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ABSTRACT
Serverless computing emerges as an architecture choice to build and

run containerized data-intensive pipelines. It leaves the tediouswork

of infrastructure management and operations to the cloud provider,

allowing developers to focus on their core business logic, decom-

posing their jobs into small containerized functions. To increase

platform scalability and flexibility, providers take advantage of hard-

ware disaggregation and require inter-function communication to

go through shared object storage.Despite data persistence and recov-

ery advantages, object storage is expensive in terms of performance

and resources when dealing with data-intensive workloads. In this

paper,wepresent Floki, a data forwarding system for direct and inter-

function data exchange proactively enabling point-to-point commu-

nication betweenpipeline producer-consumer pairs of containerized

functions through fixed-size memory buffers, pipes, and sockets.

Compared with state-of-practice object storage, Floki shows up to

74.95×of end-to-end timeperformance increase, reducing the largest

data sharing time from 12.55 to 4.33 minutes, while requiring up to

50,738× fewer disk resources,with up to roughly 96GB space release.

CCS CONCEPTS
• Information systems→Datamanagement systems.
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1 INTRODUCTION
Serverless computing has received a significant uptick in attention

over the last few years, both in academia and industry. In the server-

less paradigm, theoperational concernsof the infrastructure are fully

managed by the cloud provider, relieving the user from challeng-

ing decisions, e.g., instance types, cluster size, and load balancing

strategy. Thus, the serverless paradigm lets more users approach the

cloud, allowing them to be completely focused on their domain of

expertise. Serverless attracts many users also for its fundamental

principles, such as the ‘pay-per-use’ cost model and transparent

auto-scaling based on incoming requests.

Among its limitations [4, 6, 10], no network addressability and

the lack of efficient data sharing between functions prevent a vast

number of data-intensive workloads to benefit from serverless. Not

supporting direct inter-function communication, major serverless

platforms take disaggregation to an extreme, imposing functions to

exchange data only through shared object storage. In the context of

data-intensive workloads, represented as Directed Acyclic Graphs

(DAGs) and characterized by a considerable amount of intermediate

data transfers, shared object storage becomes a bottleneck for effi-

cient inter-function communication due to its high-latency access.

Indeed, as demonstrated in [16], directly using a serverless plat-

form for data-intensive workloads leads to highly inefficient execu-

tions. The slowdata transfers between functionsmake theCloudSort

benchmark to be up to 500× slower when executed on AWS Lambda

with S3 instead of on a cluster of Virtual Machines (VMs). Recent

studies tackle this problem by implementing optimized exchange

operators [13, 15], usingmulti-tier storage combining slowwith fast

storage or solely remote in-memory storage [7, 8, 16], exploiting

per-node caches [2, 19], co-locating functions on a single container

[1, 5, 9, 18], handling external storage on long-running VMs [3, 22],

or circumventing thenetwork constraints [21].However, thesemeth-

ods either use domain-specific optimizations, require two copies of

data over the network, are not fully transparent to the user, break the

advantage of fine-grained scaling, or use non-serverless components.

In this paper, we present Floki, a system enabling direct inter-

function communication in Kubernetes-based environments by

proactively forwarding data based on the workflow. It creates point-

to-point data channels exploiting conventional pipes and TCP sock-

ets, for intra-node and inter-node data transmission, allowing data

to be transferred directly from producer to consumer functions in a

fully transparent fashion,minimizing data copying over the network.

Floki offers workflow-oriented data communication, increasing per-

formance while minimizing resource requirements without impos-

ing any constraint on function placement. Specifically, its flexibility

and observability allow creating data channels adapting to the spe-

cific function scheduling of the underlying orchestration framework.

The main contributions of this paper are:

• A proactive workflow-based data forwarding system en-

abling point-to-point data transfers without additional over-

heads, such as state-of-practice storage overheads.

• The design of a full communication stack, allowing non-

colocated functions to share data as they are hosted on the

same node through local read-write operations.

The final publication is available at ACM via http://dx.doi.org/10.1145/3565384.3565890
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• An in-memory mechanism for transferring volatile data,

capable of dealing with arbitrary intermediate data sizes

efficiently and scalable on the data volume.

• A benchmark of Floki on the principal communication pat-

terns in distributed systems, i.e., one-to-one, fan-out, fan-in,

and all-to-all, with data transfers between 1MB and 16GB.

We envision Floki to be leveraged by container-based platforms and

users for high-performance volatile intermediate data exchange, as

an alternative solution for message passing.

2 RELATEDWORK
The serverless paradigm takes advantage of hardware disaggre-

gation, using the data center as a pool of independent resources

connected through high-speed networks. While there are several

available container orchestration frameworks, Kubernetes has be-

come the leading platform and de-facto cross-cloud standard for

automatic management of containerized applications. Knative in-

troduces serverless capabilities for Kubernetes clusters, managing

stateless services for deployment and autoscaling. However, in these

platforms communication latency becomes a bottleneck for data-

intensive applications or when parallelizing, making data transfers

throughsharedobject storagedirectlyproportional to thescale factor.

Also, althoughmanystreamingservices exist, none represents agood

match for intermediate data communication between non-colocated

functions. For example, Apache Kafka requires storing redundant

copies of a large amount of data when working with large data sets,

by introducing an additional full-stack service. Finally, KubeFlow

MPI ports MPI on Kubernetes within a specific use case: making it

easy to run allreduce-style distributed machine learning training.

However, its data communication is mainly driven by the user.

Efficient intermediate data sharing between functions represents

a key challenge for chained function execution, especiallywhendeal-

ing with data-intensive workloads [3, 4]. Different approaches have

been proposed to optimize data exchange in serverless workflows,

e.g., Lambada [13] and Starling [15], however focusing solely on

database analytics and using domain-specific optimizations. Tech-

nologies like Locus [16] and Pocket [8] leverage in-memory storage

for analytics and intermediate data sharing, but require resource de-

mand information from the user at submission time. In contrast, our

solution does not need any information on resource demand. Also,

as shown in [7, 16, 17], intermediate data sizes can consistently vary

during the workload execution, resulting in the well-understood

problem of potential performance degradation and/or resource un-

derutilization [11, 20]. All these works involve indirect communi-

cation, demanding two serial data copies over the network in the

critical path: one from producer function to shared storage and one

from shared storage to consumer function. Contrarily, Floki always

requires only one data copy for each inter-function communication

(from source to destination node).

Works like Crucial [2], Cloudburst [19], OFC [14], SONIC [12],

and SAND [1] focus on inter-function data sharing, disaggregation

and physical co-location, or data locality exploitation.However, they

need static provisioning of per-node cache resources or focus on

small data sizes. Faasm [18], Nightcore [5], and Faastlane [9] co-

locate workload functions on a single container to minimize data

sharing latency thanks to shared memory access, requiring memory
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Figure 1: Floki’s architecture.

over-provisioning to ensure containers run multiple functions and

extra services for concurrent executions during peak usage.

Finally, Boxer [21] improves Lambada by enabling inter-function

direct communication using TCP connections, deploying their sub-

system alongside each function. Floki establishes TCP connections

on the host namespace; therefore, it does not require deploying ad-

ditional connection-specific components in the serverless platform.

3 FLOKI ARCHITECTURE
In this section, we tackle the shared object storage bottleneck prob-

lem by presenting Floki, a system that proactively enables faster

point-to-point data sharing by exploiting local resources and TCP

socket connections. The system requires two inputs: First, the DAG

describing the workflowwhere nodes represent functions and arcs

represent data dependencies between functions; Second, the map-

ping between functions and cluster nodes. In the current version of

Floki, we assume the two inputs are given, and the user containers

read/write data sequentially. We further discuss these assumptions

in Section 5. In Floki, we achieve the following design goals: 1) Deal

with arbitrary complex data structures, 2) Proactive data transfer be-

tween functions, 3) Fast and direct inter-function communication, 4)

No constraint on functions placement.We highlight howwe achieve

these specific design goals in the remaining of this section.

Floki’s architecture transmits data in a fully volatile manner re-

lying on pipes and TCP sockets for intra-node and inter-node data

transmission, respectively. In Floki functions runconcurrently,while

in the naïve shared object storage communication functions run

sequentially based on data dependencies. Data is transmitted and

stored as byte arrays, allowing Floki to deal with arbitrary com-

plex data structures independently from the programming language

(Goal 1). Floki’s architectures solve the centralized storage bottle-

neck by offering direct communication between functions, where

data exchanges aremanaged on a producer-consumer functions pair

level, minimizing data copying over the network. Direct communi-

cation between functions implies the following advantages. First,

the number of concurrent read/write operations is reduced as re-

sources are shared among a lower number of functions, i.e., the ones

co-placed on a given node, or of exclusive use. Second, the I/O and

CPU usage are lower. Finally, thanks to multi-threading, a producer

function data can be sent in parallel to multiple consumer functions,

and a consumer function can receive concurrently multiple data.

Floki’s architectures consider five key components: the data- and
sync-pipe, the client and server sockets, and the forwarding agent. To
proactively transferdatabetweenproducer-consumer functionpairs,

based on the specific workload DAG and function-node mappings,
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Algorithm 1 Floki’s forwarding agent algorithm.

1: procedure recvData(𝑠𝑆𝑜𝑐𝑘𝑒𝑡,𝑙𝑖𝑠𝑡𝑂𝑏 𝑗𝑠𝑇𝑜𝑅𝑒𝑐𝑣)
2: AquireLock(dataPipe)

3: for all objName ∈ listObjsToRecv do
4: dataSize = RecvAndWriteSize(sSocket, dataPipe)

5: RecvAndWriteData(sSocket, dataPipe, dataSize)

6: end for
7: ReleaseLock(dataPipe)

8: end procedure
9: procedure sendData(𝑐𝑆𝑜𝑐𝑘𝑒𝑡,𝑙𝑖𝑠𝑡𝑂𝑏 𝑗𝑠𝑇𝑜𝑆𝑒𝑛𝑑)
10: for all objName ∈ listObjsToSend do
11: if currentObjName == objName then
12: SendDataSize(cSocket, sizeBuffer)

13: for k = 1 to ⌈𝑜𝑢𝑡𝐷𝑎𝑡𝑎𝑆𝑖𝑧𝑒/𝑝𝑎𝑐𝑘𝑒𝑡𝑆𝑖𝑧𝑒 ⌉ do
14: SendDataPacket(cSocket, dataBuffer)

15: end for
16: end if
17: end for
18: end procedure
19: procedure ForwardingAgent( )
20: producers = GetSocketsProducersNames(sSockets)

21: SendOwnName(cSockets)

22: WaitReady(syncPipe)

23: for i = 1 to #sSockets do
24: thsIn[i] = thread(recvData, sSockets[i], listObjsToRecv)

25: end for
26: WaitThreadsEnd(thsIn)

27: for j = 1 to #cSockets do
28: thsOut[j] = thread(sendData, cSockets[j], listObjsToSend)

29: end for
30: for all outObjName ∈ outObjsNames do
31: currentObjName = outObjName

32: outDataSize = ReadDataSize(dataPipe, sizeBuffer)

33: for k = 1 to ⌈𝑜𝑢𝑡𝐷𝑎𝑡𝑎𝑆𝑖𝑧𝑒/𝑝𝑎𝑐𝑘𝑒𝑡𝑆𝑖𝑧𝑒 ⌉ do
34: ReadDataPacket(dataPipe, dataBuffer)

35: end for
36: end for
37: WaitThreadsEnd(thsOut)

38: end procedure

Floki creates all the necessary components and relative connections

immediately after its submission (Goal 2).

Data- and sync-pipe: The two pipes, exposed on a local Persis-
tent Volume (PV), allow to exchange data between the user container

and the local forwarding process. While the data-pipe represents the
data communication channel, the sync-pipe synchronizes Floki with
the user container letting the forwarding agent to write on the data-
pipe only when the user container is ready to receive1.

Client and server sockets: These are the key components in

charge of transmitting data between pairs of nodes.We choose to im-

plement TCP sockets guaranteeing features such as error checking,

ordered data delivery, and enabling uniquely identified connections

between two endpoints, i.e., combining client and server sockets.

Forwarding agent: This component, instantiated into a process

in the host namespace, represents Floki’s architecture core com-

ponent. At a high level, the primary purpose of this component is

to drive inter-node communication, forwarding data directly from

the producer to the consumer function (Goal 3). More precisely, its

role is threefold. First, it creates and sets up the required TCP con-

nections. Second, it supplies the necessary input data to the user

container. Third, it forwards the data produced by the user container

to the following functions in the chain. Since the forwarding agent
mainly performs write/read memory buffers operations, we expect

1
Prevents the write operation from receiving a broken pipe signal when the read file

descriptor referring to the pipe read end is not opened.
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Figure 2: A step-by-step example of Floki.

its overhead to be negligible. To proactively set up the communica-

tion infrastructure for the specific workflow, it internally stores the

function name to which it refers and the ordered lists of data object

names to receive/send for each of the previous/following functions

in the workflow. In addition, it stores the mapping between the fol-

lowing functions in the workflow and the IP address of the nodes

to which they have been scheduled to account for the underlying

scheduler functions placement (Goal 4). Based on this information,

it automatically derives the necessary number of server and client
socket connections, i.e., #𝑠𝑆𝑜𝑐𝑘𝑒𝑡𝑠 and #𝑐𝑆𝑜𝑐𝑘𝑒𝑡𝑠 .

Algorithm 1 shows the pseudo-code of the forwarding agent,
whose top-function is represented by the ForwardingAgent proce-

dure. Once the #𝑠𝑆𝑜𝑐𝑘𝑒𝑡𝑠 server and #𝑐𝑆𝑜𝑐𝑘𝑒𝑡𝑠 client socket connec-
tions are opened and set up, the forwarding agent receives producer
functions’ names getting the correspondence with the server socket
connections (line 20). Storing for each producer the list of data object

names to receive allows the forwarding agent to know the number

and the names of the data objects transmitted on each server socket.
Then, the forwarding agent sends the related function name on all

client sockets (line 21). Since the forwarding agent starts before the
workflow is deployed, to respect the coordination of the pipe opera-

tions, the forwarding agent waits for the user container ready signal
eventing that it is running and ready to read data from the data-pipe
(line 22). Once received, the forwarding agent creates the #𝑠𝑆𝑜𝑐𝑘𝑒𝑡𝑠
input threads (lines 23-25).

The input threads alternately write on the data-pipe, sending first
the data size (line 4) and then the data content read in a packet-based

fashion from the corresponding server socket (line 5). The input
threads’ data-pipewrite operations follow the order declared in the

stored list of data objects to receive. To handle data-pipe contention,
the threads’ write operations are synchronized by acquiring (line 2)

and releasing (line 7) a lock. When all input threads finish (line 26),

the output threads, in charge of sending the user container-produced

data on the client sockets, are created (lines 27-29).
For each produced data object, the forwarding agent reads the data

object size𝑜𝑢𝑡𝐷𝑎𝑡𝑎𝑆𝑖𝑧𝑒 (line 24) and the data object content from the

data-pipe (lines 32-35). To guarantee output threads access to both
data object size and content, the forwarding agent read operations
store them in 𝑠𝑖𝑧𝑒𝐵𝑢𝑓 𝑓 𝑒𝑟 and 𝑑𝑎𝑡𝑎𝐵𝑢𝑓 𝑓 𝑒𝑟 shared memory buffers.

Finally, eachoutput thread sends the buffers on the client socket (lines
12-15) if the current received data object, i.e., 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑂𝑏 𝑗𝑁𝑎𝑚𝑒 , be-

longs to its list of objects to send (line 11).
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Figure 2 illustrates howFlokiworks step-by-stepwith a simple ex-

ample of a two functionsworkflow. Thefirst function reads thework-

flow input stored in the object storage and creates the intermediate

output outA. In contrast, the second function reads the intermediate

data object outA and computes the workflow output out, saving it in
the object storage. For data transferred in a packet-based fashion, in

Figure 2 we highlight the operations performed multiple times with

circular arrows. While the first function reads the workflow input

from the object storage (step 1), the second function sends the ready

signal on the sync-pipe to the local forwarding agent (step 2), eventing
it is up and running and waiting to read data on the local data-pipe.
During the intermediate data object OutA computation (step 4), the

forwarding agent on the second node reads the ready signal (step 3)
from the sync-pipe and waits for the first packet on the server socket.
Once the first function ends to compute the intermediate data ob-

ject outA, it first writes outA size packet and then iteratively writes

outA content in packets on the local data-pipe (step 5). The local

forwarding agent reads the packets from the data-pipe (step 6) and
sends them to the client socket (step 7). On the consumer side, packets

are read from the forwarding agent (step 8) and written to the local
data-pipe (step 9). Finally, packets are read from the second function

(step 10), which, once received outA, computes the workflow output

out (step 11) and stores it in the object storage (step 12).

4 EXPERIMENTALRESULTS
To evaluate our approach, we analyze the impact of different pipe

and socket buffer sizes on data communication latencies, and we

evaluate Floki in terms of performance and resource usage impact.

4.1 Experimental Setup
To prevent us from benchmarking cloud vendors’ specific environ-

ments, the experiments are run on an on-premise cloud-prepared

environment. Experiments are executed on a virtualized Kubernetes

cluster composedofonemaster, representing theKubernetes control-

plane, and 7worker nodes onwhich functions are deployed.AMinIO

server, a widely used high-performance object storage, outside the

Kubernetes cluster but inside the infrastructure, is considered in the

experiments as shared storage. In-memory key-value stores, such

as Redis andMemcached, are not considered since they break one of

the serverless advantages by requiring users to select instance types

in terms of network, compute, andmemory resources to satisfy their

application requirements. The master runs in a Linux-based VM

with 32GB of memory and 16 virtual cores, while the workers run in

a Linux-based VMwith 128GB of memory and 16 virtual cores. The

MinIO server runs bare-metal on a node featuring an Intel
®
Xeon E5-

2620 CPU running at 2.00GHz, interfacing with two 1.6TB Intel
®
DC

P3608 SSDs through NVMe. The VMs are synchronized in the mil-

lisecondrange.TheKubernetes cluster ismappedon8physicalnodes

residing in the same rack and featuring either an Intel
®
Xeon Silver

4114 CPU running at 2.20GHz or an Intel
®
Xeon E5-2630 v4 CPU

running at 2.20GHz. Physical nodes are connected through a 10Gbps

Brocade VDX6740 network switch. The experimental evaluation re-

ports average results computed over 10 sequential runs for reliability.

4.2 Pipe and Socket Buffer Sizes Analysis
In this analysis, we want to analyze the impact of different buffer

sizes on fixed-size data communication over pipes and sockets and
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(diamonds) for 16GB data with pipe and socket buffer sizes
ranging from 1 to 128 pages (4KB to 512KB).

find the optimal buffer sizes. The experiments are based on two types

of functions: a producer function writing data in packets on a chan-

nel and a consumer function reading data in packets from a channel.

The evaluation considers different buffer sizes, ranging from 1 sys-

tem page, i.e., 4KB, to 128 system pages, i.e., 512KB, with the kernel

imposed constraint of a power-of-two increment. The lower range

limit, i.e., 1 systempage, represents the size forwhich thekernel guar-

antees pipe writes operations to be atomic. Within Floki, a data-pipe
is of exclusive use of a single producer at a time; thus, the pipe buffer

size can be increased without affecting writes operations atomicity.

Figure 3 shows the average transfer times of a 16GB data object

with different pipe and socket buffer sizes, and the related resource

usage. Note that the socket resource usage is always twice the cor-

responding buffer size: TCP allocates twice the requested buffer size

and uses the extra space for administrative purposes and internal

kernel structures. While the difference between the pipe and socket

transfer times is significant for small buffer sizes, the transfer times

are comparable for big buffer sizes. In particular, as highlighted in

Figure 3, 16 system pages buffer size, i.e., 64KB, represents the opti-

mal size, reducing and balancing the pipe and socket transfer times.

Increasing the buffer size would provide comparable transfer times

while using more resources. Therefore, the following experiments

and evaluations consider a buffer size of 16 system pages.

4.3 Performance Evaluation
We conduct a series of experiments to evaluate the performance of

Floki in terms of end-to-end times. Targeting data-intensive work-

loads, the evaluation considers data sizes ranging from 1MB to 16GB

with a 2× increment. To measure the end-to-end times, we register

the timestamp before each producer function starts towrite data and

the timestamp after each consumer function finishes reading data.

Thus, given N producers and K consumers functions with𝑇𝑆𝑝𝑖 and

𝑇𝑆𝑐 𝑗 as their timestamps, we derive the end-to-end time𝑇𝐸2𝐸 as:

𝑇𝐸2𝐸 =𝑚𝑎𝑥 (𝑇𝑆𝑐1 ,..,𝑇𝑆𝑐𝐾 )−𝑚𝑖𝑛(𝑇𝑆𝑝1 ,..,𝑇𝑆𝑝𝑁 ) (1)

As Equation (1) shows, the end-to-end time𝑇𝐸2𝐸 accounts for possi-

ble not fully concurrent operations by considering the minimum of

the producers timestamps𝑇𝑆𝑝𝑖 and the maximum of the consumers

timestamps𝑇𝑆𝑐 𝑗 .

Figure 4 shows Floki end-to-end time speedups over the object

storage solution baseline (horizontal constant solid line). Floki al-

ways significantly outperforms the object storage solution in all the

analyzed patterns. Contrarily to a naïve solution relying on shared

object storage, producers and consumers functions are deployed and

run concurrently. The benefits of the volatile data share are more
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Figure 4: Floki’s end-to-end speedups over the object storage
solution in the analyzed distributed systems patterns.

visible with small data sizes, i.e., from 1MB to 256MB, for which

a higher performance increase is obtained. It is worth noting that,

since data objects are read sequentially from the consumer functions,

with multiple producers, functions using Floki gain smaller perfor-

mance than those achieved with a single producer. Floki reduces

the end-to-end time up to: 74.95× in the one-to-one pattern; 25.34×,
15.83×, and 24.83× in the fan-out pattern; 10.11×, 10.18×, and 7.49×
in the fan-inpattern; 9.99× and 8.11× in the all-to-all pattern.Overall,

considering the impact of Floki in terms of end-to-end time, themost

significant time-savings are reached with a data size of 16GB, fea-

turing the largest data transfer latency. In particular, the higher time

reductions are achieved in the 1to6 pattern, where communication

latencies are reduced from 753𝑠 to 260𝑠 on average. In other words,

Floki allows saving 8.22 minutes on data sharing latency over the

object storage baseline requiring 12.55 minutes.

4.4 Resource Usage Evaluation
Resource usage is crucial in serverless environments, where re-

sources are billed with a pay-as-you-go model. We want to estimate

and compare the resource usage of Floki to the object storage so-

lution, representing the baseline, in the four considered patterns,

i.e., one-to-one, fan-out, fan-in, and all-to-all. To assess the gap of

resource requirements between varying data sizes, we choose two

extreme cases just for comparison, i.e., 1MB and 16GB. In the fol-

lowing,𝐷𝑆 represents the data size,𝑇 the total amount of functions

composing the specific pattern,𝑃 and𝐶 the number of producers and

consumers functions, and 𝑃𝐵𝐷 and 𝑆𝐵𝐷 the pipe and socket local

buffer sizes (i.e., 64KB and 128KB), accordingly. The object storage

resource usage estimation does not consider the necessary internal

buffers to write and read the data object/file since their sizes are

negligible compared with the analyzed data sizes. Being the object

storage shared among the different functions, we derive the related

resource usage 𝑅𝑈𝑂𝑏 𝑗𝑆𝑡𝑜𝑟𝑎𝑔𝑒 as:

𝑅𝑈𝑂𝑏 𝑗𝑆𝑡𝑜𝑟𝑎𝑔𝑒 = (𝑃 ∗𝐷𝑆)𝐷 (2)

The required disk space is proportional to the number of producers

functions 𝑃 . Therefore, from a resource usage perspective, there is

no difference among the patterns composed of the same number of

producers and a different number of consumers. For instance, the

fan-in patternwith three producers and one consumerwould require

the same disk space as the all-to-all patternwith three producers and

three consumers. Differently, Floki represents a significantly less

expensive resource usage solution. Considering only the memory

space needed to hold the local buffers to perform the pipe and socket

operations, we derived Floki resources usage 𝑅𝑈𝐹𝑙𝑜𝑘𝑖 as:

𝑅𝑈𝐹𝑙𝑜𝑘𝑖 = (𝑇 ∗𝑃𝐵𝐷+2∗𝑃 ∗𝐶∗𝑆𝐵𝐷)𝑀 (3)

Weevaluate Floki resourceusage following thepresentedanalysis.

By applying Equations (2) and (3), the resource-saving is evaluated

by dividing the resource usage of the object store baseline for the

Floki resource usage. For example, when sharing 1MB, Floki saves

1𝑀𝐵
384𝐾𝐵

=2.67× of resources compared to the baseline. Floki always

demands a significantly lower amount of resources compared to the

object storage solution. More precisely, each function composing

the workflow only requires 64KB of memory for the pipe buffer and

128KB for each client/server socket buffer, allowing resource-saving

to scale linearly with the data size increase. For example, consid-

ering the simple one-to-one pattern, the 16GB saving differs from

the 1MB saving by a factor of 16,384×, equivalent to the difference
between the two data sizes. Overall, Floki achieves up to 50,738×
of resource-saving, translating into a memory allocation of roughly

1.9MB instead of an object storage allocation of 96GB.

5 DISCUSSION
Envisioning Floki as part of Knative and Kubernetes-based work-

flows frameworks, we briefly discuss the made assumptions and

their integration limitations.

Assumptions: As introduced in Section 3, Floki requires two

inputs: the functions-nodes mapping and the workload DAG. In the

currently available computation frameworks, the workload DAG is

provided by the user in the form of a configuration file (e.g., JSON

file) or a high-level description. Further steps are required to either

facilitate the DAG specification in case of complex workflows or

to remove the user from the loop. Instead, the mapping between

functions and cluster nodes can be easily retrieved by inspecting the

underlying Kubernetes scheduler.

Interface:Given the current POSIXwrite, writing a pipe requires
reading and writing data in batches. Adapting an application would

require substituting suchwrite functions with looped writes, where
a simple library function provided as API by Floki could interface

such change without changing the programming model.
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Fault-Tolerance, Multy-Tenancy, and Data Recovery: Fault-
Tolerance, multi-tenancy, and data recovery represent crucial at-

tributes of cloud and serverless computing. Floki needs more effort

to be fault-tolerant.Hardmulti-tenancy inKubernetes environments

can be achieved through complex namespaces, resource quotas, ac-

cess control, and virtual cluster configuration, and Floki indirectly

guarantees security in amulti-tenant environment. Concerning data

recovery, in case of a component failure, intermediate data must

be re-computed by re-running the entire workflow. Re-computing

only failed functions could lower the overhead; thus, we believe

per-function data recovery deserves further investigation.

Porting on Kubernetes-basedWorkflow Frameworks and
Knative: Even though Floki is currently at its first maturity stage,

we target to port the proposed solution to Kubernetes-based work-

flows frameworks and Knative. To integrate Floki with Knative, two

main features are required. First, following the underlying orches-

tration platform feature, it is necessary to enable Knative functions

to mount local volumes. Second, on top of the existing Knative Cus-

tom Resource Definitions (CRDs) providing sequential and parallel

functions invocations, a more general workflow CRD has to be built.

While porting Floki to Knative is more complex, the porting on

Kubernetes-based workflows frameworks, e.g., Argo, would only

require to automatically create the system components.

6 CONCLUSIONS
Executing data-intensive pipelines on serverless requires efficient

inter-container data sharing, overcoming state-of-practice storage

high-latency access. We tackle this problem by presenting Floki, a

system designed for fast point-to-point data sharing.We benchmark

Floki on the principal distributed systems communication patterns,

considering data transfers from 1MB to 16GB. Performance-wise,

when compared to object storage baseline, Floki improves end-to-

end timeperformanceup to74.95×, reducing the largest data-sharing
time from 12.55 to 4.33 minutes while requiring up to 50,738× fewer

disk resources, with up to roughly 96GB disk space release. Even

though Floki is at its first stage of maturity, we aim to integrate it

in Kubernetes-based workflow frameworks and Knative to enable

high-performance intermediate data exchange.

ACKNOWLEDGMENTS
Thisworkwaspartially supported by theMinistry of Economyof Spainunder

contract TIN2015-65316-P, the Ministry of Science under contract PID2019-

107255GB-C21/AEI/10.13039/501100011033, and PID-126248OB-I00, and the

Generalitat de Catalunya under contract 2014SGR1051.

REFERENCES
[1] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus Satzke,

Andre Beck, Paarijaat Aditya, and Volker Hilt. Sand: Towards high-performance

serverless computing. In USENIX Conference on Usenix Annual Technical
Conference, ATC ’18, 2018.

[2] Daniel Barcelona-Pons, Marc Sánchez-Artigas, Gerard París, Pierre Sutra, and

Pedro García-López. On the faas track: Building stateful distributed applications

with serverless architectures. In InternationalMiddleware Conference, Middleware

’19, 2019.

[3] Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew Zhang, and Randy Katz.

Cirrus: A serverless framework for end-to-endml workflows. InACM Symposium
on Cloud Computing, SoCC ’19, 2019.

[4] Joseph M. Hellerstein, Jose M. Faleiro, Joseph E. Gonzalez, Johann Schleier-Smith,

Vikram Sreekanti, Alexey Tumanov, and ChenggangWu. Serverless computing:

One step forward, two steps back. CoRR, abs/1812.03651, 2018.

[5] Zhipeng Jia and Emmett Witchel. Nightcore: efficient and scalable serverless

computing for latency-sensitive, interactive microservices. In ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’21, 2021.

[6] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-che Tsai, Anurag

Khandelwal, Qifan Pu, Vaishaal Shankar, João Carreira, Karl Krauth, Neer-

aja Jayant Yadwadkar, Joseph E. Gonzalez, Raluca Ada Popa, Ion Stoica, and

DavidA. Patterson. Cloud programming simplified: A berkeley view on serverless

computing. CoRR, 2019.
[7] Anurag Khandelwal, Yupeng Tang, Rachit Agarwal, Aditya Akella, and Ion Stoica.

Jiffy: Elastic far-memory for stateful serverless analytics. In European Conference
on Computer Systems, EuroSys ’22, 2022.

[8] Ana Klimovic, YawenWang, Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle, and

Christos Kozyrakis. Pocket: Elastic ephemeral storage for serverless analytics.

In USENIX Conference on Operating Systems Design and Implementation, OSDI’18,
2018.

[9] Swaroop Kotni, Ajay Nayak, Vinod Ganapathy, and Arkaprava Basu. Faastlane:

Accelerating function-as-a-service workflows. In USENIX Annual Technical
Conference, ATC ’21, 2021.

[10] Pedro García López, Marc Sánchez Artigas, Simon Shillaker, Peter R. Pietzuch,

David Breitgand, Gil Vernik, Pierre Sutra, Tristan Tarrant, and Ana Juan Ferrer.

Servermix: Tradeoffs and challenges of serverless data analytics. CoRR, 2019.
[11] Kshiteej Mahajan, Mosharaf Chowdhury, Aditya Akella, and Shuchi Chawla.

Dynamic query re-planning using qoop. In USENIX Conference on Operating
Systems Design and Implementation, OSDI’18, 2018.

[12] AshrafMahgoub, Karthick Shankar, SubrataMitra, Ana Klimovic, Somali Chaterji,

and Saurabh Bagchi. SONIC: Application-aware data passing for chained

serverless applications. In USENIX Annual Technical Conference, ATC ’21, 2021.

[13] Ingo Müller, Renato Marroquín, and Gustavo Alonso. Lambada: Interactive data

analytics on cold data using serverless cloud infrastructure. In ACM SIGMOD
International Conference on Management of Data, SIGMOD ’20, 2020.

[14] Djob Mvondo, Mathieu Bacou, Kevin Nguetchouang, Lucien Ngale, Stéphane

Pouget, Josiane Kouam, Renaud Lachaize, Jinho Hwang, Tim Wood, Daniel

Hagimont, Noël De Palma, Bernabé Batchakui, and Alain Tchana. Ofc: An

opportunistic caching system for faas platforms. In European Conference on
Computer Systems, EuroSys ’21, 2021.

[15] Matthew Perron, Raul Castro Fernandez, David J. DeWitt, and Samuel Madden.

Starling: A scalable query engine on cloud function services. CoRR ’19, 2019.
[16] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. Shuffling, fast and slow:

Scalable analytics on serverless infrastructure. In USENIX Conference on
Networked Systems Design and Implementation, NSDI ’19, 2019.

[17] Charles Reiss, Alexey Tumanov, Gregory R. Ganger, RandyH. Katz, andMichael A.

Kozuch. Heterogeneity and dynamicity of clouds at scale: Google trace analysis.

InACM Symposium on Cloud Computing, SoCC ’12, 2012.

[18] Simon Shillaker and Peter Pietzuch. FAASM: Lightweight Isolation for Efficient
Stateful Serverless Computing. ATC ’20. 2020.

[19] Vikram Sreekanti, ChenggangWu, Xiayue Charles Lin, Johann Schleier-Smith,

Jose M. Faleiro, Joseph E. Gonzalez, JosephM. Hellerstein, and Alexey Tumanov.

Cloudburst: Stateful functions-as-a-service. CoRR, abs/2001.04592, 2020.
[20] Midhul Vuppalapati, Justin Miron, Rachit Agarwal, Dan Truong, AshishMotivala,

and Thierry Cruanes. Building an elastic query engine on disaggregated storage.

In USENIX Conference on Networked Systems Design and Implementation, NSDI’20,
2020.

[21] Michal Wawrzoniak, Ingo Müller, Gustavo Alonso, and Rodrigo Bruno. Boxer:

Data analytics on network-enabled serverless platforms. In CIDR, 2021.
[22] Tian Zhang, Dong Xie, Feifei Li, and Ryan Stutsman. Narrowing the gap between

serverless and its state with storage functions. In ACM Symposium on Cloud
Computing, SoCC ’19, 2019.


	Abstract
	1 Introduction
	2 Related Work
	3 Floki Architecture
	4 Experimental Results
	4.1 Experimental Setup
	4.2 Pipe and Socket Buffer Sizes Analysis
	4.3 Performance Evaluation
	4.4 Resource Usage Evaluation

	5 Discussion
	6 Conclusions
	References

