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Abstract

Keywords: Cash management problem, idle cash, genetic algorithm, MILP

In this study, we analyze the optimal level of cash held at branch offices across different
regions and currencies. Freeing up excess of cash in balance enables the parent organization
to utilize it for strategic investments. The main objective is to develop a cash inventory
tool that maximizes net earnings of the parent organization, which implies a reduction of
idle cash held at branches. The earnings come from the compound interest by investing the
excess of cash in central location. However, there are foreign exchange transaction costs
from transferring funds from office to central office. We need to determine the optimal
fund quantities that maximize the objective function. We assume that offices are given
specific safety cash levels, which do not need to be the same. Besides, there are fixed and
variable transactions costs derived from the exchange of currencies.

The branch-office cash optimization problem stated above is known as the cash manage-
ment problem that many firms must take care of in order to have a healthy financial
balance sheet. It is similar to an inventory optimization problem since there is a target
inventory level to be maintained. This level is high enough to be able to meet fluctuations
in cash demand, yet low enough that unnecessary cash is minimized. The problem is
formulated as a mixed integer linear programming model (MILP) in a constrained search
space. To approach the problem, we use genetic algorithm, a heuristic technique based on
natural selection, and Branch-and-Cut algorithm.

In terms of execution time, we show that Branch-and-Cut algorithm is a better approach
for this optimization problem than genetic algorithm. However, in terms of maximizing
the objective function, both algorithms do a similar improvement of the net earnings
compared to the case where there is no optimization strategy (baseline approach).
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Chapter 1
Introduction

Cash management is a very important and necessary activity for firms. It monitors
the daily inflow and outflow of cash in balance. The opportunity cost of excess
of cash, idle cash, in divisions is that the central location is losing income that it
could have earned by investing it. As an example, idle cash in branches generates
approximately 1% in interest whereas invested capital 3% in central office. On the
other hand, if the office keeps too little cash, it takes the risk of not being able to
meet the day-to-day demand for cash. Therefore, there is a clear trade-off between
keeping too much or too little cash in balance in offices. Nevertheless, subsidiaries
should only keep the necessary cash in balance in order to meet their obligations.

Cash management problem is commonly considered as an inventory management
problem where cash is treated as a type of stock that is used for the daily functioning
of an organization. It is a special form of supply chain where cash should be either
made available at the right time in the right quantity or to be returned to the cash
cycle. In order to maximize total earnings and minimize total costs, we need to
optimize the cash level at each branch of the supply chain. It is a classic problem
in a firm’s financial management in order to maintain cash at the desired level. In
addition, it is also known as cash balance problem.

The cash flow statement highlights a company’s cash management since it displays
the change in cash per period, as well as the beginning and ending balance of cash.
It measures how well a company generates cash to finance its liabilities, fund its
operating expenses and fund investments. It allows investors to understand how
a company’s operations are running, where its money is coming from, and how
money is being spent. In short, CFS is one of the main input data necessary for
developing a cash inventory optimization tool.

However, the main focus of this study is the management of the cash level at branch
offices across the globe and the cash transfers between central location and branches,
which is a very important role in cash management of international institutions. It
is not the same as optimizing cash in an ATM network. The latter is specific to
bank institutions and due to cash withdrawal, banks must also consider customer
satisfaction when approaching the problem. In addition, ATM branches are highly
affected by seasonal indices such as bank holidays, labor days and weekends. Last,
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2 1. INTRODUCTION

ATM cash management generally allows only decisions regarding the increase of
inventory level, i.e. cash uploads.

Moreover, the branch cash optimization is more complex than just optimizing the
cash levels for a single firm. For instance, it requires knowledge of the foreign
exchange market when transferring funds in different currencies from branch to
central hub and vice versa. When dealing with branches, they could be located in
countries where the banking system is underdeveloped as well as their IT systems.

Finally, to determine the desired level of money to hold in balance, cash demand
must be known in advance. In our case, it is randomly generated and it is considered
as fixed input data in our study.

1. Objectives

The major challenge of this study is to determine the amount of cash to be trans-
ferred in and out of cash balances over a time horizon in order to maximize net
earnings. The end goal of our project is to invest in central office the idle cash
held in branch offices. The costs in this project come from exchanging currencies
between branch offices and central office. We assume fixed and variable transaction
costs.

The other objective of this report is to compare the solution approach of two dif-
ferent algorithms. Both should determine the efficient transfer quantities of funds.
Branch-and-Cut (BnC) is an exact algorithm whereas GA is an heuristic algorithm.
We would expect different solution sets as well as different time execution.

2. Report Organization

This thesis is organized in 6 chapters. In chapter 1 we introduce the scope of our
work, which is the study of cash management problem. Chapter 2 presents the
state of the art of CMP by reviewing the available research literature. Our study
approach is defined in chapter 3. Chapter 4 describes the solution structure by
means of BnC and GA algorithms. In chapter 5 we discuss and compare the results
obtained by using the different algorithms. Last, chapter 6 concludes our analysis,
in here we examine our findings and summarize the paper.



Chapter 2
Literature Review

This chapter introduces the necessary knowledge in order to better understand
and follow the preceding chapters. In the first section, we discuss previous studies
carried out by various researchers that tried to solve the optimization problem in
hand. In the second and third sections, we review the principles of the evolutionary
algorithm.

1. Cash Management Problem

The earliest cash management model is the Baumol model, also known as Baumol-
Allais-Tobin (BAT) model. It is named after Baumol (1952)[6], Allais (1952)[3] and
Tobin (1956)[29] who were the firsts economists to approach the cash optimization
problem. They independently developed the model of the transactions demand for
cash, which is based on establishing a firm’s optimum cash balance under certainty.
The firm attempts to minimise the sum of the cost of holding cash and the cost
of converting marketable securities to cash. Therefore, the objective is to find the
optimal withdrawal size that minimizes total costs. The model assumptions are that
the firm is able to forecast its cash requirements in an accurate way. The firm’s
payouts are uniform over a period of time. The opportunity cost of holding cash
is known and does not change with time. The firm will incur the same transaction
cost for all conversions of securities into cash.

The BAT model was further developed by Álvarez and Lippi (2009)[4] that allowed
a dynamic environment with the possibility of withdrawing cash at random times
at a low cost. But, they were mainly focused on households’ cash management. In
addition, all random withdrawals were assumed to be free.

Nevertheless, the Baumol approach is very limited for several reasons. Foremost,
firm’s inflow and outflow of cash are assumed to be uniform and deterministic over
a period of time, this is very unrealistic for many institutions. The transaction cost
cannot be considered constant over the entire period since it usually depends on
the size of the withdrawal. Moreover, interest rate is not usually fixed throughout
the period when investing in securities. Finally, this approach is not suitable for
international organizations with branch offices. However, mathematically speaking,
the BAT model is identical to the Economic Order Quantity model (EOQ), which
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4 2. LITERATURE REVIEW

is used extensively in the management of physical inventories. They both lead to
the same same square-root-formula which helps in the estimation of the optimal lot
size for each production run and also the number of production runs needed in a
year.

Eppen and Fama (1968)[11] introduced linear programming techniques for the cash
balance problem. The objective was to study the optimal operating policies or deci-
sion rules for stochastic cash-balance that minimizes the expected costs over some
time horizon. They believed that it is similar to the dynamic portfolio problem
of mutual funds and other financial institutions. They assumed that holding and
penalty costs are proportional to the level of cash balance, costs incurred in trans-
ferring funds between cash and earning assets are a linear function of the amount
of funds transferred. They did not prove the form of the optimal policy. How-
ever, from conducting experimental scenarios they knew that cash balance had to
be between a lower and an upper bounds. These researchers had a more realistic
approach to the CMP. For instance, they believed that cash flow is to some ex-
tent unpredictable and they also considered variable transaction costs. Chen and
Simchi-Levi (2009)[9] extended Eppen and Fama research by considering fixed costs
for both cash inflows and cash outflows.

In recent papers, cash management is to a large extent for optimizing cash levels in
bank institutions. Moreover, literature review has a high emphasis on ATM branch
cash optimization. In general, ATM cash management deals with finding the mini-
mal amount of cash able to meet the demand over an ATM network. Management
generally relies on human experience and corporate policy, which leads to static
model parameters.

Bilir and Doseyen (2018) [7] developed an integrated cash requirement forecasting
and cash inventory optimization model for both the branch and ATM networks of
a mid-sized bank. The goal is to minimize idle cash for both types of branches
without decreasing the customer service level (CSL) at the right time and location.
It is believed to be the first integrated model in the literature. They introduced
information of seasonal indices in the forecasting algorithm. They used an integer
programming formulation to obtain the optimal transfer schedule for ATMs and
branches by minimizing total costs. They were able to reduce both the idle cash
levels and the operational cash-in-transit costs.

Salas-Molinas et al. (2020) [25] proposed a multiple-criteria cash management
problem. They relied on goal programming and stochastic goal programming to
produce cash management policies. They believe that assets have different expected
returns as well as particular liquidity terms, meaning that the time period from the
selling decision to the availability of cash is not necessarily zero. Goal programming
aims to conciliate the achievement of a set of goals instead of optimizing every
goal. In their case, to minimize cost and risk in a two-assets setting with a cash
and investment accounts. They used cash balance deviations are a measure of risk
and a goal programming approach by transforming hard constraints in soft ones
by means of stochastic goal programming. They expressed uncertainty as lack of
predictive accuracy from forecasting cash flow. The main limitation of this paper
is that they specified goal weights according to the preferences of cash managers
rather than relying on subjective judgments.
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Up to this point, there is not much research on approaching the CMP in the ways
we are going to in further sections. Our study is solely focused on optimizing cash
balance for branch-office-level, no ATM network is considered, and it is not specific
to bank institutions. Our cash supply chain involves only two agents, the central
office and the branch offices.

2. Evolutionary Algorithms

Evolutionary Algorithms are a subset of algorithms in search of global optimization
inspired by biological evolution. As Simon (2013)[28] mentions in his book, the
terminology of evolutionary algorithms is imprecise and context-dependent. For
instance, EAs are defined as population-based techniques but, they also include
single-individual algorithms in the sense that they can have a single candidate
solution at each iteration. On the other hand, EAs are comprised of algorithms
not necessarily motivated by nature such as differential evolution and estimation
of distribution algorithms. In addition, evolutionary algorithms can be referred as
meta-heuristics since they use common sense approaches to solve a problem. They
tend to find solutions that are close to the best solution. These meta-heuristics
maintain the diversity in population and avoid the solutions being stuck in local
optima.

The basic features of natural selection are the following: a biological system that
includes a population of individuals, many of which have the ability to reproduce;
individuals have a finite life span; there is variation in the population; ability to
survive is positively correlated with the ability to reproduce.

The classic evolutionary algorithms are genetic algorithms, evolutionary program-
ming, evolution strategies and genetic programming. Our study mainly analyses
genetic algorithms.

2.1. Genetic Algorithm. (GA) is the first implementation of EAs. They are
simulations of natural selection that can solve optimization problems. However,
GAs are not limited to optimization applications.

We assume that genetic algorithm is a population based search algorithm. Each
potential solution is a ”candidate solution” or ”individual” (analogous to chromo-
some). Every individual has a set of features (analogous to genes) that can be
evolved and changed. Just as in a chromosome, each gene controls a particular
characteristics of the individual, similarly, each bit in the string represents a char-
acteristics of the solution. There most popular encoding methods are binary, octal,
hexadecimal, permutation, value-based and tree. In addition, features are consid-
ered as points in the solution space.

Each individual in the population is coded as a finite length vector (chromosome)
of components (genes). A group of individuals is called the ”population” of the
GA. Figure 1 illustrates that population of individuals are maintained within the
search space.
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Figure 1. Search Space: Gene, Chromosome, Population

To begin the genetic algorithm, we randomly generate a set of individuals. Then,
new populations are produced by iterative use of genetic operators on individuals
present in the population.

For every generation, the fitness of each individual in the population is evaluated.
The fitness is the value of the objective function being solved. In cash management
optimization, the fitness function could be the minimization of transaction costs
or maximization of net earnings. Individuals with good fitness score are given
more chance to reproduce. Thus, each successive generation is more suited for
their environment. Moreover, the population size is static so the room has to
be created for new arrivals. For instance, some individuals die and get replaced
by new individuals and eventually creating a new generation when all the mating
opportunity of the old population is exhausted. It is expected that over successive
generations, better solutions will arrive while least fit die.

The algorithm stops for two reasons. One possibility is that the GA can run for
a predetermined number of generations. Another possibility is for the GA to run
until the fitness of the best individual is better than some user-defined threshold.
Another possibility is for the algorithm to run until the fitness of the best individual
stops improving from one generation to the next. This means that the offspring
generated has no significant difference compared to the offspring generated by the
old population. This indicates that the algorithm is said to be converged to a set
of solutions for the problem.

Once the initial generation is created, the GA evolves the generation using some
operators discussed as follows. Figure 2 depicts the basic structure as well as the
sequence of the operators of the algorithm.

The selection operator gives preference to the individuals with good fitness scores
and enables them to pass their genes to successive generations of the individual. It
is also known as reproduction operator since it determines whether an individual
will participate in the reproduction process or not. The most common selection
techniques are roulette-wheel and tournament.

Roulette-wheel selection is referred as fitness-proportional selection or fitness pro-
portionate selection. Each individual has a probability of being selected that is
proportional to the amount by which its fitness is greater or less than its com-
petitors’ fitness. The wheel is rotated randomly to select specific solutions that
will participate in formation of the next generation. The main downside of this
technique is that it introduces errors due to its stochastic nature.
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Figure 2. The sequence of operators in Genetic Algorithm

Tournament selection reduces the computational cost associated with selection.
Subgroups of individuals are chosen from the larger population, and members of
each subgroup compete against each other. For instance, in a K-way tournament
selection, only the individual with the highest fitness value from each k-subgroup
is chosen to reproduce. This selection strategy has a parameter called the selection
pressure, which is a probabilistic measure of a candidate’s likelihood of participation
in a tournament. If the tournament size is larger, weak candidates have a smaller
chance of getting selected as it has to compete with a stronger candidate. Hence, the
selection pressure parameter determines the rate of convergence of the algorithm.
More the selection pressure, the more will be the convergence rate. GAs are able to
identify optimal or near-optimal solutions over a wide range of selection pressures.
Tournament Selection can also work for negative fitness values.

The advantage of tournament selection compared to other types of selection is that
it can work with only subjective comparisons between individuals. In other words,
we only need to know the relative fitness values of the individuals in the tournament.

Figure 3. Crossover of parents to create children

Once the individuals have been selected, the next step is to generate the offspring
with the crossover operator. For instance, two parents are picked from the mating
pool at random to crossover (analogous to sexual reproduction) to produce two
children. We then repeat the process to obtain two more parents, mate them, and
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obtain two more children. This process is repeated until the population of children
is the same size as the population of parents. This idea is illustrated in Figure 3.

There are many different types of crossover such as two-point or k-point, uniform
or shuffle, amongst others. But the most common one is the single point crossover.
In a single point crossover, a random crossover point on the parent individual is
selected. All data/genes beyond that point in the two parents is swapped between
each other. In Figure 4 there is a clear representation of this one point crossover.

Figure 4. Single Point Crossover

Mutation operator maintains genetic diversity from one population to the next
population. The key idea is to insert random genes in offspring to maintain the
diversity in the population to avoid premature convergence. If the gene is selected
for mutation, you can either change it by a small amount or replace it with a new
value. Additionally, it ensures that offspring are not all exactly the same, you allow
for a small chance of mutation.

In practice, mutation allows the evolutionary process to explore new potential so-
lutions to the problem. If some genetic information is missing from the population,
mutation provides the possibility of introducing that information into the popu-
lation. This is very relevant for GAs since they tend to work with very small
population sizes (around 100) that inbreeding can easily become a problem, and
evolutionary dead ends are more common in GAs than in biological evolution.

The mutation rate determines whether a gene of an individual is selected for muta-
tion or not. Since mutation in biology is relatively rare, the mutation rate should
be very low. For instance, it could be around the order of 2%. For example, as-
sume that features (genes) are encoded as binary digits as strings of 0s and 1s
and crossover generated the offspring. A mutation probability of 1% implies that
each bit in each child has a 1% probability of flipping to the opposite value (a 1
changes to a 0, a 0 changes to a 1). It is important to select a reasonable mutation
probability. Too high of a mutation probability makes the algorithm behave like
a random search, which is not usually a good approach to solve a problem. Too
low of a mutation probability results in problems with inbreeding and evolutionary
dead ends, which also prevents the GA from finding a good solution.

Even if genetic algorithm was one of the first evolutionary algorithms, it still remains
as one of the most popular. It is easy to implement, it has a very intuitive approach
and it has good performance on a variety of problems. However, we must keep in
mind that there are many variations of GA such as the messy GA, gender-based
GA, island GA, and so on.
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Now, we present two research papers that use genetic algorithms for solving the
cash management problem. Armenise et al. (2011) [5] optimized the ATMs cash
management problem by genetic algorithms. The application of GAs as means
for searching and generating optimal upload strategies, aimed at identifying a set
of uploading rules able to minimize the daily amount of stocked money and to
guarantee service availability at the same time. They considered a pool 30 ATMs
with different characteristics in terms of location, position, cash capacity and usage.
Instead of forecasting future demand of cash, they are interested in finding a set of
rules that if applied to current operation of ATMs can lead to the decision of when
and how to upload the machine. They named this approach as Condition Based
Cash Management (CBCM). Experimental results proved that this approach is
feasible and able to improve cash management if compared to human expertise.

Moraes and Nagano (2013)[21] compared the Miller-Orr Model [20] with computa-
tional evolutionary models to minimize the total cost of cash balance maintenance.
The objective of the paper is to develop a management policy of cash balance, based
on the assumptions of cost minimization by applying genetic algorithms and particle
swarm optimization (PSO) and comparing the results with the traditional Miller-
Orr model. They developed computational experiments from cash flows simulated
to implement the algorithms. They showed that both algorithms present significant
gains in relation to cost and time compared to the optimized Miller-Orr model. In
addition, both algorithms can be applied for the definition of more complex cash
policies, without the limitations of the Miller-Orr model. This study presents its
contribution to the validation of GA and PSO algorithms.

There is extensive research of genetic algorithm in inventory management so as to
minimize the total supply chain cost. However, there are few analyses using genetic
algorithm for the CMP. Therefore, our study will expand the literature review on
genetic algorithms and cash balance problem.





Chapter 3
Methodology

In this chapter, we explain how we approach the cash management problem. For
instance, we define the problem, describe the input data and derive the objective
function with its corresponding constraints.

1. Problem Definition

It is a deterministic cash management problem because cash demand is known and
it is given as input. Demand of cash can be negative or positive. For instance,
negative demand of cash refers to accounts payable (cash outflow) and positive
demand of cash refers to accounts receivable (cash inflow).

We are concerned with a two-echelon supply chain model, where multiple divisions
take cash from a a central office. This scenario describes pooling, which occurs
when cash is held as well as managed in a central location. In this centralization
system, funds can be moved from the central location to where they are needed.
Moreover, we assume independence of branch offices. For example, if the need in a
branch is unusually high, it can be met from the central pool because there will not
normally be unusually high drains in other countries at the same time. In addition,
we do not consider complete centralization of management by leaving some cash
in offices since local representation is often necessary for dealing with local clients
and banks.

We are focused on cash optimization and not forecasting cash flow for a planning
horizon of 31 days. The decisions that need to be made are based on a daily basis:
how much cash inventory to hold as well as the size and timing of the cash transfers.
Since both divisions and central office have positive interest rates, there is a trade-
off between where money should be hold while taking into account the cost of the
transactions. But, we do specify our preference of keeping more cash in central
office by assigning a larger annual interest rate for the central office than for the
offices. For instance, central office has an interest rate of 12%, then, offices should
have interest rates below 12%.

11



12 3. METHODOLOGY

As commented in previous sections, we are concerned in maximizing total net earn-
ings, which is computed as total earnings from offices and central office minus
transaction costs involved in exchanging currencies.

Earnings are determined by the compound interest. The formula of the compound
interest is as follows:

(1) X = P
(

1 + r

n

)nt

− P

• X is the compound interest
• P is the principal
• r is the annual interest rate
• n is the number of compounding periods per unit of time
• t is the number of time units the money is invested

In our case, P is the cash balance at end of day, n is 365 days since the compounding
frequency is daily and t is 1

365 because the money is invested in a daily basis.
Therefore, equation 1 becomes:

(2)
X = P

(
1 + r

365

)365∗
1

365 − P = P
(

1 + r

365

)
− P

With regard to the costs, there are fixed and variable transactions costs from ex-
changing currencies. The fixed transaction cost could be seen as a lump sum fee for
sending/receiving cash to/from central office. On the other hand, variable trans-
action costs depend on the ask price, which is the lowest price at which we would
pay with local currency (LCY) to a dealer, perhaps a bank, in order to buy USD
currency. The problem’s perspective is from the point of view of the branch office
in the sense that funds are in LCY. And central location works with USD currency.
This is the reason why we use the ask price for defining the variable transaction
cost instead of the bid price. The bid price is the highest price at which the bank
sells USD currency in order to buy LCY. We are in the situation where we convert
local currency in USD currency: LCY → 1

FXspot
USD. FXspot for us, indicates

the foreign exchange spot rate, which is the exchange rate at which the agreement
between two parties to buy one currency against selling another currency at an
agreed price for settlement on the spot (current) date. In our case, the two par-
ties are branch and central office that agree to buy USD currency for the selling
of LCY. For example, if the exchange is between Japanese currency (JPY) and
USD currency with FXspot = 110JPY USD, this implies that 1USD is equivalent
to 110JPY. However, we are interested in 1

FXspot
USD. If there was no foreign

exchange spread, we would only need 1
FXspot

in order to convert local currency
in USD currency. Yet, in our problem, we do specify foreign exchange spread and,
therefore, we define the variable transaction cost as follows:
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(3)
FXspread

FXspot ∗ (1 − FXspread) ,
1

FXspot ∗ (1 − FXspread)

FXspread is the foreign exchange spread, FXspot is the foreign exchange spot rate
and the ask price is the second term in equation 3. In addition, from now on, we
define the variable transaction cost as the spread cost.

If funds were in USD currency, we would need to specify the spread cost with the
bid price. It would be as in equation 3, but with a positive sign in the denominator
since the bid price must be higher than the ask price. For instance, it would be like
this:

(4)
FXspread

FXspot ∗ (1 + FXspread)

The transaction amounts are one of the components that define the cash balance
at the end of the day. More specifically, the end cash balance depends on funds
(transfer quantities) and cash demand from current period. It also depends on
the end cash balance from previous period. Whereas central office only takes into
account funds from current period and end cash balance from previous period.
From branch perspective, a negative fund implies that there is an outflow of cash
from division to central office. However, a negative fund from the central office
perspective indicates that the outflow of cash is from central office to division.

We assume that funds and cash end of branch offices have lower and upper bounds.
For the former, the range where transfer quantities can vary from is between neg-
ative and positive values, it is branch-specific. For the latter, the end cash balance
should fluctuate around the safety level assigned for each branch. For instance,
Japan office has a safety level of 20000JPY , this means that the cash at the end
of the day should oscillate around this value.

Finally, we assume that there are no lead days between the day where a transfer
is generated and the day where the transfer is received. In other words, there is
instant cash transfers. In addition, our study does not take into account cash-
in-transit companies, those that are involved in transporting cash. Transactions
are made within bank accounts and we do not take into account the number of
transactions to be made as a parameter of the problem.

2. Input Data

The data has been generated randomly and the time horizon is of 31 days, from 1st
March 2019 to 31st March 2019. The central office is assumed to be United States
(USD) and the offices are located in Japan (JPY), Germany (EUR), India (INR),
Australia (AUD) and United Kingdom (GBP). As commented before, we assume
that the cash end in offices oscillate around their safety cash levels and, hence,
they all must have positive cash balances. Last, we assume that central office has



14 3. METHODOLOGY

unlimited cash in balance and, therefore, it is not restricted to oscillate around a
specific quantity.

The parameters specific for the central office are the interest rate (12%) and fixed
transaction costs per transaction (10USD from office to central, 20USD from central
to office). On the other hand, there are seven country-specific parameters: the
interest rate, initial cash end, foreign exchange spot rate, demand of cash, safety
cash level, upper bound for transfer quantities, foreign exchange spread. These
parameters might be different between offices. For example: Ã§

• For Japan, United Kingdom, Australia the interest rate is of 1%, and for India
and Germany is 2%.

• The FX spread is 4 basis points for India and United Kingdom, 5 basis points
for Japan, 6 basis points for Australia and 2 basis points for Germany.

• The safety cash level for Japan is 1M JPY, 10M LCY for United Kingdom
and Germany, 100M LCY for Australia and India.

For the optimization process, we only require the cash end from 28th February
2019. However, we also generate randomly data for funds (transaction quantities),
generated without following any optimization strategy. With this input data, that
can be found in Table 1 in Appendix B, we compute the baseline end cash balance,
which will be useful to compare it with the end cash balance optimized with Branch-
and-Cut and genetic algorithms.

3. Model Definition

We are interested in optimizing the transfer quantities for each office and since they
are independent from each other, the mathematical formulation does not aggregate
all offices but instead, it only considers the relationship between one branch and
the central office.

3.1. Parameters. These are the parameters of the model:

• D number of days of the planning horizon, i in 1..D
• CFOC lump sum fee from office to central office (in USD currency)
• CFCO lump sum fee from central office to office (in USD currency)
• FXspread foreign exchange spread from office to central office (in basis points)
• FXspoti foreign exchange spot rate from office j to central office for day i
• demandi cash demand for office for day i (in local currency)
• rO annual interest rate for office
• rC annual interest rate for central office
• startO initial cash end for day i = 0 for office (in local currency)
• startC initial cash end for day i = 0 for central office (in USD currency)
• ss safety stock level for office (in local currency)
• ub upper bound for transfer quantity for office (in local currency)
• lb lower bound for transfer quantity (in local currency)
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3.2. Decision Variables. The problem is a mixed integer programming model
because there are integer, binary and continuous decision variables:

• Xi transfer to office from central office for day i (in local currency)
• Yi transfer from office to central office for day i (in local currency)
• Wi 1 if Xi >= 0, 0 otherwise
• Zi 1 if Yi >= 0, 0 otherwise
• endOi cash end for office for day i (in local currency), i=0,...,D
• endCi cash end for central office for day i (in USD currency), i=0,...,D

However, the relevant decision variables of this MILP model are the funds trans-
ferred in and out of the cash balance from each branch office, which are assumed
to be integers: Xi, Yi.

3.3. Objective function. The objective function is defined as net earnings =
total earnings - transaction costs.

Total earnings is the sum of earning for both office and central office for the whole
time horizon:

(5)
earnings offices =

D∑
i=1

Ii

((
1 + rO

365

)
− 1

)
FXspoti


earnings central =

D∑
i=1

(
Ii

((
1 + rC

365

)
− 1

))

Then, these are the transaction costs from transferring funds between office and
central office for the whole time horizon:

(6) TC =
D∑

i=1
(Wi ∗ CFCO + Xi ∗ spreadcost + Zi ∗ CFOC + Yi ∗ spreadcost)

where spread cost (variable transaction cost) is:

(7)
FXspread

FXspot ∗ (1 − FXspread)

3.4. Constraints. There are eight constraints, which define the search space (fea-
sible region) of this problem.

Initial cash end:

• For office: endO0 = startO for i = 0
• For central office: endC0 = startC for i = 0



16 3. METHODOLOGY

Cash Balance:

• For office: endOi = endOi−1 + Xi − Yi + demandi ∀i ∈ D
• For central: endCi = endCi−1 − Xi ∗ ask + Yi ∗ ask ∀i ∈ D, where ask is the

ask price 1
FXspoti ∗ (1 − FXspread)

Logical constraints:

• Xi ≤ Wi ∗ M ∀i ∈ D
• Yi ≤ Zi ∗ M ∀i ∈ D
• We assume that for each day, there can be only an outflow or inflow of funds

or no funds at all, but not both at the same time: Wi + Zi ≤ 1 ∀i ∈ D

In this last constraint, we specify that the end cash in each office should not be
below its safety cash level nor greater than 1.5 times its safety level:

• ss ≤ endOi ≤ ss ∗ 1.5 ∀i ∈ D



Chapter 4
Model Implementation

In this chapter, we describe how we implement the mixed integer programming
model, defined in previous chapter, in AMPL and in Python. In AMPL is where
we execute BnC algorithm and in Python we execute genetic algorithm.

1. CPLEX Implementation

The optimization software package cplex used in AMPL implements by default
branch-and-cut, which is based on branch-and-bound and cutting planes in order
to find the optimal solution through relaxing the problem to produce the upper
bound and not the lower bound since we are in a maximization problem. However,
it may be the case where cplex can solve the problem without implementing Branch-
and-Cut and, instead implements some internal heuristics.

In order to solve this problem in AMPL, we define .mod, .dat and .run files. The
.mod file contains the mathematical formulation and it is common for all countries.
Whereas, the .dat contains the input data and it is country-specific. Then, the .run
file contains AMPL script in order to execute BnC with the corresponding .mod
and .dat files. For instance, we are analyzing 5 countries, therefore, in our example
we have one .mod file and five .dat files. Below is the specification of the .mod file.

.mod file

param D;

#transaction cost variables
param CFCO;
param CFOC;
param FXspread;

param demand {1..D};# cash dda for day i in office
param rO>=0; #positive interest for office
param rC >=0;#positive interest for central office
param startO>=0;#cash start at office for day 0
param startC >=0;#cash start for central office for day 0
param ss>=0;#safety level fot office
param ub>=0;#upper limit for transfer quantities

17
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param lb<=0;#lower limit for transfer quantities
param bigM;
param FXspot {1..D} >=0;#fx rate (LOCAL/USD) for day i for office

# decision variables
var X {i in 1..D} <= ub, >= lb integer;
var Y {i in 1..D} <= ub, >= lb integer;
var endO {0..D} >=0;#cash_end for officeon day i
var endC {0..D} >=0;#cash_end for central office on day i
var W {i in 1..D} binary;#W=1 if X>=0
var Z {i in 1..D} binary;#Z=1 if Y>=0

# objective function
maximize net_earnings: sum{i in 1..D} endC[i]*((1+rC/365)-1)

+ sum{i in 1..D} (endO[i]*((1+(rO/365))-1))/FXspot[i]
- sum{i in 1..D} W[i]*CFCO
- sum{i in 1..D} X[i]*(FXspread/(FXspot[i]*(1-FXspread)))
- sum{i in 1..D} Z[i]*CFOC
- sum{i in 1..D} Y[i]*(FXspread/(FXspot[i]*(1-FXspread)));

#constraints
subject to c1: endO[0] = startO;
subject to c2: endC[0] = startC;

subject to c3 {i in 1..D}: endO[i] = endO[i-1] - Y[i] + X[i] + demand[i];

subject to c4 {i in 1..D}: endC[i] = endC[i-1]
+ Y[i]*(1/(FXspot[i]*(1-FXspread)))
- X[i]*(1/(FXspot[i]*(1-FXspread)));

subject to c5 {i in 1..D}: X[i] <= W[i]*bigM;
subject to c6 {i in 1..D}: Y[i] <= Z[i]*bigM;
subject to c7 {i in 1..D}: Z[i] + Z[i] <= 1;
subject to c8 {i in 1..D}: ss <= endO[i] <= ss*1.5;

The .run file executes the .mod file for each .dat file in a for loop. For instance, it first
executes the .mod file with cash optimizer 1.dat, then with cash optimizer 2.dat
until the fifth country. The data for Australia is in cash optimizer 1.dat, for
Germany in cash optimizer 2.dat, for India in cash optimizer 3.dat, for Japan
in cash optimizer 3.dat and for United Kingdom in cash optimizer 5.dat.

.run file

reset;
model cash_optimizer.mod;
set COUNTRIES = 1..5;
for {j in COUNTRIES}{

print ("Country" & " " & j);
reset data;
data ("cash_optimizer_" & j &".dat");
option solver cplex;
solve;
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option display_precision 12;
display X, W, Y, Z, endO, endC;

}

Below is the .dat file for Japan. For the other offices, you can find them in the
Appendix B. The central office parameters (CFCO, CFOC, D, rC, startC) and ub
are common in all .dat files.

cash optimizer 4.dat file

param D:=31;

#transaction cost variables
param CFCO:=20;
param CFOC:=10;
param FXspread:=0.0005;

param rO:=0.01;
param rC:=0.12;

param startO:=1500429;
param startC:=6000000000;

param ss:=1000000;

param ub:=50000000;
param lb:=0;

param bigM:=100000000;

param demand:=
1 -8021355.96
2 -8021355.96
3 -8021355.96
4 -8021355.96
5 -8021355.96
6 -8021355.96
7 -8021355.96
8 -11576593.48
9 -11576593.48
10 -11576593.48
11 -11576593.48
12 -11576593.48
13 -11576593.48
14 -11576593.48
15 6818423.52
16 -2188840.2
17 -4218884.2
18 -4218884.2
19 -4218884.2
20 -4218884.2
21 -4218884.2
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22 -4218884.2
23 791064.13
24 791064.13
25 791064.13
26 791064.13
27 791064.13
28 791064.13
29 791064.13
30 791064.13
31 791064.13;

param FXspot:=
1 111.716
2 111.716
3 111.716
4 111.966
5 111.916
6 111.806
7 111.711
8 111.066
9 111.066
10 111.066
11 111.126
12 111.356
13 111.301
14 111.601
15 111.706
16 111.706
17 111.706
18 111.531
19 111.276
20 111.586
21 110.496
22 110.781
23 110.781
24 110.781
25 109.996
26 110.046
27 110.601
28 110.171
29 110.766
30 110.766
31 110.766;

2. GA Implementation

To implement the genetic algorithm in Python, we use the ga package developed by
Accenture, which is based on deap package. In addition, the tools module contains
the operators for the GA such as, initialization, crossover, mutation and selection.
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Now, the decision variables Wi, Zi are no longer needed because in Python their role
of activating or deactivating decision variables Xi, Yi is replaced by if conditional
statements. Moreover, we just use one decision variable, for instance decision, that
can have negative and positive values. If Xi takes negative values, it refers to Yi

since there is an outflow of funds from office to central office. On the other hand,
if the decision variable is positive, it refers to Xi since there is an inflow of funds
from central to office. Below is the structure of the pseudo-code.

GA pseudocode

START
Generate initial population
Compute fitness of each individual in the population
WHILE optimization criteria not achieved do {

Select individuals (parents) with better fitness
Build new individuals (offspring)

Crossover
Mutate

Evaluate ossfpring
Replace population with new individuals

}
END ALGORITHM

To generate the initial population, we register a population function that creates
individuals (chromosomes) from randomness and/or from user input. For our exam-
ple, the number of individuals for all countries is 300, except for Germany. Germany
requires a larger number of individuals, for instance, 400, so that there is enough
diversity for convergence. More specifically, Germany office with a population size
of 300 outputs as local optimum the predefined individual. This is illustrated in
Figure 6 in Appendix B. Whereas, with a population size of 400, genetic algorithm
is able to converge to a local optimum different from the predefined individual.

An individual is a solution, list of transfer quantities (genes) for each simulation
date. In this case, the individual is of length 31 since the time horizon is of 31 days.
If the individual is generated randomly, it is generated within a specified interval
delimited by upper and lower bounds with function random.randint() from numpy
package. For example, for Japan office an individual contains 31 transfer quantities
that are generated randomly within the range -50M and 50M in JPY currency. An
individual generated from user input can speed up the convergence since it gives an
initial individual that satisfies the constraints mentioned in the previous chapter.

Once the initial population is generated, we assign a fitness value to each individual.
Since we are in a maximization problem, the more positive fitness values, the better.
But first, the individuals must satisfy the last constrained defined in the last chapter
in order to be evaluated. If they satisfy the constraint, they will be given a positive
fitness value, which refers to net earnings. This positive fitness value is the value
of the objective function specified in Chapter chapter 3 for a given set of transfer
quantities.
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An individual that does not satisfy the constraint ss ≤ endOi ≤ ss ∗ 1.5 ∀i ∈
D is considered infeasible and it is given a negative fitness value. This negative
fitness value is formed by a penalty, a fixed term, and a distance. The distance
is proportional to how far the individual is to be feasible. For example, assume
that the safety cash level is 10 for a given office, the time horizon is of 4 days and
the penalty is 5. Assume individual A has end balances −10, 5, 0, 12 for a given
random list of transfer quantities and individual B has end balances 0, 11, 15, 2 given
another list of random transfer quantities. In this toy example, both individuals
are infeasible since both have at least one day where end cash balance is below 10
and, therefore, both are given the fixed penalty of 5. But, individual B is closer
to be feasible (its fitness score is closer to 0) than individual A because it only
has 2 days where it has end balance below 10. Individual A has fitness score of
−40 = −penalty − distance = −5 − (20 + 5 + 10): 20 is the quantity it needs in
order to have 10LCY in end cash balance for day 1, it needs 5LCY to reach 10LCY
for day 2, 10LCY for day 3 and none for day 4. Whereas, individual B has only a
fitness score of −23 = −5 − (10 + 8). In our example, we specified a penalty of 1M
in LCY for each country.

This initial population with evaluated individuals is considered the generation 0. In
order to enter in the while loop, we must check whether the optimization criteria is
met or not. The optimization criteria is based on parameters related to the number
of generations. The algorithm will stop if at least one of these conditions is not
met:

• The number of generations with feasible solutions (parameter ”gen”) is smaller
than parameter ”generations”.

• The number of generations with the same solution (parameter ”same”) is
smaller than parameter ”convergence generations”.

• The total number of generations (parameter ”real gen”) is smaller than pa-
rameter ”force end generations”.

Parameters ”ngen”, ”same”, ”real gen” are set to 1, 0, 1 respectively. Therefore, we
start the while loop since any of the optimization criterion is violated. In addition,
for all offices parameter ”generations” is 50, ”convergence generations” is 30 and
parameter ”force end generations” is 60.

The parent individuals that are selected for mating (crossover) is based on the
Tournament selection described in Chapter chapter 2. The selection operator ap-
plied to the population is deap.tools.selTournament(), which takes as arguments
the number of tournaments and the size of each tournament, the criteria of selec-
tion is based on the fitness score of the individuals. For us, the tournament size
is 30% of the total number of individuals in the population (parameter ”sel size”),
hence, 120 for Germany and 90 for the other countries and there are 400 or 300
tournaments, depending whether it is Germany or not.

The mating process amongst the selected parents is done with the cross-over oper-
ator deap.tools.cxTwoPoint(), which executes a two-point crossover on the parent
individuals. The probability of two consecutive individuals to be selected for cross-
over is 0.9. (parameter ”cross prob”) Figure 1 depicts an example of how it would
be done for an individual with 0-1 values as genes.
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Figure 1. Two Point Crossover

After the mating process, the parent population is completely replaced by the
offspring. However, before evaluating this new population, some children in the
offspring are selected for mutation with probability of 1 (parameter ”mut prob”).
The mutation rate is 1

num genes
= 1

31 = 0.03225 so that in average only one gene
is mutated. Then, the probability that a gene is mutated is 3% for an individual
that has been selected for mutation. We apply Gaussian mutation centered at the
real value of the gene (mean is 0) and sigma 0.1 (parameter ”mut sigma”) on the
selected gene with random.gauss().

Once the mutation is done, the offspring can be evaluated in the same way as for the
initial population. In each generation, we save the best individual found so far in the
Hall of Fame with the class deap.tools.HallofFame(). If in the current generation,
the algorithm does not find a better individual than in previous generation, then,
Hall of Fame is not updated and it keeps as best the individual from previous
generation.

This first iteration is finished. We move onto the second while loop if the optimiza-
tion criterion are still holding. For all five countries, the while loop stops when we
reach the value 50 of parameter ”generations”.

Below is the configuration file for Japan office, needed in order to execute genetic al-
gorithm, with some of the parameters mentioned before. The remaining ”config ga”
parameters are defined as follows:

• ”mut start generations”: number of initial generations where the number of
genes to be mutated is incremented.

• ”mut start weight”: probability to increment the mutation process during the
start generations.

• ”mut local generations”: given number of generations obtaining the same best
individual.

• ”mut local optimal weight”: probability to increment the mutation process
during previous local generations.

• ”multiprocessing”: evaluation step is done in parallel
• ”num processors”: number of processors to perform parallelization

For the other countries, the ”config ga” parameters are the same, except for Ger-
many that has ”population size” 400. For example, for a given country, for the first
10 generations (”mut start generations”) the mutation rate is p ∈ [0.03225, 0.5]
and it is generated with random.uniform(), where 0.5 is the ”mut start weight”.
For generations greater than 10, the mutation rate is just 0.03225.
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We assume we reach a local optima if after 30 consecutive generations (”mut local generations”)
the best individual is still the same one. If so, the mutation rate is p ∈ [0.03225, 1]
and it is generated with random.uniform(), where 1 is the ”mut local optimal weight”.

In general, the execution of genetic algorithm is rather slow, therefore, we introduce
multiprocessing. It allows the algorithm to evaluate the individuals in parallel
by using eight Python processes (”num processors”). Moreover, we add to the
initial population, an individual that satisfies the model constraint ss ≤ endOi ≤
ss ∗ 1.5 ∀i ∈ D. Therefore, the initial population will be composed of random
individuals and one predefined individual. However, this predefined individual does
not take into account the objective function, it is just a feasible solution satisfying
the mentioned constraint.

After some manual parameter tuning, we believe that the values of the parameters
in the configuration file are reasonable because they guarantee diversity and con-
vergence. The configuration files for the remaining countries and the initialization
of the algorithm in Python can be found in Appendix A.

ga config Japan.json

{
"config_ga": {

"random_seed": 64,
"population_size": 300,
"generations": 50,
"force_end_generations": 60,
"convergence_generations": 30,
"sel_size": 0.3,
"mut_integer": "gaussian",
"mut_sigma": 0.1,
"mut_prob": 1,
"cross_prob": 0.9,
"mut_start_generations": 10,
"mut_start_weight": 0.5,
"mut_local_generations": 30,
"mut_local_optimal_weight": 1,
"multiprocessing": true,
"num_processors": 2

},
"optimization_range": [-50000000,50000000],
"constraint_penalty": 1000000,
"previous_solutions": [[7940000, 8002279, 8002279, 8002279,

8002279, 8002279, 8002279, 11700079,
11602200, 11599200, 11593339, 11243589,
11900696, 11219056, -6900000, 2209488,
4177168, 4277168, 4477168, 4377168,
3777168, 4477168, -988198, -900009,
-709999, -857667, -322052, -1116568,
-922000, -424010, -988888]],

"objectives": {
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"net_earnings": "max"
},
"output": {

"write_outputs": 1,
"output_path": "./ga_output/Japan/"

}
}





Chapter 5
Results

The comparison between Branch-and-Cut and genetic algorithms is done in terms
of computational time and net earnings. For the former, we compare the computa-
tional time and the number of iterations needed to execute each algorithm for each
country. For the latter, we compare the net earnings obtained from executing BnC
algorithm, GA and baseline approach.

From Table 1, we show that for any office, cplex did not implemented Branch-and-
Cut algorithm. Instead, cplex applied MIP simplex iterations, except for Japan
office. For this branch, cplex could solve the problem by just applying internal
heuristics. Perhaps it is because the cash end of Japan oscillates around 1M JPY.
Whereas for the remaining countries, the cash end is around 10M or 100M LCY.
For BnC algorithm we did not required the use of additional features in order to
reduce the computational time. For each country, it only took 1 second to output
the results.

The results for genetic algorithm in Table 1 take into consideration the use of a
predefined solution and the multiprocessing module. As expected, multiprocessing
speeds up the computational time of executing GA compared to the execution
without multiprocessing. More specifically, the computational time is reduced by
more than 70%. However, genetic algorithm is still slower than BnC even with
multiprocessing. In addition, for all countries, GA stop at iteration 50 and not
before because the algorithm did not find 30 consecutive generations with the same
solution. There are additional results from executing genetic algorithm in Appendix
B.

The main difference in introducing the predefined solution to the genetic algorithm
is the execution time. With multiprocessing module, genetic algorithm converges
to a solution after 22 hours of execution for Japan office and the net earnings are
only 10USD higher than the case with the predefined solution. The results without
the predefined solution can be found in Appendix B. Perhaps, the execution time
for the other offices without their predefined solutions is similar to Japan office.

In terms of net earnings, BnC algorithm does a slightly better job when maximizing
the objective function compared to genetic algorithm, as we can see in Table 2. The
% increase in net earnings with BnC is slightly greater than the % increase in net

27
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Country BnC Genetic Algorithm
Time Iterations Multiprocessing No Multiprocessing Iterations

Australia 1 sec. 98 3 min. 12 min. 50
Germany 1 sec. 15 4 min. 16 min. 50
India 1 sec. 65 3 min. 12 min. 50
Japan 1 sec. 0 3 min. 11 min. 50
UK 1 sec. 97 3 min. 11 min. 50

Table 1. Algorithm Results

Country Baseline BnC % increase GA % increase
Australia 60950523.9 63837005.11 4.74% 63732386.71 4.56%
Germany 55704296.17 83049206.1 49.1% 83018087.88 49%
India 60896002.81 61010592.91 0.19% 61006739.51 0.18%
Japan 60766453.31 61139160.22 0.61% 61139144.48 0.61%
UK 55600072.42 61613267.3 10.82% 61581444.42 10.76%

Table 2. Comparison Table - Net Earnings

earnings with GA for any country, given the net earnings of the baseline approach
(net earnings with random transfer quantities). Moreoever, for Germany and UK
offices there is a considerable increase in net earnings when optimizing transfer
quantities with BnC or genetic algorithms, 49% and 10% respectively.

Both algorithms guarantee that cash end in each office is positive and there is
no excess of cash (cash end always below 1.5 ∗ safety level). Whereas, with the
baseline approach, Japan and United Kingdom offices have 5 days with negative
cash end. Moreover, for most of the days in the time horizon, all countries have an
excess of cash. This is illustrated in Figure 1 for Australia and German branches.
The blue line represents the actual (baseline) cash end without any optimization
approach. The red line represents the optimized cash end with genetic algorithm
and the green line is the optimized cash end with Branch-and-Cut algorithm. From
the plots, we see that for both offices the red and green lines are one on top of the
other, hence, reinforcing the fact that the optimal solution from both algorithms
is very similar. It is the same case for the other offices, their plots are in Figure
2 in Appendix B. All these results can be found in table and graphical formats in
Appendix B.

The optimal transfer quantities from both algorithms are also displayed in table
and graphical formats in Appendix B. Here, we just present the graphical format in
Figure 2 for Australia and German offices. The blue line represents the funds with
the baseline approach, the red line is the optimized funds applying genetic algorithm
and the green line is the optimized funds applying Branch-and-Cut algorithm. For
these two countries, the optimal transfer quantities are far from being similar to the
randomly generated funds (baseline approach). In addition, the optimal transfer
quantities for both algorithms is very similar. This is a reasonable finding given
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(a) Australia (b) Germany

Figure 1. Optimized Cash End - Australia, Germany

(a) Australia (b) Germany

Figure 2. Optimized Funds - Australia, Germany

the fact that they both output similar results in Tables 1 and 2. We get the same
results for the other offices, their plots can be checked in Figure 1 in Appendix B.

From Table 3, we see that the increase in net earnings when using BnC or GA
algorithms for Germany office is mainly because the earnings are much greater
than its respectively transaction costs. For UK office, it is because the earnings are
greater than with the baseline approach and the transaction costs are smaller than
with the baseline approach.
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Chapter 6
Conclusions

From the previous section, we have seen that Branch-and-Cut is better than ge-
netic algorithm in terms of execution time. For all offices, cplex implementation
only takes a second to execute the MILP model for each office. Whereas, genetic
algorithm takes around 3 minutes for each office to execute the MILP model, even
with a predefined solution and with multiprocessing module. However, they both
generate similar results when maximizing the objective function since the % in-
crease in net earnings for each country is nearly the same, compared to the baseline
approach. Therefore, we can state that they are both good optimization algorithms
for maximizing net earnings.

In addition, given the random input data, it is clear that both algorithms are a
better approach than the approach where the transfer quantities are not optimized
(baseline approach). There are considerable reductions in cash held in each office,
hence, less idle cash in balances. There is only a minimum of unnecessary cash
available in the offices in order to guarantee that they can meet unexpected demands
of cash. And the excess of cash in each office is sent to the central office, where it
is properly invested.

In fact, GA is a good alternative to BnC in terms of financial aspects. The for-
mer is implemented in Python, which is an open source programming language.
Whereas the latter is implemented through cplex in AMPL, which is a very expen-
sive mathematical programming language. Then, choosing one algorithm or the
other is mainly based on whether you are willing to pay a high price for getting
a license of AMPL for a slight improve in maximizing the objective function. Or
you rather prefer a free option with very similar results but with slightly longer
execution time.

There are also cash flow management software tools available in the web. However,
most of them are private solutions which means that you have to pay a subscription
in order to use them. Moreover, you are not aware of the underlying mathematical
models that these platforms implement in order to optimize the cash management.
Besides, these solutions are generic whereas clients may be different in size, in
industry, in service, etc. Anaplan or Workday Adaptive Planning are some of the
private options that are available for enterprises. Again, for financial reasons, GA is
also a better option than these private software tools. Furthermore, our approach is

31
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more flexible because the MILP model can be customized to a specific client given
its needs.

This report is a basic approach to the cash management problem for the branch-
office optimization with the genetic algorithm implementation. It is similar to the
study of Osorio and Toro (2012)[22] but without including an ATM network. We
believe that the findings from this analysis would be even more interesting if we
used real world data as well as safety cash levels based on financial strategies. For
instance, we could use data from a given client. Up to now, the input data as well
as the safety cash levels are generated randomly. Yet, we tried to generate data as
realistic as possible. We used five offices located in different parts of the world that
use different currencies, each of them with their own parameters. In addition, we
introduced the concept of spread cost in order to compute the variable transaction
cost. Last, we defined earnings as the compound interest from holding cash in
balance.

Genetic algorithm is a very popular algorithm implemented in supply chain prob-
lems. The CMP can be seen as a supply chain problem where cash is the inventory,
that should be kept in balance at some desired level. Therefore, we believe that
GA is a good option for solving this problem. Moreover, this report is one of the
few studies that approach the cash management problem with genetic algorithm.

In relation to GA implementation, perhaps, it could be improved if we applied
an algorithm to tune the configuration parameters such as the population size,
mutation sigma, etc. Instead, we manually selected the values for the configuration
parameters. In this process, we observed that the population size is related to
diversity. For instance, GA was not able to find a local optimum different from the
predefined individual for Germany office if the population size is below 400.

Tuning the parameters with an algorithm might speed up the computational time
of executing the genetic algorithm if there were more appropriate values for these
parameters. On the other hand, it would be interesting to analyse other scenarios
where we apply features that we have not used until now. It would be of interest to
analyse the effect of keeping a % of the parent population for the next generation
instead of replacing the entire parent population with the child population.

This mixed integer linear programming model that we formulated for the CMP, can
be expanded into more complex forms. As commented before, it can be adapted to
the specific needs of a given client. For example, we could introduce the concept of
lead days, where cash transfers are not instant. But instead, the transfers generated
in a given day are received after some days. Another feature that could be added
in the model is to allow for interactions between branch offices. Now, they are
assumed to be independent and, therefore, we decided to execute the algorithm
separately for each office. For further studies, we could also relax the assumption
that the central office has unlimited funds.

In conclusion, implementing genetic algorithm in Python is a good and free alter-
native to Branch-and-Cut algorithm and CMP private software tools. As long as
we introduce a predefined solution and the multiprocessing module in the execution
of GA, it is as suitable as BnC algorithm.



Appendix A
Code

1. AMPL Code

1.1. .dat files.

cash optimizer 1.dat file

param D:=31;

#transaction cost variables
param CFCO:=20;
param CFOC:=10;
param FXspread:=0.0006;

param rO:= 0.01;
param rC:=0.12;

param startO:=105403072;
param startC:=6000000000;

param ss:= 100000000;

param ub:=500000000;
param lb:=0;

param bigM:=1000000000;

param demand:=
1 20097588.5
2 2097588.5
3 2097588.5
4 390975808.5
5 2097588.5
6 2097588.5
7 2098225.68
8 963573.1
9 963573.1
10 963573.1
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11 963573.1
12 963573.1
13 963573.1
14 1337096.8
15 963573.1
16 -627832.01
17 -6278320.01
18 -627832.01
19 -6270832.01
20 -627832.01
21 -627832.01
22 -627832.01
23 4030850.81
24 4030850.81
25 4030850.81
26 4030850.81
27 4030850.81
28 4030850.81
29 4030850.81
30 4030850.81
31 4030850.81;

param FXspot:=
1 1.412831145
2 1.412831145
3 1.412831145
4 1.411835214
5 1.414227812
6 1.423677479
7 1.42651675
8 1.419037436
9 1.420244962
10 1.420244962
11 1.415227125
12 1.414028119
13 1.41044327
14 1.416227852
15 1.41123833
16 1.41123833
17 1.41123833
18 1.410244645
19 1.411437236
20 1.40391807
21 1.406086413
22 1.4130305
23 1.4130305
24 1.4130305
25 1.407271973
26 1.401952648
27 1.412432604
28 1.413229911
29 1.412233418
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30 1.412233418
31 1.412233418;

cash optimizer 2.dat file

param D:=31;

#transaction cost variables
param CFCO:=20;
param CFOC:=10;
param FXspread:=0.0003;

param rO:=0.02;
param rC:=0.12;

param startO:=161206928;
param startC:=6000000000;

param ss:=10000000;

param ub:=1000000000;
param lb:=0;

param bigM:=10000000000;

param demand:=
1 585255590
2 966977790
3 -27459788
4 39261666
5 65041444
6 8408944
7 -9856834
8 444834
9 30173321
10 -24228238
11 -15125254
12 -46270901
13 -18651453
14 -26753345
15 -2001000
16 79736090
17 36448589
18 39065678
19 92636453
20 42146654
21 11142453
22 50795567
23 58646456
24 -531444
25 9407643
26 769783111
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27 -98795211
28 422292444
29 -22333342
30 -348055656
31 324985677;

param FXspot:=
1 0.88046
2 0.88046
3 0.88046
4 0.88108
5 0.88372
6 0.88611
7 0.88544
8 0.89381
9 0.89381
10 0.89381
11 0.89119
12 0.88973
13 0.88728
14 0.88454
15 0.88454
16 0.88454
17 0.88454
18 0.88306
19 0.88229
20 0.88236
21 0.87619
22 0.87992
23 0.87992
24 0.87992
25 0.88615
26 0.88501
27 0.88929
28 0.88949
29 0.89151
30 0.89151
31 0.89151;

cash optimizer 3.dat file

param D:=31;

#transaction cost variables
param CFCO:=20;
param CFOC:=10;
param FXspread:=0.0004;

param rO:= 0.02;
param rC:=0.12;

param startO:=713893980;
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param startC:=6000000000;

param ss:= 100000000;

param ub:=800000000;
param lb:=0;

param bigM:=1000000000;

param demand:=
1 90726681.7
2 190711444.4
3 -190711444.4
4 -190711444.4
5 190711444.4
6 -190711444.4
7 190711444.4
8 -302207808.1
9 -302207808.1
10 -302207808.1
11 -302207808.1
12 302207808.1
13 -302207808.1
14 -302207808.1
15 -302207808.1
16 -79776735.03
17 -86725481.03
18 -49455598.03
19 -85278584.03
20 -88172378.03
21 86725481.03
22 86725481.03
23 -214520298
24 145202984
25 -202217237
26 -214521315
27 145202984
28 145202984
29 -214520298
30 -213771630
31 145202984;

param FXspot:=
1 70.89475
2 70.89475
3 70.89475
4 70.91225
5 70.801
6 70.54225
7 70.03475
8 70.091
9 70.091
10 70.091
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11 69.886
12 69.62975
13 69.6935
14 69.591
15 69.29475
16 69.29475
17 69.29475
18 68.85225
19 68.471
20 69.07475
21 68.8335
22 68.6085
23 68.6085
24 68.6085
25 69.0535
26 68.8435
27 68.8785
28 69.02725
29 69.0785
30 69.0785
31 69.0785;

cash optimizer 5.dat file

param D:=31;

#transaction cost variables
param CFCO:=20;
param CFOC:=10;
param FXspread:=0.0004;

param rO:= 0.01;
param rC:=0.12;

param startO:=44457120;
param startC:=6000000000;

param ss:= 10000000;

param ub:=200000000;
param lb:=0;

param bigM:=1000000000;

param demand:=
1 35534250.16
2 3591781.51
3 3591781.51
4 3714235.51
5 3631860.12
6 3604617.45
7 3597810.4
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8 1341541.17
9 1341154.39
10 1341154.39
11 1347025.51
12 -90675.78
13 1341154.39
14 1342237.21
15 1371778.33
16 543928.68
17 5439288.68
18 597509.96
19 -123397790.5
20 16428709.6
21 5525691.64
22 33293218.28
23 -3330932.93
24 -3330932.93
25 -3322930.51
26 -33305576.26
27 -3330549.6
28 -33243811.42
29 -5311621.15
30 -33309322.93
31 -3330932.93;

param FXspot:=
1 0.75543
2 0.75543
3 0.75543
4 0.75688
5 0.76082
6 0.76223
7 0.75963
8 0.76508
9 0.76508
10 0.76508
11 0.7715
12 0.75828
13 0.7652
14 0.75622
15 0.75605
16 0.75605
17 0.75605
18 0.75353
19 0.75426
20 0.7554
21 0.75771
22 0.76241
23 0.76241
24 0.76241
25 0.75912
26 0.75946
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27 0.75949
28 0.75892
29 0.76608
30 0.76608
31 0.76608;

2. Python Code

2.1. Configuration files.

ga config Australia.json

{
"config_ga": {

"random_seed": 64,
"population_size": 300,
"generations": 50,
"force_end_generations": 60,
"convergence_generations": 30,
"sel_size": 0.3,
"mut_integer": "gaussian",
"mut_sigma": 0.1,
"mut_prob": 1,
"cross_prob": 0.9,
"mut_start_generations": 10,
"mut_start_weight": 0.5,
"mut_local_generations": 30,
"mut_local_optimal_weight": 1,
"multiprocessing": true,
"num_processors": 2

},
"optimization_range": [-500000000,500000000],
"constraint_penalty": 1000000,
"previous_solutions": [[0, 0, 0, -410000000, 0, 0, 0,

11700079, 0, 11599200, 0, 0, 0, 0, 0,
2209488, 4177168, 0, 4477168, 4377168,
0, 0, -18819800, -900009, -709999,

-857667, -322052, -1116568, -9220000,
-424010, -9888880]],

"objectives": {
"net_earnings": "max"

},
"output": {

"write_outputs": 1,
"output_path": "./ga_output/Australia/"



2. PYTHON CODE 41

}
}

ga config Germany.json

{
"config_ga": {

"random_seed": 64,
"population_size": 400,
"generations": 50,
"force_end_generations": 60,
"convergence_generations": 30,
"sel_size": 0.3,
"mut_integer": "gaussian",
"mut_sigma": 0.1,
"mut_prob": 1,
"cross_prob": 0.9,
"mut_start_generations": 10,
"mut_start_weight": 0.5,
"mut_local_generations": 30,
"mut_local_optimal_weight": 1,
"multiprocessing": true,
"num_processors": 2

},
"optimization_range": [-1000000000,1000000000],
"constraint_penalty": 1000000,
"previous_solutions": [[-735400000, -965227900, 29022790,

-40022790, -68032891, -9023999, 10022790,
1022480, -29022000, 21933440, 15933390,
45890000, 19890000, 27905600, 2900000,
-80094880, -39771680, -34781799, -92599716,
-46771680, -7771680, -52477168, -58819800,
-1000009, -9099990, -765766700, 99220520,
-422965680, 22922000, 343401000, -322888000]],

"objectives": {
"net_earnings": "max"

},
"output": {

"write_outputs": 1,
"output_path": "./ga_output/Germany/"

}
}

ga config India.json

{
"config_ga": {

"random_seed": 64,
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"population_size": 300,
"generations": 50,
"force_end_generations": 60,
"convergence_generations": 30,
"sel_size": 0.3,
"mut_integer": "gaussian",
"mut_sigma": 0.1,
"mut_prob": 1,
"cross_prob": 0.9,
"mut_start_generations": 10,
"mut_start_weight": 0.5,
"mut_local_generations": 30,
"mut_local_optimal_weight": 1,
"multiprocessing": true,
"num_processors": 2

},
"optimization_range": [-800000000,800000000],
"constraint_penalty": 1000000,
"previous_solutions": [[-680000000, -214000000, 200227900,

200002279, -200002279, 200227900,
-200002279, 300897999, 300227909,
300537810, 300227770, -300227650,
300827900, 300227901, 300956900,
90227650, 80346654, 60445654,
80524650, 80524650, -65246500,
-95246481, 219804300, -119008043,
154000000, 240000000, -122205200,
-155329522, 219220000, 199988517,
-169088880]],

"objectives": {
"net_earnings": "max"

},
"output": {

"write_outputs": 1,
"output_path": "./ga_output/India/"

}
}

ga config UK.json

{
"config_ga": {

"random_seed": 64,
"population_size": 300,
"generations": 50,
"force_end_generations": 60,
"convergence_generations": 30,
"sel_size": 0.3,
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"mut_integer": "gaussian",
"mut_sigma": 0.1,
"mut_prob": 1,
"cross_prob": 0.9,
"mut_start_generations": 10,
"mut_start_weight": 0.5,
"mut_local_generations": 30,
"mut_local_optimal_weight": 1,
"multiprocessing": true,
"num_processors": 2

},
"optimization_range": [-200000000,200000000],
"constraint_penalty": 1000000,
"previous_solutions": [[-69040000, -4002279, -2002279,

-3002279, -3002279, -4002279,
-5002279, -1700079, -2602200,
-999200, -1593339, -43589,
-900696, -219056, -2900000,
2209488, -4177168, -4277168,
125997168, -17377168, -3777168,
-32477168, -988198, 8000009,
-709999, 35576670, 3322052,
31116568, 8922000, 33240100,
-988888]],

"objectives": {
"net_earnings": "max"

},
"output": {

"write_outputs": 1,
"output_path": "./ga_output/UK/"

}
}

2.2. GA Initialization. Below is the function that initializes ga custom package.
The input parameter evaluation parameters is a dictionary that contains the input
data as in .dat files in AMPL.

For a given country, attributes dict must be specified in the following way: at-
tributes dict = {”transfer Q1”: [”integer”, min, max], ”transfer Q2”: [”integer”,
min, max], ..., transfer Q31”: [”integer”, min, max]}.

If we are interested in introducing predefined solutions to the initial population, it
must be input in the form of sub-lists in a list: previous solutions = [ind1, ind2,
...] where ind1 = [transfer 1, transfer 2, ...]. For example, if we were to optimize
only 5 days, and we want to input one predefined solution, it would be as follows:
previous solutions = [[100, -100, 0, 0, 40]] where ind1 = [100, -100, 0, 0, 40].
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The evaluation function is a custom function that evaluates the objective function
for a given set of transfer quantities. The parameter indpb in mutation function
refers to the mutation rate.

def configure_genetic_algorithm(self, ga_config, evaluation_parameters):

# Create attributes dict
attributes_dict = {}
for i in range(self.decisions_to_optimize):

attributes_dict["transfer_Q{0}".format(i + 1)] = ["integer",
ga_config["optimization_range"][0],
ga_config["optimization_range"][1]]

# GA initialization
ga = CustomGeneticAlgorithm()

params_ga = ga_config[’config_ga’]
ga.set_params(**params_ga)

if self.previous_solution:
previous_solutions = ga_config["previous_solutions"]
print("previous_solution is True")

else:
previous_solutions = []
print("previous_solution is False")

# Configure GA
ga.configure_ga(attributes_dict=attributes_dict,

objectives=ga_config[’objectives’],
previous_solution=previous_solutions)

# Define custom evaluation function
ev_func = Evaluation(attributes_dict, evaluation_parameters)
ga.register_function(alias=’evaluate’, function=ev_func.evaluate)

# Mutate function
num_genes = ga.num_genes
mut_func = Mutation()
ga.register_function(alias=’mutate’, function=mut_func.mutate,

attributes=attributes_dict,
mut_integer=’gaussian’, mu=0, sigma=0.1, indpb=1 /

num_genes)

# not specify selection function -> by default use tools.selTournament
# not specify cross-over (mate) function -> by default use

tools.cxTwoPoint

# Custom user constraint included.
ct = PositiveBalance(name="cash_positive_balance",

attribute_dict=attributes_dict,
evaluation_parameters=evaluation_parameters)

ga.register_constraints(constraint_dict={},
constraint_user_dict={’constraint_user’: ct},
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constraint_penalty=ga_config["constraint_penalty"],
attributes_dict=attributes_dict,

objectives=ga_config[’objectives’])

return ga

2.3. GA Structure. Figure 1 shows the basic structure of how to execute ga
custom package. In our case, we registered all the optional modules, except for
local search. A local search is a greedy technique that can be used to converge to
local optimums. When used within a Genetic Algorithm, the local search can be
used before the selection step of each generation to create one additional individual
that is created from the best parts of all other individuals. The idea is to create
a custom individual from the best partial solutions within each chromosome. The
resulting solution might not be better than the existing ones, but constitutes a
greedy approximation of where the local minimum should be located. However,
there is no need of this module if we are already using a predefined individual and
the multiprocessing module.
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Figure 1. GA Structure
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The mutation function is specific for integer variables and only applies Gaussian
mutation.

class Mutation:

def mutate(self, individual, attributes, mut_integer, mu, sigma, indpb):
"""Mutate an individual by replacing attributes, with probability

*indpb*, by a integer uniformly drawn between *low* and *up*
inclusively.

:param individual: individual to be mutated.
:param attributes: the details of each attribute.
:param indpb: Independent probability for each attribute to be

mutated.
:returns: A tuple of one individual.
"""
size = len(individual)
gaussian_int = mut_integer.upper() == ’GAUSSIAN’
p = indpb

for i in range(size):
if random.random() <= p:

attr = i % len(attributes)
attr_name = list(attributes.keys())[attr]
if attributes[attr_name][0].upper() == ’INTEGER’:

if gaussian_int:
individual[i] += round(random.gauss(mu, sigma_v))
# Guarantee that the mutated value is inside limits
if individual[i] < min_val:

individual[i] = min_val
elif individual[i] > max_val:

individual[i] = max_val

return individual,

The class PositiveBalance checks whether an individual is feasible or not. In addi-
tion, if it is not feasible, it computes its distance, how far it is from being feasible.

class ConstraintUser(ga_constraint.Constraint):
def __init__(self, name, attributes, evaluation_parameters):

super().__init__(name, attributes, evaluation_parameters)

@abstractmethod
def feasible(self, individual):

pass

@abstractmethod
def distance(self, individual):

pass

class PositiveBalance(ga_constraint_user.ConstraintUser):
def __init__(self, name, attributes_dict, evaluation_parameters):

super().__init__(name, attributes_dict, evaluation_parameters)
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def feasible(self, individual):

"""
some code
"""

for i in range(0, len(individual)):
# iterate until find one day where x < ss or x > 1.5*ss
if summary["optimized_cash_end"][i] <

self.evaluation_parameters["safety_stock"]:
return False

elif summary["optimized_cash_end"][i] >
self.evaluation_parameters["safety_stock"] * 1.5:

return False
return True

def distance(self, individual):

distance = 0
for i in range(0, len(individual)):

if individual.summary["optimized_cash_end"][i] <
self.evaluation_parameters["safety_stock"]:

distance += abs(
individual.summary["optimized_cash_end"][i]
- self.evaluation_parameters["safety_stock"]

)
elif individual.summary["optimized_cash_end"][i] >

self.evaluation_parameters["safety_stock"] * 1.5:
distance += abs(

self.evaluation_parameters["safety_stock"] * 1.5
- individual.summary["optimized_cash_end"][i]

)

return distance



Appendix B
Additional Results

1. Actual vs Optimized Funds

Generated funds for baseline approach for each country in Table 1.
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date Australia Germany India Japan UK
01/03/2019 50000000,00 0,00 0,00 0,00 -50000000,00
02/03/2019 -30000000,00 0,00 0,00 0,00 -50000000,00
03/03/2019 0,00 0,00 2000000000,00 -5000000,00 0,00
04/03/2019 0,00 722204898,00 15544000,00 -5000000,00 0,00
05/03/2019 0,00 256265556,00 0,00 0,00 0,00
06/03/2019 0,00 0,00 0,00 1000000000,00 0,00
07/03/2019 0,00 69551222,00 0,00 0,00 0,00
08/03/2019 -80000000,00 -6426066,00 0,00 0,00 677999453,00
09/03/2019 0,00 0,00 0,00 0,00 2518900,00
10/03/2019 0,00 -571989,00 0,00 0,00 0,00
11/03/2019 0,00 0,00 0,00 0,00 0,00
12/03/2019 0,00 85824333,00 33440989,00 0,00 0,00
13/03/2019 0,00 -94165155,00 0,00 0,00 0,00
14/03/2019 0,00 -22634221,00 0,00 0,00 0,00
15/03/2019 0,00 0,00 0,00 6000000000,00 0,00
16/03/2019 0,00 0,00 0,00 0,00 0,00
17/03/2019 0,00 0,00 0,00 0,00 0,00
18/03/2019 0,00 0,00 0,00 0,00 0,00
19/03/2019 0,00 53331717,00 0,00 -21000000,00 0,00
20/03/2019 -7000000,00 -571818,00 8000000,00 -11000000,00 -1000000,00
21/03/2019 255555500,00 -40165556,00 -8000000,00 0,00 0,00
22/03/2019 0,00 -6141555,00 -8000000,00 0,00 0,00
23/03/2019 0,00 0,00 0,00 0,00 0,00
24/03/2019 0,00 38353588,00 0,00 0,00 0,00
25/03/2019 0,00 0,00 0,00 0,00 0,00
26/03/2019 0,00 0,00 0,00 0,00 0,00
27/03/2019 0,00 0,00 0,00 0,00 0,00
28/03/2019 0,00 -64941699,00 0,00 543444876,00 0,00
29/03/2019 0,00 -21224787,00 0,00 0,00 0,00
30/03/2019 0,00 0,00 0,00 0,00 0,00
31/03/2019 0,00 0,00 0,00 0,00 0,00

Table 1. Countries’ Actual Funds



1. ACTUAL VS OPTIMIZED FUNDS 51

date Australia Germany India Japan UK
01/03/2019 -98170 -735400000 -680000000 7940000 -69040000
02/03/2019 0 -965227900 -214000000 8002279 -4002279
03/03/2019 -78742 29022790 200227900 8002279 -2002279
04/03/2019 -415733517 -40022790 200002279 8002279 -3002279
05/03/2019 0 -68032891 -200145026 7993357 -3002279
06/03/2019 0 -9023999 200227900 8002279 -4002279
07/03/2019 0 10022790 -200002279 8002279 -5002279
08/03/2019 -11925076 1022480 300897999 11700079 -1700079
09/03/2019 0 -29022000 300227909 11602200 -2602200
10/03/2019 11599200 21933440 300537810 11599200 -999200
11/03/2019 0 15875920 300227770 11593339 -1593339
12/03/2019 0 45890000 -300553588 11243589 -43589
13/03/2019 0 19890000 300827900 11900696 -900696
14/03/2019 0 27905600 300227901 11219056 -219056
15/03/2019 0 2900000 300956900 -6900000 -2900000
16/03/2019 2209488 -80094880 90227650 2209488 2209488
17/03/2019 4177168 -39771680 80346654 4177168 -4177168
18/03/2019 0 -34781799 60445654 4277168 -4277168
19/03/2019 4477168 -92599716 80524650 4477168 125997168
20/03/2019 4377168 -46771680 77102950 4377168 -17377168
21/03/2019 0 -7771680 -65246500 3777168 -3916739
22/03/2019 -707828 -52477168 -95246481 4477168 -32477168
23/03/2019 -18819800 -58819800 219804300 -988198 -988198
24/03/2019 -900009 -1000009 -119008043 -900009 8000009
25/03/2019 14456201 -9099990 157635139 -709999 -709999
26/03/2019 -28454857 -765766700 240000000 -857667 35576670
27/03/2019 -839257 99220520 -124213347 -322052 3322052
28/03/2019 -1116568 -422965680 -156302692 -1116568 31116568
29/03/2019 -9220000 22922000 197834751 -922000 8922000
30/03/2019 -2943260 343401000 195346845 -642660 33240100
31/03/2019 -2319709 -322390350 -96894079 -804234 -250273

Table 2. Countries’ Optimized Funds - GA
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date Australia Germany India Japan UK
01/03/2019 -25500660 -736462518 -704620660 7520928 -69991370
02/03/2019 -2097589 -961977790 -140711447 8021355 -3591781
03/03/2019 -2097588 22459788 140711447 8021356 -3591782
04/03/2019 -390975809 -39261666 190711444 8021356 -3714235
05/03/2019 -2097588 -65041444 -140711446 8021356 -3631860
06/03/2019 -2097588 -3408944 140711445 8021356 -3604617
07/03/2019 -2098226 4856834 -140711445 8021356 -3597811
08/03/2019 -963573 -444834 252207810 11576594 -1341541
09/03/2019 -963573 -25173321 302207808 11576593 -1341154
10/03/2019 -963573 19228238 302207808 11576594 -1341154
11/03/2019 -963573 15125254 302207808 11576593 -1256350
12/03/2019 -963573 46270901 -252207810 11576594 0
13/03/2019 0 18651453 252207809 11576593 -1341154
14/03/2019 0 26753345 302207808 11576594 -1342238
15/03/2019 0 2001000 302207809 -6318425 -1371779
16/03/2019 0 -79736090 79776735 2188840 -543928
17/03/2019 3641909 -36448589 86725481 3718885 -1036800
18/03/2019 627832 -39065678 49455598 4718884 0
19/03/2019 6270832 -92636453 85278584 3718885 118397791
20/03/2019 627832 -42146654 88172378 4718883 -16428709
21/03/2019 627832 -11142453 -86725481 4218884 -5525692
22/03/2019 627832 -50795567 -36725483 3718885 -28293219
23/03/2019 -4030850 -58115012 164520299 -291065 0
24/03/2019 -4030851 0 -95202985 -1291063 1661867
25/03/2019 -4030851 -9407643 152217238 -791064 3322931
26/03/2019 -4030851 -764783111 214521315 -291065 33305577
27/03/2019 -4030851 93795211 -145202984 -1291063 3330549
28/03/2019 -4030851 -417292444 -95202985 -291065 33243811
29/03/2019 -4030851 17333342 164520299 -791064 5311621
30/03/2019 0 348055656 213771630 -1291064 33309323
31/03/2019 0 -319985677 -95202985 -791064 3330933

Table 3. Countries’ Optimized Funds - BnC
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(a) India

(b) Japan

(c) UK

Figure 1. Optimized Funds - India, Japan, UK

Figure 1 only shows the optimal values for the transfer quantities in order to max-
imize net earnings for India, Japan, UK offices. The blue line is the funds with
the baseline approach, the red line the optimized funds applying genetic algorithm
and green line the optimized funds applying Branch-and-Cut algorithm. For all
countries, the optimized transfer quantities from both algorithms are very similar.
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2. Countries Cash End

The following tables aggregate the cash end held in each country for the three
approaches, baseline approach, genetic algorithm and Branch-and-Cut algorithm.



2. COUNTRIES CASH END 55

date cash end baseline cash end GA cash end BnC
01/03/2019 175500660.5 125402490.5 100000000.5
02/03/2019 147598249 127500079 100000000
03/03/2019 149695837.5 129518925.5 100000000.5
04/03/2019 540671646 104761217 100000000
05/03/2019 542769234.5 106858805.5 100000000.5
06/03/2019 544866823 108956394 100000001
07/03/2019 546965048.7 111054619.7 100000000.7
08/03/2019 467928621.8 100093116.8 100000000.8
09/03/2019 468892194.9 101056689.9 100000000.9
10/03/2019 469855768 113619463 100000001
11/03/2019 470819341.1 114583036.1 100000001.1
12/03/2019 471782914.2 115546609.2 100000001.2
13/03/2019 472746487.3 116510182.3 100963574.3
14/03/2019 474083584.1 117847279.1 102300671.1
15/03/2019 475047157.2 118810852.2 103264244.2
16/03/2019 474419325.2 120392508.2 102636412.2
17/03/2019 468141005.2 118291356.2 100000001.2
18/03/2019 467513173.2 117663524.2 100000001.2
19/03/2019 461242341.1 115869860.1 100000001.1
20/03/2019 453614509.1 119619196.1 100000001.1
21/03/2019 708542177.1 118991364.1 100000001.1
22/03/2019 707914345.1 117655704.1 100000001.1
23/03/2019 711945195.9 102866754.9 100000001.9
24/03/2019 715976046.7 105997596.7 100000001.7
25/03/2019 720006897.5 124484648.5 100000001.5
26/03/2019 724037748.4 100060642.4 100000001.4
27/03/2019 728068599.2 103252236.2 100000001.2
28/03/2019 732099450 106166519 100000001
29/03/2019 736130300.8 100977369.8 100000000.8
30/03/2019 740161151.6 102064960.6 104030851.6
31/03/2019 744192002.4 103776102.4 108061702.4

Table 4. Australia’s cash end
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date cash end baseline cash end - GA cash end - BnC
01/03/2019 746462518 11062518 10000000
02/03/2019 1713440308 12812408 15000000
03/03/2019 1685980520 14375410 10000000
04/03/2019 2447447084 13614286 10000000
05/03/2019 2768754084 10622839 10000000
06/03/2019 2777163028 10007784 15000000
07/03/2019 2836857416 10173740 10000000
08/03/2019 2830876184 11641054 10000000
09/03/2019 2861049505 12792375 15000000
10/03/2019 2836249278 10497577 10000000
11/03/2019 2821124024 11248243 10000000
12/03/2019 2860677456 10867342 10000000
13/03/2019 2747860848 12105889 10000000
14/03/2019 2698473282 13258144 10000000
15/03/2019 2696472282 14157144 10000000
16/03/2019 2776208372 13798354 10000000
17/03/2019 2812656961 10475263 10000000
18/03/2019 2851722639 14759142 10000000
19/03/2019 2997690809 14795879 10000000
20/03/2019 3039265645 10170853 10000000
21/03/2019 3010242542 13541626 10000000
22/03/2019 3054896554 11860025 10000000
23/03/2019 3113543010 11686681 10531444
24/03/2019 3151365154 10155228 10000000
25/03/2019 3160772797 10462881 10000000
26/03/2019 3930555908 14479292 15000000
27/03/2019 3831760697 14904601 10000000
28/03/2019 4189111442 14231365 15000000
29/03/2019 4145553313 14820023 10000000
30/03/2019 3797497657 10165367 10000000
31/03/2019 4122483334 12760694 15000000

Table 5. Germany’s cash end
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date cash end baseline cash end - GA cash end - BnC
01/03/2019 804620661.7 124620661.7 100000001.7
02/03/2019 995332106.1 101332106.1 149999999.1
03/03/2019 2804620662 110848561.7 100000001.7
04/03/2019 2629453217 120139396.3 100000001.3
05/03/2019 2820164662 110705814.7 149999999.7
06/03/2019 2629453217 120222270.3 100000000.3
07/03/2019 2820164662 110931435.7 149999999.7
08/03/2019 2517956854 109621626.6 100000001.6
09/03/2019 2215749046 107641727.5 100000001.5
10/03/2019 1913541237 105971729.4 100000001.4
11/03/2019 1611333429 103991691.3 100000001.3
12/03/2019 1946982226 105645911.4 149999999.4
13/03/2019 1644774418 104266003.3 100000000.3
14/03/2019 1342566610 102286096.2 100000000.2
15/03/2019 1040358802 101035188.1 100000001.1
16/03/2019 960582067.1 111486103.1 100000001.1
17/03/2019 873856586 105107276 100000001
18/03/2019 824400988 116097332 100000001
19/03/2019 739122404 111343398 100000001
20/03/2019 658950026 100273970 100000001
21/03/2019 737675507 121752951 100000001
22/03/2019 816400988 113231951 149999999
23/03/2019 601880690 118515953 100000000
24/03/2019 747083674 144710894 149999999
25/03/2019 544866437 100128796 100000000
26/03/2019 330345122 125607481 100000000
27/03/2019 475548106 146597118 100000000
28/03/2019 620751090 135497410 149999999
29/03/2019 406230792 118811863 100000000
30/03/2019 192459162 100387078 100000000
31/03/2019 337662146 148695983 149999999

Table 6. India’s cash end
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date cash end baseline cash end - GA cash end - BnC
01/03/2019 -6520926.96 1419073.04 1000001.04
02/03/2019 -14542282.92 1399996.08 1000000.08
03/03/2019 -27563638.88 1380919.12 1000000.12
04/03/2019 -40584994.84 1361842.16 1000000.16
05/03/2019 -48606350.8 1333843.2 1000000.2
06/03/2019 943372293.2 1314766.24 1000000.24
07/03/2019 935350937.3 1295689.28 1000000.28
08/03/2019 923774343.8 1419174.8 1000000.8
09/03/2019 912197750.3 1444781.32 1000000.32
10/03/2019 900621156.8 1467387.84 1000000.84
11/03/2019 889044563.4 1484133.36 1000000.36
12/03/2019 877467969.9 1151128.88 1000000.88
13/03/2019 865891376.4 1475231.4 1000000.4
14/03/2019 854314782.9 1117693.92 1000000.92
15/03/2019 6861133206 1036117.44 1499999.44
16/03/2019 6858944366 1056765.24 1499999.24
17/03/2019 6854725482 1015049.04 1000000.04
18/03/2019 6850506598 1073332.84 1499999.84
19/03/2019 6825287714 1331616.64 1000000.64
20/03/2019 6810068829 1489900.44 1499999.44
21/03/2019 6805849945 1048184.24 1499999.24
22/03/2019 6801631061 1306468.04 1000000.04
23/03/2019 6802422125 1109334.17 1499999.17
24/03/2019 6803213189 1000389.3 1000000.3
25/03/2019 6804004253 1081454.43 1000000.43
26/03/2019 6804795318 1014851.56 1499999.56
27/03/2019 6805586382 1483863.69 1000000.69
28/03/2019 7349822322 1158359.82 1499999.82
29/03/2019 7350613386 1027423.95 1499999.95
30/03/2019 7351404450 1175828.08 1000000.08
31/03/2019 7352195514 1162658.21 1000000.21

Table 7. Japan’s cash end
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date cash end baseline cash end - GA cash end - BnC
01/03/2019 29991370.16 10951370.16 10000000.16
02/03/2019 -16416848.33 10540872.67 10000000.67
03/03/2019 -12825066.82 12130375.18 10000000.18
04/03/2019 -9110831.31 12842331.69 10000000.69
05/03/2019 -5478971.19 13471912.81 10000000.81
06/03/2019 -1874353.74 13074251.26 10000001.26
07/03/2019 1723456.66 11669782.66 10000000.66
08/03/2019 681064450.8 11311244.83 10000000.83
09/03/2019 684924505.2 10050199.22 10000001.22
10/03/2019 686265659.6 10392153.61 10000001.61
11/03/2019 687612685.1 10145840.12 10090677.12
12/03/2019 687522009.3 10011575.34 10000001.34
13/03/2019 688863163.7 10452033.73 10000001.73
14/03/2019 690205400.9 11575214.94 10000000.94
15/03/2019 691577179.3 10046993.27 10000000.27
16/03/2019 692121108 12800409.95 10000000.95
17/03/2019 697560396.6 14062530.63 14402489.63
18/03/2019 698157906.6 10382872.59 14999999.59
19/03/2019 574760116.1 12982250.09 10000000.09
20/03/2019 590188825.7 12033791.69 10000000.69
21/03/2019 595714517.3 13642744.33 10000000.33
22/03/2019 629007735.6 14458794.61 14999999.61
23/03/2019 625676802.7 10139663.68 11669066.68
24/03/2019 622345869.8 14808739.75 10000000.75
25/03/2019 619022939.2 10775810.24 10000001.24
26/03/2019 585717363 13046903.98 10000001.98
27/03/2019 582386813.4 13038406.38 10000001.38
28/03/2019 549143002 10911162.96 10000000.96
29/03/2019 543831380.8 14521541.81 10000000.81
30/03/2019 510522057.9 14452318.88 10000000.88
31/03/2019 507191125 10871112.95 10000000.95

Table 8. UK’s cash end
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(a) India

(b) Japan

(c) UK

Figure 2. Optimized Cash End - India, Japan, UK

The next Figure 2 graphically illustrate the amount of cash reduced to optimal
values when applying an optimization algorithm for India, Japan, UK offices. The
blue line represents the actual (baseline) cash end without any optimization ap-
proach. The red line represents the optimized cash end with genetic algorithm and
the green line is the optimized cash end with Branch-and-Cut algorithm. As for
Australia and German offices, the optimal cash end from both algorithms is very
similar.
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3. GA results

As we can see in subplots in Figure 3, for all countries, after generation 10, the
number of unique individuals is approximately around 200. The blue line refers
to the number of different individuals that exist for a given generation. The red
line counts the number of unique individuals in tens and the green line counts the
number of unique individuals in hundreds. Last, the purple line counts the number
of feasible individuals that exist in a given generation.

The subplots in Figure 4 for each country shows us that genetic algorithm is con-
verging correctly to a local optimum since the net earnings increases as the number
of generations increases. The blue line indicates the best individual found in each
generation, hence, it does not guarantee that this individual is feasible. For exam-
ple, the Subplot 4e for UK office, there were no feasible individuals in generations 2
and 4. Therefore, the best individuals in these generations are those with negative
fitness score, but with fitness scores closest to zero. Whereas for the other branches,
the best individual in each generation has a positive fitness score because in each
generation there is at least one feasible individual.

Figure 5 shows the best individual found so far (best individual kept in Hall of Fame)
for each country. In Subplot 5b for Germany office, the predefined individual was
the best individual found so far for the first 27 generations. Then, in generation 28
the algorithm found an individual with a better score than the predefined individual
and it was kept in the Hall of Fame until generation 37. Finally, the algorithm found
an even better individual in generation 38 and it was kept in the Hall of Fame until
generation 50. Therefore, the individual from generation 38 is the local optimum
for Germany office.



62 B. ADDITIONAL RESULTS

(a) Australia

(b) Germany

(c) India

(d) Japan

(e) UK

Figure 3. Diversity Plot by Country
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(a) Australia

(b) Germany

(c) India

(d) Japan

(e) UK

Figure 4. Best Individual by Generation and by Country
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(a) Australia

(b) Germany

(c) India

(d) Japan

(e) UK

Figure 5. Hall of Fame Evolution by Country
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3.1. Germany with Population Size 300. In Figure 6 we see that genetic
algorithm was not able to find a local optimum different from the predefined solution
for the first 31 generations. However, when the population size is 400, there is
more diversity in the population, genetic algorithm is able to find a local optimum
different from the predefined solution (Subplot 5b)

Figure 6. Hall of Fame Evolution - Germany with Population
Size 300

3.2. GA Execution without predefined solution. In this section we illus-
trate the results of executing genetic algorithm with multiprocessing module for
Japan office without the predefined solution. In this case, we set the parameters
”generations”, ”force end generations”, ”convergence generations” to 6000, 6010,
30 respectively. The algorithm stop at iteration 6010 with an execution time of 22
hours and net earnings of 61139154.62. From Table 9, we see that the optimized
funds with and without the predefined solution are very similar and, therefore, the
final net earnings are also roughly the same. The net earnings for the case without
predefined solution is 10USD more than for the case with the predefined solution.
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(a) Diversity Plot - Without (b) Diversity Plot - With

Figure 7. Diversity Plot - Japan

(a) Best Individuals - Without (b) Best Individuals - With

Figure 8. Best Individual Results - Japan

(a) Hall of Fame Evolution - Without (b) Hall of Fame Evolution - With

Figure 9. Hall of Fame Evolution - Japan
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date optimized funds - without optimized funds - with
01/03/2019 7946220 7940000
02/03/2019 7597053 8002279
03/03/2019 8393139 8002279
04/03/2019 7929690 8002279
05/03/2019 7839772 7993357
06/03/2019 8010650 8002279
07/03/2019 8412105 8002279
08/03/2019 11280623 11700079
09/03/2019 11864814 11602200
10/03/2019 11598043 11599200
11/03/2019 11424180 11593339
12/03/2019 11644833 11243589
13/03/2019 11179990 11900696
14/03/2019 11659527 11219056
15/03/2019 -6419757 -6900000
16/03/2019 1768563 2209488
17/03/2019 4146722 4177168
18/03/2019 4662285 4277168
19/03/2019 3813188 4477168
20/03/2019 4661174 4377168
21/03/2019 4177259 3777168
22/03/2019 3785624 4477168
23/03/2019 -494673 -988198
24/03/2019 -1065794 -900009
25/03/2019 -776247 -709999
26/03/2019 -681744 -857667
27/03/2019 -680314 -322052
28/03/2019 -1005583 -1116568
29/03/2019 -834518 -922000
30/03/2019 -794783 -642660
31/03/2019 -322858 -804234

Table 9. Optimized funds with and without predefined solution
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[24] Paté-Cornell, M.E., & Tagaras, G., & Eisenhardt, K. (1990). Dynamic optimization of cash
flow management decisions: A stochastic model. Engineering Management, IEEE Transac-
tions, 37(3), 203 - 212. https://www.doi.org/10.1109/17.104290

[25] Salas-Molina, F., & Pla-Santamaria, D., & Garcia-Bernabeu, A., & Mayor-Vitoria, F. (2020).
Multiple criteria cash management policies with particular liquidity terms, IMA Journal of
Management Mathematics, 31(2), 217-231, https://doi.org/10.1093/imaman/dpz010

[26] Salas-Molina, F., & Rodriguez-Aguilar, J., & Pla-Santamaria, D. (2020). A stochastic goal
programming model to derive stable cash management policies. Journal of Global Optimiza-
tion, 76(2), 333-346. https://doi.org/10.1007/s10898-019-00770-5

[27] Sethi, S., & Thompson, G. (1970). Applications of Mathematical Control Theory to Finance:
Modeling Simple Dynamic Cash Balance Problems. Journal of Financial and Quantitative
Analysis, 5(4-5), 381-394. https://www.doi.org/10.2307/2330038

[28] Simon, D. (2013). Evolutionary optimization algorithms: biologically-Inspired and
population-based approaches to computer intelligence. John Wiley & Sons.

[29] Tobin, J. (1956). The Interest-Elasticity of Transactions Demand For Cash. The Review of
Economics and Statistics, 38(3), 241-247. https://doi.org/10.2307/1925776



Glossary

BAT: Baumol-Allais-Tobin model. 3
BnC: Branch-and-Cut. iii, 2, 17, 27–32, 52, 55–59

CFS: Cash Flow Financial Statement. 1
CMP: Cash Management Problem. 2, 4, 5, 9, 32

EA: Evolutionary Algorithm. 5

GA: Genetic Algorithm. 2, 5–9, 20, 27–29, 31, 32

LCY: Local Currency. 12, 14, 22, 27

MILP: Mixed Integer Linear Programming. 15, 31, 32
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