
Task Scheduling Sensitivity to L1 Cache settings on
an area-constrained 32-core RISC-V Processor

Lucas Morais∗†, Daniel Jiménez-González∗†, Carlos Álvarez∗†
∗Barcelona Supercomputing Center, Barcelona, Spain
†Universitat Politècnica de Catalunya, Barcelona, Spain

E-mail: {lucas.morais, daniel.jimenez, carlos.alvarez}@bsc.es

Keywords—RISC-V, FPGA, Rocket Chip, Task Scheduling,
Cache, Design Exploration.

I. EXTENDED ABSTRACT

High-performance applications are highly sensitive to
memory performance characteristics. While programs with
comparatively low memory-to-computation ratio are less likely
to be hampered by limited memory bandwidth, most parallel
applications will be severely impacted by the absence of
hardware support for low-latency inter-thread synchronization
and data sharing.

In this paper, we report a design exploration that sought to
identify the cache configuration that maximizes performance of
task parallel OpenMP workloads running on a Linux-capable
32-core RISC-V system. We show that, under the constraints of
a U200 Alveo FPGA, the best single-level cache configuration
consists in 160 KB of coherent, core-private data caches, with
a 32/128 split among instruction and program data. With such
configuration, we have achieved speedups of up to 28x and
19x for the nbody and cholesky applications, respectively.
A. Background

Rocket Chip [1] is a popular open-source project allowing
rapid prototyping of RISC-V systems. While systematic design
explorations [2] and tools to that purpose [3] have been
proposed in the past, no work had so far focused on optimizing
cache configuration for Task Scheduling applications.

Such optimal cache parameters should provide perfor-
mance gains complementary to those provided by low-latency
hardware-accelerated data dependence resolution [4], [5].

B. Rocket Chip’s cache parametrization features

Rocket Chip offers a rich set of parameters that might be
used to control the organization and characteristics of many
of its micro-architectural elements. For example, parameters
exist that control, on a core-specific manner, whether a FPU
should be integrated or how many miss status handler registers
should be included. More to the point of our paper, there are
options to control the number of cache sets and ways, as well
as the cache line size. It is also possible to select a random,
Pseudo-LRU, or a True LRU cache replacement policy.

In our different experiments, we modulated cache capacity
by accordingly varying the number of ways of each cache
element, as this proved to require much less FPGA resources
than changing the number of sets, for example, since other
options render the design much less amenable to be mapped
to efficient FPGA storage elements.

LUT LUTRAM FF BRAM
Alveo U-200 1.18M 592K 2364K 2.16K
I-16, D-128 1.07M (90%) 32.6K (6%) 574K (24%) 1.91K (89%)
I-32, D-64 1.04M (88%) 31.9K (5%) 568K (24%) 1.32K (61%)
I-64, D-64 1.08M (91%) 32.6K (6%) 596K (25%) 1.67K (77%)

I-32, D-128 1.08M (92%) 31.9K (5%) 584K (25%) 2.09K (97%)

TABLE I: Resource usage of the different configurations.

Table I shows the resource usage of the different configura-
tions used in the performed study. Each implemented core is an
in-order Rocket core, single issue with a floating point ALU.
The system runs at 60MHz in FPGA and is Linux-capable.

C. Benchmarks

We evaluate different cache configurations using four
benchmarks: Cholesky, N-Body, ramspeed-reading, and
ramspeed-writing. Cholesky and N-Body are extensively-used
HPC kernels implemented using the Task Parallel paradigm,
while the latter two are variants of a Linux tool for evaluating
memory performance according to different access patterns.

More specifically, Cholesky is a kernel implementing a
matrix decomposition method that is employed, for example,
in linear equation solving. In turn, N-Body encapsulates pro-
gramming logic that is typically found in applications where,
given a system of particles, interactions among every pair of
particles are evaluated at each simulation step.

Both Cholesky and N-Body make use of OpenMP’s au-
tomatic data-dependence resolution. However the memory
requirements for N-Body are usually lower than for Cholesky.
N-Body computation grows with the square of the number
of elements. In Cholesky computation grows with the cube
of the problem size but data grows square with the problem
size usually putting more pressure in the memory system.
Both applications have been executed with the optimum task
granularity for the system evaluated.

In the case of ramspeed, it evaluates the performance of a
series of readings and writings in memory, giving an idea of
the scalability of the memory subsytem.

D. Preliminary Results

Figure 1 shows the speedup results of the different bench-
marks when executed in a different number of cores against
the same application executed sequentially in the same system.
Each subfigure shows the performance obtained in each of the
different cache configurations analyzed. In addition, Table II
shows the absolute performance obtained in each execution.

Our experiments show that the (I-16, D-128) performs
poorly in spite of its large data-cache component, which

64



Fig. 1: Performance results across different cache designs.

I-16 D-128
cholesky 31.51 61.24 127.31 228.67 399.22 445.92 390.62
nbody 0.43 0.86 1.69 3.22 5.77 7.54 8.67
ram-reading 0.44 0.88 1.75 3.37 6.14 - 10.16
ram-writing 0.22 0.45 0.90 1.74 3.18 - 5.32

I-32 D-64
cholesky 30.22 59.43 121.75 228.90 384.01 351.68 356.87
nbody 0.43 0.85 1.66 3.16 5.16 8.42 11.28
ram-reading 0.45 0.90 1.81 3.62 7.20 - 14.14
ram-writing 0.23 0.46 0.93 1.86 3.69 - 7.28

I-64 D-64
cholesky 30.14 59.36 121.86 228.80 384.05 378.02 355.27
nbody 0.43 0.85 1.66 3.15 5.20 6.96 11.25
ram-reading 0.45 0.90 1.81 3.62 7.20 - 14.16
ram-writing 0.23 0.46 0.93 1.85 3.70 - 7.27

I-32 D-128
cholesky 32.76 63.49 133.30 249.62 488.36 616.61 628.48
nbody 0.44 0.88 1.76 3.48 6.81 9.79 12.47
ram-reading 0.45 0.91 1.81 3.62 7.19 - 14.15
ram-writing 0.23 0.46 0.93 1.86 3.70 - 7.27

1 2 4 8 16 24 32
Number of threads

TABLE II: Performance results. Executions of ramsmp are
evaluated in gigabytes per second, while cholesky and nbody
performances are measured in megaflops and mega-pairs per

second, respectively. Ramsmp only supports power-of-two
numbers of threads.

suggests that 16 KB is not enough for ensuring scalability for
a system with that much data cache. Moreover, the single-
threaded performance of such configuration is substantially
inferior to that of all other arrangements.

We also notice that the (I-32, D-64) and (I-64, D-64)
designs obtain nearly the same performance for all config-
urations involving a number of threads different from 24,
although the latter features double the data cache of the former.
This is evidence that instruction-fetching overhead and related
problems are not likely to be reduced by increasing instruction
caches beyond 32 KB, at least for the tested workloads. On the
other hand, the differences at 24 threads suggest that increasing
the instruction cache beyond 32 KB can have both positive or
negative effects on load balancing depending on the workload.

E. Conclusions

This work reports how Rocket Chip cache parameters
might be selected to obtain maximum performance out of se-
lected Task Parallel applications under the resource constraints
of the U200 Alveo FPGA. We show that, among the considered
configurations, only the one featuring 160 KB of L1 cache split

in 32/128 instruction/data ratio can ensure scalability beyond
16 threads for a standard task-parallel cholesky implementa-
tion. We also indicate that, while serving 32 threads, the (32-I,
128-D) configuration improves performance by up to 54% with
respect to (16-I, 128-D) or 76% with respect to (64-I, 64-D),
while requiring just 11% or 25% more storage than each of
these options, respectively.

As future work, we propose to evaluate how Task Parallel
applications might benefit from L2 caches mapped to URAM
resources. Also, we would like to evaluate whether our scala-
bility conclusions also hold for runtimes other than OpenMP.

F. Acknowledgement

This work is supported by the TEXTAROSSA project
G.A. n.956831, as part of the EuroHPC initiative from
Spanish Government (PID2019-107255GB-C21/AEI
/10.13039/501100011033), and from Generalitat de Catalunya
(contracts 2017-SGR-1414 and 2017-SGR-1328).

REFERENCES

[1] K. Asanovic et al., “The rocket chip generator,” EECS Department, Uni-
versity of California, Berkeley, Tech. Rep. UCB/EECS-2016-17, vol. 4,
2016.

[2] M. Doblas Font et al., “Microarchitectural design-space exploration of
an in-order risc-v processor in a 22nm cmos technology,” B.S. thesis,
Universitat Politècnica de Catalunya, 2020.

[3] S. Bandara et al., “Brisc-v: An open-source architecture design space
exploration toolbox,” arXiv preprint arXiv:1908.09992, 2019.

[4] L. Morais et al., “Adding tightly-integrated task scheduling acceleration
to a risc-v multi-core processor,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, 2019, pp.
861–872.

[5] J. M. de Haro et al., “Towards reconfigurable accelerators in hpc:
Designing a multipurpose efpga tile for heterogeneous socs,” in 2022
Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2022.

Lucas Morais has a Master Degree in Computer
Science from the University of São Paulo, where he
worked with an international team for adding native
Task Parallelism support to RISC-V based multi-core
systems. Previously, he received a degree in Com-
puter Engineering from the University of Campinas,
Brazil, being accoladed as the best student of his
class by the Engineering Council of the São Paulo
State. He is currently pursuing a PhD at Universitat
Politècnica De Catalunya.

65




