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Abstract 

This thesis is focused on the analysis of the results of the paper KÖHLER, Sebastian, et al. Clinical 
diagnostics in human genetics with semantic similarity searches in ontologies (1) and the 
improvement of them.  

The method studied uses symptoms from the "Human Phenotype Ontology" 2022 (HPO) (2) and tries 
to predict the disease using another database from the same website (3). This comparison is 
performed using semantic similarity methods that will be explained in the next chapters. 

While trying to reproduce the results, many difficulties were found to reach that goal. After many 
auditions of the code that run the simulation, the performance was not close to that shown in the 
paper. However, an implementation of this method is already available online by the own authors of 
the article. This is called the Phenomizer. After generating hundreds of simulated patients following 
the rules specified in the paper, and using this data in the Phenomizer, one conclusion can be 
extracted from it, the results are not consistent with the data specified in the article. When 
imprecision is added to the symptoms (randomly replacing a symptom by one of their ancestors), 
performance is much worse than stated. On the other hand, adding noise (symptoms unrelated to 
the disease) has little effect on the output and the performance is coherent with the paper. 
 
To try to improve the performance, some other semantic similarity methods were tested using a 
specialized library called Semantic Measures Library and Toolkit (3). No significant improvements 
were detected in this investigation, the method used in the article was the best in terms of results 
quality. 
 
The last important point that is clashing with the article is the fact that they use a p-value calculated 
from the semantic similarity score to obtain the rankings of more probable diseases for the given set 
of symptoms. According to the paper, the p-value method is better than using simply the similarity 
scores. However, in all the tests done in this thesis similarity scores performed better than p-values. 
This means that no big calculations, expensive in time, and a big hard drive capacity are required. 
 
In conclusion, the results of the real Phenomizer are worse than stated; no better semantic similarity 
method than the existent one was found, and disease rankings by similarity scores performed better 
than by p-value, contrary to the paper assertions. 

 

  



  Memoria 

ii   

Acknowledgments 

Big thanks to Jon Garrido for giving me the idea for this thesis and for helping me understand all the 

details of the paper on which this project is based before starting working on it. Moreover, thanks for 

providing data and the invaluable help in applying the Hochberg and Benjamini correction in the 

data. 

Also, I’m very thankful to Alexandre Perera for presenting the idea of this thesis to me and for making 

time in his schedule to give me some insight into this work. 



Analysis of clinical diagnostics in human genetics with semantic similarity searches in ontologies  

  iii 

Index 

ABSTRACT ____________________________________________________________ I 

ACKNOWLEDGMENTS _________________________________________________ II 

INTRODUCTION ______________________________________________________ 5 

1.2. Main objectives ........................................................................................................ 5 

1.3. Scope ........................................................................................................................ 5 

CLINICAL DIAGNOSTICS IN HUMAN GENETICS WITH SEMANTIC SIMILARITY 

SEARCHES IN ONTOLOGIES _________________________________________ 7 

1.4. Ontologies ................................................................................................................ 7 

1.5. Similarity score ......................................................................................................... 8 

1.6. P-value comparison ............................................................................................... 10 

1.7. Simulated patients ................................................................................................. 11 

SYSTEM IMPLEMENTATION ____________________________________________ 13 

1.8. Databases used ...................................................................................................... 13 

1.9. Score system .......................................................................................................... 14 

1.9.1. SML initialization with examples ............................................................................ 14 

1.9.2. Information content implementation .................................................................... 16 

1.9.3. Similarity score calculation ..................................................................................... 18 

1.10. P-values calculation ............................................................................................... 19 

1.11. Simulation of the patients ..................................................................................... 26 

1.11.1. Dysmorphology syndromes data ........................................................................... 26 

1.11.2. Patients’ generation ................................................................................................ 27 

1.11.3. Noise and imprecision ............................................................................................ 28 

1.11.4. Benjamini and Hochberg correction ...................................................................... 30 

RESULTS ___________________________________________________________ 33 

1.12. Results of the system implemented in this thesis and comparisons .................... 34 

1.13. Evaluation of Phenomizer using web scraping ...................................................... 42 

1.14. P-value reliability .................................................................................................... 48 

1.15. More similarity score methods .............................................................................. 53 

1.15.1. Direct Groupwise measures ................................................................................... 54 

1.15.2. IC-based measures .................................................................................................. 57 



  Memoria 

iv   

CONCLUSIONS ______________________________________________________ 63 

BIBLIOGRAFIA _______________________________________________________ 65 

ANNEX _____________________________________________________________ 67 

Scores comparisons between 100000 and 5000 samples .............................................. 67 

1.16. Code Index ............................................................................................................. 73 

Limited imprecision method ........................................................................................... 74 

Limit  3 ............................................................................................................................... 74 

Performance comparison between old and latest databases ........................................ 78 

Phenomizer vs local simulation ....................................................................................... 79 

Latest databases comparison ............................................................................................... 79 

Older databases comparison ............................................................................................... 81 

P-value Truth Tables ........................................................................................................ 84 

Similarity score methods ................................................................................................. 91 

IC-based measures .............................................................................................................. 105 



Analysis of clinical diagnostics in human genetics with semantic similarity searches in ontologies  

  5 

Introduction 

The most important part of the job of a physician is making the correct diagnosis because identifying 

some diseases that can be caused by a big number of different genetic disorders is complicated. 

Especially when many of these diseases share many common symptoms. Moreover, the same disease 

can express different symptoms in different patients, plus the added difficulty that some of the 

identified symptoms can be unrelated to the disease. A correct diagnosis can help save time and start 

the appropriate treatment soon. 

To ease those difficulties a method for clinical diagnostics was developed in 2009 by a team led by 

Sebastian Köhler, using the semantic structure of the Human Phenotype Ontology (HPO) (1). According 

to the paper, the method works as follows: 

“A p-value is assigned to the score obtained by searching on n terms, corresponding to the probability 

of obtaining a given similarity score or better by choosing the same number of query terms at random” 

(Köhler et al. 2009) 

A lower p-value is a good differential diagnostic for the set of symptoms selected. On the other hand, 

a higher p-value means that the symptoms are not specific enough to allow a good diagnosis, or that 

the disease is not described in the database used for the calculations. 

1.1. Main objectives 

o Reproduce the results of (Köhler et al. 2009). 

o Try to improve the results using many different semantic similarity methods apart from the 

ones used in the paper. 

1.2. Scope 

Some basic concepts of (Köhler et al. 2009) will be described to give a better insight into the procedures 

followed in this work. 

To reproduce the results of the paper, some code had to be written to simulate the characteristics and 

rules defined in the paper, because there was no open-source code available for this goal.  
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Once the results are correctly reproduced, many new semantic similarity measures will be tested and 

the conclusions presented. 
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Clinical diagnostics in human genetics with semantic 

similarity searches in ontologies 

This chapter will focus on the key points of (Köhler et al. 2009) that will be used in this thesis to create 

a good simulation of the process and replicate the results for scrutiny. With this, some improvements 

will be proposed. Also, some basic terms and definitions are provided to better understand this work. 

1.3. Ontologies 

The paper’s method is built onto an acyclic ontology system which represents symptoms that can be 

referenced by the disease database called Human Phenotype Ontology (HPO) (1). Each concept of the 

ontology used is a symptom, this symptom can be preceded by one or more general concepts, or it can 

stem from more specific terms like in Fig. 1. Another point is that in the paper (Köhler et al. 2009) and 

this thesis only the symptoms that are children of Phenotypic abnormality are used, while the other 

unused branches are: Blood group, Clinical modifier, Frequency, Mode of inheritance, and Past medical 

history; which are not relevant for the scope of this work. 
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Figure 1. This is an example of one part of the ontology used. Symptoms are represented hierarchically. General terms are at 

the top of the graph while the specific terms are at the bottom. One symptom can have more than one parent or children. 

The terms of the HPO are used for the annotations of diseases described in another database. Each 

disease is related to a set of symptoms that are present in the HPO.  The databases used in Köhler et 

al. 2009 are old versions that contain nearly 9000 symptoms for the HPO and 4813 diseases for 

annotations. In the following chapters, more up-to-date versions are used and some conclusions about 

performance are extracted in comparison with the 2009 databases. 

1.4. Similarity score 

The method described in Köhler et al. 2009 uses a query, a set of symptoms for which you want to 

know which disease corresponds to it. For this goal, a score must be returned for every disease in the 

database and the higher one should be the correct diagnosis.  

First, the specificity is taken into account to obtain the information content of the symptom or IC. The 

less common a symptom in the annotations database, the higher the score. For example, if a symptom 
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like a paroxysmal burst of laughter is only annotated in 4 different diseases, for 4813 diseases the result 

would be -ln(4/4813) = 7.09. On the other hand, a more common symptom like abnormality of the 

nervous system is present in 51 diseases, thus the IC score would be -ln(51/4813) = 4.54. 

To assess the similarity between the two terms, the most informative common ancestor (MICA) is used. 

MICA is an algorithm that finds the ancestor that is common to both terms and has a maximum IC 

value. 

 
Figure 2. Example of how MICA works for a pair of symptoms being compared. Children 1 is a symptom that pertains to the 

query set, and Children 2 to the disease set. 

With the measures established above, a method to obtain the similarity between query terms and 

diseases is developed by Köhler et al. 2009. 

𝒔𝒔𝒔𝒔𝒔𝒔(𝑸𝑸 → 𝑫𝑫) = 𝒂𝒂𝒂𝒂𝒂𝒂 �� 𝐦𝐦𝐦𝐦𝐦𝐦
𝒕𝒕𝟐𝟐𝝐𝝐 𝑫𝑫

(𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴(𝒕𝒕𝟏𝟏, 𝒕𝒕𝟐𝟐))
𝒕𝒕𝟏𝟏𝝐𝝐 𝑸𝑸

� 
(Equation 

1) 

Equation 1 describes how the score is obtained after a query is submitted. Each symptom of the query 

is compared with all the symptoms of the selected disease using the MICA algorithm. The higher score 

obtained is selected and saved. Then, the next term of the query is processed in the same way until no 

more query terms are remaining. Finally, the saved scores are averaged and the final result for the 

comparison between the query and disease is returned. The query must be compared this way with all 

the diseases in the database to know which one is more similar to the query. 
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There is another equation in Köhler et al. 2009 called symmetric similarity score, but this won’t be used 

in the paper for calculating results and therefore not in this thesis either. 

1.5. P-value comparison 

Is difficult to say when a score is a good match or not, because it depends on the number of symptoms 

or specificity of the disease that the query is being compared to. For example, a 2.3 can be a good result 

for Opitz syndrome, because normally the scores for this disease go around 1.7. But 2.3 can be a bad 

result for Noonan syndrome, with average values around 2.7. 

This problem is why Köhler et al. 2009 developed a statistical method to deal with this. They estimated 

a p-value for each search that indicates the probability of obtaining the same or higher value compared 

with a set of random query terms of the same size. To obtain the different p values, they need to use 

a Monte Carlo random sampling approach, followed by a Benjamini and Hochberg correction. A 

complete calculation of all the possible scores for each disease is not possible because the number of 

combinations grows exponentially with the number of query terms. They needed to calculate each 

disease's p-values from 100000 random searches. This simulation is repeated for query sizes from 1 to 

10, because for the same disease different sizes will return different average scores. If the query size is 

11 or greater, the p values are calculated using the calculated distribution for 10 terms.   

For example, for a query size of 3, 100000 comparisons are performed using random query sets of 3 

symptoms. From this, 100000 similarity scores are obtained; then, is just a matter of ordering the 

100000 scores in ascendant order, assigning p-values to each score going from 1 for the lowest to 0 for 

the higher value; is simply a proportion. Finally, use a Benjamini and Hochberg correction. 



Analysis of clinical diagnostics in human genetics with semantic similarity searches in ontologies  

  11 

 
Figure 3. Example of p-value calculation for query size of 3. Similarity scores of Opitz syndrome are lower than Angelmann's, 
thus relevant p-values for Opitz are from 3.6 onwards, while for Angelmann are higher, from 5.5. 

1.6. Simulated patients 

To evaluate the performance of the algorithm developed, Köhler et al. 2009 used a set of generated 

patients using 44 identified complex dysmorphology syndromes that contained frequency data for 

their symptoms (5). They assumed no interdependency between symptoms because not enough data 

is available on this matter. Using the frequency information, 100 random patients are generated for 

each one of the 44 sets. Gender-specific features are also considered. 

External symptoms not related to the real disease are added to simulate unrelated clinical problems, 

this is called noise. The number of noise symptoms is half the quantity of the disease-related terms. 

Finally, to simulate the clinical descriptions discrepancies about the symptoms made by the physician, 

another variable called imprecision is added. This may be caused by the lack of knowledge about the 
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correct terminology used in the database, or because the symptom cannot be described easily without 

more advanced clinical investigations. For this, every feature of the patient is randomly replaced by 

one of its ancestors except the root of the ontology (Phenotypic abnormality). 
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System implementation 

The system described in Köhler et al. 2009 is implemented in this chapter. The HPO, annotation 

database, the score equation (Eq. 1), and the p-value calculation will be explained thoroughly in the 

following pages. 

1.7. Databases used 

In Köhler et al. 2009, two databases are used: one for the Human Phenotype Ontology (HPO) and 

another for the annotation of all diseases. The HPO database is from May 6, 2009: version 1.58. In this 

thesis, version 1.59 (June 12, 2009) is used for proximity because 1.58 is not available (6). Also, the 

most recent version will be used and compared with 1.59 for completion (Chapter 4.1). 

Regarding the annotation database, no reference is provided in the paper, only that contains 4813 

diseases and that was updated by that date (around 2009). Unfortunately, no history of old versions of 

this database is available right now. The old repositories that maintained these databases are down in 

the meantime (7). In this case, the most recent database will be used (3). In the next chapter, 4.2 

Evaluation of Phenomizer using web scraping, a method to obtain a closer version in time to the original 

is described and the results are compared. 

Due to compatibility with the library used described in subchapter 3.2 Score system, the annotations 

database is converted from hpoa to tsv format; and only entries from the OMIM database with aspect 

P (Phenotype) are included. For more information about this format consult: (10). 

For example, those are some entries in hpoa format for disease with id 609115 and name Limb-girdle 

muscular dystrophy, type 1G from OMIM database with their corresponding symptoms: 

 
OMIM:609115 “Limb-girdle muscular dystrophy, type 1G”  HP:0001265 OMIM:609115 IEA P  
OMIM:609115 “Limb-girdle muscular dystrophy, type 1G”  HP:0003236 OMIM:609115 TAS P  
OMIM:609115 “Limb-girdle muscular dystrophy, type 1G”  HP:0008948 OMIM:609115 IEA P  
OMIM:609115 “Limb-girdle muscular dystrophy, type 1G”  HP:0003198 OMIM:609115 TAS P  
OMIM:609115 “Limb-girdle muscular dystrophy, type 1G”  HP:0003581 OMIM:609115 IEA C  
OMIM:609115 “Limb-girdle muscular dystrophy, type 1G”  HP:0000518 OMIM:609115 TAS P  
OMIM:609115 “Limb-girdle muscular dystrophy, type 1G”  HP:0003829 OMIM:609115 TAS M  
OMIM:609115 “Limb-girdle muscular dystrophy, type 1G”  HP:0003749 OMIM:609115 IEA P  
OMIM:609115 “Limb-girdle muscular dystrophy, type 1G”  HP:0003805 OMIM:609115 TAS P 
OMIM:609115 “Limb-girdle muscular dystrophy, type 1G”  HP:0008116 OMIM:609115 IEA P  
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OMIM:609115 means that this disease corresponds to the OMIM database, contains 10 symptoms 

that are identified as HP:XXXXXXX, and only entries with the modifier aspect equal to P are considered 

because it means that they are located in the Phenotypic abnormality subontology. 

Then, the hpoa format is translated to tsv to become readable by the library used in this thesis to 

manage the ontologies. Reference to code in annex section Code Index. 

 
OMIM:609115 
HP:0003236;HP:0000518;HP:0008948;HP:0008956;HP:0001265;HP:0003547;HP:0006203;HP:0
003198;HP:0006785;HP:0003749;HP:0008116;HP:0003805; 

1.8. Score system 

To build a reliable score system, a good method to process and interpret the ontology structure is 

required. For this, a library called Semantic Measures Library (SML) (9) will be used. The original link of 

the library is currently offline, so it was downloaded from here: (8). 

1.8.1. SML initialization with examples 

To clarify a bit the usage of this library in this thesis, some examples are provided. 
""" 
First, two databases are required to make this system work: 
 
-The Human Phenotype Ontology (hp.obo) 
 
-And the disease annotations database (Phenotype.tsv)  
as described in the databases chapter 
""" 
String hpoOBO = "D:\\Users\\Rafaa\\HPO_big_files\\hp.obo"; 
String annot = "D:\\Users\\Rafaa\\HPO_big_files\\Phenotype.tsv"; 
 
""" 
The format of the URIs used in the library must be 
defined beforehand, in this case, 'http://hp/'  
""" 
URIFactory factory = URIFactoryMemory.getSingleton(); 
URI graph_uri = factory.getURI("http://hp/"); 
 
""" 
The symptoms from HPO start with 'HP' as a prefix, like HP:0003281. This must be 
specified. 
"""        
factory.loadNamespacePrefix("HP", graph_uri.toString()); 
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G graph = new GraphMemory(graph_uri); 
 
""" 
The data from the two databases are loaded into the library. 
""" 
GDataConf hpoConf = new GDataConf(GFormat.OBO, hpoOBO); 
GDataConf annotConf = new GDataConf(GFormat.TSV_ANNOT, annot); 
annotConf.addParameter("header", "false"); 
 
GraphLoaderGeneric.populate(hpoConf, graph); 
GraphLoaderGeneric.populate(annotConf, graph); 

Code 3.1. SML initialization 

SML needs some extra configuration to work properly. The two databases, annotations and HPO, must 

be linked by them using a virtual root. 

 
Figure 4. Virtual root function 

""" 
Create the virtual root vertex 
""" 
URI virtualRoot = factory.getURI("http://hp/virtualRoot"); 
graph.addV(virtualRoot); 
""" 
Root the graphs using the virtual root as the root 
""" 
GAction rooting = new GAction(GActionType.REROOTING); 
rooting.addParameter("root_uri", virtualRoot.stringValue()); 
        GraphActionExecutor.applyAction(factory, rooting, graph); 

Code 3.2 Virtual root implementation 
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1.8.2. Information content implementation  

Is necessary to calculate the information content (IC) of every symptom to get the final similarity score 

from the set of terms of the query with every disease. As previously stated, the less common a 

symptom in the annotation database, the higher the score. 

 

To implement this behavior, just one line is needed in SML: 
ICconf icConfRes = new IC_Conf_Corpus(SMConstants.FLAG_IC_ANNOT_RESNIK_1995); 

Code 3.3 IC configuration 

The line described in Code 3.3 triggers the calculation of the IC. Resuming from the previous example, 

if a symptom is annotated in 4 different diseases, and the total number of diseases is 4813, the result 

is -ln(4/4813) = 7.09. If the symptom has descendants, the number of annotations of them are included 

also. 

 
Figure 5. Example of how the number of annotations in parents is obtained. The parent inherits the number of annotations of 

its descendants plus their number of coincidences 

However, when the number of annotated diseases is 0 for a symptom, calculating ln(0) throws an error. 

To avoid this, 1 is added to the number of annotated diseases for every terminal symptom (i.e. without 
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descendants). This implies that the number of diseases must be increased from 4813, like in the 

example, to 4813 plus the number of symptoms without descendants. 

 
Figure 6. Example of how adding one to the terminal symptoms number is implemented. The total number of diseases is 
increased by 1000. This is a randomly chosen number supposed to be the total quantity of symptoms without children. 

In figure 6, after adding one to the terminal symptoms, the IC value is slightly different to figure 5. 

However, this is not relevant, because the IC is still proportional to the number of annotated diseases. 

The code showing the implementation of the IC calculation is the following: 
     * @param nbOccurences the number of occurrences for each disease. For each 
     * disease the number of occurrences must be greater than 0. 
     * @return the IC of all URIs specified in the given map. 
     * @throws SLIB_Ex_Critic 
     */ 
    public Map<URI, Double> compute(SM_Engine manager, Map<URI, Integer> 
nbOccurences) throws SLIB_Ex_Critic { 
 
        Map<URI, Double> results = new HashMap<URI, Double>(); 
         
        // This gets the total number of diseases plus the terminal symptoms 
        long max = Collections.max(nbOccurrence.values()); 
 
        //Calculate the IC 
        double prob_occ; 
        double curIc; 
        for (URI v : nbOccurrence.keySet()) { 
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            prob_occ = (double) nbOccurrence.get(v)/ max; 
            curIc = -Math.log(pc); 
            results.put(v, curIc); 
        } 
 
        return results; 
    } 

Code 3.4 IC calculation 

1.8.3. Similarity score calculation 

The next step is the calculation of the similarity score. The implementation is pretty much 

straightforward, as seen in the next example. 
Set<URI> query = ... //(Random set of symptoms to identify which disease is more 
similar to it 
  
//The IC configuration is set, as well as the HPO simulation score calculation  
SMconf smConfGroupwiseHPO = new SMconf("HPO", 
SMConstants.FLAG_SIM_GROUPWISE_DAG_HPO); 
smConfGroupwiseHPO.setICconf(icConfRes); 
 
for (URI disease : engine.getInstances()) { 
 
   //This returns the symptoms of the current disease 
   Set<URI> disease_annotations = iAccessor.getDirectClass(disease); 
 
   //The score is calculated simply by using the function ‘compare’, 
   //the configuration, query, and disease to be compared 
   sim = engine.compare(smConfGroupwise, query, disease_annotations); 
   System.out.println("Similarity score is: " + sim); 
 
} 

Code 3.5 Similarity scores calculation example 

The method compare in code 3.5 implements Equation 1 as shown in code 3.6. Comments have been 

added for clarity. 

 

𝒔𝒔𝒔𝒔𝒔𝒔(𝑸𝑸 → 𝑫𝑫) = 𝒂𝒂𝒂𝒂𝒂𝒂 �� 𝐦𝐦𝐦𝐦𝐦𝐦
𝒕𝒕𝟐𝟐𝝐𝝐 𝑫𝑫

(𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴(𝒕𝒕𝟏𝟏, 𝒕𝒕𝟐𝟐))
𝒕𝒕𝟏𝟏𝝐𝝐 𝑸𝑸

� 
(Equation 

1) 

 
    @Override 



Analysis of clinical diagnostics in human genetics with semantic similarity searches in ontologies  

  19 

    public double compare(Set<URI> query, Set<URI> disease, SM_Engine c, SMconf 
conf) throws SLIB_Exception { 
 
 
        double total_ic_MICA = 0; 
 
        //Compares all query items with all disease items 
        for(URI a : query) { 
            double max_ic_MICA = 0; 
            for(URI b : disease) { 
                //Gets the MICA of query symptom 'a' and disease symptom 'b' 
                double ic_MICA = c.getIC_MICA(conf.getICconf(), a, b); 
                if(ic_MICA > max_ic_MICA) { 
                    //Keeps the higher IC value obtained from the query item 'a' 
compared 
                    //to all disease symptoms 
                    max_ic_MICA = ic_MICA; 
                } 
            } 
            //The maximum IC of the MICA is accumulated here to be averaged 
afterward 
            total_ic_MICA += max_ic_MICA; 
        } 
         
        //Average over the query size 
        return total_ic_MICA / query.size(); 
    } 

Code 3.6 Equation 1 implementation 

These are the basics for the computation of similarity scores. The next step to replicate the paper by 

Köhler et al. 2009 is to develop the p-values calculation system. 

1.9. P-values calculation 

The paper establishes that for the calculation of the necessary p-values, 100000 random simulations 

for every disease are required. This procedure must be repeated for 1 to 10 query items. All the 

possible scores are stored on the disk (rounded to 4 decimal places) and the associated p-values. 

Considering that the number of diseases is 8209 if the scores and p-values are stored in float32 format, 

the disk capacity in bytes used would be: 32/8 (float32 size in bytes) · 2 (p-values and scores) · 100000 

(samples per disease) · 8209 (number of diseases) · 10 (query size) = 65,672,000,000 bytes. That means 

that calculating this database fills around 61.1 GB of disk memory.  

The computer used for these calculations has a Ryzen 2700 CPU. Extrapolating the time required for 

calculating the p-values for query size 1 which elapsed 20.5 min, and considering that getting the 
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similarity scores from a query set of 10 items is 10 times slower than 1 item, obtaining the entire p-

values database would take around 18.8 h. 

This is only for one p-value database, if new ones are required with other HPO databases, or new 

similarity scores methods, the disk capacity and time would be unmanageable for the currently 

available resources.  

To save space and time in the multiple p-values databases that will be calculated, an alternative 

method is used. First, instead of saving one p-value per score, as stated in the paper, only some that 

corresponds to some predefined values are stored. In other words, a pattern like the next one will be 

used: 

p-values pattern  (1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 

0.02, 0.01, 0.005, 0.001, 0) 

In Köhler et al. 2009, p-values are calculated like a proportion. The lower score is assigned with a p-

value of 1, while the higher with a 0. The median would correspond to a p-value of 0.5. To calculate 

this, the next code was used: 
List<Float> ordered_scores = /*list of similarity scores in ascending order*/ 
 
//The p-valurs pattern to use 
float[] p_values_pattern = new float[] {1f, 0.9f, 0.8f, 0.7f, 0.6f, 0.5f, 0.4f, 
0.3f, 0.2f, 0.1f, 0.09f, 0.08f, 0.07f, 0.06f, 0.05f, 0.04f, 0.03f, 0.02f, 0.01f, 
0.005f, 0.001f, 0f}; 
 
//number of random simulations to perform 
int num_of_searches = 100000; 
 
//The p-values pattern will be stored here 
float[] main_p_values = new float[p_values_pattern.length]; 
 
for(int j = 0; j < p_values_pattern.length; j++) { 
    /* 
    To get the score corresponding, for example, to the p-value of 0.8, the 
formula below would be 
    applied this way: (100000 - 1) · (1 - 0.8) = 19999. This means that 
    the p-value of 0.8 corresponds to the score at position 19999, which makes 
sense 
    because the score list is in ascending order 
    */ 
    int select = (int) ((num_of_searches - 1) * (1 - p_values_pattern[j])); 
    main_p_values[j] = ordered_scores.get(select); 
} 

Code 3.7 p-values pattern implementation 
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Code 3.7 must be repeated in each disease, and for every query size from 1 to 10.  

Similarity scores corresponding to the p-values pattern 

p-values pattern Similarity scores 

1 0.01 

0.9 0.01 

0.8 0.01 

0.7 1.36 

0.6 1.62 

0.5 1.71 

0.4 1.79 

0.3 2.03 

0.2 2.30 

0.1 2.73 

0.09 2.83 

0.08 2.84 

0.07 2.97 

0.06 2.97 

0.05 3.02 

0.04 3.19 

0.03 3.30 

0.02 3.47 

0.01 4.06 
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0.005 4.91 

0.001 5.83 

0 6.02 
Table 1. p-values pattern correspondence with similarity scores of Cerebrooculofacioskeletal syndrome 3. To visualize better 

how this system works: P-value 0 corresponds to the higher value obtained in the simulation, while P-value 1 to the lower 
one. P-value 0.5 would correspond to the score that falls just in the middle or the median (position 50000). 

With the kind of data in Table 1, p-values can be obtained for every score when requested using a 

simple interpolation (11). 

𝒚𝒚 =  𝒚𝒚𝟎𝟎  +  (𝒙𝒙 −  𝒙𝒙𝟎𝟎) 
𝒚𝒚𝟏𝟏  −  𝒚𝒚𝟎𝟎
𝒙𝒙𝟏𝟏  −  𝒙𝒙𝟎𝟎

 

Where y0 = the lower p-value; y1 = upper p-value; x0 = upper similarity score; x1 = lower similarity 

score; x = score to be interpolated with; y = result (p-value) 

For example, using Table 1 and a score of 5.12, the p-value would be: 

𝟎𝟎.𝟎𝟎𝟎𝟎𝟏𝟏 +  (𝟓𝟓.𝟏𝟏𝟐𝟐 −  𝟓𝟓.𝟖𝟖𝟖𝟖) 
𝟎𝟎.𝟎𝟎𝟎𝟎𝟓𝟓 − 𝟎𝟎.𝟎𝟎𝟎𝟎𝟏𝟏
𝟒𝟒.𝟗𝟗𝟏𝟏 −  𝟓𝟓.𝟖𝟖𝟖𝟖

= 𝟎𝟎.𝟎𝟎𝟎𝟎𝟒𝟒𝟎𝟎𝟖𝟖𝟎𝟎 

Equation 3 gives a p-value of 0.004086 for a score of 5.12. 

(Equation 2) 

 

 

 

(Equation 3) 

Thanks to the interpolation, a lot of space in the hard disk can be saved. Now, it will fill 32/8 (float32 

size in bytes) · 2 (p-values and scores) · 22 (samples per disease using the pattern) · 8209 (number of 

diseases) · 10 (query size) = 14,447,840 bytes or 13.77 MB. Moreover, the data loss in the p-values is 

not very significant, because to assess the performance of this system the lower precision won’t change 

the results very much, as seen in chapter 4.3 P-value reliability. 

Another problem is the computing time. Even saving a lot of space using interpolation, 100000 samples 

must be calculated in each cycle taking a lot of time as previously stated. Because of this, the number 

of random queries has been reduced from 100000 to 5000. 

To assess the performance impact an example is provided comparing the scores with 5000 and 100000 

samples of Larsen-Like syndrome (26 symptoms). 
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Figure 7. Histogram of the similarity scores for disease OMIM:608545 (Larsen-Like syndrome) with 100000 searches and 

query size of 10 
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Figure 8 Histogram of the similarity scores for disease OMIM:608545 (Larsen-Like syndrome) with 5000 searches and query 

size of 10 

Figure 8 presents a more irregular shape than Figure 7 due to the lower number of samples. Next, to 

visualize the differences better, a table showing the scores corresponding to the p-values pattern is 

presented. 

p-values pattern Scores 100000 Scores 5000 

1 0.011425085 0.12576976 

0.9 0.8760333 0.87632257 

0.8 1.0412315 1.0460843 

0.7 1.1635314 1.1668986 

0.6 1.2696304 1.2605296 

0.5 1.3703285 1.3595504 
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0.4 1.4720435 1.4608927 

0.3 1.5819643 1.5768675 

0.2 1.7135792 1.7198175 

0.1 1.8967872 1.8921679 

0.09 1.9209521 1.9137243 

0.08 1.94914 1.938979 

0.07 1.9769826 1.9645795 

0.06 2.0118568 1.9979156 

0.05 2.051991 2.0319717 

0.04 2.0961797 2.0741363 

0.03 2.149192 2.1213963 

0.02 2.223653 2.2020078 

0.01 2.3438337 2.3292305 

0.005 2.4608805 2.4251823 

0.001 2.706848 2.688992 

0 3.2247465 3.1565912 
Table 2. Scores comparison between 100000 and 5000 samples for Larsen-Like syndrome 

Histograms of 5000 and 100000 samples are very similar in this case. Obviously, 5000 samples make 

the histogram a little less accurate, but looking at Table 2, the differences in the scores pattern are low. 

Due to the greater number of samples in 100000, the maximum and minimum values are more 

extreme that in the 5000 samples pattern. This won’t affect the final results very much, as will be 

proved in chapter 4. More examples in the annex, section Scores comparisons between 100000 and 

5000 samples. Reference to code is in annex section: Code Index. 
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1.10. Simulation of the patients 

To validate this diagnostic algorithm, it needs to be tested in patients with realistic symptoms. 

However, according to Köhler et al. 2009, is very difficult to use real patients because getting 

phenotypic information from hundreds or thousands of patients, using standardized vocabulary and 

procedures, is infeasible without a lot of resources and time. This is why an informatic approach is 

used. They identified 44 complex dysmorphology syndromes for which adequate frequency data were 

available. Is assumed that the presence of individual symptoms is independent of others, which is 

incorrect, but not enough data is available to do otherwise. 

1.10.1. Dysmorphology syndromes data 

Before starting to process the 44 syndromes to generate simulated patients, some considerations have 

to be done before about the syntaxis of the data. 

Example syndromes 

Symptom name Symptom ID Probability of 

appearance 

Atrophic skin and Aplasia cutis 

congenita and Scarring 

HP:0001077 and HP:0001057 and HP:0000987 57.00% 

Myopia and/or Ptosis and/or 

Nystagmus 

HP:0000545 and/or HP:0000508 and/or HP:0000639 57.00% 

Microphthalmos or Anophthalmia HP:0000568 or HP:0000528 44.00% 

Hypoplastic superior  HP:0008559 43.00% 

Female: Intrauterine growth 

retardation 

HP:0001511 14/22 

Table 3. Some random symptoms selected (12) 

In Table 3, there is an example of some symptoms extracted from the supplemental data (12) provided 

in the paper. They specified the probabilities of occurrence of each symptom, but some of them come 

in sets. In the example, the set of symptoms Atrophic skin and Aplasia cutis congenita and Scarring, 

have a 57% of chance of appearing in all, while Microphthalmos or Anophthalmia have a 44% of chance 

of appearing one or the other exclusively. The and/or conjunction used in Myopia and/or Ptosis and/or 



Analysis of clinical diagnostics in human genetics with semantic similarity searches in ontologies  

  27 

Nystagmus means that one, two, or all symptoms can appear at once with a 57% of chance. The 

number of symptoms that intervene in the and/or case is chosen randomly. 

 
ArrayList<String> HP_IDS_text = /*Array with Symptoms ids like: HP:0002046, 
HP:0000651, etc*/ 
 
//Select randomly from 1 to all symptoms from HP_IDS_text 
int numOfChoices = rand.nextInt(HP_IDS_text.size()) + 1; 
Set<String> choices = new HashSet<String>(); //Results set 
 
while(choices.size() < numOfChoices) { 
    int choice = rand.nextInt(HP_IDS_text.size()); 
    choices.add(HP_IDS_text.get(choice)); 
} 

Code 3.8 “and/or” processing 

On the other hand, or implementation is straightforward, just choosing one symptom randomly. 
ArrayList<String> HP_IDS_text = /*Array with Symptoms ids like: HP:0002046, 
HP:0000651, etc*/ 
 
Set<String> choices = new HashSet<String>(); //Results set 
int choice = rand.nextInt(HP_IDS_text.size()); 
String HPO = HP_IDS_text.get(choice); 
choices.add(HPO); 

Code 3.9 “or” processing 

Finally, and will return all symptoms of the set as is. 
ArrayList<String> HP_IDS_text = /*Array with Symptoms ids like: HP:0002046, 
HP:0000651, etc*/ 
 
Set<String> choices = new HashSet<String>(HP_IDS_text); //Results set 

Code 3.10 “and” processing 

1.10.2. Patients’ generation 

For each of the 44 complex dysmorphology syndromes, 100 patients will be generated considering the 

probabilities of developing each symptom, obtaining a total of 4400 simulated patients. Every patient 

is assigned as male or female randomly, because some symptoms are gender-specific, like Intrauterine 

growth retardation in Table 3 which is specific to females. An example will be used to better illustrate 

this, using Table 3 as it were real disease symptoms: 

The genre is randomly decided, in this case, male. 
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o The first symptom set Atrophic skin and Aplasia cutis congenita and Scarring have a 57% 

chance of appearing. If a random number that can go from 0.0 to 1.0 generates a number 

greater than 0.57, then this symptom is added considering the restrictions exposed in 3.4.1 

Dysmorphology syndromes data. 

o When the last symptom in Table 3 is reached (Female: Intrauterine growth retardation), it is 

ignored, because is exclusive to females. 

The code showing this behavior is presented: 
Set<Symptom> diseaseSymptoms; /* 
Contains all symptoms of one of the 44 diseases. Every symptom includes the 
probabilities, name, 
and the relation with other symptoms utilizing an "and", "or", or "and/or" 
*/ 
 
Random rand = new Random(); 
 
//Undefined = 0; Male = 1; Female = 2 
int genre = 1;//genre decided for the patient, this is random 
 
//The symptoms included in the generated patient are stored here 
Set<String> selectedSymptoms = new HashSet<>(); 
 
for(Symptom symptom : diseaseSymptoms) { 
    //Here is checked if the symptoms have genre constrains 
    if(symptom.getGenre() == 0 || symptom.getGenre() == genre) { 
        //if the chance of one symptom to happen is 57%, if the random 
        //float generators goes above 0.57, the symptom is added to 
selectedSymptoms 
        if(symptom.getProbabilities() >= rand.nextFloat()) { 
            selectedSymptoms.addAll(new HashSet<>(tempSymptomsArray)); 
        } 
    } 
} 

Code 3.11 Patients’ symptoms selection process implementation  

 

1.10.3. Noise and imprecision 

Real patients can have not only symptoms from one single disease, but they can also have some related 

to an underlying disorder that has nothing to do with the main problem. In Köhler et al. 2009 this is 

called “noise”. To simulate noise, they added half as many noise terms to the terms selected from the 

underlying disease. If the disease has nine features, four randomly chosen terms were added. The noise 

symptoms won’t be ancestors or descendants of the terms annotated to the disease or of each other. 
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Set<String> symptoms = //symptoms of the patient; 
Set<URI> allSymptomsFromDb = //allSymptoms in HPO database descendants of 
Phenotypic abnormality (HP:0000118) 
 
int sym_size = symptoms.size(); 
int noise_size = sym_size / 2; 
 
//Make a copy to avoid problems 
ArrayList<URI> allSym = new ArrayList<>(allSymptomsFromDb.size()); 
allSym.addAll(allSymptomsFromDb); 
 
//Create a set of all symptoms from this patient plus descendants and ancestors 
//to avoid using noise that is contained in this set 
Set<URI> ancAndDesc = new HashSet<>(); 
for(String sym : symptoms) { 
    URI symURI = Load_Diseases.getUriFromHP_ID(factory, sym); 
    ancAndDesc.addAll(engine.getDescendantsInc(symURI)); 
    ancAndDesc.addAll(engine.getAncestorsInc(symURI)); 
} 
 
//Now this set contains only unrelated symptoms with the patient's disease 
allSym.removeAll(ancAndDesc); 
 
//Random symptoms from allSym are selected until noise_size is fullfilled 
Set<URI> noise = new HashSet<>(); 
 
while(noise.size() < noise_size) { 
    int choice = rand.nextInt(allSym.size()); 
    URI select = allSym.get(choice); 
     
    noise.add(select); 
} 
 
//Finally, noise is added to the symptoms of the patient 
for(URI HPO : noise) { 
    String hp_id = Load_Diseases.getHP_IDFromUri(factory, HPO); 
    symptoms.add(hp_id); 
} 

Code 3.12 Noise implementation  

Physicians may not choose the appropriate words for describing a symptom that is present in the HPO 

database. Sometimes they describe a clinical anomaly at a more general level because clinical 

investigations have yet to be performed, or because they are unaware of more specific and correct 

terminology. This is called “imprecision”. When imprecision mode is used, every symptom of the 

patient is replaced randomly by one of its ancestors except the root symptom of Phenotypic 

abnormality. 
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If both “noise” and “imprecision” are applied, the first imprecision is used because it may lead to a 

reduced number of symptoms. This is because two terms can have the same ancestors. After this, 

“noise” is applied. 
Set<String> symptoms = //symptoms of the patient; 
 
if(addImprecision) { 
    Set<String> imprecision = new HashSet<>(); 
    for(String symURI : symptoms) { 
         
        //Get all ascendants of symptom 
        Set<URI> ascendants = new HashSet<>(); 
        ascendants.addAll(engine.getAncestorsInc(symURI)); 
         
        //Remove root of ontology and virtualroot to avoid selecting it 
        Set<URI> temp = 
engine.getAncestorsInc(factory.getURI("http://hp/0000118")); 
        ascendants.removeAll(temp); 
 
        //Choose some random ancestor from "ascendants" 
        int choice = rand.nextInt(ascendants.size()); 
        int counter = 0; 
        for(URI asc : ascendants) { 
            if(counter == choice) { 
                imprecision.add(Load_Diseases.getHP_IDFromUri(factory, asc)); 
                break; 
            } 
            counter++; 
        } 
         
    } 
 
    //Set patient's symptoms with the new imprecision set 
    symptoms = imprecision 
} 
 
//If noise must be added now is the time 
if(addNoise) { 
    //Imprecision must be applied first because it may lead to a reduced number 
of features. 
    addNoise(engine, allSymptomsFromDb, factory, rand); 
} 

Code 3.13 Imprecision implementation  

1.10.4. Benjamini and Hochberg correction 

After the patients are generated, similarity scores are calculated along with the p-values. Each patient 

contains the p-values calculated for each disease, where the correct diagnosis should be the illness 
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with a lower p-value. In case of a draw, the disease with a higher similarity score will be selected. If the 

similarity scores are also equal, the best one will be randomly selected. 

Because every patient contains thousands of p-values, some a priori good results could happen just by 

chance. To reduce the impact of this false positive, the Benjamini and Hochberg correction method is 

used. 

𝑷𝑷(𝒔𝒔)
𝑩𝑩𝑩𝑩 = 𝒔𝒔𝒔𝒔𝒎𝒎 �𝑷𝑷(𝒔𝒔)

𝒔𝒔
𝒔𝒔

,𝑷𝑷(𝒔𝒔+𝟏𝟏)
𝑩𝑩𝑩𝑩 �                                         (Equation 3) 

Where P(1), P(2), …, P(m) are the p-values in ascendant order, and “m” is the number of values. 

//The p-values in ascendant order 
ArrayList<Entry<String, Float>> pValueList; 
 
//The Benjamini and Hochberg equation is applied 
int m = pValueList.size(); 
for (int i = m - 2; i >= 0; i--) { 
    float pvalue = pValueList.get(i).getValue(); 
    float lastpvalue = pValueList.get(i+1).getValue(); 
    pValueList.get(i).setValue(Math.min(pvalue * m / (i + 1), lastpvalue)); 
} 
 
return pValueList; 

Code 3.14 Benjamini and Hochberg implementation  

To illustrate the behavior of the Benjamini and Hochberg equation, an example will be provided using 

a set of ordered p-values and the corrected column. The last column is the alpha value. In Köhler et al. 

2009, the p-values lower than 0.05 will be considered significative, in this example, 0.25 will be used 

for convenience. Reference to code is in annex section: Code Index. 

p-value p-value corrected α = 0.25 

0.001 0.0250000 ACCEPTED 

0.008 0.1000000 ACCEPTED 

0.039 0.2100000 ACCEPTED 

0.041 0.2100000 ACCEPTED 

0.042 0.2100000 ACCEPTED 

0.061 0.2541667 REJECTED 
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0.074 0.2642857 REJECTED 

0.205 0.4910714 REJECTED 

0.212 0.4910714 REJECTED 

0.216 0.4910714 REJECTED 

0.222 0.4910714 REJECTED 

0.251 0.4910714 REJECTED 

0.269 0.4910714 REJECTED 

0.275 0.4910714 REJECTED 

0.340 0.5328125 REJECTED 

0.341 0.5328125 REJECTED 

0.384 0.5647059 REJECTED 

0.569 0.7815789 REJECTED 

0.594 0.7815789 REJECTED 

0.696 0.8700000 REJECTED 

0.762 0.9071429 REJECTED 

0.940 0.9860000 REJECTED 

0.942 0.9860000 REJECTED 

0.975 0.9860000 REJECTED 

0.986 0.9860000 REJECTED 
Table 4. Benjamini and Hochberg example 
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Results 

The main goal of this project was to compare different semantic similarity methods apart from the one 

used in the paper.  

The first step is to analyze the performance of the semantic similarity method used in this thesis and 

compare it with the results shown in Köhler et al. 2009. 

 
Figure 9. Results from Köhler et al. 2009.  

In Figure 9, which is directly extracted from Köhler et al. 2009, the rankings of the real diseases are 

presented. There are 3 methods represented: the feature vector method (FV), the similarity scores 

method (3.2.3 Similarity score calculation) or OSS, and the p-value method (3.3 P-values calculation) 

or OSS-PV. The FV method just counts the number of symptoms of the patient that are present at each 

disease, then the higher score is considered the correct answer. Each set of methods is presented with 

different combinations of noise (randomly chosen terms) and imprecision (terms replaced by its 
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ancestors). Those ranks come from the list of diseases presented for each patient, if the correct disease 

is classified as rank 1, the result is perfect, while if the real disease is listed in the fourth position, the 

rank would be 4. For example, for the p-value method without noise and imprecision, the ranking 

shows that the vast majority of patients’ diseases have been correctly identified and set as rank 1 

except 7 patients (green dots).  

Each boxplot shows 50% of the data surrounding the median line, from the first quartile to the third 

quartile. The whiskers extend from the box no more than 1.5 times the inter-quartile range, or in other 

words, the length of the box. The extreme points represent the data outside the end of the whiskers. 

Figure 9, in conclusion, shows the overwhelming superiority of the OSS-PV method compared with the 

other two. 

1.11. Results of the system implemented in this thesis and comparisons 

For this first simulation, the most recent diseases database, as well as the most recent HPO database, 

were used. The graphics format is not the same as in Figure 9 for convenience. The same 4400 

simulation patients are used in every method, 1100 in each combination of noise and imprecision. 

 
Figure 10. FV method ranking using recent databases 
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 Nº of 1st ranks Medians 

Noise - 

Imprecision - 969 1 

Noise + 

Imprecision - 973 1 

Noise - 

Imprecision + 112 120.5 

Noise + 

Imprecision + 141 110.5 

Table 4. Figure 10 statistics 

 
Figure 11. Similarity scores method ranking using recent databases 

 Nº of 1st ranks Medians 

Noise - 

Imprecision - 981 1 

Noise + 

Imprecision - 889 1 

Noise - 
623 1 
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Imprecision + 

Noise + 

Imprecision + 199 14 

Table 5. Figure 11 statistics 

 
Figure 12. P-Values method ranking using recent databases 

 Nº of 1st ranks Medians 

Noise - 

Imprecision - 968 1 

Noise + 

Imprecision - 866 1 

Noise - 

Imprecision + 391 6 

Noise + 

Imprecision + 189 17 

Table 6. Figure 12 statistics 

Figures 10, 11, and 12 are divided accordingly to the presence of noise and imprecision, just as in Figure 

9. Each figure represents one method: FV, Similarity scores, and P-values respectively. 
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The scores below each boxplot are just the ranks averaged. If, for example, one boxplot contains 1100 

ranks which are 1, the average would be 1 as well; a perfect score. Obviously, that means that higher 

values are worse. The score in the title is the average of all samples including all variations of noise and 

imprecision. The similarity score method seems to give a better number of 1st ranks than using p-

values. 

Looking at the FV method (Figure 10) of the thesis compared with the results shown in the paper 

(Figure 9), the thesis simulation performs worse than the paper. The implementation of the FV method 

is very simple: 
public double compare(Set<URI> query, Set<URI> disease, SM_Engine rc, SMconf 
groupwiseconf) throws SLIB_Exception { 
 
    //FV score 
    int fv = 0; 
    // Query terms are compared with disease symptoms, if there is a coincidence 
    // f vis incremented 
    for(URI a : query) { 
        for(URI b : disease) { 
            if(a.equals(b)) { 
                fv++; 
                break; 
            } 
        } 
    } 
 
    return fv; 
} 

Code 4.1 FV implementation 

The patients were generated just as exposed in Köhler et al. 2009 (1), so the main causes for these 

discrepancies can be two:  

o The paper didn’t provide some key information about the implementation of the patients’ 

simulation system 

o The databases used in the thesis simulation are the cause of the bad performance 

Another discrepancy found is that the similarity score system (Figure 11) provides better performance 

(the rank average scores are lower) than by p-value (Figure 12).  Also, the “noise– imprecision+” in p-

values have a rank score almost as high as the “noise+ imprecision+” but with a much higher bias, the 

boxplot is bigger. 

It seems that imprecision impacts heavily on the behavior of the simulation. Observing Figure 9 (results 

from Köhler et al. 2009), noise doesn’t affect very much the performance, just as in the simulation. 
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Maybe there is some detail not explained in the paper about the imprecision, but due to the bigger 

impact on the results, a capped version of the imprecision method will be used to see if there is any 

improvement.  

This modification consists of capping the random selection of a symptom ancestor, with only selecting, 

for example, ancestors that are “parents” or “grandparents” of the term. In the following examples, 

some limits are chosen randomly to observe their effects. A limit of 2 means that an ancestor can be 

only 2 generations away from the symptom, in other words, only “parents” and “grandparents” (or the 

symptom itself) can be chosen as the maximum. A limit of 3 means that, only “parents”, 

“grandparents”, and “great grandfathers” can be chosen. 

 
Figure 13. FV method with imprecision limit set to 2 
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Figure 14. P-values method with imprecision limit set to 2 

 
Figure 15. Similarity scores method with imprecision limit set to 2 
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Compared with Fig. 9, a limit of 2 still returns inconsistent results. While FV performance is very similar 

to Köhler et al. 2009, and the similarity score is better (Fig. 15), the p-value method is not as good. It 

can be concluded that the main problem of these inconsistencies, may not be related to the 

imprecision. More experiments with limits are in the annex. 

Another approach to address these problems is to use the HPO database version 1.59, similar to the 

one used in Köhler et al. 2009 (1.58), and a closer version in time of the annotation database which 

source will be explained in 4.2 Evaluation of Phenomizer using web scraping. 

 

 Using the latest databases (25/05/2022) Using databases close in time with the paper 

FV 

  

 Nº of 1st ranks Medians 

Noise - 

Imprecision - 969 1 

Noise + 

Imprecision - 973 1 

Noise - 

Imprecision + 112 120.5 

Noise + 

Imprecision + 141 110.5 
 

 Nº of 1st ranks Medians 

Noise - 

Imprecision - 946 1 

Noise + 

Imprecision - 951 1 

Noise - 

Imprecision + 160 75 

Noise + 

Imprecision + 145 101 
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P-values 

method 

  

 Nº of 1st ranks Medians 

Noise - 

Imprecision - 968 1 

Noise + 

Imprecision - 866 1 

Noise - 

Imprecision + 391 6 

Noise + 

Imprecision + 189 17 
 

 Nº of 1st ranks Medians 

Noise - 

Imprecision - 933 1 

Noise + 

Imprecision - 877 1 

Noise - 

Imprecision + 467 3 

Noise + 

Imprecision + 170 14 
 

Similarity 

Scores 

  

 Nº of 1st ranks Medians 

Noise - 

Imprecision - 981 1 

Noise + 

Imprecision - 889 1 

Noise - 

Imprecision + 623 1 

Noise + 

Imprecision + 199 14 
 

 Nº of 1st ranks Medians 

Noise - 

Imprecision - 963 1 

Noise + 

Imprecision - 882 1 

Noise - 

Imprecision + 668 1 

Noise + 

Imprecision + 191 13 
 

Table 7. Comparison using new and old databases 
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According to Table 7, using databases very similar in time to Köhler et al. 2009 improves the 

performance of the simulation. Also, the similarity score method performs better that the p-value 

method, mainly in the “noise- imprecision+” state. However, the performance is still worse than stated 

in the article. Another, more definitive, the approach will be used in the next section. 

1.12. Evaluation of Phenomizer using web scraping 

In Köhler et al. 2009 they implemented the system into an app called the Phenomizer (14). Comparing 

the simulation with the Phenomizer can be a good way of assessing if the results are similar in a “real” 

situation with the previously generated patients. 

The idea is to generate patients like in previous sections and use them at the same time in the 

simulation developed in this project and the Phenomizer. To use the Phenomizer web scraping is 

required. Web scraping is a technique that consists of extracting data from websites, in this case from 

the Phenomizer itself.  

 
Figure 16. Phenomizer 

4400 patients were generated, with noise and imprecision intercalated just as in section 3.4.2. patients’ 

generation. This set of patients will be called Set 0. The code used for the web scraping is adjoined in 

the annex. The results comparing the Phenomizer performance with the simulation, using the latest 

databases, are the following: 
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Figure 17. Phenomizer performance using the P-value method, the patient Set 0, and the latest databases 

 Nº of 1st ranks Medians 

Noise - 

Imprecision - 939 1 

Noise + 

Imprecision - 864 1 

Noise - 

Imprecision + 335 4 

Noise + 

Imprecision + 214 11.5 
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Figure 18. Local simulation performance using the P-value method, the patient Set 0, and the latest databases 

 Nº of 1st ranks Medians 

Noise - 

Imprecision - 1010 1 

Noise + 

Imprecision - 880 1 

Noise - 

Imprecision + 351 7 

Noise + 

Imprecision + 249 9 

 

It can be seen that the performance of the local simulation and the Phenomizer are very close, 

however, there is a big bias in the local simulation in the “noise- imprecision+” boxplot. Also, the 

median in “noise+ imprecision+” is lower in the local simulation but the bias is clearly higher looking at 

the averages of both boxplots: 283.86 in the local simulation, and 177.82 in the Phenomizer. Again, 
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this is mostly caused by the new HPO database. The number of correctly classified diseases is higher in 

the local simulation. 

The most interesting point is that the results shown in the Phenomizer boxplots (Fig. 17), are not even 

close to the results in Köhler et al. 2009 (Fig. 9). This may be caused by some difference in the real 

generation of the patients used in Fig. 9 and the description of that process that, a posteriori, was used 

and implemented in this simulation. 

To try to improve a bit more the outcome of the simulation, the annotations database from the 

Phenomizer itself will be extracted using web scraping again. Code references are in the annex. 

 
Figure 19. Phenomizer showing its annotations database 

A new set of patients called Set 1 was generated and the results, using the Phenomizer’s annotations 

database and the HPO database version 1.59, are the following: 
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Figure 20. Phenomizer performance using the P-value method, the patients Set 1, and older databases 

 Nº of 1st ranks Medians 

Noise - 

Imprecision - 956 1 

Noise + 

Imprecision - 825 1 

Noise - 

Imprecision + 398 3 

Noise + 

Imprecision + 188 16 

Table 8. Figure 20 statistics 
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Figure 21. Local simulation performance using the P-value method, the patients Set 1, and older databases 

 Nº of 1st ranks Medians 

Noise - 

Imprecision - 984 1 

Noise + 

Imprecision - 860 1 

Noise - 

Imprecision + 411 3 

Noise + 

Imprecision + 194 12 

Table 9. Figure 21 statistics 

The local simulation and the Phenomizer results are very similar in terms of medians and bias. The 

medians are identical in Fig. 20 and Fig. 21 except for the boxplot at “noise+ imprecision+”, where the 

median is slightly lower in the local simulation.  

Just as in the last example, the bias in “noise- imprecision+” is higher in the local simulation compared 

with the Phenomizer, but a bit lower in “noise+ imprecision+”. Still, the averages in the local simulation 
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are higher because there are more outliers with very high values that increase these numbers. 

However, these extreme outliers are not as important as the number of correctly classified diseases. 

In conclusion in this section, the performance of the local simulation is in pair with the Phenomizer, 

and there are some improvements in “Noise- Imprecision+” using the older databases over the latest 

but worse results in “Noise+ Imprecision+”.  

The p-value method, in fact, performs worse than with similarity scores, as seen in section 4.1 Results 

of the system implemented in this thesis and comparisons and annex 4.5 Performance comparison 

between old and latest databases. However, the p-values can contain valuable information about 

whether the disease in rank 1 is a reliable result (p-value < 0.05) or not (p-value > 0.05). This part will 

be discussed in the next section. Reference to code is in annex section: Code Index. 

1.13.  P-value reliability 

It was proved in previous sections that the similarity scores method delivers better results in terms of 

bias and the number of correctly classified diseases, but the p-value method has the advantage of 

assessing if the results delivered are reliable or not. In this section, the quality of the p-values to tell if 

a value is reliable or not will be analyzed. 
#Lists contain data from the 4400 auto-generated patients 
real_rank_list = #List of ranks of the real diseases in the results 
real_pvalue_list = #List of p-values of the real diseases 
first_pvalue_list = #List of p-values of the first ranked diseases 
 
ranktocompare = 1 
significance = 0.05 
 
FN = 0 #False Negatives 
TP = 0 #True Positives 
FP = 0 #False Positives 
TN = 0 #True Negatives 
 
for i in range(len(real_rank_list)): 
    real_rank = real_rank_list[i] 
    real_pvalue = real_pvalue_list[i] 
    first_pvalue = first_pvalue_list[i] 
    if real_rank <= ranktocompare: 
        if(real_pvalue > significance): 
            #If the real disease rank is 1, but the p-value is greater than 0.05 
            #then is considered as a False Negative 
            FN += 1 
        else: 
            TP += 1 
    else: 
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        if(real_pvalue > significance): 
            if(first_pvalue < significance): 
                #If the real disease rank is greater than 1 and the first ranked  
                #disease p-value is lower than 0.05, then is considered 
                #as a False Positive 
                FP += 1 
            else: 
                TN += 1 
        else: 
            #In case the real disease rank is higher than 1, but the p-value is 
            #also lower than 0.05, then is difficult to choose 
            #what disease is the correct answer and is considered a False 
positive 
            FP += 1 
print("FN: " + str(FN)) 
print("TP: " + str(TP)) 
print("FP: " + str(FP)) 
print("TN: " + str(TN)) 

Code 4.2. Truth table implementation 

To create the truth table, four variables are used: the significance value (in this case 0.05) to tell if the 

result is relevant, the rank of the real disease, the p-values of the 1st classified disease, and the p-value 

of the real disease.  

To assess the quality of the p-values, a truth table will be used and a new set of patients will be 

generated for this goal. 
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Figure 22. Local simulation using Similarity scores with the latest databases 

 Nº of 1st ranks Medians 

Noise - 

Imprecision - 984 1 

Noise + 

Imprecision - 891 1 

Noise - 

Imprecision + 673 1 

Noise + 

Imprecision + 172 14 

Table 10. Figure 22 boxplot statistics 
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Figure 23. Local simulation using p-values with the latest databases 

 Nº of 1st ranks Medians 

Noise - 

Imprecision - 969 1 

Noise + 

Imprecision - 872 1 

Noise - 

Imprecision + 411 4 

Noise + 

Imprecision + 150 17 

Table 11. Figure 23 boxplot statistics 

Local simulation (latest databases) (Rank = 1) 

 False Negative True Positive False Positive True Negative 

Noise – 

Imprecision - 0 969 124 7 

Noise + 

Imprecision - 73 799 208 20 

Noise – 

Imprecision + 305 106 378 311 
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Noise + 

Imprecision + 121 29 155 795 

Total 499 1903 865 1133 
Table 12. The truth table of Figure 23 for ranks equal to 1 

Looking at Table 12, rows “Noise+ Imprecision+”, and “Noise- Imprecision+”; which should be closer to 

a real case, some conclusions are extracted:  

o Is very difficult to trust a positive result (p-value < 0.05), because only 29 out of 184 positives 

(15.7%) are really true.  Without noise, the results improve a little to 106 out of 484 positives 

(21%), still not enough to be trusted. 

o On the other hand, is much easier to trust a negative result: 795 out of 916 are true negatives 

(86.7 %), but “Noise- Imprecision+” is 311 out of 616 (50.4%). 

o When the noise and imprecision of a set of symptoms are reduced, the ratio of true negatives 

decreases but the true positives ratio increases. This is because a simpler set of symptoms 

makes the p-value method more proficient in finding the correct disease. 

o Compared with the stats of the similarity score (Table 10), in “Noise+ Imprecision+” 172 out of 

1100 diseases (15.63%) are correctly classified, which is almost the same performance that 

with p-values. In “Noise- Imprecision+” 673 out of 1100 (61.18%), which is much better than 

the p-value method. 

In terms of correctly identified diseases ratio, the Similarity score method is better than the p-value 

method. While is true that the ratio of true negatives for “Noise+ Imprecision+” is high enough, 

only 29 patients (2.6%) have been correctly diagnosed (172 with similarity scores), and 106 

patients (9.6%) in “Noise- Imprecision+” (673 with similarity scores). 

This is a tradeoff between a good indicator of true negatives and low true positive accuracy when 

the symptom set has imprecision and noise; and, improving the symptoms set through more 

diagnosis and investigations, lowering the true negative ratio abruptly while increasing slightly the 

number of true positives. Moreover, is not possible in a real scenario to tell which quantity of noise 

and imprecision your symptoms set has, in consequence, the exact ratios are unknown. 

To make this analysis more complete, a new truth table from Fig. 23 is obtained but counts as a 

true positive if the real patient’ disease is in the top ten. A patient’s disease present in the top ten 

results can still be useful for a researcher to try more diagnosis techniques to narrow down this 

list. 

Local simulation (latest databases) (Rank <= 10) 
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 False Negative True Positive False Positive True Negative 

Noise – 

Imprecision - 16 1021 59 4 

Noise + 

Imprecision - 134 873 81 12 

Noise – 

Imprecision + 520 112 273 195 

Noise + 

Imprecision + 427 35 111 527 

Total 1097 2041 524 738 
Table 13. The truth table of Figure 23 for ranks equal to 10 

“Noise+ Imprecision+” from table 13 shows a much higher number of false negatives. While the 

number of true positives in “Noise+ Imprecision+” and “Noise- Imprecision+” is very similar, the false 

negatives are more abundant, this means that a lot of correct diagnosed diseases present in the top 

ten were assigned a high p-value, which invalidates the result. 

In conclusion, the p-values method is not very useful to diagnose the correct patient’s disease due to 

the low proportion of true positives. Even if the researcher is only analyzing the first result and not the 

top ten, the uncertainty about the quantity of imprecision and noise in the symptoms can be 

misleading when looking for true negatives. Is better to just use the similarity scores method, with 

15.63% of correctly diagnosed patients with high imprecision and noise. This percentage can improve 

very fast when “cleaning” the symptoms set. 

1.14. More Similarity score methods 

The last part of this thesis is to test more Similarity scores methods apart from Eq. 1. Maybe some new 

technique can achieve better performance than the method used in this thesis and Köhler et al. 2009. 

The new methods are extracted from the Semantic Measures Library (SML) (15). The library contains 

many score calculation methods divided into many subsections. In this case, the focus will be put on 

the next sections: 

 Direct Groupwise measures: This kind of similarity method normally compares two groups of terms 

(like query and symptoms) using set operations like intersection, or union of both groups, and obtains 

scores playing with the sizes of the sets. 
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 IC-based measures: This set of similarity methods is based into compare every item of one set with 

every item of the other using their IC values. If, for example, the first set query contains 5 items, and 

the second set symptoms contain 7 terms, a matrix called matrix score of size 7x5 will be created with 

every score of the pairwise comparisons. Then, this matrix is processed using an Indirect Groupwise 

measure like taking the max value from the matrix, an average, etc. 

1.14.1. Direct Groupwise measures 

The best performant direct Groupwise measures are shown in the next table. The full set of methods 

is in the annex. 

Method Boxplot Boxplot performance 

Batet 2010 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision - 217 18.0 

Noise + 

Imprecision - 389 4.0 

Noise - 

Imprecision + 3 1578.0 

Noise + 

Imprecision + 5 854.5 
 

Sim GIC 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision - 325 5.0 

Noise + 

Imprecision - 526 2.0 

Noise - 

Imprecision + 5 539.5 

Noise + 

Imprecision + 16 304.5 
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SimLP 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision - 124 36.0 

Noise + 

Imprecision - 92 44.0 

Noise - 

Imprecision + 28 147.0 

Noise + 

Imprecision + 21 257.0 
 

Lee 2004 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision - 0 561.0 

Noise + 

Imprecision - 0 577.0 

Noise - 

Imprecision + 0 314.0 

Noise + 

Imprecision + 0 299.5 
 

Term Overlap 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision - 962 1.0 

Noise + 

Imprecision - 748 1.0 

Noise - 

Imprecision + 666 1.0 

Noise + 

Imprecision + 126 25.0 
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Normalized 

Term Overlap 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision - 0 26.0 

Noise + 

Imprecision - 0 215.0 

Noise - 

Imprecision + 0 20.0 

Noise + 

Imprecision + 0 385.0 
 

Table 14. Best direct Groupwise measures by similarity scores using the latest databases 

The best results are given by the Term Overlap method, based on counting the number of common 

ancestors from both sets.  

 Nº of 1st ranks Medians 

Noise - 

Imprecision - 984 1 
Noise + 

Imprecision - 891 1 
Noise - 

Imprecision + 673 1 
Noise + 

Imprecision + 172 14 
Table 15. Performance statistics by similarity scores of Köhler et al. 2009 method 

 Nº of 1st ranks Medians 

Noise - 

Imprecision - 962 1.0 

Noise + 

Imprecision - 748 1.0 

Noise - 

Imprecision + 666 1.0 

Noise + 

Imprecision + 126 25.0 

Table 16. Performance statistics by similarity scores of Term Overlap method 

The term overlap method performs very similarly to Köhler et al. 2009 method (Eq 1) but without 

considering the IC values. The bias of Term Overlap is also higher. Even so, Köhler et al. 2009 method 
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using similarity scores are still better. There is no good candidate to substitute Köhler et al. 2009 in the 

direct Groupwise measures. 

1.14.2. IC-based measures 

A new table with IC-based measures and indirect measures is presented where only the best methods 

are included. The full table is adjoined in the annex.  

Method Boxplot Boxplot performance 

Pairwise: Tversky 

IC Contrast model 

Indirect measure: 

Best Match 

Average (BMA) 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
724 1.0 

Noise + 

Imprecision 

- 
545 2.0 

Noise - 

Imprecision 

+ 
11 64.0 

Noise + 

Imprecision 

+ 
6 95.0 

 

Pairwise: Tversky 

IC Ratio model 

Indirect measure: 

Best Match 

Average (BMA) 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
763 1.0 

Noise + 

Imprecision 

- 
624 1.0 

Noise - 

Imprecision 

+ 
27 23.0 

Noise + 

Imprecision 

+ 
12 26.0 
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Pairwise: Tversky 

IC Prop Contrast 

model 

Indirect measure: 

Best Match 

Average (BMA) 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
677 1.0 

Noise + 

Imprecision 

- 
411 2.0 

Noise - 

Imprecision 

+ 
5 618.0 

Noise + 

Imprecision 

+ 
3 576.0 

 

Pairwise: Tversky 

IC Prop Ratio 

model  

Indirect measure: 

Best Match 

Average (BMA)  

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
796 1.0 

Noise + 

Imprecision 

- 
565 1.0 

Noise - 

Imprecision 

+ 
21 32.0 

Noise + 

Imprecision 

+ 
15 66.0 

 

Pairwise: Resnik 

1995  

Indirect measure: 

Best Match 

Average (BMA) 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
769 1.0 

Noise + 

Imprecision 

- 
686 1.0 

Noise - 

Imprecision 

+ 
122 17.0 

Noise + 

Imprecision 

+ 
55 37.0 
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Pairwise: Lin 1998 

Indirect measure: 

Best Match 

Average (BMA) 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
753 1.0 

Noise + 

Imprecision 

- 
660 1.0 

Noise - 

Imprecision 

+ 
101 17.0 

Noise + 

Imprecision 

+ 
83 20.0 

 

Pairwise: Jiang and 

Conrath 1997 

Indirect measure: 

Best Match 

Average (BMA) 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
0 2977.5 

Noise + 

Imprecision 

- 
0 2461.5 

Noise - 

Imprecision 

+ 
0 2873.5 

Noise + 

Imprecision 

+ 
0 2405.0 

 

Pairwise: Jiang and 

Conrath 1997 

Normalized 

Indirect measure: 

Best Match 

Average (BMA) 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
745 1.0 

Noise + 

Imprecision 

- 
604 1.0 

Noise - 

Imprecision 

+ 
9 81.0 

Noise + 

Imprecision 

+ 
3 140.5 
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Pairwise: Schlicker 

SimRel 2006 

Indirect measure: 

Best Match 

Average (BMA) 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
754 1.0 

Noise + 

Imprecision 

- 
655 1.0 

Noise - 

Imprecision 

+ 
101 17.0 

Noise + 

Imprecision 

+ 
81 20.0 

 

Pairwise: SimIC 

2010 

Indirect measure: 

Best Match 

Average (BMA) 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
803 1.0 

Noise + 

Imprecision 

- 
692 1.0 

Noise - 

Imprecision 

+ 
223 6.0 

Noise + 

Imprecision 

+ 
190 10.0 

 

Pairwise: Jaccard 

IC 

Indirect measure: 

Best Match 

Average (BMA) 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
806 1.0 

Noise + 

Imprecision 

- 
605 1.0 

Noise - 

Imprecision 

+ 
41 19.0 

Noise + 

Imprecision 

+ 
22 20.0 
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Pairwise: Jaccard 

3W IC 

Indirect measure: 

Best Match 

Average (BMA) 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
645 1.0 

Noise + 

Imprecision 

- 
649 1.0 

Noise - 

Imprecision 

+ 
129 21.0 

Noise + 

Imprecision 

+ 
138 23.0 

 

 

The best method is SimIC 2010 with p-values, which outperforms Köhler et al. 2009 using similarity 

scores when noise and imprecision are added.  

 Nº of 1st ranks Medians 

Noise - 

Imprecision - 984 1 
Noise + 

Imprecision - 891 1 
Noise - 

Imprecision + 673 1 
Noise + 

Imprecision + 172 14 
Table 17. Performance statistics by similarity scores of Köhler et al. 2009 method 

 Nº of 1st ranks Medians 

Noise - 

Imprecision - 803 1.0 

Noise + 

Imprecision - 692 1.0 

Noise - 

Imprecision + 223 6.0 

Noise + 

Imprecision + 190 10.0 

Table 18. Performance statistics by p-values of SimIC 2010 method 

However, SimIC falls behind by a huge margin compared with Köhler et al. 2009 in “Noise- 

Imprecision+”. Moreover, the bias is higher. 
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In conclusion, the only good candidate to substitute Köhler et al. 2009 method could be SimIC. 

However, the little increase in performance with noise and imprecision is not compensated by the loss 

of accuracy and higher bias in classifying diseases in the rest of the combinations of those terms. That 

means that as the symptom set is cleaned from noise and imprecision, the increase in accuracy won’t 

be as high as with the original Köhler et al. 2009. 
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Conclusions 

The disease classification system described in Köhler et al. 2009 was correctly implemented as stated 

in chapter 4.2 because the performance in the local implementation and the Phenomizer were almost 

identical. This arises the question of the reliability of the results shown in the original paper (Fig. 9). 

The median presented in that figure for the p-value method is 1, even with noise and imprecision. The 

discrepancy could mean that the patients generated had not a high degree of imprecision or noise, or 

maybe the results were a bit optimistic.  

For computing the p-values, simulations using 5000 random sets of symptoms were used instead of 

100000 for a matter of time and computational resources, but only a bit of precision was lost because 

of this change, as explained in chapter 3.3. 

With the local ranking system correctly working, many simulations were completed comparing the 

performance using simply similarity scores, with the p-values method as described by Köhler et al. 

2009. It was found that similarity scores performed better than p-values, however, with p-values, in 

principle, you can see if the results returned by the simulation are trustworthy or not. Chapter 4.3, is 

shown that the reliability of those p-values for this task is not very high, so the best way was found to 

be the similarity score method. 

Looking for more ways of calculating similarity scores, a lot of new methods were tested using the SML 

library (9). The SimIC method with p-values showed a high performance with noise and imprecision, 

but, as a drawback, this is not compensated by the fast loss of accuracy and higher bias in classifying 

diseases in the rest of the combinations of noise and imprecision when “cleaning up” the symptoms 

set. 

Overall, the best method found is a simple similarity score using the equation described in Köhler et al. 

2009 (Equation 1).  

In future projects, a new similarity score method based on machine learning techniques specifically for 

this task could be developed. 
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Annex 

Scores comparisons between 100000 and 5000 samples 

a. Adrenoleukodystrophy (31 symptoms) 

 
Figure 24. Histogram of the Similarity scores for disease OMIM:300100 (Adrenoleukodystrophy) with 100000 searches and  

query size of 10 
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Figure 25 Histogram of the similarity scores for disease OMIM:300100 (Adrenoleukodystrophy) with 5000 searches and query 

size of 10 

p-values pattern Scores 100000 Scores 5000 

1 0.19683938 0.34558508 

0.9 1.166516 1.1509366 

0.8 1.3175824 1.3057898 

0.7 1.4282119 1.425651 

0.6 1.5223223 1.5167466 

0.5 1.6123456 1.6051809 

0.4 1.7012159 1.6975774 

0.3 1.799328 1.7945406 
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0.2 1.9190576 1.9135044 

0.1 2.0878434 2.076246 

0.09 2.1111438 2.1003182 

0.08 2.1371796 2.1211715 

0.07 2.1651263 2.1542656 

0.06 2.1968553 2.1877959 

0.05 2.230914 2.2266886 

0.04 2.2724805 2.2840247 

0.03 2.3271668 2.340757 

0.02 2.3975418 2.4162076 

0.01 2.5145826 2.5516486 

0.005 2.618476 2.6567533 

0.001 2.8296351 2.812456 

0 3.5460958 2.9810739 
Table 19. Scores comparison between 100000 and 5000 samples for Adrenoleukodystrophy 
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b. Megabladder (9 symptoms) 

 
Figure 26. Histogram of the similarity scores for disease OMIM:618719 (Megabladder) with 100000 searches and query size 

of 10 
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Figure 27 Histogram of the similarity scores for disease OMIM:618719 (Megabladder) with 5000 searches and query size of 

10 

p-values pattern Scores 100000 Scores 5000 

1 0.011425085 0.011425085 

0.9 0.011425085 0.011425085 

0.8 0.18966815 0.18966815 

0.7 0.30250037 0.30250037 

0.6 0.3665668 0.3665668 

0.5 0.4554392 0.45476174 

0.4 0.54661614 0.54661614 

0.3 0.65764207 0.6530567 



  Annexos 

72   

0.2 0.7803006 0.77650833 

0.1 0.9886342 0.98359066 

0.09 1.0160875 1.0102637 

0.08 1.0461065 1.0385344 

0.07 1.0778913 1.0666656 

0.06 1.1171958 1.1020137 

0.05 1.1613585 1.1319216 

0.04 1.2132193 1.1776403 

0.03 1.278928 1.2355825 

0.02 1.3702499 1.3195453 

0.01 1.5114512 1.4707377 

0.005 1.6381904 1.6581869 

0.001 1.9240036 1.9818192 

0 2.575947 2.3311734 
Table 20. Scores comparison between 100000 and 5000 samples for megabladder 

Due to the lower number of symptoms (9), is more likely to obtain scores closer to 0, because is harder, 

probabilistically speaking, to find with the query symptoms that pertain to the disease. Also, could 

mean that some symptoms that describe this disease are too general, or too specific to one branch of 

the HPO. 
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Code Index 

In this section is provided an index of the files used for some specific calculations in this thesis. The files 

are adjoined in a zip file together with this report. 

o Transform format database from hpoa to tsv: HPOA_to_TSV.py 

o P-values calculation: Monte_Carlo.java 

o P-values plots: Monte_Carlo_Plots.java 

o Simulated patients’ generation: Simulate_Patients.java 

o Phenomizer results scrapping: Test_Phenomizer.java 

o Phenomizer diseases database scraping: Get_HPOA_From_Phenomizer.java 

o Boxplots and statistics: BoxPlotResults.py 
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Limited imprecision method 

Limit  3 

 
Figure 28. P-values method with imprecision limit set to 3 
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Figure 29. Similarity scores method with imprecision limit set to 3 

 
Figure 30. FV method with imprecision limit set to 3 
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Limit  4 

 
Figure 31. P-values method with imprecision limit set to 4 



Analysis of clinical diagnostics in human genetics with semantic similarity searches in ontologies  

  77 

 
Figure 32. Similarity scores method with imprecision limit set to 4 
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Performance comparison between old and latest databases 

Methods Using the latest databases (25/05/2022) Using databases close in time with the paper 

P-values 

method 

  

 Nº of 1st ranks Medians 

Noise – 

Imprecision - 986 1 

Noise + 

Imprecision - 871 1 

Noise – 

Imprecision + 399 4 

Noise + 

Imprecision + 195 19 
 

 Nº of 1st ranks Medians 

Noise – 

Imprecision - 946 1 

Noise + 

Imprecision - 867 1 

Noise – 

Imprecision + 465 3 

Noise + 

Imprecision + 195 15 
 

Similarity 

Scores 

  

 Nº of 1st ranks Medians 

Noise – 

Imprecision - 990 1 

Noise + 

Imprecision - 887 1 

Noise – 

Imprecision + 647 1 

 Nº of 1st ranks Medians 

Noise – 

Imprecision - 985 1 

Noise + 

Imprecision - 878 1 

Noise – 

Imprecision + 658 1 
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Noise + 

Imprecision + 211 15 
 

Noise + 

Imprecision + 213 12 
 

Table 21. Comparison using new and old databases 

The similarity scores method performs better than the p-value method in terms of better median and 

a greater number of 1st ranks. Also, the old database seems to perform a bit better than the latest 

versions. 

 

 

Phenomizer vs local simulation 

Latest databases comparison 

 
Figure 33. Phenomizer performance using the P-value method, the patients Set 2, and the latest databases 

 Nº of 1st ranks Medians 



  Annexos 

80   

Noise – 

Imprecision - 942 1 

Noise + 

Imprecision - 854 1 

Noise – 

Imprecision + 372 4 

Noise + 

Imprecision + 241 12 

Table 22. Figure 31 statistics 

 
Figure 34. Local simulation performance using the P-value method, the patients Set 2, and the latest databases 

 Nº of 1st ranks Medians 

Noise – 

Imprecision - 995 1 

Noise + 

Imprecision - 886 1 

Noise – 

Imprecision + 387 6 
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Noise + 

Imprecision + 264 9 

Table 23. Figure 32 statistics 

The local simulation seems to perform better than the Phenomizer but the median in “noise- 

imprecision+” is higher due to the high bias. 

Older databases comparison 

 
Figure 35. Phenomizer performance using the P-value method, the patients Set 3, and older databases 

 Nº of 1st ranks Medians 

Noise – 

Imprecision - 931 1 

Noise + 

Imprecision - 837 1 

Noise – 

Imprecision + 410 3 
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Noise + 

Imprecision + 231 13.5 

Table 24. Figure 33 statistics 

 
Figure 36. Local simulation performance using the P-value method, the patients Set 3, and older databases 

 Nº of 1st ranks Medians 

Noise – 

Imprecision - 972 1 

Noise + 

Imprecision - 862 1 

Noise – 

Imprecision + 451 2 

Noise + 

Imprecision + 202 11 

Table 25. Figure 34 statistics 
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In this case, the bias in the Phenomizer in “noise+ imprecision+” is higher than in the local simulation 

but the number of 1st ranks is also higher. On the other hand, the performance of “noise- imprecision+” 

is better in the local simulation. 

Comparing the old and newest databases, the older performs a bit worse in terms of the number of 1st 

ranks, but the bias is also lower.
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P-value Truth Tables 

 
Figure 37. Phenomizer performance using the P-value method, and older databases 

Phenomizer 0 (latest databases) (Rank < 1) 

 False Negative True Positive False Positive True Negative 

Noise – 

Imprecision - 30 926 110 79 

Noise + 

Imprecision - 80 745 152 123 

Noise – 

Imprecision + 314 84 81 566 

Noise + 

Imprecision + 163 25 43 869 

Total 587 1780 396 1637 
Table 26. Truth table of Figure 35 
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Figure 38. Local simulation performance using the P-value method, and older databases 

Local simulation 0 (latest databases) (Rank < 1) 

 False Negative True Positive False Positive True Negative 

Noise – 

Imprecision - 6 978 149 22 

Noise + 

Imprecision - 135 725 201 39 

Noise – 

Imprecision + 331 80 296 338 

Noise + 

Imprecision + 155 39 151 755 

Total 627 1822 397 1154 
Table 27. Truth table of Figure 36 
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Figure 39. Phenomizer performance using the P-value method, the patient Set 0, and the latest databases 

Phenomizer 1 (latest databases) (Rank < 1) 

 False Negative True Positive False Positive True Negative 

Noise - 

Imprecision - 16 923 143 79 

Noise + 

Imprecision - 70 794 143 93 

Noise - 

Imprecision + 259 76 94 610 

Noise + 

Imprecision + 181 33 73 813 

Total 526 1826 453 1595 
Table 28. Truth table of Figure 22 
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Figure 40. Local simulation performance using the P-value method, the patient Set 0, and the latest databases 

Local simulation 1 (latest databases) (Rank < 1) 

 False Negative True Positive False Positive True Negative 

Noise – 

Imprecision - 1 1009 145 6 

Noise + 

Imprecision - 21 859 202 18 

Noise – 

Imprecision + 239 112 395 293 

Noise + 

Imprecision + 196 53 242 609 

Total 457 2033 984 926 
Table 29. Truth table of Figure 23 
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Figure 41. Local simulation using similarity scores with old databases 

 Nº of 1st ranks Medians 

Noise - 

Imprecision - 980 1 

Noise + 

Imprecision - 896 1 

Noise - 

Imprecision + 622 1 

Noise + 

Imprecision + 212 12 

Table 30. Figure 41 boxplot statistics 
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Figure 42. Local simulation using p-values with old databases 

 Nº of 1st ranks Medians 

Noise - 

Imprecision - 980 1 

Noise + 

Imprecision - 896 1 

Noise - 

Imprecision + 622 1 

Noise + 

Imprecision + 212 12 

Table 31. Figure 42 boxplot statistics 

Local simulation (old databases) (Rank <= 1) 

 False Negative True Positive False Positive True Negative 

Noise – 

Imprecision - 6 940 143 11 

Noise + 

Imprecision - 123 765 181 31 

Noise – 

Imprecision + 354 86 305 355 
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Noise + 

Imprecision + 185 25 141 749 

Total 668 1816 770 1146 
Table 32. Figure 42 truth table 
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Similarity score methods 

Direct Groupwise measures by similarity scores 

Method Boxplot Boxplot performance 

Jaccard 1901  

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision - 219 14.0 
Noise + 

Imprecision - 364 5.0 
Noise - 

Imprecision + 2 1635.0 
Noise + 

Imprecision + 0 829.0 
 

Braun 

Blanquet 1932 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision - 47 172.0 

Noise + 

Imprecision - 170 45.0 

Noise - 

Imprecision + 0 3291.5 

Noise + 

Imprecision + 0 2055.5 
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Dice 1935 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision - 219 14.0 

Noise + 

Imprecision - 364 5.0 

Noise - 

Imprecision + 2 1635.0 

Noise + 

Imprecision + 0 829.0 
 

Ochiai 1957 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision - 378 4.0 

Noise + 

Imprecision - 427 3.0 

Noise - 

Imprecision + 6 342.5 

Noise + 

Imprecision + 12 341.0 
 

Simpson 1960 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision - 0 26.0 

Noise + 

Imprecision - 1 221.5 

Noise - 

Imprecision + 0 20.0 

Noise + 

Imprecision + 0 372.0 
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Sokal & Sneath 

1963 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision - 224 15.0 

Noise + 

Imprecision - 389 4.0 

Noise - 

Imprecision + 1 1604.5 

Noise + 

Imprecision + 5 832.5 
 

Tversky 1977 

Abstract Model 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision - 217 18.0 

Noise + 

Imprecision - 389 4.0 

Noise - 

Imprecision + 3 1578.0 

Noise + 

Imprecision + 5 854.5 
 

Korbel 2002 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision - 615 1.0 

Noise + 

Imprecision - 11 121.0 

Noise - 

Imprecision + 111 17.0 

Noise + 

Imprecision + 0 340.0 
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Maryland 

Bridge 2003 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision - 535 2.0 

Noise + 

Imprecision - 268 12.0 

Noise - 

Imprecision + 74 27.0 

Noise + 

Imprecision + 0 272.0 
 

Bader 2003 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision - 344 5.0 

Noise + 

Imprecision - 435 3.0 

Noise - 

Imprecision + 9 342.5 

Noise + 

Imprecision + 6 348.5 
 

Knappe 2004 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision - 535 2.0 

Noise + 

Imprecision - 268 12.0 

Noise - 

Imprecision + 74 27.0 

Noise + 

Imprecision + 0 272.0 
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Batet 2010 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision - 217 18.0 

Noise + 

Imprecision - 389 4.0 

Noise - 

Imprecision + 3 1578.0 

Noise + 

Imprecision + 5 854.5 
 

Sim GIC 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision - 325 5.0 

Noise + 

Imprecision - 526 2.0 

Noise - 

Imprecision + 5 539.5 

Noise + 

Imprecision + 16 304.5 
 

SimLP 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision - 124 36.0 

Noise + 

Imprecision - 92 44.0 

Noise - 

Imprecision + 28 147.0 

Noise + 

Imprecision + 21 257.0 
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Lee 2004 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision - 0 561.0 

Noise + 

Imprecision - 0 577.0 

Noise - 

Imprecision + 0 314.0 

Noise + 

Imprecision + 0 299.5 
 

Term Overlap 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision - 962 1.0 

Noise + 

Imprecision - 748 1.0 

Noise - 

Imprecision + 666 1.0 

Noise + 

Imprecision + 126 25.0 
 

Normalized 

Term Overlap 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision - 0 26.0 

Noise + 

Imprecision - 0 215.0 

Noise - 

Imprecision + 0 20.0 

Noise + 

Imprecision + 0 385.0 
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Normalized 

(Max) Term 

Overlap 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision - 57 197.0 

Noise + 

Imprecision - 175 37.5 

Noise - 

Imprecision + 0 3199.0 

Noise + 

Imprecision + 0 2064.5 
 

Sim UI 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision - 217 18.0 

Noise + 

Imprecision - 389 4.0 

Noise - 

Imprecision + 3 1578.0 

Noise + 

Imprecision + 5 854.5 
 

Table 33. Direct Groupwise measures by similarity scores using the latest databases 
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Direct Groupwise measures by p-values 

Method Boxplot Boxplot performance 

Jaccard 1901  

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision - 233 9.0 

Noise + 

Imprecision - 391 3.0 

Noise - 

Imprecision + 3 1275.0 

Noise + 

Imprecision + 15 454.0 
 

Braun 

Blanquet 1932 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision - 60 41.0 

Noise + 

Imprecision - 188 13.0 

Noise - 

Imprecision + 0 3042.0 

Noise + 

Imprecision + 7 1093.0 
 

Dice 1935 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision - 234 9.0 

Noise + 

Imprecision - 391 3.0 

Noise - 

Imprecision + 3 1324.5 

Noise + 

Imprecision + 9 482.0 
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Ochiai 1957 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision - 397 3.0 

Noise + 

Imprecision - 462 2.0 

Noise - 

Imprecision + 8 167.5 

Noise + 

Imprecision + 27 204.0 
 

Simpson 1960 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision - 0 25.0 

Noise + 

Imprecision - 1 81.0 

Noise - 

Imprecision + 0 20.0 

Noise + 

Imprecision + 0 166.0 
 

Sokal & Sneath 

1963 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision - 234 9.0 

Noise + 

Imprecision - 410 3.0 

Noise - 

Imprecision + 1 1243.5 

Noise + 

Imprecision + 13 431.5 
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Tversky 1977 

Abstract Model 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision - 226 9.0 

Noise + 

Imprecision - 412 3.0 

Noise - 

Imprecision + 6 1218.0 

Noise + 

Imprecision + 17 468.0 
 

Korbel 2002 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision - 727 1.0 

Noise + 

Imprecision - 139 5.0 

Noise - 

Imprecision + 167 13.0 

Noise + 

Imprecision + 37 106.0 
 

Maryland 

Bridge 2003 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision - 588 1.0 

Noise + 

Imprecision - 396 2.0 

Noise - 

Imprecision + 97 19.5 

Noise + 

Imprecision + 36 101.5 
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Bader 2003 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision - 367 3.0 

Noise + 

Imprecision - 477 2.0 

Noise - 

Imprecision + 10 174.5 

Noise + 

Imprecision + 25 194.5 
 

Knappe 2004 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision - 588 1.0 

Noise + 

Imprecision - 406 2.0 

Noise - 

Imprecision + 94 20.0 

Noise + 

Imprecision + 29 96.5 
 

Batet 2010 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision - 227 9.0 

Noise + 

Imprecision - 419 3.0 

Noise - 

Imprecision + 8 1238.0 

Noise + 

Imprecision + 19 468.0 
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Sim GIC 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision - 336 4.0 

Noise + 

Imprecision - 547 2.0 

Noise - 

Imprecision + 8 533.5 

Noise + 

Imprecision + 24 288.0 
 

SimLP 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision - 122 137.5 

Noise + 

Imprecision - 99 169.5 

Noise - 

Imprecision + 10 584.5 

Noise + 

Imprecision + 14 1305.5 
 

Lee 2004 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision - 0 8206.0 

Noise + 

Imprecision - 0 8209.0 

Noise - 

Imprecision + 0 317.0 

Noise + 

Imprecision + 0 8052.5 
 



Analysis of clinical diagnostics in human genetics with semantic similarity searches in ontologies  

  103 

Term Overlap 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision - 830 1.0 

Noise + 

Imprecision - 723 1.0 

Noise - 

Imprecision + 79 59.5 

Noise + 

Imprecision + 74 187.5 
 

Normalized 

Term Overlap 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision - 0 26.0 

Noise + 

Imprecision - 0 81.0 

Noise - 

Imprecision + 0 20.0 

Noise + 

Imprecision + 0 172.5 
 

Normalized 

(Max) Term 

Overlap 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision - 66 41.0 

Noise + 

Imprecision - 199 13.0 

Noise - 

Imprecision + 0 2922.5 

Noise + 

Imprecision + 3 1150.5 
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Sim UI 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision - 227 9.0 

Noise + 

Imprecision - 412 3.0 

Noise - 

Imprecision + 5 1209.0 

Noise + 

Imprecision + 14 453.5 
 

Table 34. Direct Groupwise measures by p-values using the latest databases 
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IC-based measures 

IC-based measures by p-values 

Method Boxplot Boxplot performance 

Pairwise: Tversky 

IC Contrast model 

Indirect measure: 

Average  

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
1 1282.5 

Noise + 

Imprecision 

- 
3 625.0 

Noise - 

Imprecision 

+ 
0 2544.5 

Noise + 

Imprecision 

+ 
0 2406.5 

 

Pairwise: Tversky 

IC Ratio model 

Indirect measure: 

Average  

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
9 110.0 

Noise + 

Imprecision 

- 
25 108.0 

Noise - 

Imprecision 

+ 
1 249.5 

Noise + 

Imprecision 

+ 
2 429.0 
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Pairwise: Tversky 

IC Prop Contrast 

model 

Indirect measure: 

Average  

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
0 1671.5 

Noise + 

Imprecision 

- 
0 4779.5 

Noise - 

Imprecision 

+ 
1 4979.5 

Noise + 

Imprecision 

+ 
1 4193.5 

 

Pairwise: Tversky 

IC Prop Ratio 

model  

Indirect measure: 

Average  

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
13 48.0 

Noise + 

Imprecision 

- 
66 32.0 

Noise - 

Imprecision 

+ 
1 223.5 

Noise + 

Imprecision 

+ 
3 534.5 

 

Pairwise: Resnik 

1995  

Indirect measure: 

Average  

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
12 115.5 

Noise + 

Imprecision 

- 
20 286.0 

Noise - 

Imprecision 

+ 
3 479.0 

Noise + 

Imprecision 

+ 
4 820.5 
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Pairwise: Lin 1998 

Indirect measure: 

Average  

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
1 149.5 

Noise + 

Imprecision 

- 
30 133.0 

Noise - 

Imprecision 

+ 
0 306.5 

Noise + 

Imprecision 

+ 
2 346.5 

 

Pairwise: Jiang and 

Conrath 1997 

Indirect measure: 

Average  

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
0 6029.5 

Noise + 

Imprecision 

- 
0 5768.0 

Noise - 

Imprecision 

+ 
0 5427.5 

Noise + 

Imprecision 

+ 
0 4884.5 

 

Pairwise: Jiang and 

Conrath 1997 

Normalized 

Indirect measure: 

Average  

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
0 1702.0 

Noise + 

Imprecision 

- 
0 1320.5 

Noise - 

Imprecision 

+ 
0 2670.5 

Noise + 

Imprecision 

+ 
0 2986.5 
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Pairwise: Schlicker 

SimRel 2006 

Indirect measure: 

Average  

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
12 156.0 

Noise + 

Imprecision 

- 
14 144.5 

Noise - 

Imprecision 

+ 
0 323.0 

Noise + 

Imprecision 

+ 
1 356.5 

 

Pairwise: SimIC 

2010 

Indirect measure: 

Average  

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
9 104.0 

Noise + 

Imprecision 

- 
19 83.0 

Noise - 

Imprecision 

+ 
0 239.5 

Noise + 

Imprecision 

+ 
1 317.5 

 

Pairwise: Jaccard 

IC 

Indirect measure: 

Average  

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
10 101.0 

Noise + 

Imprecision 

- 
44 49.0 

Noise - 

Imprecision 

+ 
0 329.0 

Noise + 

Imprecision 

+ 
2 241.0 
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Pairwise: Jaccard 

3W IC 

Indirect measure: 

Average  

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
0 221.0 

Noise + 

Imprecision 

- 
16 289.0 

Noise - 

Imprecision 

+ 
2 338.5 

Noise + 

Imprecision 

+ 
4 543.5 

 

Pairwise: Tversky 

IC Contrast model 

Indirect measure: 

Best Match 

Average (BMA) 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
724 1.0 

Noise + 

Imprecision 

- 
545 2.0 

Noise - 

Imprecision 

+ 
11 64.0 

Noise + 

Imprecision 

+ 
6 95.0 

 

Pairwise: Tversky 

IC Ratio model 

Indirect measure: 

Best Match 

Average (BMA) 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
763 1.0 

Noise + 

Imprecision 

- 
624 1.0 

Noise - 

Imprecision 

+ 
27 23.0 

Noise + 

Imprecision 

+ 
12 26.0 
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Pairwise: Tversky 

IC Prop Contrast 

model 

Indirect measure: 

Best Match 

Average (BMA) 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
677 1.0 

Noise + 

Imprecision 

- 
411 2.0 

Noise - 

Imprecision 

+ 
5 618.0 

Noise + 

Imprecision 

+ 
3 576.0 

 

Pairwise: Tversky 

IC Prop Ratio 

model  

Indirect measure: 

Best Match 

Average (BMA)  

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
796 1.0 

Noise + 

Imprecision 

- 
565 1.0 

Noise - 

Imprecision 

+ 
21 32.0 

Noise + 

Imprecision 

+ 
15 66.0 

 

Pairwise: Resnik 

1995  

Indirect measure: 

Best Match 

Average (BMA) 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
769 1.0 

Noise + 

Imprecision 

- 
686 1.0 

Noise - 

Imprecision 

+ 
122 17.0 

Noise + 

Imprecision 

+ 
55 37.0 
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Pairwise: Lin 1998 

Indirect measure: 

Best Match 

Average (BMA) 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
753 1.0 

Noise + 

Imprecision 

- 
660 1.0 

Noise - 

Imprecision 

+ 
101 17.0 

Noise + 

Imprecision 

+ 
83 20.0 

 

Pairwise: Jiang and 

Conrath 1997 

Indirect measure: 

Best Match 

Average (BMA) 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
0 2977.5 

Noise + 

Imprecision 

- 
0 2461.5 

Noise - 

Imprecision 

+ 
0 2873.5 

Noise + 

Imprecision 

+ 
0 2405.0 

 

Pairwise: Jiang and 

Conrath 1997 

Normalized 

Indirect measure: 

Best Match 

Average (BMA) 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
745 1.0 

Noise + 

Imprecision 

- 
604 1.0 

Noise - 

Imprecision 

+ 
9 81.0 

Noise + 

Imprecision 

+ 
3 140.5 
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Pairwise: Schlicker 

SimRel 2006 

Indirect measure: 

Best Match 

Average (BMA) 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
754 1.0 

Noise + 

Imprecision 

- 
655 1.0 

Noise - 

Imprecision 

+ 
101 17.0 

Noise + 

Imprecision 

+ 
81 20.0 

 

Pairwise: SimIC 

2010 

Indirect measure: 

Best Match 

Average (BMA) 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
803 1.0 

Noise + 

Imprecision 

- 
692 1.0 

Noise - 

Imprecision 

+ 
223 6.0 

Noise + 

Imprecision 

+ 
190 10.0 

 

Pairwise: Jaccard 

IC 

Indirect measure: 

Best Match 

Average (BMA) 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
806 1.0 

Noise + 

Imprecision 

- 
605 1.0 

Noise - 

Imprecision 

+ 
41 19.0 

Noise + 

Imprecision 

+ 
22 20.0 
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Pairwise: Jaccard 

3W IC 

Indirect measure: 

Best Match 

Average (BMA) 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
645 1.0 

Noise + 

Imprecision 

- 
649 1.0 

Noise - 

Imprecision 

+ 
129 21.0 

Noise + 

Imprecision 

+ 
138 23.0 

 

Pairwise: Tversky 

IC Contrast model 

Indirect measure: 

Best Match Max 

(BMM) 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
621 1.0 

Noise + 

Imprecision 

- 
71 11.0 

Noise - 

Imprecision 

+ 
40 24.0 

Noise + 

Imprecision 

+ 
3 166.0 

 

Pairwise: Tversky 

IC Ratio model 

Indirect measure: 

Best Match Max 

(BMM) 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
239 4.0 

Noise + 

Imprecision 

- 
71 10.0 

Noise - 

Imprecision 

+ 
10 30.0 

Noise + 

Imprecision 

+ 
2 132.0 
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Pairwise: Tversky 

IC Prop Contrast 

model 

Indirect measure: 

Best Match Max 

(BMM) 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
622 1.0 

Noise + 

Imprecision 

- 
93 8.0 

Noise - 

Imprecision 

+ 
22 45.0 

Noise + 

Imprecision 

+ 
3 540.0 

 

Pairwise: Tversky 

IC Prop Ratio 

model  

Indirect measure: 

Best Match Max 

(BMM) 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
247 4.0 

Noise + 

Imprecision 

- 
82 9.0 

Noise - 

Imprecision 

+ 
15 51.0 

Noise + 

Imprecision 

+ 
5 329.0 

 

Pairwise: Resnik 

1995  

Indirect measure: 

Best Match Max 

(BMM) 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
590 1.0 

Noise + 

Imprecision 

- 
106 6.0 

Noise - 

Imprecision 

+ 
50 95.0 

Noise + 

Imprecision 

+ 
5 781.0 
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Pairwise: Lin 1998 

Indirect measure: 

Best Match Max 

(BMM) 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
245 4.0 

Noise + 

Imprecision 

- 
54 14.5 

Noise - 

Imprecision 

+ 
11 26.0 

Noise + 

Imprecision 

+ 
2 113.0 

 

Pairwise: Jiang and 

Conrath 1997 

Indirect measure: 

Best Match Max 

(BMM) 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
0 3285.0 

Noise + 

Imprecision 

- 
0 4355.0 

Noise - 

Imprecision 

+ 
0 3199.5 

Noise + 

Imprecision 

+ 
0 4357.0 

 

Pairwise: Jiang and 

Conrath 1997 

Normalized 

Indirect measure: 

Best Match Max 

(BMM) 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
243 4.0 

Noise + 

Imprecision 

- 
50 23.0 

Noise - 

Imprecision 

+ 
7 30.0 

Noise + 

Imprecision 

+ 
2 572.5 
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Pairwise: Schlicker 

SimRel 2006 

Indirect measure: 

Best Match Max 

(BMM) 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
244 4.0 

Noise + 

Imprecision 

- 
57 14.0 

Noise - 

Imprecision 

+ 
13 26.0 

Noise + 

Imprecision 

+ 
2 110.0 

 

Pairwise: SimIC 

2010 

Indirect measure: 

Best Match Max 

(BMM) 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
538 2.0 

Noise + 

Imprecision 

- 
74 10.0 

Noise - 

Imprecision 

+ 
48 17.0 

Noise + 

Imprecision 

+ 
5 112.5 

 

Pairwise: Jaccard 

IC 

Indirect measure: 

Best Match Max 

(BMM) 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
247 4.0 

Noise + 

Imprecision 

- 
73 11.0 

Noise - 

Imprecision 

+ 
15 28.0 

Noise + 

Imprecision 

+ 
2 74.5 
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Pairwise: Jaccard 

3W IC 

Indirect measure: 

Best Match Max 

(BMM)  

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
243 4.0 

Noise + 

Imprecision 

- 
41 21.0 

Noise - 

Imprecision 

+ 
15 25.5 

Noise + 

Imprecision 

+ 
1 167.0 

 

Pairwise: Tversky 

IC Contrast model 

Indirect measure: 

Maximum  

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
377 14.0 

Noise + 

Imprecision 

- 
246 22.0 

Noise - 

Imprecision 

+ 
63 84.0 

Noise + 

Imprecision 

+ 
41 128.5 

 

Pairwise: Tversky 

IC Ratio model 

Indirect measure: 

Maximum 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
10 580.5 

Noise + 

Imprecision 

- 
8 609.5 

Noise - 

Imprecision 

+ 
2 342.5 

Noise + 

Imprecision 

+ 
0 358.0 
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Pairwise: Tversky 

IC Prop Contrast 

model 

Indirect measure: 

Maximum 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
116 77.0 

Noise + 

Imprecision 

- 
101 108.5 

Noise - 

Imprecision 

+ 
9 114.5 

Noise + 

Imprecision 

+ 
12 175.0 

 

Pairwise: Tversky 

IC Prop Ratio 

model  

Indirect measure: 

Maximum 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
10 580.5 

Noise + 

Imprecision 

- 
8 608.5 

Noise - 

Imprecision 

+ 
3 338.0 

Noise + 

Imprecision 

+ 
0 373.0 

 

Pairwise: Resnik 

1995  

Indirect measure: 

Maximum 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
389 49.0 

Noise + 

Imprecision 

- 
246 74.0 

Noise - 

Imprecision 

+ 
58 108.5 

Noise + 

Imprecision 

+ 
42 417.0 
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Pairwise: Lin 1998 

Indirect measure: 

Maximum 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
10 580.5 

Noise + 

Imprecision 

- 
8 613.5 

Noise - 

Imprecision 

+ 
2 334.5 

Noise + 

Imprecision 

+ 
0 358.5 

 

Pairwise: Jiang and 

Conrath 1997 

Indirect measure: 

Maximum 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
0 1937.0 

Noise + 

Imprecision 

- 
0 793.0 

Noise - 

Imprecision 

+ 
0 1627.0 

Noise + 

Imprecision 

+ 
0 793.0 

 

Pairwise: Jiang and 

Conrath 1997 

Normalized 

Indirect measure: 

Maximum 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
10 580.5 

Noise + 

Imprecision 

- 
8 609.5 

Noise - 

Imprecision 

+ 
2 344.5 

Noise + 

Imprecision 

+ 
0 350.0 
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Pairwise: Schlicker 

SimRel 2006 

Indirect measure: 

Maximum 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
10 580.5 

Noise + 

Imprecision 

- 
8 609.5 

Noise - 

Imprecision 

+ 
2 327.5 

Noise + 

Imprecision 

+ 
0 358.5 

 

Pairwise: SimIC 

2010 

Indirect measure: 

Maximum 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
378 14.0 

Noise + 

Imprecision 

- 
252 22.0 

Noise - 

Imprecision 

+ 
62 110.0 

Noise + 

Imprecision 

+ 
42 160.0 

 

Pairwise: Jaccard 

IC 

Indirect measure: 

Maximum 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
10 584.0 

Noise + 

Imprecision 

- 
8 612.0 

Noise - 

Imprecision 

+ 
2 327.5 

Noise + 

Imprecision 

+ 
0 358.0 
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Pairwise: Jaccard 

3W IC 

Indirect measure: 

Maximum 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
10 580.5 

Noise + 

Imprecision 

- 
8 609.5 

Noise - 

Imprecision 

+ 
2 330.5 

Noise + 

Imprecision 

+ 
0 357.0 

 

Pairwise: Tversky 

IC Contrast model 

Indirect measure: 

Minimum 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
0 4268.0 

Noise + 

Imprecision 

- 
0 4892.0 

Noise - 

Imprecision 

+ 
0 5861.0 

Noise + 

Imprecision 

+ 
0 4916.0 

 

Pairwise: Tversky 

IC Ratio model 

Indirect measure: 

Minimum 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
0 4193.5 

Noise + 

Imprecision 

- 
0 4913.0 

Noise - 

Imprecision 

+ 
0 5713.0 

Noise + 

Imprecision 

+ 
0 5033.0 
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Pairwise: Tversky 

IC Prop Contrast 

model 

Indirect measure: 

Minimum 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
2 6185.0 

Noise + 

Imprecision 

- 
2 7015.0 

Noise - 

Imprecision 

+ 
0 6012.0 

Noise + 

Imprecision 

+ 
0 6916.5 

 

Pairwise: Tversky 

IC Prop Ratio 

model  

Indirect measure: 

Minimum  

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
0 5807.5 

Noise + 

Imprecision 

- 
0 6706.0 

Noise - 

Imprecision 

+ 
0 5358.5 

Noise + 

Imprecision 

+ 
0 6493.5 

 

Pairwise: Resnik 

1995  

Indirect measure: 

Minimum  

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
0 4092.0 

Noise + 

Imprecision 

- 
0 4092.0 

Noise - 

Imprecision 

+ 
0 4092.0 

Noise + 

Imprecision 

+ 
0 4092.0 
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Pairwise: Lin 1998 

Indirect measure: 

Minimum  

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
0 4320.5 

Noise + 

Imprecision 

- 
0 4915.0 

Noise - 

Imprecision 

+ 
0 5835.0 

Noise + 

Imprecision 

+ 
0 5126.0 

 

Pairwise: Jiang and 

Conrath 1997 

Indirect measure: 

Minimum  

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
0 7628.5 

Noise + 

Imprecision 

- 
0 7599.5 

Noise - 

Imprecision 

+ 
0 7877.5 

Noise + 

Imprecision 

+ 
0 7875.0 

 

Pairwise: Jiang and 

Conrath 1997 

Normalized 

Indirect measure: 

Minimum  

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
0 4300.5 

Noise + 

Imprecision 

- 
0 4884.5 

Noise - 

Imprecision 

+ 
0 5954.0 

Noise + 

Imprecision 

+ 
0 4889.5 
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Pairwise: Schlicker 

SimRel 2006 

Indirect measure: 

Minimum  

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
0 4273.0 

Noise + 

Imprecision 

- 
0 4896.0 

Noise - 

Imprecision 

+ 
0 5889.0 

Noise + 

Imprecision 

+ 
0 4982.0 

 

Pairwise: SimIC 

2010 

Indirect measure: 

Minimum  

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
0 4449.0 

Noise + 

Imprecision 

- 
0 4920.0 

Noise - 

Imprecision 

+ 
0 5877.5 

Noise + 

Imprecision 

+ 
0 5072.0 

 

Pairwise: Jaccard 

IC 

Indirect measure: 

Minimum  

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
0 4205.5 

Noise + 

Imprecision 

- 
0 4838.0 

Noise - 

Imprecision 

+ 
0 5832.5 

Noise + 

Imprecision 

+ 
0 4938.0 
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Pairwise: Jaccard 

3W IC 

Indirect measure: 

Minimum  

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
0 4290.5 

Noise + 

Imprecision 

- 
0 4932.5 

Noise - 

Imprecision 

+ 
0 5879.0 

Noise + 

Imprecision 

+ 
0 5036.0 

 

Table 35. IC-based measures by p-values using the latest databases 
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IC-based measures by similarity scores 

Method Boxplot Boxplot performance 

Pairwise: Tversky 

IC Contrast model 

Indirect measure: 

Average  

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
0 2249.5 

Noise + 

Imprecision 

- 
0 2608.0 

Noise - 

Imprecision 

+ 
0 2798.0 

Noise + 

Imprecision 

+ 
0 3350.0 

 

Pairwise: Tversky 

IC Ratio model 

Indirect measure: 

Average  

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
0 456.5 

Noise + 

Imprecision 

- 
0 542.0 

Noise - 

Imprecision 

+ 
0 857.5 

Noise + 

Imprecision 

+ 
0 967.0 
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Pairwise: Tversky 

IC Prop Contrast 

model 

Indirect measure: 

Average  

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
0 5043.0 

Noise + 

Imprecision 

- 
0 5522.5 

Noise - 

Imprecision 

+ 
0 5700.5 

Noise + 

Imprecision 

+ 
0 5875.0 

 

Pairwise: Tversky 

IC Prop Ratio 

model  

Indirect measure: 

Average  

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
0 263.0 

Noise + 

Imprecision 

- 
0 318.0 

Noise - 

Imprecision 

+ 
0 727.0 

Noise + 

Imprecision 

+ 
0 802.0 

 

Pairwise: Resnik 

1995  

Indirect measure: 

Average  

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
0 492.5 

Noise + 

Imprecision 

- 
0 598.0 

Noise - 

Imprecision 

+ 
0 730.0 

Noise + 

Imprecision 

+ 
0 887.5 
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Pairwise: Lin 1998 

Indirect measure: 

Average  

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
0 540.0 

Noise + 

Imprecision 

- 
0 630.0 

Noise - 

Imprecision 

+ 
0 892.0 

Noise + 

Imprecision 

+ 
0 976.0 

 

Pairwise: Jiang and 

Conrath 1997 

Indirect measure: 

Average  

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
0 5964.5 

Noise + 

Imprecision 

- 
0 5607.5 

Noise - 

Imprecision 

+ 
0 5416.5 

Noise + 

Imprecision 

+ 
0 4867.0 

 

Pairwise: Jiang and 

Conrath 1997 

Normalized 

Indirect measure: 

Average  

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
0 2245.5 

Noise + 

Imprecision 

- 
0 2602.5 

Noise - 

Imprecision 

+ 
0 2793.5 

Noise + 

Imprecision 

+ 
0 3343.0 
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Pairwise: Schlicker 

SimRel 2006 

Indirect measure: 

Average  

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
0 540.0 

Noise + 

Imprecision 

- 
0 630.0 

Noise - 

Imprecision 

+ 
0 892.0 

Noise + 

Imprecision 

+ 
0 976.0 

 

Pairwise: SimIC 

2010 

Indirect measure: 

Average  

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
0 409.5 

Noise + 

Imprecision 

- 
0 481.5 

Noise - 

Imprecision 

+ 
0 740.0 

Noise + 

Imprecision 

+ 
0 799.5 

 

Pairwise: Jaccard 

IC 

Indirect measure: 

Average  

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
0 351.5 

Noise + 

Imprecision 

- 
0 419.5 

Noise - 

Imprecision 

+ 
0 790.5 

Noise + 

Imprecision 

+ 
0 850.0 
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Pairwise: Jaccard 

3W IC 

Indirect measure: 

Average  

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
0 756.5 

Noise + 

Imprecision 

- 
0 844.5 

Noise - 

Imprecision 

+ 
0 987.5 

Noise + 

Imprecision 

+ 
0 1101.5 

 

Pairwise: Tversky 

IC Contrast model 

Indirect measure: 

Best Match 

Average (BMA) 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
719 1.0 

Noise + 

Imprecision 

- 
475 2.0 

Noise - 

Imprecision 

+ 
11 73.0 

Noise + 

Imprecision 

+ 
3 142.5 

 

Pairwise: Tversky 

IC Ratio model 

Indirect measure: 

Best Match 

Average (BMA) 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
757 1.0 

Noise + 

Imprecision 

- 
585 1.0 

Noise - 

Imprecision 

+ 
21 37.0 

Noise + 

Imprecision 

+ 
3 54.0 
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Pairwise: Tversky 

IC Prop Contrast 

model 

Indirect measure: 

Best Match 

Average (BMA) 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
641 1.0 

Noise + 

Imprecision 

- 
314 4.0 

Noise - 

Imprecision 

+ 
4 903.0 

Noise + 

Imprecision 

+ 
0 1380.0 

 

Pairwise: Tversky 

IC Prop Ratio 

model  

Indirect measure: 

Best Match 

Average (BMA)  

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
787 1.0 

Noise + 

Imprecision 

- 
435 2.0 

Noise - 

Imprecision 

+ 
5 53.0 

Noise + 

Imprecision 

+ 
0 83.0 

 

Pairwise: Resnik 

1995  

Indirect measure: 

Best Match 

Average (BMA) 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
704 1.0 

Noise + 

Imprecision 

- 
381 2.0 

Noise - 

Imprecision 

+ 
114 9.0 

Noise + 

Imprecision 

+ 
20 31.0 
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Pairwise: Lin 1998 

Indirect measure: 

Best Match 

Average (BMA) 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
750 1.0 

Noise + 

Imprecision 

- 
638 1.0 

Noise - 

Imprecision 

+ 
98 19.0 

Noise + 

Imprecision 

+ 
73 28.5 

 

Pairwise: Jiang and 

Conrath 1997 

Indirect measure: 

Best Match 

Average (BMA) 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
0 2970.0 

Noise + 

Imprecision 

- 
0 2454.5 

Noise - 

Imprecision 

+ 
0 2871.5 

Noise + 

Imprecision 

+ 
0 2405.0 

 

Pairwise: Jiang and 

Conrath 1997 

Normalized 

Indirect measure: 

Best Match 

Average (BMA) 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
739 1.0 

Noise + 

Imprecision 

- 
584 1.0 

Noise - 

Imprecision 

+ 
9 81.5 

Noise + 

Imprecision 

+ 
2 169.0 
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Pairwise: Schlicker 

SimRel 2006 

Indirect measure: 

Best Match 

Average (BMA) 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
750 1.0 

Noise + 

Imprecision 

- 
638 1.0 

Noise - 

Imprecision 

+ 
98 19.0 

Noise + 

Imprecision 

+ 
73 28.5 

 

Pairwise: SimIC 

2010 

Indirect measure: 

Best Match 

Average (BMA) 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
798 1.0 

Noise + 

Imprecision 

- 
650 1.0 

Noise - 

Imprecision 

+ 
197 8.0 

Noise + 

Imprecision 

+ 
74 17.0 

 

Pairwise: Jaccard 

IC 

Indirect measure: 

Best Match 

Average (BMA) 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
799 1.0 

Noise + 

Imprecision 

- 
540 2.0 

Noise - 

Imprecision 

+ 
32 29.0 

Noise + 

Imprecision 

+ 
5 47.0 
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Pairwise: Jaccard 

3W IC 

Indirect measure: 

Best Match 

Average (BMA) 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
641 1.0 

Noise + 

Imprecision 

- 
643 1.0 

Noise - 

Imprecision 

+ 
129 23.0 

Noise + 

Imprecision 

+ 
133 23.0 

 

Pairwise: Tversky 

IC Contrast model 

Indirect measure: 

Best Match Max 

(BMM) 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
595 1.0 

Noise + 

Imprecision 

- 
36 32.0 

Noise - 

Imprecision 

+ 
18 72.0 

Noise + 

Imprecision 

+ 
0 318.0 

 

Pairwise: Tversky 

IC Ratio model 

Indirect measure: 

Best Match Max 

(BMM) 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
225 4.0 

Noise + 

Imprecision 

- 
31 21.0 

Noise - 

Imprecision 

+ 
2 74.0 

Noise + 

Imprecision 

+ 
0 224.0 
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Pairwise: Tversky 

IC Prop Contrast 

model 

Indirect measure: 

Best Match Max 

(BMM) 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
557 1.0 

Noise + 

Imprecision 

- 
59 23.0 

Noise - 

Imprecision 

+ 
13 146.0 

Noise + 

Imprecision 

+ 
2 441.5 

 

Pairwise: Tversky 

IC Prop Ratio 

model  

Indirect measure: 

Best Match Max 

(BMM) 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
234 4.0 

Noise + 

Imprecision 

- 
53 15.0 

Noise - 

Imprecision 

+ 
3 81.0 

Noise + 

Imprecision 

+ 
0 233.5 

 

Pairwise: Resnik 

1995  

Indirect measure: 

Best Match Max 

(BMM) 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
366 2.0 

Noise + 

Imprecision 

- 
47 27.0 

Noise - 

Imprecision 

+ 
20 45.0 

Noise + 

Imprecision 

+ 
1 394.0 
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Pairwise: Lin 1998 

Indirect measure: 

Best Match Max 

(BMM) 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
225 4.0 

Noise + 

Imprecision 

- 
24 28.0 

Noise - 

Imprecision 

+ 
5 61.0 

Noise + 

Imprecision 

+ 
0 268.0 

 

Pairwise: Jiang and 

Conrath 1997 

Indirect measure: 

Best Match Max 

(BMM) 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
0 3242.0 

Noise + 

Imprecision 

- 
0 3676.0 

Noise - 

Imprecision 

+ 
0 3166.5 

Noise + 

Imprecision 

+ 
0 3809.0 

 

Pairwise: Jiang and 

Conrath 1997 

Normalized 

Indirect measure: 

Best Match Max 

(BMM) 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
224 5.0 

Noise + 

Imprecision 

- 
29 103.0 

Noise - 

Imprecision 

+ 
2 78.0 

Noise + 

Imprecision 

+ 
0 1051.5 
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Pairwise: Schlicker 

SimRel 2006 

Indirect measure: 

Best Match Max 

(BMM) 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
225 4.0 

Noise + 

Imprecision 

- 
24 28.0 

Noise - 

Imprecision 

+ 
5 61.0 

Noise + 

Imprecision 

+ 
0 268.0 

 

Pairwise: SimIC 

2010 

Indirect measure: 

Best Match Max 

(BMM) 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
504 2.0 

Noise + 

Imprecision 

- 
36 21.0 

Noise - 

Imprecision 

+ 
21 40.0 

Noise + 

Imprecision 

+ 
0 210.0 

 

Pairwise: Jaccard 

IC 

Indirect measure: 

Best Match Max 

(BMM) 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
233 4.0 

Noise + 

Imprecision 

- 
48 16.0 

Noise - 

Imprecision 

+ 
7 59.0 

Noise + 

Imprecision 

+ 
0 198.5 
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Pairwise: Jaccard 

3W IC 

Indirect measure: 

Best Match Max 

(BMM)  

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
222 5.0 

Noise + 

Imprecision 

- 
16 59.0 

Noise - 

Imprecision 

+ 
4 66.0 

Noise + 

Imprecision 

+ 
0 408.5 

 

Pairwise: Tversky 

IC Contrast model 

Indirect measure: 

Maximum  

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
447 2.0 

Noise + 

Imprecision 

- 
272 4.0 

Noise - 

Imprecision 

+ 
78 32.0 

Noise + 

Imprecision 

+ 
51 56.0 

 

Pairwise: Tversky 

IC Ratio model 

Indirect measure: 

Maximum 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
10 580.5 

Noise + 

Imprecision 

- 
8 608.0 

Noise - 

Imprecision 

+ 
2 297.5 

Noise + 

Imprecision 

+ 
0 313.5 
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Pairwise: Tversky 

IC Prop Contrast 

model 

Indirect measure: 

Maximum 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
179 15.0 

Noise + 

Imprecision 

- 
133 21.0 

Noise - 

Imprecision 

+ 
52 70.0 

Noise + 

Imprecision 

+ 
35 101.0 

 

Pairwise: Tversky 

IC Prop Ratio 

model  

Indirect measure: 

Maximum 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
10 580.5 

Noise + 

Imprecision 

- 
8 608.5 

Noise - 

Imprecision 

+ 
3 291.0 

Noise + 

Imprecision 

+ 
0 338.0 

 

Pairwise: Resnik 

1995  

Indirect measure: 

Maximum 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
445 2.5 

Noise + 

Imprecision 

- 
265 4.0 

Noise - 

Imprecision 

+ 
72 26.0 

Noise + 

Imprecision 

+ 
50 79.0 
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Pairwise: Lin 1998 

Indirect measure: 

Maximum 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
10 580.5 

Noise + 

Imprecision 

- 
8 608.0 

Noise - 

Imprecision 

+ 
2 291.0 

Noise + 

Imprecision 

+ 
0 308.0 

 

Pairwise: Jiang and 

Conrath 1997 

Indirect measure: 

Maximum 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
0 1926.5 

Noise + 

Imprecision 

- 
0 793.0 

Noise - 

Imprecision 

+ 
0 1627.0 

Noise + 

Imprecision 

+ 
0 793.0 

 

Pairwise: Jiang and 

Conrath 1997 

Normalized 

Indirect measure: 

Maximum 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
10 580.5 

Noise + 

Imprecision 

- 
8 609.5 

Noise - 

Imprecision 

+ 
2 332.0 

Noise + 

Imprecision 

+ 
0 334.0 
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Pairwise: Schlicker 

SimRel 2006 

Indirect measure: 

Maximum 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
10 580.5 

Noise + 

Imprecision 

- 
8 608.0 

Noise - 

Imprecision 

+ 
2 291.0 

Noise + 

Imprecision 

+ 
0 308.0 

 

Pairwise: SimIC 

2010 

Indirect measure: 

Maximum 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
447 2.0 

Noise + 

Imprecision 

- 
272 4.0 

Noise - 

Imprecision 

+ 
78 32.0 

Noise + 

Imprecision 

+ 
51 53.0 

 

Pairwise: Jaccard 

IC 

Indirect measure: 

Maximum 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
10 580.5 

Noise + 

Imprecision 

- 
8 608.0 

Noise - 

Imprecision 

+ 
2 291.0 

Noise + 

Imprecision 

+ 
0 308.0 
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Pairwise: Jaccard 

3W IC 

Indirect measure: 

Maximum 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
10 580.5 

Noise + 

Imprecision 

- 
8 608.0 

Noise - 

Imprecision 

+ 
2 291.0 

Noise + 

Imprecision 

+ 
0 308.0 

 

Pairwise: Tversky 

IC Contrast model 

Indirect measure: 

Minimum 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
0 6275.5 

Noise + 

Imprecision 

- 
0 7434.0 

Noise - 

Imprecision 

+ 
0 6624.0 

Noise + 

Imprecision 

+ 
0 7434.0 

 

Pairwise: Tversky 

IC Ratio model 

Indirect measure: 

Minimum 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
0 6264.5 

Noise + 

Imprecision 

- 
0 7417.0 

Noise - 

Imprecision 

+ 
0 6613.0 

Noise + 

Imprecision 

+ 
0 7417.0 
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Pairwise: Tversky 

IC Prop Contrast 

model 

Indirect measure: 

Minimum 

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
0 7182.0 

Noise + 

Imprecision 

- 
0 7347.5 

Noise - 

Imprecision 

+ 
0 7470.0 

Noise + 

Imprecision 

+ 
0 7568.5 

 

Pairwise: Tversky 

IC Prop Ratio 

model  

Indirect measure: 

Minimum  

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
0 7075.0 

Noise + 

Imprecision 

- 
0 7314.5 

Noise - 

Imprecision 

+ 
0 7354.0 

Noise + 

Imprecision 

+ 
0 7531.0 

 

Pairwise: Resnik 

1995  

Indirect measure: 

Minimum  

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
0 4095.0 

Noise + 

Imprecision 

- 
0 4095.0 

Noise - 

Imprecision 

+ 
0 4095.0 

Noise + 

Imprecision 

+ 
0 4095.0 
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Pairwise: Lin 1998 

Indirect measure: 

Minimum  

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
0 6282.5 

Noise + 

Imprecision 

- 
0 7417.0 

Noise - 

Imprecision 

+ 
0 6582.0 

Noise + 

Imprecision 

+ 
0 7417.0 

 

Pairwise: Jiang and 

Conrath 1997 

Indirect measure: 

Minimum  

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
0 7628.5 

Noise + 

Imprecision 

- 
0 7599.5 

Noise - 

Imprecision 

+ 
0 7877.5 

Noise + 

Imprecision 

+ 
0 7875.0 

 

Pairwise: Jiang and 

Conrath 1997 

Normalized 

Indirect measure: 

Minimum  

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
0 6282.5 

Noise + 

Imprecision 

- 
0 7417.0 

Noise - 

Imprecision 

+ 
0 6582.0 

Noise + 

Imprecision 

+ 
0 7417.0 
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Pairwise: Schlicker 

SimRel 2006 

Indirect measure: 

Minimum  

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
0 6282.5 

Noise + 

Imprecision 

- 
0 7417.0 

Noise - 

Imprecision 

+ 
0 6582.0 

Noise + 

Imprecision 

+ 
0 7417.0 

 

Pairwise: SimIC 

2010 

Indirect measure: 

Minimum  

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
0 6282.5 

Noise + 

Imprecision 

- 
0 7417.0 

Noise - 

Imprecision 

+ 
0 6582.0 

Noise + 

Imprecision 

+ 
0 7417.0 

 

Pairwise: Jaccard 

IC 

Indirect measure: 

Minimum  

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
0 6282.5 

Noise + 

Imprecision 

- 
0 7417.0 

Noise - 

Imprecision 

+ 
0 6582.0 

Noise + 

Imprecision 

+ 
0 7417.0 
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Pairwise: Jaccard 

3W IC 

Indirect measure: 

Minimum  

 

 Nº of 

1st 

ranks 

Medians 

Noise - 

Imprecision 

- 
0 6282.5 

Noise + 

Imprecision 

- 
0 7417.0 

Noise - 

Imprecision 

+ 
0 6582.0 

Noise + 

Imprecision 

+ 
0 7417.0 

 

Table 36. IC-based measures by similarity scores using the latest databases 
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