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I. EXTENDED ABSTRACT

The early stages of drug design rely on hit dis-
covery programs, where initial possible inhibitors’
binding affinities are assessed when bound to their bi-
ological target. It is an expensive and time-consuming
process, requiring multiple iterations of trial and error
designs. This sets the perfect ground for computer
simulations.

Structure-based drug design has been in the past
decade a widely used computational methodology to
speed up the drug discovery process for resolved
protein-ligand systems[1]. However, providing a fast
and reliable answer to the protein-ligand affinity
problem can be an arduous task. In this context, the
capacity of the software to score the binding affinity
of the inhibitors will be crucial to determine possible
drug leads that will be later on optimized.

Hence, the main goal of this research is to add
physically justified corrections as well as Machine
Learning models to the energetic predictions to ob-
tain absolute binding free energies that match the
experimental results. To do it we will need to review
the physics involved in the forcefields used in the
simulations done with the software used in the group:
PELE[2].

PELE stands for Protein Energy Landscape Explo-
ration and it is a self-contained Monte Carlo software
to model protein-ligand interactions. The reachable
conformations by the protein and ligand are explored
and energetically assessed with the forcefield. The
forcefield is the parameterized functional (eq. 1) that
enables a Monte Carlo or a Molecular dynamics sim-
ulation to calculate the potential energies involved[3].

Etotal = Ebonded + Enonbonded

Ebonded = Ebond + Eangle + Edihedral

Enonbonded = Eelectrostatic + Evan der Waals.

(1)

This functional form does not take into account
different energetic contributions that should be ad-
dressed. Right now we have considered adding cor-
rection terms regarding the strain and the conforma-

tional entropy loss of the ligand upon binding, as in
eq. 2.

∆G = ∆Gbe +∆Hstrain − T∆Sconf (2)

A. Results

1) PELE’s binding energy: First of all, we have
addressed the problem of calculating the binding en-
ergy of a ligand. This affinity represents the amount
of energy needed to separate the ligand from the
protein.

In a PELE simulation, thousands of positions are
reached each of which has a binding energy assigned
with eq. 3.

∆GPELE = Gprotein-ligand − (Gprotein +Gligand) . (3)

The binding energy has been calculated for eight
different protein-ligand systems with eq. 4

∆Gbe =

∑N
i=1 ∆Gi

PELEe
−βGi

tot∑N
i=1 e

−βGi
tot

(4)

where β = RT which has units (kcal/mol)−1 and
Gi

tot is equal to the total energy of the i’s conforma-
tion in kcal/mol making the exponent dimensionless.
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Fig. 1. Correlation between calculated and experimental binding
energies. Calculated results are computed with the Boltzmann
average of the binding energy of eight different PELE simu-
lations with OPLS. Each simulation corresponds to a different
protein-ligand system. (PDB codes: 1CB0[4], 1K27[5], 6QGE[6],
6QGF[6], 1HPV[7], 1HSG[8], 1MSM[9] and 1T3R)[10].
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With these results, we have been able to check
how well the calculated affinities correlate with the
experimental data as shown in Fig. 1.

2) Ligand strain: In the second place, we have
considered the strain a ligand undergoes upon its
binding in the target’s binding site. This energetic
term is related to the change in the ligand confor-
mation when solvated in water and its conformation
when bound to the protein. In our case, we take it into
account by performing two simulations: one with the
isolated ligand and the other with the protein-ligand
system. From the first simulation, we can obtain the
minimum energy conformation of the ligand which
will be its solvent conformation energy (Hsol). From
the second we obtain the ligand energies associated
with the conformations adopted inside the binding
site of the protein, called bioactive conformations
(Hbc). With eq. 5 we can associate a ligand strain to
a simulation and see how well the results correlate to
QM/MM calculated strains, given that ligand strains
cannot be measured experimentally.

∆Hstrain =

∑N
i=1 H

i
bc −Hsol

N
> 0 (5)

3) Ligand conformational entropy: The last cor-
rection implemented for now has been the entropic
conformational loss of the ligand upon binding. Since
the conformational space available is reduced, there
is a toll on the free energy.

To obtain estimations of the entropic loss we
have considered the dihedral angles containing the
N rotatable bonds of the ligand. With this, we have
been able to track the angles reached by the different
dihedral angles. Then, we can perform a binning
to see the occurrences of each different interval of
angles and with that, assign a probability p to each of
the m bins. We can associate an entropic term to each
rotatable bond (rb) and, consequently, an entropic toll
to the protein-ligand simulation and the ligand-in-
solvent simulation as shown in eq. 6

S = −R
N∑
i=1

mi∑
j=1

pj ln (pj)

−T∆Sconf = −T (Sin − Ss)

(6)

where Sin and Ss are the ligand conformational
entropy inside the protein and in the solvent respec-
tively.

4) Further work: First and foremost we need good
experimental datasets to be able to validate how good
the predictions are. For now, the small amount (and
lack) of data impedes good statistics and with that
good or definitive results.

Further corrections could involve, for example,
taking into account the entropic loss associated with
the change in the explorable conformational space

of the residues located in the protein’s binding
site. Another approach could be developing Machine
Learning models to fit the calculated results to the
experimental data. In the end, we could end up
with mixed physically and Machine Learning based
corrections to have a good binding free energy esti-
mation.
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