visualized in
the (x, z)-plane, during experimental simulation

pag. 63

9 Temporary planning and costs
In this section an analysis of the cost of the projectwill be presented. The analysiswill be divided
in three parts: cost of workers, energy cost, cost of the software used.

9.1 Cost of workers
The tasks described in this report were carried out by the supervisor Alba Perez Gracia and the
student Roberto Carta. According to the criteria followed in other projects carried out at the
CDEI, it is estimated that the hourly cost of the project manager is 58AC/h and that of a junior
project engineer is 38AC/h. The time used by the student is estimated considering that one ECTS
requires 25 hours of dedication and this work is 30 ECTS. The hours dedicated by the tutor have
been counted directly. These points are summarized in the following table.

Position Hourly Cost [AC/h] Dedicated hours Price[AC]
Supervisor 58 30 1.740
Student 38 750 28.500
Total 30.240

Table 8: Cost of personal

9.2 Energy Cost
Energy cost is understood as any expense associatedwith the energy consumption of the equip-
ment used throughout this work.The energy consumed that is taken into account is primarily
that consumed by the computer equipment used and the lighting used in the work spaces. The
total associated cost is calculated using the following formula:

Cost[AC] = Consumption[kW] · FunctioningHours[h] · ElectricityPrice[AC/kWh] (45)

According to the data [16] the average electricity price in Spain in 2022 has been 0,346 AC/kWh.

To this energy consumption, also the consumption of the Power Supply for the experimental
setup has to be taken into account. Supposing that the real systemhas been tested during the last
2weeks of the project it has been functioning for an average of 80 h, with amedium consumption
of 8A per motor, considering that we only moved two motors. Moreover the supply voltage is
48 V . In the following table the total energy cost is reported.

Element Consumption [kW] Functioning hours [h] Price[AC]
Desktop PC 0,350 750 90,83

PC Screen (x2) 0,100 750 25,95
Laboratory Illumination 10 x 0,036 750 93,42

Leg power supply 0,768 80 212,45
Total 422, 65

Table 9: Cost of energy

pag. 64 Thesis

Software Price [AC]
Ubuntu Free

Windows 10 100
MATLAB&Simulink 500

Solidworks 99
Overleaf Free

ROS software by Beta 2.000
Total 2.699

Table 10: Cost of software licenses of the project

9.3 Software licenses cost

9.4 Total cost of the project
To get the total cost of the project all the partial prices obtained in the previous paragraphs have
to be summed.

Software Price [AC]
Sum of the cost 33.361,65

VAT(21%) 7.005,95
Total cost 40.367, 60

Table 11: Sum of the cost of the project

Eventually, the total cost of this Master Thesis Project is 40.367,60 AC.

pag. 65

10 Environmental Impact

In 2022 the average emissions of Spain were 195 g CO2eq/kWh. [17]

Based on this data and recalling the analysis made in Section 9.2, the following table reports the
CO2 emission for this project.

Element Consumption [kW] Functioning hours [h] CO2 footprint[kg]
Desktop PC 0,350 750 51,190

PC Screen (x2) 0,100 750 14,625
Laboratory Illumination 10 x 0,036 750 52,650

Leg power supply 0,768 80 119,733
Total 238, 198

Table 12: CO2 emission for the whole project

In conclusion the total CO2 emission for this project has been 238,198 kg.

pag. 67

11 Conclusions
In this work, it was established that it was possible to guide the robotic leg to execute specific
trajectories like a bioinspired trajectory similar to the one of a dog’s leg. The outcomes obtained
from this work represent a significant contribution to the field of robotic leg control and can
serve as a foundation for the implementation ofmore advanced control algorithms in the future.
However, it should also be acknowledged that the performance of the robotic system was not
optimal due to the utilization of only kinematic control. Kinematic control, while having its own
advantages, has several limitations, including the inability to track rapidly changing trajectories.
In order to improve the performance of the robotic leg, one of the future steps for this project
would be to acquire the dynamic model of the system and to implement a dynamic control
capable of interacting also with the environment.

The student learned how to create a detailed representation of the robotic leg in URDF, includ-
ing the links, joints, and sensors. Additionally, he gained experience in working with the ROS
environment, which is widely used in robotics research and industry, by using ROS tools and
libraries to control the robotic leg, such as the ROS controllers, rqt utility and URDF parser. The
skills and knowledge acquired in this process are valuable assets that the student will be able
to apply in future projects and career opportunities in the field of robotics.

Additionally, using Simulink to simulate the system behavior prior to testing the control algo-
rithm in the experimental setup was useful in fine-tuning the control law. This allowed for a
more thorough testing and optimization of the control algorithm before implementing it on the
physical robotic leg. However, it should be noted that the kinematic control algorithm should
be embedded in a C++ ROS node to improve the performance of the real-time software. This is
mainly due to the latency present in the ROS network when running MATLAB&Simulink. An
alternative could be to run Simulink on a different computer connected through SSH with the
main ROS network.

The use of already existing data to obtain optimized bio-inspired trajectories was also useful in
testing the control scheme. This allowed for a more efficient and accurate testing of the control
algorithm and provided valuable insights into the performance of the robotic leg. A future step
is to make the system more robust to changes in terrain configuration by using a reinforcement
learning approach to automatically tune the control system and follow non-predefined trajecto-
ries. This would allow the robotic leg to adapt to different environments and improve its overall
performance.

The unavailability of the motor that controlled the Joint1 due to communication issues with its
electronic driver had an adverse effect on the system’s performance. To achieve more complex
tasks and integrate the leg into a quadruped, the functioning of this motor is crucial, and thus,
the electronic driver needs to be repaired. Nonetheless, in the context of the specific task that
was being pursued in this work, this limitation had a positive impact on the trajectory tracking
performance.

pag. 69

Bibliography
[1] Bartomeu Costa Prats, Disseny mecànic d’una extremitat d’un robot quadrúpede, UPC,

Escola Tècnica Superior d’Enginyeria Industrial de Barcelona, Departament d’Enginyeria
Mecànica, May 2022

[2] Jordi Gené-Molaa, Ricardo Sanz-Cortiellaa, Joan R. Rosell-Poloa, Josep-Ramon Mor-
ros, Javier Ruiz-Hidalgob, Verónica Vilaplanab, Eduard Gregorio Fruit detection and
3D location using instance segmentation neural networks and structure-from-motion photogram-
metry, Computers and Electronics in Agriculture Volume 169, February 2020, 105165,
https://doi.org/10.1016/j.compag.2019.105165

[3] Sandilya Sai Garimella and Shai Revzen, Dandelion-Picking Legged Robot,
arXiv:2112.05383v1 10 Dec 2021

[4] Mikolajczyk, T.; Mikołajewska, E.; Al-Shuka, H.F.N.; Malinowski, T.; Kłodowski, A.;
Pimenov, D.Y.; Paczkowski, T.; Hu, F.; Giasin, K.; Mikołajewski, D.; et al. Recent Advances
in Bipedal Walking Robots: Review of Gait, Drive, Sensors and Control Systems, Sensors 2022,
22, 4440. https://doi.org/10.3390/s22124440

[5] Ganesh Kumar K. Pushparaj Mani Pathak, Dynamic modelling simulation of a four legged
jumping robot with compliant legs, Robotics and Autonomous Systems Volume 61, Issue 3,
March 2013, Pages 221-228, https://doi.org/10.1016/j.robot.2012.09.025

[6] Spot, the Boston Dynamics quadruped robot, https://robots.ieee.org/robots/
spotmini/#:~:text=Spot%20is%20a%20compact%2C%20nimble,also%20fetch%20you%
20a%20drink.

[7] ANYmal, Robotic Systems Lab, https://rsl.ethz.ch/robots-media/anymal.html

[8] Xiaomi Cyberdog: where to buy, features and reviews, https://xiaomipedia.com/en/p/
cyber-dog/

[9] Animator Notebook, A GUIDE TO QUADRUPEDS’ GAITS, https://www.
animatornotebook.com/learn/quadrupeds-gaits

[10] Wikipedia Horse gait, https://en.wikipedia.org/wiki/Horse_gait

[11] Yanran Ding, Abhishek Pandala, and Hae-Won Park Real-time Model Predictive Control
for Versatile Dynamic Motions in Quadrupedal Robots 2019 International Conference on

https://doi.org/10.1016/j.compag.2019.105165
https://doi.org/10.3390/s22124440
https://doi.org/10.1016/j.robot.2012.09.025
https://robots.ieee.org/robots/spotmini/#:~:text=Spot%20is%20a%20compact%2C%20nimble,also%20fetch%20you%20a%20drink.
https://robots.ieee.org/robots/spotmini/#:~:text=Spot%20is%20a%20compact%2C%20nimble,also%20fetch%20you%20a%20drink.
https://robots.ieee.org/robots/spotmini/#:~:text=Spot%20is%20a%20compact%2C%20nimble,also%20fetch%20you%20a%20drink.
https://rsl.ethz.ch/robots-media/anymal.html
https://xiaomipedia.com/en/p/cyber-dog/
https://xiaomipedia.com/en/p/cyber-dog/
https://www.animatornotebook.com/learn/quadrupeds-gaits
https://www.animatornotebook.com/learn/quadrupeds-gaits
https://en.wikipedia.org/wiki/Horse_gait

pag. 70 Thesis

Robotics and Automation (ICRA), Palais des congres de Montreal, Montreal, Canada,
May 20-24, 2019

[12] Mohsen Sombolestan, Yiyu Chen and Quan Nguyen, Adaptive Force-based Control for
Legged Robots, adaparXiv: 2011.06236v4, 15 Dec 2021

[13] Juan Carlos Arevalo and Elena Garcia Impedance Control for Legged Robots: An Insight
Into the Concepts Involved IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNET-
ICS—PART C: APPLICATIONS AND REVIEWS, VOL. 42, NO. 6, NOVEMBER 2012

[14] Tuomas Haarnoja, Sehoon Ha, Aurick Zhou, Jie Tan, George Tucker and Sergey Levine
Learning to Walk via Deep Reinforcement Learning, arXiv:1812.11103v3, 19 Jun 2019

[15] Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, Giuseppe Oriolo, Robotics Modelling,
Planning and Control, Springer London, 2010, ISSN 1439-2232

[16] GlobalPetrolPrices.com, Spain electricity prices, https://www.globalpetrolprices.com/
Spain/electricity_prices/

[17] NOWTRICITY.com, CO2 emissions per kWh in Spain in 2022, https://www.nowtricity.
com/country/spain/#:~:text=In%202022%20the%20average%20emissions,Coal%
20usage%20was%203.0%25.

https://www.globalpetrolprices.com/Spain/electricity_prices/
https://www.globalpetrolprices.com/Spain/electricity_prices/
https://www.nowtricity.com/country/spain/#:~:text=In%202022%20the%20average%20emissions,Coal%20usage%20was%203.0%25.
https://www.nowtricity.com/country/spain/#:~:text=In%202022%20the%20average%20emissions,Coal%20usage%20was%203.0%25.
https://www.nowtricity.com/country/spain/#:~:text=In%202022%20the%20average%20emissions,Coal%20usage%20was%203.0%25.

pag. 71

A Appendix

A.1 URDF file of the robotic leg
In the following the .urdf file containing the description of the 3D model of the leg is reported

1 <?xml version="1.0" encoding="utf−8"?>
2 <robot
3 name="leg_new_links">
4 <gazebo>
5 <self_collide>false</self_collide>
6 </gazebo>
7 <link
8 name="base_link">
9 <inertial>
10 <origin
11 xyz="0.350003733089083 0.451715069318971 0.405739623932018"
12 rpy="0 0 0" />
13 <mass
14 value="9752.33431526145" />
15 <inertia
16 ixx="1198.37406604531"
17 ixy="2.1247020207493E−05"
18 ixz="1.68443139056609E−07"
19 iyy="933.097049194367"
20 iyz="−2.78321482694158E−07"
21 izz="1061.59566769288" />
22 </inertial>
23 <visual>
24 <origin
25 xyz="0 0 0"
26 rpy="0 0 0" />
27 <geometry>
28 <mesh
29 filename="package://robotic_leg/stl_files/base_link.STL" />
30 </geometry>
31 <material
32 name="">
33 <color
34 rgba="0.792156862745098 0.819607843137255 0.933333333333333 0.2" />
35 </material>
36 </visual>
37 <collision>
38 <origin
39 xyz="0 0 0"
40 rpy="0 0 0" />
41 <geometry>
42 <mesh
43 filename="package://robotic_leg/stl_files/base_link.STL" />
44 </geometry>
45 </collision>
46 </link>
47 <link
48 name="link_1">
49 <inertial>

pag. 72 Thesis

50 <origin
51 xyz="0.0254057149058779 2.86714343646849E−05 −0.0532471017221783"
52 rpy="0 0 0" />
53 <mass
54 value="1.49501478481733" />
55 <inertia
56 ixx="0.00112894740597378"
57 ixy="4.29924401856194E−07"
58 ixz="2.11269028176045E−05"
59 iyy="0.000724319253480805"
60 iyz="2.78321942147056E−07"
61 izz="0.000774164434218605" />
62 </inertial>
63 <visual>
64 <origin
65 xyz="0 0 0"
66 rpy="0 0 0" />
67 <geometry>
68 <mesh
69 filename="package://robotic_leg/stl_files/link_1.STL" />
70 </geometry>
71 <material
72 name="">
73 <color
74 rgba="0.784313725490196 0.392156862745098 0 1" />
75 </material>
76 </visual>
77 <collision>
78 <origin
79 xyz="0 0 0"
80 rpy="0 0 0" />
81 <geometry>
82 <mesh
83 filename="package://robotic_leg/stl_files/link_1.STL" />
84 </geometry>
85 </collision>
86 </link>
87 <joint
88 name="joint_0"
89 type="revolute">
90 <origin
91 xyz="0.398969739571247 −0.055 0.748315799084487"
92 rpy="1.5707963267949 0 −1.5707963267949" />
93 <parent
94 link="base_link" />
95 <child
96 link="link_1" />
97 <axis
98 xyz="0 0 −1" />
99 <limit
100 lower="−3.14"
101 upper="0.3"
102 effort="500"
103 velocity="1" />
104 <dynamics

pag. 73

105 friction="1" />
106 </joint>
107 <link
108 name="link_2">
109 <inertial>
110 <origin
111 xyz="0.021994054739837 7.48225623309548E−05 0.0480827458515721"
112 rpy="0 0 0" />
113 <mass
114 value="1.69963884406675" />
115 <inertia
116 ixx="0.000833537569151538"
117 ixy="−6.40943215662161E−05"
118 ixz="−4.12309422837278E−06"
119 iyy="0.00285881134253153"
120 iyz="−9.5565990087917E−07"
121 izz="0.00336502559048854" />
122 </inertial>
123 <visual>
124 <origin
125 xyz="0 0 0"
126 rpy="0 0 0" />
127 <geometry>
128 <mesh
129 filename="package://robotic_leg/stl_files/link_2.STL" />
130 </geometry>
131 <material
132 name="">
133 <color
134 rgba="0.784313725490196 0.392156862745098 0 1" />
135 </material>
136 </visual>
137 <collision>
138 <origin
139 xyz="0 0 0"
140 rpy="0 0 0" />
141 <geometry>
142 <mesh
143 filename="package://robotic_leg/stl_files/link_2.STL" />
144 </geometry>
145 </collision>
146 </link>
147 <joint
148 name="joint_1"
149 type="revolute">
150 <origin
151 xyz="0.05 0 −0.055"
152 rpy="−1.5742 0 −1.5729" />
153 <parent
154 link="link_1" />
155 <child
156 link="link_2" />
157 <axis
158 xyz="0.0016667 0.002075 1" />
159 <limit

pag. 74 Thesis

160 lower="−1.57"
161 upper="1.57"
162 effort="50"
163 velocity="1" />
164 <dynamics
165 friction="1" />
166 </joint>
167 <link
168 name="link_3A">
169 <inertial>
170 <origin
171 xyz="0.103360504784427 1.19571440593269E−05 −0.0338432023878606"
172 rpy="0 0 0" />
173 <mass
174 value="1.78164435082701" />
175 <inertia
176 ixx="0.000898120867166115"
177 ixy="−8.73505939173291E−08"
178 ixz="−0.000171027299674959"
179 iyy="0.0137626294724966"
180 iyz="−3.82341521752038E−08"
181 izz="0.014208208187679" />
182 </inertial>
183 <visual>
184 <origin
185 xyz="0 0 0"
186 rpy="0 0 0" />
187 <geometry>
188 <mesh
189 filename="package://robotic_leg/stl_files/link_3A.STL" />
190 </geometry>
191 <material
192 name="">
193 <color
194 rgba="0.792156862745098 0.819607843137255 0.933333333333333 1" />
195 </material>
196 </visual>
197 <collision>
198 <origin
199 xyz="0 0 0"
200 rpy="0 0 0" />
201 <geometry>
202 <mesh
203 filename="package://robotic_leg/stl_files/link_3A.STL" />
204 </geometry>
205 </collision>
206 </link>
207 <joint
208 name="joint_C"
209 type="revolute">
210 <origin
211 xyz="0.299896250144386 −0.000129690447242911 0.0624997786373967"
212 rpy="0.00149682425123199 0.00220071085438925 −1.65019819468379" />
213 <parent
214 link="link_2" />

pag. 75

215 <child
216 link="link_3A" />
217 <axis
218 xyz="0 0 −1" />
219 <limit
220 lower="−3.14"
221 upper="3.14"
222 effort="50"
223 velocity="1" />
224 <dynamics
225 friction="1" />
226 </joint>
227 <link
228 name="link_3B">
229 <inertial>
230 <origin
231 xyz="0.000667581207541401 −0.00827381775791791 −0.0057577400836321"
232 rpy="0 0 0" />
233 <mass
234 value="0.00730013217038549" />
235 <inertia
236 ixx="1.37042312330285E−06"
237 ixy="7.5589254691122E−08"
238 ixz="6.64384519026395E−09"
239 iyy="4.39689862244394E−07"
240 iyz="−8.23419788980468E−08"
241 izz="1.43617972296875E−06" />
242 </inertial>
243 <visual>
244 <origin
245 xyz="0 0 0"
246 rpy="0 0 0" />
247 <geometry>
248 <mesh
249 filename="package://robotic_leg/stl_files/link_3B.STL" />
250 </geometry>
251 <material
252 name="">
253 <color
254 rgba="0.0941176470588235 0.0941176470588235 0.0941176470588235 1" />
255 </material>
256 </visual>
257 <collision>
258 <origin
259 xyz="0 0 0"
260 rpy="0 0 0" />
261 <geometry>
262 <mesh
263 filename="package://robotic_leg/stl_files/link_3B.STL" />
264 </geometry>
265 </collision>
266 </link>
267 <joint
268 name="joint_B"
269 type="revolute">

pag. 76 Thesis

270 <origin
271 xyz="−0.0850000000000587 0 −0.0109999999999972"
272 rpy="0 0 0" />
273 <parent
274 link="link_3A" />
275 <child
276 link="link_3B" />
277 <axis
278 xyz="0 0 1" />
279 <limit
280 lower="−3.14"
281 upper="3.14"
282 effort="50"
283 velocity="1" />
284 <dynamics
285 friction="1" />
286 </joint>
287 <link
288 name="link_4">
289 <inertial>
290 <origin
291 xyz="0.00468661861609586 0.0394322555805247 −0.00194756637030633"
292 rpy="0 0 0" />
293 <mass
294 value="0.0406325520716012" />
295 <inertia
296 ixx="4.04489474912658E−05"
297 ixy="−3.57255553323355E−06"
298 ixz="−1.55782385850138E−08"
299 iyy="1.08278091914613E−05"
300 iyz="−5.95465502730334E−09"
301 izz="4.97956869476247E−05" />
302 </inertial>
303 <visual>
304 <origin
305 xyz="0 0 0"
306 rpy="0 0 0" />
307 <geometry>
308 <mesh
309 filename="package://robotic_leg/stl_files/link_4.STL" />
310 </geometry>
311 <material
312 name="">
313 <color
314 rgba="0.784313725490196 0.392156862745098 0 1" />
315 </material>
316 </visual>
317 <collision>
318 <origin
319 xyz="0 0 0"
320 rpy="0 0 0" />
321 <geometry>
322 <mesh
323 filename="package://robotic_leg/stl_files/link_4.STL" />
324 </geometry>

pag. 77

325 </collision>
326 </link>
327 <joint
328 name="joint_2"
329 type="revolute">
330 <origin
331 xyz="−4.83332662033556E−05 −6.01763675222231E−05 0.0289998972877529"
332 rpy="0.00207505152704244 0 0" />
333 <parent
334 link="link_2" />
335 <child
336 link="link_4" />
337 <axis
338 xyz= "0 0 −1"/>
339 <limit
340 lower="−0.7"
341 upper="0.7"
342 effort="50"
343 velocity="1" />
344 <dynamics
345 friction="1" />
346 </joint>
347 <link
348 name="link_5">
349 <inertial>
350 <origin
351 xyz="0.112038450872787 −3.68252928151236E−11 0.000372989461207632"
352 rpy="0 0 0" />
353 <mass
354 value="0.0272492455206807" />
355 <inertia
356 ixx="6.82954783932986E−07"
357 ixy="2.4502489465766E−15"
358 ixz="8.26095767314848E−08"
359 iyy="0.000108754287152569"
360 iyz="−5.71025720952082E−16"
361 izz="0.000108813944757045" />
362 </inertial>
363 <visual>
364 <origin
365 xyz="0 0 0"
366 rpy="0 0 0" />
367 <geometry>
368 <mesh
369 filename="package://robotic_leg/stl_files/link_5.STL" />
370 </geometry>
371 <material
372 name="">
373 <color
374 rgba="0.0941176470588235 0.0941176470588235 0.0941176470588235 1" />
375 </material>
376 </visual>
377 <collision>
378 <origin
379 xyz="0 0 0"

pag. 78 Thesis

380 rpy="0 0 0" />
381 <geometry>
382 <mesh
383 filename="package://robotic_leg/stl_files/link_5.STL" />
384 </geometry>
385 </collision>
386 </link>
387 <joint
388 name="joint_A"
389 type="revolute">
390 <origin
391 xyz="0.010032 0.084403 0.014867"
392 rpy="0 −0.0016667 0.0011098" />
393 <parent
394 link="link_4" />
395 <child
396 link="link_5" />
397 <axis
398 xyz="0 0 −1" />
399 <limit
400 lower="−3.14"
401 upper="3.14"
402 effort="50"
403 velocity="1" />
404 <dynamics
405 friction="1" />
406 </joint>
407
408 <!−− Transmissions for ROS Control −−>
409 <transmission name="tran1">
410 <type>transmission_interface/SimpleTransmission</type>
411 <joint name="joint_0">
412 <hardwareInterface>hardware_interface/PositionJointInterface</hardwareInterface>
413 </joint>
414 <actuator name="motor1">
415 <hardwareInterface>hardware_interface/PositionJointInterface</hardwareInterface>
416 <mechanicalReduction>1</mechanicalReduction>
417 </actuator>
418 </transmission>
419
420 <transmission name="tran2">
421 <type>transmission_interface/SimpleTransmission</type>
422 <joint name="joint_1">
423 <hardwareInterface>hardware_interface/PositionJointInterface</hardwareInterface>
424 </joint>
425 <actuator name="motor2">
426 <hardwareInterface>hardware_interface/PositionJointInterface</hardwareInterface>
427 <mechanicalReduction>1</mechanicalReduction>
428 </actuator>
429 </transmission>
430
431 <transmission name="tran3">
432 <type>transmission_interface/SimpleTransmission</type>
433 <joint name="joint_2">
434 <hardwareInterface>hardware_interface/PositionJointInterface</hardwareInterface>

pag. 79

435 </joint>
436 <actuator name="motor3">
437 <hardwareInterface>hardware_interface/PositionJointInterface</hardwareInterface>
438 <mechanicalReduction>1</mechanicalReduction>
439 </actuator>
440 </transmission>
441
442 <gazebo>
443 <plugin filename="libgazebo_ros_control.so" name="gazebo_ros_control">
444 <robotNamespace>/leg_controller</robotNamespace>
445 </plugin>
446 </gazebo>
447
448 <gazebo>
449 <joint name="fake_joint" type="fixed">
450 <pose>0 0 0 0 1.5708 0</pose>
451 <parent>link_3B</parent>
452 <child>link_5</child>
453 </joint>
454 </gazebo>
455
456 </robot>

pag. 80 Thesis

A.2 MATLAB Code
In the following the MATLAB code for generating the leg’s trajectory is reported.

1 %load mocap data from file
2 data = load('dog_data.mat').data;
3
4 %set kinematic parameters
5 l1a = 0.07875;
6 l1b = 0.11;
7 l2 = 0.3;
8 l3 = 0.3;
9

10 time = data(7:560 , 2)*20;
11 X_p = data(7:560 , 36).';
12 Y_p = data(7:560 , 37).';
13 Z_p = data(7:560 , 38).';
14
15 %Now take 3 points on the dog body
16 X_LFW = data(7:560 , 60);
17 Y_LFW = data(7:560 , 61);
18 Z_LFW = data(7:560 , 62);
19
20 X_RFW = data(7:560 , 63);
21 Y_RFW = data(7:560 , 64);
22 Z_RFW = data(7:560 , 65);
23
24 %This will be the origin of our RF
25 X_LBW = data(7:560 , 66)
26 Y_LBW = data(7:560 , 67);
27 Z_LBW = data(7:560 , 68);
28
29 %plot the trajectory seen from the camera reference frame
30 figure;
31 plot(Y_LBW/1000 + 4, Z_LBW*4/1000 − 1.4 , 'LineWidth',1); xlim([0 , 8]);
32 xlabel('X direction[m]'); ylabel('Z direction[m]');
33 title('Dog toe trajectory w.r.t. camera reference frame');
34
35 T = [X_LBW , Y_LBW , Z_LBW].'; %series of translation vectors
36 a = [X_LFW , Y_LFW , Z_LFW];
37 b = [X_LBW , Y_LBW , Z_LBW];
38 c = [X_RFW , Y_RFW , Z_RFW];
39
40 x = (a − b).';
41 y_raw = (c − a).';
42 z = [];
43 y = [];
44 point_traj = [];
45
46 for i=1:554
47 %generate a vector which will be for sure normal to x
48 temp = cross(x(:,i) , y_raw(:,i));
49 temp = temp / norm(temp);
50 z = [z , temp];
51
52 %now generate the new y normal to x and z

pag. 81

53 y_temp = cross(z(:,i),x(:,i));
54 y_temp = y_temp / norm(y_temp);
55 y = [y , y_temp];
56
57 %rotation matrix from camera RF to robot RF
58 R = [x(:,i)/norm(x(:,i)) , y_temp , temp];
59
60 %homogeneous transformation matrix
61 M_temp = [R , T(:,i);
62 0 0 0 1];
63
64 M = inv(M_temp);
65
66 point_traj = [point_traj , M * ([X_p(i) ; Y_p(i) ; Z_p(i) ; 1])−[0.7 0 0 0].'];
67 end
68
69 var_x.time = time(400:490) − 133;
70 var_x.signals(1).values = flipud(point_traj(1,400:490).' / 2000 − 0.2);
71 var_z.time = time(400:490) − 133;
72 var_z.signals(1).values = flipud(−point_traj(3,400:490).' / 1000 + 0.0);
73
74 %now open the Simulink model for the experimental setup
75 open('IJ_right_model_REAL.slx');
76 sim('IJ_right_model_REAL.slx');
77 %save data from experimental test
78 save('my_data.mat' , 'perro')
79
80
81 %Execute the Gazebo simulation
82 open('IJ_right_model.slx');
83 sim('IJ_right_model.slx');
84
85 %save data from Gazebo simulation
86 save('data_gazebo.mat' , 'perro_gazebo')
87
88 %Execute the Simulink simulation
89 open('Inverse_Jacobian.slx');
90 sim('Inverse_Jacobian.slx');
91
92 %save data from simulation
93 save('data_simulink.mat' , 'perro_simulink')

pag. 82 Thesis

In the following the MATLAB code for plotting the simulation and experimental data is re-
ported.

1 %load signals from experimental setup
2 load('my_data.mat');
3
4 %plot the followed trajectory and the desired one
5 figure(1);
6 plot(perro.signals(4).values(:,1).' , perro.signals(4).values(:,3).' , 'color' , 'blue')

;
7 hold on;
8 plot(perro.signals(5).values(:,1).' , perro.signals(5).values(:,3).' , 'color' , 'red');
9 grid on;

10 legend({'Desired trajectory','Followed trajectory'});
11 xlabel('X_R axis [m]'); ylabel('Z_R axis [m]');
12 title('Comparison between desired and actual trajectory in experimental setup');
13
14 %compute now the norm of the error between x_d and x_e
15 error_norm_exp = [];
16 for i=1:height(perro.time)
17 n_temp_exp = perro.signals(3).values(i,1)^2 + perro.signals(3).values(i,2)^2 + perro.

signals(3).values(i,3)^2;
18 n_temp_exp = sqrt(n_temp_exp);
19 error_norm_exp = [error_norm_exp , n_temp_exp];
20 end
21
22 %plot now the norm of the error between x_d and x_e
23 figure(2);
24 plot(perro.time.' , error_norm_exp , 'color' , 'blue');
25 hold on;
26 grid on;
27 xlabel('Time [s]'); ylabel('Error x_e − x_d [m]');
28 title('Absolute error x_e − x_d [m] in operational space, experimental results');
29
30 %plot now the joints positions
31 figure(3);
32 subplot(2,1,1);
33 plot(perro.time.' , perro.signals(1).values(:,1).' , 'color' , 'blue');
34 hold on;
35 plot(perro.time.' , perro.signals(1).values(:,2).' , 'color' , 'red');
36 hold on;
37 plot(perro.time.' , perro.signals(1).values(:,3).' , 'color' , 'green');
38 hold on;
39 grid on;
40 legend({'q_1','q_2','q_3'});
41 xlabel('Time [s]'); ylabel('Joint position [rad]');
42 title('Joint positions, experimental results');
43
44 %plot now the joints velocities
45 %figure(4);
46 subplot(2,1,2);
47 plot(perro.time.' , perro.signals(2).values(:,1).' , 'color' , 'blue');
48 hold on;
49 plot(perro.time.' , perro.signals(2).values(:,2).' , 'color' , 'red');
50 hold on;

pag. 83

51 plot(perro.time.' , perro.signals(2).values(:,3).' , 'color' , 'green');
52 hold on;
53 grid on;
54 legend({'q_1','q_2','q_3'});
55 xlabel('Time [s]'); ylabel('Joint velocity [rad/s]');
56 title('Joint velocities, experimental results');
57
58 %%
59 %Load signals from Gazebo simulation
60 load('data_gazebo.mat');
61
62 %plot the followed trajectory and the desired one
63 figure(5);
64 plot(perro_gazebo.signals(4).values(:,1).' , perro_gazebo.signals(4).values(:,3).' , '

color' , 'blue');
65 hold on;
66 plot(perro_gazebo.signals(5).values(:,1).' , perro_gazebo.signals(5).values(:,3).' , '

color' , 'red');
67 grid on;
68 legend({'Desired trajectory','Followed trajectory'});
69 xlabel('X_R axis [m]'); ylabel('Z_R axis [m]');
70 title('Comparison between desired and actual trajectory in Gazebo simulation');
71
72 %compute the norm of the error between x_d and x_e
73 error_norm = [];
74 for i=1:height(perro_gazebo.time)
75 n_temp = perro_gazebo.signals(3).values(i,1)^2 + perro_gazebo.signals(3).values(i,2)

^2 + perro_gazebo.signals(3).values(i,3)^2;
76 n_temp = sqrt(n_temp);
77 error_norm = [error_norm , n_temp];
78 end
79
80 %plot the norm of the error between x_d and x_e
81 figure(6);
82 plot(perro_gazebo.time.' , error_norm , 'color' , 'blue');
83 hold on;
84 grid on;
85 xlabel('Time [s]'); ylabel('Error x_e − x_d [m]');
86 title('Absolute error x_e − x_d [m] in operational space, Gazebo simulation');
87
88 %plot now the joints positions
89 figure(7);
90 subplot(2,1,1);
91 plot(perro_gazebo.time.' , perro_gazebo.signals(1).values(:,1).' , 'color' , 'blue');
92 hold on;
93 plot(perro_gazebo.time.' , perro_gazebo.signals(1).values(:,2).' , 'color' , 'red');
94 hold on;
95 plot(perro_gazebo.time.' , perro_gazebo.signals(1).values(:,3).' , 'color' , 'green');
96 hold on;
97 grid on;
98 legend({'q_1','q_2','q_3'});
99 xlabel('Time [s]'); ylabel('Joint position [rad]');
100 title('Joint positions, Gazebo simulation');
101
102 %plot now the joints velocities

pag. 84 Thesis

103 subplot(2,1,2);
104 plot(perro_gazebo.time.' , perro_gazebo.signals(2).values(:,1).' , 'color' , 'blue');
105 hold on;
106 plot(perro_gazebo.time.' , perro_gazebo.signals(2).values(:,2).' , 'color' , 'red');
107 hold on;
108 plot(perro_gazebo.time.' , perro_gazebo.signals(2).values(:,3).' , 'color' , 'green');
109 hold on;
110 grid on;
111 legend({'q_1','q_2','q_3'});
112 xlabel('Time [s]'); ylabel('Joint velocity [rad/s]');
113 title('Joint velocities, Gazebo simulation');
114
115 %%
116 %Load signals from simulation results
117 load('data_simulink.mat');
118
119 %plot the followed trajectory and the desired one
120 figure(9);
121 plot(perro_simulink.signals(4).values(:,1).' , perro_simulink.signals(4).values(:,3).' ,

'color' , 'blue');
122 hold on;
123 plot(perro_simulink.signals(5).values(:,1).' , perro_simulink.signals(5).values(:,3).' ,

'color' , 'red');
124 grid on;
125 legend({'Desired trajectory','Followed trajectory'});
126 xlabel('X_R axis [m]'); ylabel('Z_R axis [m]');
127 title('Comparison between desired and actual trajectory in simulation results');
128
129 %compute now the error between x_d and x_e
130 error_norm_sim = [];
131 for i=1:height(perro_simulink.time)
132 n_temp_sim = perro_simulink.signals(3).values(i,1)^2 + perro_simulink.signals(3).

values(i,2)^2 + perro_simulink.signals(3).values(i,3)^2;
133 n_temp_sim = sqrt(n_temp_sim);
134 error_norm_sim = [error_norm_sim , n_temp_sim];
135 end
136
137 %plot now the error between x_d and x_e
138 figure(10);
139 plot(perro_simulink.time.' , error_norm_sim, 'color' , 'blue');
140 hold on;
141 grid on;
142 xlabel('Time [s]'); ylabel('Error x_e − x_d [m]');
143 title('Absolute error x_e − x_d [m] in operational space, simulation results');
144
145 %plot now the joints positions
146 figure(11);
147 subplot(2,1,1);
148 plot(perro_simulink.time.' , perro_simulink.signals(1).values(:,1).' , 'color' , 'blue')

;
149 hold on;
150 plot(perro_simulink.time.' , perro_simulink.signals(1).values(:,2).' , 'color' , 'red');
151 hold on;
152 plot(perro_simulink.time.' , perro_simulink.signals(1).values(:,3).' , 'color' , 'green'

);

pag. 85

153 hold on;
154 grid on;
155 legend({'q_1','q_2','q_3'});
156 xlabel('Time [s]'); ylabel('Joint position [rad]');
157 title('Joint positions, simulation results');
158
159 %plot now the joints velocities
160 subplot(2,1,2);
161 plot(perro_simulink.time.' , perro_simulink.signals(2).values(:,1).' , 'color' , 'blue')

;
162 hold on;
163 plot(perro_simulink.time.' , perro_simulink.signals(2).values(:,2).' , 'color' , 'red');
164 hold on;
165 plot(perro_simulink.time.' , perro_simulink.signals(2).values(:,3).' , 'color' , 'green'

);
166 hold on;
167 grid on;
168 legend({'q_1','q_2','q_3'});
169 xlabel('Time [s]'); ylabel('Joint velocity [rad/s]');
170 title('Joint velocities, simulation results');

pag. 86 Thesis

In the following the MATLAB code for computing the forward and inverse kinematics is re-
ported.

1 %%MATLAB script to solve the Forward and Inverse kinemtics problems
2
3 syms q3 q1 q2 l1a l1b l2 l3 px py pz
4 %set the DH matrices
5 AR = [0 0 −1 0; 1 0 0 0; 0 −1 0 0; 0 0 0 1];
6
7 A1 = [cos(q1) −sin(q1) 0 0;
8 sin(q1) cos(q1) 0 0;
9 0 0 1 l1b;

10 0 0 0 1] * [0 0 1 0;
11 1 0 0 0;
12 0 1 0 0;
13 0 0 0 1];
14
15 A2 = [cos(q2) −sin(q2) 0 0;
16 sin(q2) cos(q2) 0 0;
17 0 0 1 l1a;
18 0 0 0 1] * [1 0 0 l2;
19 0 −1 0 0;
20 0 0 −1 0;
21 0 0 0 1];
22
23 A3 = [cos(q3+pi/2) −sin(q3+pi/2) 0 0
24 sin(q3+pi/2) cos(q3+pi/2) 0 0
25 0 0 1 0;
26 0 0 0 1]* [1 0 0 l3;
27 0 1 0 0;
28 0 0 1 0;
29 0 0 0 1];
30 %compute the homogeneous transformation from robot RF to point P
31 T_tot = simplify(AR * A1 * A2 * A3)
32
33 %determine the forward kinematics equations
34 pe = simplify(AR * A1 * A2 * A3 * [0;0;0;1])
35
36 %Compute Analytic Jacobian
37 J_A = simplify(jacobian([pe(1),pe(2),pe(3)] , [q1,q2,q3]))
38
39 %Solve the inverse kinematics equations
40 B = simplify(inv(A1) * inv(AR) * [px;py;pz;1])
41 C = simplify(A2 * A3 * [0;0;0;1])
42
43 eq1 = B(1) == C(1)
44 eq2 = B(2) == C(2)
45 eq3 = B(3) == C(3)
46 S = solve([eq1 , eq2 , eq3] , [q1,q2,q3])

pag. 87

A.3 C++ Code
In the following the C++ code relative to the ROS node is reported.

1 #include <ros/ros.h>
2 #include <trajectory_msgs/JointTrajectory.h>
3 #include <trajectory_msgs/JointTrajectoryPoint.h>
4 #include <control_msgs/FollowJointTrajectoryAction.h>
5 #include <actionlib/client/simple_action_client.h>
6 #include <geometry_msgs/Pose.h>
7 #include <std_msgs/Float64MultiArray.h>
8
9 #define DEG_2_RAD 3.14/180
10 #define NUM_JOINTS 3
11
12 //create an array to contain the joint positions
13 std::array<double,NUM_JOINTS> positions;
14
15 bool moveRobot(std::array<double,NUM_JOINTS> &conf, double moveduration,
16 actionlib::SimpleActionClient<control_msgs::FollowJointTrajectoryAction> &rClient)
17 {
18 control_msgs::FollowJointTrajectoryGoal goal;
19
20 goal.trajectory.header.stamp = ros::Time::now()+ros::Duration(0.001);
21
22 //set active joints names
23 goal.trajectory.joint_names.resize(NUM_JOINTS);
24 goal.trajectory.joint_names[0] = "joint_0";
25 goal.trajectory.joint_names[1] = "joint_1";
26 goal.trajectory.joint_names[2] = "joint_2";
27
28 //set the right joint positions to be sent
29 goal.trajectory.points.resize(1);
30 goal.trajectory.points[0].positions.resize(NUM_JOINTS);
31 goal.trajectory.points[0].positions[0] = conf[0];
32 goal.trajectory.points[0].positions[1] = conf[1];
33 goal.trajectory.points[0].positions[2] = conf[2];
34
35 goal.trajectory.points[0].time_from_start = ros::Duration(moveduration);
36
37 //Send goal
38 rClient.sendGoal(goal);
39
40 //Wait for the action to return
41 bool finished_before_timeout = rClient.waitForResult(
42 goal.trajectory.points.back().time_from_start+ros::Duration(2*moveduration));
43
44 actionlib::SimpleClientGoalState state = rClient.getState();
45 if (finished_before_timeout)
46 {
47 ROS_INFO("Robot action finished: %s",state.toString().c_str());
48 }
49 else
50 {
51 ROS_ERROR("Robot action did not finish before the timeout: %s",
52 state.toString().c_str());

pag. 88 Thesis

53 }
54 return (state == actionlib::SimpleClientGoalState::SUCCEEDED);
55 }
56
57
58 void MATLABcmd(const geometry_msgs::Pose& msg)
59 {
60 /*
61 read the topic published by Simulink and fill the
62 joint position vector with the corresponding information
63 */
64 positions[0] = msg.position.x;
65 positions[1] = msg.position.y;
66 positions[2] = msg.position.z;
67 }
68
69
70 int main(int argc, char **argv)
71 {
72 //initialize the ROS system and become a node.
73 ros::init(argc, argv, "single_joint_control");
74 ros::NodeHandle nh;
75
76 //create a subscriber object to receive topics from Simulink
77 ros::Subscriber sub = nh.subscribe("joint_state_publisher", 1000, &MATLABcmd);
78
79 //create the controller action
80 actionlib::SimpleActionClient<control_msgs::FollowJointTrajectoryAction> robotClient(
81 "/leg_controller/joint_traj_controller_parallel/follow_joint_trajectory");
82 if(!robotClient.waitForServer(ros::Duration(5.0)))
83 {
84 ROS_ERROR("action server not available");
85 };
86
87 //set rate of the ROS node to 1kHz
88 double cycletime = 0.001;
89 ros::Rate rate(1/cycletime);
90 //init the vector of joint positions
91 positions[0] = 0.0;
92 positions[1] = 0.0;
93 positions[2] = 0.0;
94
95 while(ros::ok())
96 {
97 //execute the pending callbacks
98 ros::spinOnce();
99 //execute the action to send trajectory command
100 moveRobot(positions, cycletime, robotClient);
101 rate.sleep();
102 }
103 }

pag. 89

A.4 ROS launch files
In the following the gazebo_parallel.launch file for spawning the 3D model of the leg in
Gazebo is reported.

1 <launch>
2 <include
3 file="$(find gazebo_ros)/launch/empty_world.launch"
4 />
5
6 <node
7 name="spawn_model"
8 pkg="gazebo_ros"
9 type="spawn_model"
10 args="−file $(find robotic_leg)/urdf/leg_new_links.urdf −urdf −model leg_new_links"
11 output="screen"
12 />
13 </launch>

In the following the leg_server_parallel.launch file for launching the necessary ROS nodes
is reported.

1 <?xml version="1.0"?>
2 <launch>
3 <param name="robot_description"
4 textfile="$(find robotic_leg)/urdf/leg_new_links.urdf" />
5
6 <!−− Include the launch file for spawning the robotic leg in gazebo −−>
7 <include
8 file="$(find robotic_leg)/launch/gazebo_parallel.launch"
9 />
10
11 <node
12 name="joint_control_node"
13 pkg="robotic_leg"
14 type="key_joint_control_parallel"
15 launch−prefix="xterm −e"
16 />
17
18
19 <!−− load the controllers −−>
20 <rosparam file="$(find robotic_leg)/controller/leg_controller.yaml"
21 command="load"/>
22
23 <!−− load the parameters −−>
24 <rosparam file="$(find robotic_leg)/config/gazebo_ros_control_params_parallel.yaml"
25 command="load"/>
26
27 <!−− spawn the controllers −−>
28 <node
29 name="joint_traj_controller_spawner"
30 pkg="controller_manager"
31 type="spawner"
32 respawn="true"
33 launch−prefix="xterm −e"
34 ns="/leg_controller"

pag. 90 Thesis

35 args="joint_traj_controller_parallel joint_state_controller"
36 />
37
38 </launch>

	Preface
	Introduction
	Objectives
	State of the art
	AMRs in primary industrial sector
	Description of legged robots
	Quadruped robots and existing commercial solutions
	Different types of gait
	Walk
	Trot
	Canter
	Gallop

	State of the art of control algorithms

	Mathematical model of the leg
	Description of the leg
	Direct Kinematics
	Denavit - Hartenberg Method

	Inverse Kinematics
	Differential Kinematics

	Kinematic Control
	Jacobian Inverse Algorithm
	Drawbacks and resolutions

	Experimental setup
	Software
	Robotic Operating System - ROS
	ROS vs ROS2
	Communication between nodes and rqt_graph

	Gazebo Simulator
	Launch file
	Generating the URDF model from the 3D model
	Defining the controllers
	MATLAB&Simulink
	Integration between Simulink and ROS

	Operational space trajectory generation

	Simulation results
	Experimental results
	Temporary planning and costs
	Cost of workers
	Energy Cost
	Software licenses cost
	Total cost of the project

	Environmental Impact
	Conclusions
	Bibliography
	Appendix
	URDF file of the robotic leg
	MATLAB Code
	C++ Code
	ROS launch files

