
Fine Tuning Transformer Models for
Domain Specific Feature Extraction

Bachelor Thesis

Carla Campàs Gené

Director: Joaquim Motger de la Encarnacion
Co-director: Xavier Franch Gutiérrez
GEP Tutor: Pinto Paola Lorenza

18th January 2023

Fine Tuning Transformer Models for Domain
Specific Feature Extraction

Carla Campàs Gené

Abstract

The nature of Natural Language Processing has drastically changed in the past years. The
implementation of Large Language Models pre-trained on thousands of unlabelled data has opened
the door to a new layer of comprehension of text processing. This has shifted research in the area
to exploit these large models to obtain better results for smaller tasks.

In this way, fine-tuning Natural Language Processing is becoming increasingly important. By
fine-tuning the different large language models with context and task-specific data, these models
quickly learn to track patterns and generalize to new concepts. They understand natural language
to a great extent and can generate relationships in words, phrases, and paragraphs.

Fine Tuning has become an increasingly important task to simplify the use of machine learning
solutions with low resources. The increase in pre-trained transformer models for Natural Language
Processing has complicated the selection and experimentation of these models, increasing research
and experimentation time.

This study goes through the current state of the art of transformer models and attempts to study
the scope and applicability of these models. From this initial work, the paper produces a compre-
hensive pipeline of model fine-tuning that allows the user to easily obtain a ready-to-use model for
a natural language task. To test this model, the pipeline is tested and evaluated for the automatic
extraction of features (i.e. functionalities) from mobile applications using available natural language
documents, such as descriptions.

1

Afinar Models Basats en Transformadors per a
l’Extracció de Caracteŕıstiques Espećıfiques a un

Domini

Carla Campàs Gené

Abstract

La naturalesa del processament de llengües naturals ha canviat dràsticament en els últims anys.
La implementació de Large Language Models pre-entrenat en milers de dades sense etiquetar ha
obert la porta a una nova capa de comprensió del processament de text. Això ha desplaçat la inves-
tigació a la zona per explotar aquests grans models per obtenir millors resultats per a les tasques
més petites.

D’aquesta manera, el processament de llengües naturals està adquirint una importància cada ve-
gada major. Afinant els diferents models de llenguatge gran amb dades espećıfiques de context
i de tasques, aquests models ràpidament aprenen a seguir patrons i generalitzar-los a nous con-
ceptes. Entenen el llenguatge natural en gran mesura i poden generar relacions en paraules, frases
i paràgrafs.

La sintonització fina neuronal s’ha convertit en una tasca cada vegada més important per sim-
plificar l’ús de solucions d’aprenentatge automàtic amb pocs recursos. L’augment dels models de
transformadors pre-entrenats per al processament del llenguatge natural ha complicat la selecció i
l’experimentació d’aquests models, augmentant el temps de recerca i experimentació.

Aquest estudi passa per l’estat actual de l’art dels models transformadors i intenta estudiar l’abast
i l’aplicabilitat d’aquests models. A partir d’aquest treball inicial, el document produeix un gaso-
ducte complet d’ajust fi del model que permet a l’usuari obtenir fàcilment un model llest per a
utilitzar per a una tasca de llenguatge natural. Per provar aquest model, la canonada es prova i
s’avalua per a l’extracció automàtica de caracteŕıstiques (és a dir, funcionalitats) des d’aplicacions
mòbils utilitzant documents de llenguatge natural disponibles, com ara descripcions.

2

Contents

List of Figures 7

List of Tables 9

1 Context and Scope 10
1.1 Introduction and Contextualization . 10

1.1.1 Context . 11
1.1.2 Concepts . 11
1.1.3 Problem definition . 13
1.1.4 Stakeholders . 13

1.2 Justification . 14
1.2.1 Previous studies . 14
1.2.2 Justification . 14

1.3 Scope . 14
1.3.1 Objectives and sub-objectives . 14
1.3.2 Requirements . 15
1.3.3 Potential obstacles and risks . 15

1.4 Methodology and Methodological Rigor . 16
1.4.1 Methodology . 16
1.4.2 Monitoring Tools and Validation . 16

2 Project Planning 18
2.1 Description of Tasks . 18

2.1.1 Task Definition . 18
2.1.2 Summary of the Tasks . 21

2.2 Resources . 21
2.2.1 Human Resources . 22
2.2.2 Material Resources . 22
2.2.3 Software Resources . 22
2.2.4 Hardware Resources . 23

2.3 Gantt Chart . 23
2.4 Risk Management . 24

2.4.1 Project Deadline . 24
2.4.2 Computational Power . 24
2.4.3 Over-fitting and under-fitting . 25
2.4.4 Inexperience in the Field . 25

3 Budget 26
3.1 Staff Costs . 26
3.2 Generic Costs . 28

3.2.1 Hardware Amortization . 28
3.2.2 Software . 29
3.2.3 Indirect Costs . 29

3.3 Deviation of the Budget . 30
3.3.1 Contingency . 30

3

3.4 Incidental Costs . 30
3.4.1 Staff Costs . 30
3.4.2 Hardware Amortization . 31
3.4.3 Software . 31

3.5 Total Costs . 31
3.6 Management Control . 32

4 Modifications with Respect to Initial Planning 33
4.1 Tasks . 33
4.2 Resources . 35
4.3 Gantt Chart . 37
4.4 Budget . 37
4.5 Risks Encountered . 39

5 Sustainability 41
5.1 Self-assessment . 41
5.2 Economic Dimension . 41
5.3 Environmental Dimension . 42
5.4 Social Dimension . 42

6 Deep Learning Fundamentals 44
6.1 Artificial Neural Networks (ANN) . 44

6.1.1 The Perceptron . 45
6.1.2 Training . 46

6.2 Sequence to Sequence Learning . 46
6.3 Recurrent Neural Networks (RNN) . 47

6.3.1 Temporal and Spatial Complexity . 48
6.3.2 Long Short Term Memory (LSTM) & Gated Recurrent Unit (GRU) 48

6.4 Transformer Models . 49
6.4.1 Convolutional Neural Network (CNNs) . 49
6.4.2 Attention . 50
6.4.3 Encoder Self-Attention . 50
6.4.4 Decoder Self-Attention . 50
6.4.5 Encoder-Decoder Attention . 50
6.4.6 Multi-head Attention . 50
6.4.7 Temporal and Spatial Complexity of Self-Attention 50

6.5 Importance of Fine-Tuning . 51

7 State of the Art 52
7.1 Transformer Models Review . 52

7.1.1 Bidirectional Encoder Representations from Transformers (BERT) 52
7.1.2 Text to Text Transfer Transformer (T5) . 53
7.1.3 Pathways Language Mode (PaLM) . 54
7.1.4 Pre-training with Extracted Gap-sentences for Abstractive Summarization

(PEGASUS) . 55
7.1.5 Generative Pretrained Transformer 3 (GPT3) 56
7.1.6 Transformer Summary . 57

4

7.2 Fine-Tuning Techniques Review . 57
7.2.1 Input/Output Layer . 57
7.2.2 Freezing Weights . 58
7.2.3 Adding and Removing Layers . 58
7.2.4 Transfer Learning . 58
7.2.5 Fine-Tuning Techniques . 59

7.3 Technique Selection . 60
7.3.1 Model Selection . 60
7.3.2 Fine-Tuning Techniques Selection . 61

8 Laws And Regulations 62
8.1 Data Privacy . 62
8.2 International Organization for Standardization (ISO) Standards 62

9 Design and Implementation of Machine Learning Pipeline 64
9.1 Model Preparation . 64

9.1.1 Data preparation - BERT . 66
9.1.2 Data preparation - T5 . 67

9.2 Model Training . 67
9.2.1 Evaluation Strategy . 67
9.2.2 Callbacks . 68
9.2.3 Epochs, Batch Size & Learning Rate . 69
9.2.4 Metrics . 70

9.3 Model Evaluation . 71
9.4 Model Deployment . 72

10 Experimentation 73
10.1 Experiment Set Up . 73

10.1.1 General Experimentation Set Up . 73
10.1.2 Feature Extraction Experimentation . 74

10.2 Experiment Review and Results . 75
10.2.1 Training BERT Model . 75
10.2.2 Fine-Tuning BERT Model . 78
10.2.3 BERT Result Discussion . 80
10.2.4 Training T5 Model . 81
10.2.5 Fine-Tuning T5 Model . 83
10.2.6 T5 Result Discussion . 85
10.2.7 BERT vs T5 . 85

11 Conclusions 87
11.1 Analysis of Completion of Objectives . 87

11.1.1 Theoretical Sub-Objectives . 87
11.1.2 Practical Sub-Objectives . 88

11.2 Analysis of Completion of Technical Competences 88

12 Future Work 91

5

13 Annex A: Gnatt Chart 94

14 Annex B: Modified Gnatt Chart 95

15 Annex C: Trained BERT data - Training Metrics 96

16 Annex D: Trained BERT data - Evaluation Metrics 99

17 Annex E: Fine-Tuned BERT data - Evaluation Metrics 102

18 Annex F: Fine-Tuned BERT data - Evaluation Metrics 105

19 Annex G: Trained T5 data - Training Metrics 108

20 Annex H: Trained T5 data - Evaluation Metrics 109

21 Annex I: Fine-Tuned T5 data - Evaluation Metrics 110

22 Annex J: Fine-Tuned T5 data - Evaluation Metrics 111

References 112

6

List of Figures

1 Hugging Face - Transformer Models Recompilation [1] 12
2 Planned Tasks - Gnatt Chart (own creation) . 24
3 Evolution of Planned Tasks - Gantt Chart (own creation) 37
4 Neural Network [2] . 44
5 Perceptron [3] . 45
6 Encoder-Decoder Architecture Visualization [4] . 47
7 Recurrent Neural Network Architecture [5] . 48
8 Long Short Term Memory Architecture [6] . 49
9 BERT pre-training and fine-tuning [11] . 52
10 T5 framework diagram [7] . 53
11 T5 Training [7] . 54
12 PaLM data distribution [8] . 55
13 PEGASUS architecture [9] . 56
14 Data pipeline for model initialization (own creation) 64
15 Model training & testing pipeline (own creation) . 65
16 Fine Tuning Pipeline for Model Selection (own creation) 65
17 Evaluation Strategies Visualization [10] . 68
18 Learning Rate Schedulers [11] . 69
19 Training BERT Training and Evaluation Loss (own creation) 75
20 Training BERT Training Metrics (own creation) . 76
21 Training BERT Evaluation Metrics (own creation) 76
22 Fine-Tuned BERT Training and Evaluation Loss (own creation) 78
23 Fine-Tuning BERT Training Metrics (own creation) 79
24 Fine-Tuning BERT Evaluation Metrics (own creation) 79
25 Trained T5 Training and Evaluation Loss (own creation) 81
26 Trained T5 Training Metrics (own creation) . 82
27 Trained T5 Evaluation Metrics (own creation) . 82
28 Fine-Tuned T5 Training and Evaluation Loss (own creation) 83
29 Fine-Tuning T5 Training Metrics (own creation) . 84
30 Fine-Tuning T5 Evaluation Metrics (own creation) 84
31 Planned Tasks - Gnatt Chart Large (own creation) 94
32 Planned Tasks - Gnatt Chart Large (own creation) 95
33 Trained BERT - Train Metrics (own creation) . 96
34 Trained BERT - Train Metrics (own creation) . 97
35 Trained BERT - Train Metrics (own creation) . 98
36 Trained BERT - Evaluation Metrics (own creation) 99
37 Trained BERT - Evaluation Metrics (own creation) 100
38 Trained BERT - Evaluation Metrics (own creation) 101
39 Fine-Tuned BERT - Train Metrics (own creation) . 102
40 Fine-Tuned BERT - Train Metrics (own creation) . 103
41 Fine-Tuned BERT - Train Metrics (own creation) . 104
42 Fine-Tuned BERT - Evaluation Metrics (own creation) 105
43 Fine-Tuned BERT - Evaluation Metrics (own creation) 106
44 Fine-Tuned BERT - Evaluation Metrics (own creation) 107

7

45 Trained T5 - Train Metrics (own creation) . 108
46 Trained T5 - Evaluation Metrics (own creation) . 109
47 Fine-Tuned T5 - Train Metrics (own creation) . 110
48 Fine-Tuned T5 - Evaluation Metrics (own creation) 111

8

List of Tables

1 Tasks summary - duration and dependencies (own creation) 21
2 Hardware & Software Requirements by Ta (own creation) 23
3 Estimated Salary per Role (own creation) . 27
4 Temporal Dependencies Split By Role (own creation) 27
5 Estimated Total Costs by Project Roles (own creation) 28
6 Estimated Costs by Tasks (own creation) . 28
7 Total hourly use of resources (own creation) . 29
8 Amortization of hardware (own creation) . 29
9 Contingency Budget per Cost Type (own creation) 30
10 Risk Management Staff Costs (own creation) . 30
11 Estimated Costs by Risk Task (own creation) . 31
12 Amortization of Hardware for Risk Aversion (own creation) 31
13 Amortization of Hardware for Risk Aversion (own creation) 31
14 Evolution of Tasks summary - duration and dependencies (own creation) 34
15 Evolution of Hardware Resources - duration and dependencies (own creation) 35
16 Evolution of Hardware & Software Requirements by Task (own creation) 36
17 Fixed Temporal Dependencies Split By Role (own creation) 38
18 Fixed Estimated Total Costs by Project Roles (own creation) 39
19 Fixed Estimated Costs by Tasks (own creation) . 39
20 State-of-the-art model summarization (own creation) 57
21 State-of-the-art model summarization (own creation) 59
22 Estimated Total Costs by Project Roles (own creation) 86

9

1 Context and Scope

1.1 Introduction and Contextualization

Natural Language Processing (NLP) is found in the intersection of Linguistics and Computer Sci-
ence. Natural Language Processing (NLP) is the study of artificial intelligence in Computer Science,
giving computers comprehension to understand the text and spoken words in a similar form to hu-
mans [12]. In other words, NLP can be defined as the field that intends to decipher the connection
between computers and language by analyzing large amounts of natural language data and extract-
ing conclusions from those.

The field of NLP has swiftly evolved to atone for new and improved computing techniques. Human-
Computer Interaction started with symbolic NLP around the 1950s [13]. This form relied on man-
made rules that were detected in the set of data provided. During the surge of Machine Learning
and statistical techniques for computation around the early 1990s, the previously symbolic systems
began to change to Statistical NLP models. Although Statistical NLP models are still a great
part of NLP computation, the introduction of Deep Learning techniques focused the sector towards
the use of deep neural network methods, also known as Neural NLP. In the past years, there have
been great strides in Neural NLP with the creation of transformers and large language models [13].

Recent advances in Neural NLP are focusing on zero-shot or few-shot learning [14]. There has
been a surge of large language models (LLM) that have shown great promise in generalizing to
different tasks. These require very few training data points and through the process of fine-tuning
(also known as transfer learning) can very easily learn a new task without the need or cost of
labeling thousands of data points [14].

These models have been very beneficial in lowering the time to obtain solutions and the com-
putational cost to produce deep learning solutions. This technology has become more accessible
and easier to use. Bringing about tools such as Huggingface [1], optimizations in libraries such as
Tensorflow [15] and Pytorch [16] that allow ease in the use of pre-trained models.

NLP nowadays is used to support the automation of multiple NLP-related tasks through efficient
and effective processing of large natural language document sets, including text summarization,
keyword extraction, and topic modeling. Moreover, concerning topic modeling/keyword extraction,
this is expanded in our system to mobile application features (or utilities) generation. This will be
based on crowdsourced data, and will therefore become an abstractive task rather than an extrac-
tive task, differing this process from those previously described.

In this thesis, we are going to use different transformer models pre-trained on thousands of pa-
rameters alongside different fine-tuning techniques in order to obtain a few-shot training pipeline
for feature extraction in specific domains. This will entail having a look at the current state-of-the-
art transformer models and their adaptability to new situations. Using fine-tuning techniques, we
will investigate these models and their ability to generalize in a given domain.

10

1.1.1 Context

This Bachelor’s Thesis of the Computer Engineering Degree with a specialization in Computing,
done in the Informatics Faculty of the Polytechnic University of Catalonia. The thesis is directed
by Joaquim Motger de la Encarnacion and co-directed by Xavier Franch Gutiérrez, both members
of the Service and Information Systems (ESSI) department.

1.1.2 Concepts

This dissertation focuses on the use of deep learning techniques for fine-tuning transformer models.
The concepts outlined below provide the preliminary knowledge required to thoroughly understand
this dissertation. The Concepts section serves as a brief introduction to the field of deep learning
applied to Natural Language Processing. A deeper look into these techniques is explored in the
following sections (Section 6. Deep Learning Fundamentals). In this section, a generic overview
of these concepts can be found in order to understand the conceptualization and planning of the
project.

This section was initially created in the Project Management course, an obligatory predecessor
to the Final Degree Thesis. The contextualization portion of this memory has been split between
this section and Section 6 - Deep Learning Fundamentals. Therefore, this section will cover the
essential terms to understand all the sections leading up to Section 6.

• Sequence to Sequence (Seq2Seq) Learning: Architectures made up of an Encoder and
a Decoder. The encoder takes care of extracting vectorized interpretations of the input data
and the Decoder tried to obtain the correct output from the Encoder interpretations.

• Attention: Mechanism that is used to decide which part of the sequence is relevant for the
current token and registers this within the internal states.

• Self-Attention: Self-attention relates the different tokens in the input sequence to the rest
of the sequence positions.

• Tranformer Models: Deep Learning Seq2Seq model that contains the addition of self-
attention.

State-of-the-art Transformer Models

Transformer models were introduced in the paper Attention is all you need [4] by a group of
Google researchers. It was later popularized by the surge of the BERT [17] model and its variations
RoBERTa [18]. Further studies have been performed using transformer models as their base such
as GPT [19], and their variations GPT-2 [20] and GPT-3 [21]. The table below is a small summary
of the different state-of-the-art transformer models proposed in the paper Transformers: State-of-
the-Art Natural Language Processing [22] proposed by Hugging Face.

11

Figure 1: Hugging Face - Transformer Models Recompilation [1]

This table serves as an initial point for our model investigation. However, it was created in 2018
therefore there are certain models and architectures that are not up-to-date. These models are in
constant change and therefore require constant updating. The state-of-the-art section in this paper
sets us up for success by obtaining a comprehensive study of the current top models.

Fine Tuning Deep Learning Models

Fine-tuning refers to tweaking the underlying model in order to adapt it to a specific situation
[14]. The most obvious example of this is adding an input and output layer to the model and
training it with new data that is situation specific. This requires labeled data from the situation
that we want to test against the model.

Another example of fine-tuning is transfer learning [14]. Transfer learning requires transferring
the knowledge of an algorithm into a second algorithm. This follows the same pattern as teaching
between a teacher and a student. There are a few ways of doing this. An initial version of this
proposes training the Deep Learning model on large amounts of data and transferring the weights
of this trained neural network into the new neural network.

Finally, transfer learning includes the possibility of contextualizing the model using embedding

12

to train the following model. This allows the input of the second model to be contextualized in the
scenario we are treating and attain an unsupervised fine-tuning of our model. Models for contex-
tualizing include (TSDAE) [23] and Generative Pseudo Labelling (GPL) [?].

The examples and definitions mentioned above have been in circulation for a while. The cur-
rent climate in NLP has a great amount of research based on fine-tuning. Therefore we require a
vast amount of research to identify the most current and most used fine-tuning techniques to apply
to our system.

1.1.3 Problem definition

The current NLP climate focuses on using large language models and transformer models to extract
maximum efficiency in generalizing to different problem types. Based on a state-of-the-art review
in the field of transformer models, in this thesis, we will conduct a comparative analysis through
the fine-tuning and adaptation of transformer models in the field of domain-specific feature extrac-
tion. This analysis will be based on different quality dimensions, including accuracy, efficiency, and
sustainability, and will result in the creation of an automated pipeline for NLP-related fine-tuning.

In this sense, feature extraction refers to obtaining key features or app utilities from our corpus
(in this case mobile application descriptions). Our initial dataset is created from AlternativeTo,
this website provides alternatives to private applications. AlternativeTo uses crowdsourced features
to categorize their apps. We will be using these crowd source features as a base for our dataset
labelling.

1.1.4 Stakeholders

The actors involved in this thesis can also be considered stakeholders for the research production.
Currently, Joaquim Motger de la Encarnacion is pursuing a doctorate for which he requires extract-
ing features from a series of application documentation. This process required a lot of manual work
that will mostly be resolved with the creation of a fine-tuning pipeline for feature extraction. The
author, Carla Campàs Gené, will be the primary entity for creating this pipeline and will look for
potential applications throughout the process of development.

Furthermore, a lot of companies, specifically startups, have lately been relying on few-shot models
in order to produce easy and cost-effective solutions. This investigation will produce an easy sys-
tem to understand which model and fine-tuning technique are more coherent for feature extraction.
Finally, the code base that will result from this paper can be utilized for optimizing different NLP
problem sets with few-shot models. Therefore, expanding the reach of problem types that can be
solved using this dissertation. Although these will not be directly treated in the progression of the
thesis due to the temporal limitations.

Finally, the research in NLP has become increasingly more centered on the possibilities and exten-
sibility that the now-arising transformer models have. This thesis will provide a paradigm on which
to base the fine-tuning research of these models and simplify the process of tuning and analysis.

13

1.2 Justification

1.2.1 Previous studies

Previously we exposed the advances in transformer models and the strides that have been done
toward the generalization of the models. There has been significant research on the benefits of
fine-tuning when generalizing to Deep Learning models.

Several studies have made strides in discovering different ways to perform transfer learning. Its
first instances came in 1992, although not related to Deep Learning this paper proposed forms of
combining the output knowledge of one algorithm with another algorithm [24]. Further studies
have been made on the applicability of transfer learning with Machine Learning and Deep Learning
models [25]. The latest research focuses on transfer learning when applied to unsupervised deep
learning [26].

Finally, the appearance of transfer learning research and new techniques within the field has in-
creased overwhelmingly with the appearance of larger models. There have been several examples
of these techniques done to keep track of the progress in the field.

1.2.2 Justification

The previously exposed studies suggest great improvement in the generalization of NLP tasks. Al-
though these have provided great strides in the NLP area, they are trained on billions of parameters.
Training and maintaining these models individually is extremely costly and in many companies,
not a viable option.

The purpose of this study is to validate the capabilities of fine-tuning transformer models for
feature extraction in the domain of mobile applications by using previously exposed technologies.
To do this, we will build a fine-tuning pipeline, from which we will have the ability to easily test
and extract the proper validation metrics for each model. The results of this thesis will validate
the effects of fine-tuning and creating a simpler system for testing different models and providing
faster solutions to NLP tasks with deep learning.

1.3 Scope

1.3.1 Objectives and sub-objectives

There are two major objectives that this thesis should produce. The initial objective of this thesis
is to review the state-of-the-art transformer models and fine-tuning techniques to identify the most
accurate model for domain-specific feature extraction. The second objective of this thesis will be
to create a pipeline for fine-tuning different state-of-the-art transformers with different fine-tuning
techniques. This will create an easier form of obtaining fine-tuned models for generating features
from mobile application documentation. In order to achieve this, the general objectives have been
broken down into sub-objectives.

14

Theoretical Sub-Objectives

• Research state-of-the-art transformer models and architecture.

• Research fine-tuning techniques for transformer models.

• Explore regularization techniques for fine-tuning deep learning models.

• For each method:

– Compute spatial and temporal complexities.

– Analyze the expected loss and accuracy of the model before fine-tuning.

Practical Sub-Objectives

• Develop the code base for the studied transformer models and fine-tuned techniques.

• Generalize fine-tuning process to be applicable to different transformer models.

• Analyze the loss and accuracy of the fine-tuned model.

• Automatize ranking of models and fine-tuning techniques and draw conclusions on obtained
results.

1.3.2 Requirements

The following requirements are set in place in order to maintain the quality of the thesis.

• Generate and label data-set for fine-tuning in the mobile application domain.

• Select the most relevant fine-tuning techniques and best-fit models for feature extraction.

• Attain the best possible models by optimizing hyper-parameters for the fine-tuned models.

• Define and add the evaluation process to the pipeline to evaluate models.

• Optimize code for all fine-tuning techniques.

• Maintain code readability and remove code complexity, as per good programming practices.

1.3.3 Potential obstacles and risks

This study has some risks and potential roadblocks to take into account. Having these obstacles in
mind while producing the thesis will help avoid and take these into account.

• Project deadline. Having only four months to complete the study and the posterior paper
that will follow is going to limit the breadth and depth that the study can reach. This will
force taking some decisions to be made and leave unexplored paths in the way. In order
to avoid having major setbacks due to the decisions, we require rigorous initial research to
understand the scope of the study.

15

• Computational Power. Training these models are very computationally expensive. Al-
though fine-tuning is in place to reduce the individual computational power needed, we might
need to train the models ourselves to extract the most out of our fine-tuning. For this, we
will require large computational power and time for training.

• Over-fitting and under-fitting. Models are very prone to over-fitting or under-fitting
based on the data that we have and how these models are trained. This can be a setback in
the way the span of techniques can fine-tune.

• Inexperience in the field. While I have had some experience using NLP frameworks and
libraries (such as Rasa and Spacy), I haven’t had much experience with creating and tuning
models. This means that an initial step is to learn the base of Deep Learning and the libraries
involved.

1.4 Methodology and Methodological Rigor

As described, one of the obstacles we have is the short deadline we have to implement and deliver
the project. To facilitate this we will require a proper work methodology and validation.

1.4.1 Methodology

Given that this thesis project is done in conjunction with the ESSI department, I will be adopting
an agile methodology used in this department. This will facilitate the interaction between the
director, the co-director, and the author of the thesis. Furthermore, this methodology has been
proven useful in past interactions and will allow for swift refocusing if needed during any point of
the project.

To implement this methodology, we will be using the Taiga tool. This tool allows for the creation
of tasks and sub-tasks and the continual checking of the state of each task by adding progress and
comments. This will allow detection of the point of completion of the task at all points. The tasks
will be created for two-week sprints.

1.4.2 Monitoring Tools and Validation

We will use GitHub as a system for version control, all functional parts of the project will be
tested and actions will be implemented to check that these aren’t broken at any version. Different
branches will represent different functionalities of the project (models or fine-tuning techniques).
These should be merged into the main branch (previously known as the master branch). This
project will be publicly available under an open-source software license (OSS), following the previ-
ous work done by the ESSI group.

To keep track of the tasks and progression we will use the Taiga tool, as previously explained.
In order to optimize the resources, we use and have access to GPU and TPU computing capacity
we will use Google Colaboratory. Having these we will be able to verify the correct functioning of
each model and assure small variability by running each experiment more than once.

16

Weekly meetings will be scheduled with the director of the thesis in order to keep track of the
progression and iterate on the following tasks. Bi-weekly meetings will be scheduled with the co-
director for the same purpose. Furthermore, for work revision and any errors encountered during
the execution of the thesis sporadic meetings might be set up.

17

2 Project Planning

This section describes the initial organization planned out previous to the start of the final degree
project. This organization and planning are carried on through to the budget planning. All devi-
ations from the initial planning are accounted for in the Section 4 - Modifications with Respect to
Initial Planning.

2.1 Description of Tasks

Attending to the proposed length and dedication given by the faculty, the thesis is 18 ECTS at 27.5
hours per ECTS. This means that during the project’s duration, there will be a total dedication of
495 hours. Out of which 82.5 hours should be dedicated to the Project Management (GEP) course.
This leaves 412.5 hours for the project development, documentation, and presentation.

The project spans from the 19th of September 2022 to the 18th of January 2023. The first weeks
are dedicated to the GEP course. Meaning that the totality of the project should be produced
between the 17th of October 2022 and the 23rd of January 2023. During these 14 weeks, there
should be a 30-hour dedication.

2.1.1 Task Definition

The task definition will be in constant progression to assure the correct conditioning of the project.
The tasks and temporal planning defined below are intended to be an initial version that will be
built upon as the project proceeds.

Project Planning (T1)

Initially, we are going to identify the context and scope of the project. This is encompassed in the
Thesis Management (GEP) course.

In order to do this, we will follow these sub-tasks:

• Contextualization and Scope. (T1.1) Identify the context and concepts relevant to the
thesis by setting clear objectives and justifying the capabilities of the project.

• Project and Temporal Planning. (T1.2) Break down projects into smaller tasks and iden-
tify the time frame for the project and individual tasks. This will include required resources
and risk management.

• Economic Planning and Sustainability. (T1.3) Analyze the cost that pursuing this
project will assume within an economic and sustainable frame.

• Correction and Final Documentation. (T1.4) GEP assigns a tutor to track the progress
of the documentation. The final step is to revise the comments and turn in a final version.

• Meetings. (T1.5) Weekly meetings will be set up with the director of the thesis and bi-weekly
meetings with the co-director.

18

Revise, recompile and analyze state-of-the-art technology (T2)

The initial part of the project will be looking into the current state-of-the-art transformer models
and identifying which of these will be best to use in our system. We will also need to identify the
possible fine-tuning techniques that we could use in this thesis and identify which of these will be
most beneficial.

In order to do this, we will follow these sub-tasks:

• Describe transformer architecture. (T2.1)

• Compute theoretical time and space complexities and bounded loss. (T2.2)

• Compare generic use case results between transformers. (T2.3)

Practical Implementation of Transformer Models (T3)

In order to be able to properly fine-tune the models, we will need access to their architecture. This
will require us to program the architecture ourselves which will give us access to manipulating this
model for fine-tuning.

In order to do this, we will follow these sub-tasks:

• Learn syntax for deep learning python library (Tensorflow). (T3.1)

• Program transformer models. (T3.2)

• Test correct functioning of transformer models. (T3.3)

Practical Implementation of Fine Tuning Techniques (T4)

Once the transformer models are coded, we will require the fine-tuning techniques to be programmed
and adapted for each transformer proposed.

In order to do this, we will follow these sub-tasks:

• Check the possibility of generalizing fine-tuning techniques amongst all trans-
formers. (T4.1)

• Program fine-tuning technique. If the fine-tuning technique is not generalizable
manually tune all the transformer models. (T4.2)

• Implement parameter sweeping to tune hyper-parameters. (T4.3)

• Test correct functioning of transformer models. (T4.4)

19

Experimentation, Analysis, and Conclusions (T5)

Having programmed and theoretically analyzed all possible techniques, the next step is to put these
models into practice in a specific use case and analyze their realistic use.

• Generate dataset and labeling. (T5.1)

• Select appropriate benchmarks to avoid bias. (T5.2)

• Experiment over different models and fine-tuning techniques. (T5.3)

• Draw conclusions from results. (T5.4)

Documentation and Presentation (T6)

This task requires constancy during all the implementation steps, this serves to document the cur-
rent progress properly and modify these with different decisions and updates. Finally, once the
process has been completed a presentation resuming the concepts will serve as a wrap-up for the
project.

In order to do this, we will follow these sub-tasks:

• Memory Write-up (T6.1)

• Final Thesis Write-up (T6.2)

20

2.1.2 Summary of the Tasks

The table below summarizes the tasks exposed above with expected dependencies and approximate
temporal planning of them.

Task ID Task Time (h) Dependencies
T1 Project Planning 85 –
T1.1 Contextualization and Scope 25 –
T1.2 Project and Temporal Planning 10 T1.1
T1.3 Economic Planning and Sustainability 15 T1.2
T1.4 Correction and Final Documentation 15 T1.3
T1.5 Meetings 20 –
T2 State-of-the-art Review 150 –
T2.1 Describe transformer architecture 75 –
T2.2 Compute time, space and bounded loss 37.5 –
T2.3 Compare generic transformer use cases 37.5 –
T3 Practical Implementation of Transformer Models 125 T2
T3.1 Learn Tensorflow 25 –
T3.2 Program transformer models 75 T3.1
T3.3 Test correct functioning of transformer models 25 T3.2
T4 Practical Implementation of Fine Tuning Techniques 100 T2
T4.1 Check generalization of fine-tuning techniques. 10 –
T4.2 Program fine-tuning technique 50 T4.1
T4.3 Implement parameter sweeping to tune hyper-parameters 15 T4.2
T4.4 Test correct functioning of fine-tuning techniques 25 T4.3
T5 Experimentation, Analysis and Conclusions 85 T3, T4
T5.1 Generate dataset and labelling 20 –
T5.2 Select appropriate benchmarks to avoid bias 20 T3, T4
T5.3 Experiment over different models and fine-tuning techniques 25 T3, T4
T5.4 Draw conclusions from results 20 T5.3
T6 Documentation and Presentation 50 –
T6.1 Project Memory Write Up 25 –
T6.2 Thesis Write Up 25 –

Table 1: Tasks summary - duration and dependencies (own creation)

2.2 Resources

As part of the thesis planning, we have to take into account the resources that we will need to execute
this thesis. These resources can be broken down into four groups: human, material, software, and
hardware.

21

2.2.1 Human Resources

The main human resources involved in the project are the researcher (Carla Campàs Gené), the
director (Joaquim Motger De La Encarnacion), and the co-director (Xavier Franch Gut́ıerrez). The
researcher will be the point guard for the project and the director and co-director will provide the
required support and guidance.

Other fundamental human resources involve the GEP tutor who will provide support in the initial
steps of the thesis and the final thesis panel composed of examiners from within the Computing
specialization who are in charge of revising the final product and grading it.

2.2.2 Material Resources

The lack of base knowledge in the given project will require a lot of study on papers and technolo-
gies. We will require access to books dealing with deep learning, NLP, fine-tuning techniques, and
Tensorflow technologies. These are evaluated below in Section 2.4 - Project Deadline.

2.2.3 Software Resources

As described above we will require access to the following software services:

• Colaboratory (SR1): Interactive python notebook with access to more extensive hardware
resources.

• Google Calendar (SR2): Calendar software to keep track of meetings.

• Taiga (SR3): Software tool to keep track of tasks per sprint and the progress associated to
each task.

• VSCode IDE (SR4): To compile the pipeline and generate a comprehensive component
from the models and fine-tuning techniques we will need access to an IDE.

• Atenea - FIB (SR5): For the initial project planning we will need documentation posted
in Atenea and we will also have to turn in documents in this software service.

• Raco - FIB (SR6): Tracking of completion and turn-in of final work will be done directly
through the Raco platform.

• Overleaf (SR7): To write up the project planning, the memory of the project and the final
thesis we will be using the Overleaf platform. This enables writing and visualizing latex code.

• Github (SR8): The software service will serve as version control and active service for the
code produced.

• Google Meet (SR9): In the spirit of maintaining communication with the director and
co-director some of these meetings will take form in an online setting.

22

2.2.4 Hardware Resources

In order to code the required pipeline for this project, we will be using a MacBook Pro M1 with
512 GB memory and 16 GB RAM (HR1). Since we are training very heavy models, the CPU in
this computer will not be enough to efficiently run these models. We will be using CPU, GPU, and
TPU resources from the Colaboratory software (HR2). We will also need access to the internet for
this, and therefore require a router for this connection (HR3).

Task ID Hardware Resources Software Resources
T1.1 HR1, HR3 SR5, SR7
T1.2 HR1, HR3 SR3, SR5, SR7
T1.3 HR1, HR3 SR5, SR7
T1.4 HR1, HR3 SR5, SR7
T1.5 HR1, HR3 SR2, SR3, SR9
T2.1 HR1, HR3 SR7
T2.2 HR1, HR3 SR7
T2.3 HR1, HR3 SR7
T3.1 HR1, HR2, HR3 SR1, SR4, SR7
T3.2 HR1, HR2, HR3 SR1, SR4, SR7, SR8
T3.3 HR1, HR2, HR3 SR1, SR4, SR7, SR8
T4.1 HR1, HR3 SR7
T4.2 HR1, HR2, HR3 SR1, SR4, SR7, SR8
T4.3 HR1, HR2, HR3 SR1, SR4, SR7, SR8
T4.4 HR1, HR2, HR3 SR1, SR4, SR7, SR8
T5.1 HR1, HR2 SR4, SR7, SR8
T5.2 HR1, HR2 SR4, SR7, SR8
T5.3 HR1, HR2, HR3 SR4, SR7, SR8
T5.4 HR1, HR2, HR3 SR7
T6.1 HR1, HR3 SR6, SR7
T6.2 HR1, HR3 SR6, SR7

Table 2: Hardware & Software Requirements by Ta (own creation)

2.3 Gantt Chart

The Gantt Chart will be a visual distribution of the described tasks. We ended the task deadline
previous to the actual deadline (23rd of January) this will serve to be able to amend for possible
delays. It does not include the meetings schedule, it is still not set, and therefore is preferable to
exclude it from the visual representation. An enlarged version of the Gantt chart is found in Annex
A if a better view is required.

23

Figure 2: Planned Tasks - Gnatt Chart (own creation)

2.4 Risk Management

In order to properly assess the timeline for this project, we will have to take into account the risks
exposed in the previous section (1.3.3).

2.4.1 Project Deadline

A very likely scenario is underestimating the number of hours it takes to complete each task. In
this case, we will have to reassess the scope of the project and the reach of the number of models
and/or fine-tuning techniques that can be included.

• Impact: Medium

• Proposed Solution: In order to solve this, there should be a constant assessment of the
point we are at. Due to the fact that we are using sprints to control the tasks for each week,
after each sprint, I will take some time to evaluate the progress of the project. If at any point
this is falling out of track we will add a 10-hour task to re-assess and prioritize.

2.4.2 Computational Power

The models we are attempting to build are very large and will therefore require high computational
power in order to train and maintain these models. Training on low computational power will take
a very long time and effectively skew the progress we could potentially attain.

24

• Impact: High

• Proposed Solution: There are many external sources that provide resources for us to train
models without having to localize their training. These include cloud services such as AWS,
but also online coding environments such as Colaboratory. We have opted for the latter task,
but if need be we will be able to reassess and find a better permanent solution. In the case we
see poor functioning in our chosen solution, we will implement a 20-hour task to implement
a different solution.

2.4.3 Over-fitting and under-fitting

Training models make them prone to over or underfitting. This might be due to the parameters
and hyper-parameters we use to train our model, the bias in the data, or (in the case of fine-tuning)
using too much data in the process. The different amount of causes of over-fitting and under-fitting
will require an investigation.

• Impact: High

• Proposed Solution: In order to figure out what is causing the over-fitting or under-fitting
of the models we will need to investigate the impact of different causes of over/underfitting.
This will require a hefty amount of time setting it at 50 hours. Being that this is such a large
risk we will have some prevention metrics to make sure that if we require this investigation
everything is set up to facilitate it. This will include checking the data distribution and
implementing parameter sweeping, amongst others.

2.4.4 Inexperience in the Field

My inexperience in the field can have some minor setbacks in the project. This might be a lack of
understanding of some errors or not knowing how to implement certain tasks fully. There is already
a task in place in order to understand the framework there might still be some cases in which we
require an extension of the previous knowledge.

• Impact: Low

• Proposed Solution: Depending on the situation, we will require more or less time to solve
the potential bump in the road. In some cases, a simple Google search will fix it, if more
investigation is required we will add a 10-hour task to minimize the situation.

25

3 Budget

The next step in the preparation of the project is figuring out the costs of the workforce, software
requirements, hardware, and amortization. This will be divided into staff costs and generic costs.
There will also be an exploration of the possible deviations in the budget and how to control and
manage this budget.

This section is also part of the initial planning and reflects a theoretical planning, previous to
starting. All modifications and pertinent changes have been added to the Modifications with Re-
spect to Initial Planning section.

3.1 Staff Costs

Exploring the staff costs will require figuring out which roles would perform the different pro-
grammed tasks. We will then specify a mean salary for each type of role identified and multiply
their hourly wage by the predicted hours required.

There will be three people taking up the different roles: the co-director will take up the role of
Team Lead (TL), the director will take up the role of Engineering Manager (EM) and I will
be taking a vast amount of roles exposed below.

The initial tasks of planning and processing the different aspects of building the project will require
a Technical Project Manager (TPM) who is in charge of setting the scope, budget, context,
and stakeholders of the project. To figure out state-of-the-art technologies and research best efforts
for the project, we will require a Junior Researcher (JR). In order to build the deep learning
pipeline effectively, we will need a Machine Learning Engineer (MLE). Finally to test and
experiment we will require a Tester (T) and to analyze the results a Data Analyst (DA).

The following table indicates the hourly costs of the titles mentioned above. All of the salary
information is extracted from the same website [27] in order to not bias the data obtained. The
means are extracted from Spain in order to have accurate data for the people involved in this
project, all roles that I will be taking up are assumed to be entry-level. The salary given by this
website does not include payment of social security (gross salary), therefore we will have to add
this to the final staff costs. We will therefore consider the total salary to be the base plus 35%
of the base for social security. We have estimated a full-time salary meaning the total salary will
be divided by 40(hours/week) * 4(weeks/month) * 12 months, totaling 1920 hours of work in a year.

26

Role Annual Salary (€) Social Security Cost (€) Cost (€/h)
Team Lead 67,934 23,776 48

Engineering Manager 98,717 34,550 70
Technical Project Manager 47,763 16,717 34

Junior Researcher 51,416 17,995 36
Machine Learning Engineer 42,590 14,906 30

Tester 28,606 10,012 20
Data Analyst 32,881 11,508 24

Table 3: Estimated Salary per Role (own creation)

Having established these costs we will divide the defined tasks into the predicted roles for them
and assign them the correct amount of hours per role.

Task Hours TL EM TPM JR MLE T DA
Project Planning 85 20 20 85 0 0 0 0

Contextualization and Scope 25 0 0 25 0 0 0 0
Project and Temporal Planning 10 0 0 10 0 0 0 0

Economic Planning and Sustainability 15 0 0 15 0 0 0 0
Correction and Final Documentation 15 0 0 15 0 0 0 0

Meetings 20 20 20 20 0 0 0 0
State-of-the-art Review 150 0 0 0 150 0 0 0

Describe transformer architecture 75 0 0 0 75 0 0 0
Compute time, space and bounded loss 37.5 0 0 0 37.5 0 0 0
Compare generic transformer use cases 37.5 0 0 0 37.5 0 0 0

Practical Implementation of Transformer Models 125 0 0 0 0 100 25 0
Learn Tensorflow 25 0 0 0 0 25 0 0

Program transformer models 75 0 0 0 0 75 0 0
Test correct functioning of transformer models 25 0 0 0 0 0 25 0

Practical Implementation of Fine Tuning Techniques 100 0 0 0 0 75 25 0
Check the generalization of fine-tuning techniques. 10 0 0 0 0 10 0 0

Program fine-tuning technique 50 0 0 0 0 50 0 0
Implement parameter sweeping to tune hyper-parameters 15 0 0 0 0 15 0 0

Test correct functioning of transformer models 25 0 0 0 0 0 25 0
Experimentation, Analysis and Conclusions 85 0 0 0 0 55 0 30

Generate dataset and labelling 20 0 0 0 0 20 0 0
Select appropriate benchmarks to avoid bias 20 0 0 0 0 20 0 0

Experiment over different models and fine-tuning techniques 25 0 0 0 0 15 0 10
Draw conclusions from results 20 0 0 0 0 0 0 20

Documentation and Presentation 50 0 0 0 50 0 0 0

Table 4: Temporal Dependencies Split By Role (own creation)

27

Now we can recompile this data into the total cost per task and per role. These are shown in
Tables 5 and 6 respectively.

Role Cost (€/h) Hours Total (€)
Team Lead 48 20 960

Engineering Manager 70 20 1400
Technical Project Manager 34 85 2890

Junior Researcher 36 200 7200
Machine Learning Engineer 30 230 6900

Tester 20 50 1000
Data Analyst 24 30 720

Table 5: Estimated Total Costs by Project Roles (own creation)

Having broken down the work to be done into the different tasks, we can conclude that the total

Role Total (€)
Project Planning 5250

State-of-the-art Review 5400
Practical Implementation of Transformer Models 3500

Practical Implementation of Fine Tuning Techniques 2750
Experimentation, Analysis, and Conclusions 2370

Documentation and Presentation 1800

Table 6: Estimated Costs by Tasks (own creation)

staff costs for this project will be around 21,070€ without counting potential extra hours and other
external factors that could affect this project.

3.2 Generic Costs

This section will deal with non-staff-related costs such as software, hardware amortization costs,
and other costs.

3.2.1 Hardware Amortization

As outlined in the resources section (2.2.4) we will be using a MacBook Pro M1 for this thesis
project. We will also be using GPUs and TPUs as hardware systems. GPUs are much more acces-
sible than TPUs, therefore we will assume that 80 percent of model training will be done with GPUs
and the remaining 20 percent of the time will be TPUs. The following table shows the resources
and hours that we will use and the total price of the product. The prices for the used GPU and
TPU are not available since they are privately owned and not sold to the public. We have found an
equivalent Nvidia GPU/TPU, Nvidia is the lead contributor to GPU/TPUs for public consumption
and will be the best estimate for the real prices.

The following formula corresponds to the amortization formula we will use to calculate the cost of

28

Resource Hours Price (€) Life Expectancy
MacBook Pro M1 595 2,745 7

GPU 248 1500 5
TPU 62 3200 5

Table 7: Total hourly use of resources (own creation)

these during the thesis timeline. The expected total days of work will be 230 days working around
3 hours per day. For the years of use, we will use the life expectancy of each component.

Amortization = resourcePrice ∗ 1
yearsOfUse ∗ 1

totalDaysOfWork ∗ 1
hoursPerDay ∗ hoursUsed

Using this equation, we are able to calculate the total cost of use of the hardware during the
development of the thesis.

Resource Amortization Cost (€)
MacBook Pro M1 385

GPU 240
TPU 290

Table 8: Amortization of hardware (own creation)

From table 8 we can extract the total hardware cost for the development of this project 915€.

3.2.2 Software

We will be using some free software to carry out the thesis. Aside from this, we need access to
TPU and GPU systems. The easiest way to access this hardware will be using the Colaboratory
Pro version. This is a total of 9.25€ per month during the span of September to January. This will
be a total of 46.25€ during the span of the thesis execution.

3.2.3 Indirect Costs

Some costs are indirectly associated with the project. In this section, we will explore the costs.

• Internet: The current internet costs using fiber optics lies at 50€ per month. The total cost
will be the division of this for the time that we will work. (50€/month) * (1 month/30 days)
* (1 day/24 hours) * (230 days * 3 hours/day) = 50€.

• Electricity Cost: The current price of electricity is around 0.2038 euros per kilowatts
per hour and the average desktop takes up around 200 Watts per hour. The total price
(0.2038€/kWh) * 200wH * 230 days * 3h = 30€.

Indirect costs will total up to 80€.

29

3.3 Deviation of the Budget

Deviations from the proposed budget are inevitable. Having an expectation of these will help us
manage the budget correctly and be prepared for the inevitable changes.

3.3.1 Contingency

The staff costs and indirect costs may vary during the development of the project. Therefore, we
should be prepared to increase the budget accordingly if these requirements increase. In this case,
it is favorable to us to go under budget but we will have to prepare for going over budget, we can
do this by creating a contingency fund.

The amount of contingency will vary based on the resource that we are treating and the type
of cost that we will have. We assume that staff costs will vary increasingly based on meetings,
documentation, and research needed. We will assume a 10% contingency budget is required for
staffing costs. Generic costs will assumingly vary less we will therefore include a 5% contingency
budget for our generic costs. These are outlined in the table below. There are some costs that will
not change such as software costs.

Cost Type Contingency Budget (€)
Staff Costs 1,554.5

Amortization 75.75
Indirect Costs 6.4

Table 9: Contingency Budget per Cost Type (own creation)

The total contingency budget will be 1,637€.

3.4 Incidental Costs

We defined potential risks (1.3.3) and their effect on the project timeline (2.4). Having defined a
risk level low, medium, or high, we can define staff costs and resource costs for each of these tasks
to define the correct risk cost.

3.4.1 Staff Costs

Following the same process as section 3.1, we can calculate the costs of the identified risk situations.

Task Hours TL EM TPM JR MLE T DA
Project Deadline 10 0 0 5 5 0 0 0

Computational Power 20 0 0 0 0 20 0 0
Over-fitting and under-fitting 50 0 0 0 25 25 0 0
Inexperience in the Field 10 0 0 0 0 10 0 0

Table 10: Risk Management Staff Costs (own creation)

30

Role Total (€)
Project Deadline 260

Computational Power 440
Over-fitting and under-fitting 1,225

Inexperience in the field 220

Table 11: Estimated Costs by Risk Task (own creation)

The expected total budget for risk interaction related to staffing is 2,145€.

3.4.2 Hardware Amortization

The table below is replicated from the previous section to be able to reproduce the amortization
costs for incidental cases.

Resource Amortization Cost (€)
MacBook Pro M1 52

GPU 31
TPU 65

Table 12: Amortization of Hardware for Risk Aversion (own creation)

Therefore for all declared risks, we will have a total incidental hardware amortization cost of 148€.

3.4.3 Software

The only cost endured in software is Colaboratory pro, this will not be affected by the appearance
of a roadblock, we will have to buy the same program either way.

3.5 Total Costs

A quick summary of the total budget for the project is shown below.

Cost Type Total (€)
Staff Costs 21,070
Hardware Amortization 915
Software 46.35
Indirect Costs 80
Contingency Budget 2,145
Incidental Costs 2,123
Total 26,319.35

Table 13: Amortization of Hardware for Risk Aversion (own creation)

31

3.6 Management Control

Having declared the potential budget, we now have to be able to track the real costs versus what
we had budgeted. To do this, for each task we have to get the difference between the expected
cost and the real cost after finishing the task. We will calculate this for the staffing necessities, the
resources used, and other indirect costs. This will help us view how accurate our budget proposal
is and the margin for error that we have during the previously defined tasks.

32

4 Modifications with Respect to Initial Planning

As seen in the previous sections, we had an initial development of the tasks we wanted to develop,
the order of them, and the time frame allotted for each of these. These were slightly changed by
unforeseen circumstances. This section deals with these circumstances, which tasks were added and
which were modified.

4.1 Tasks

During the first half of this study, the allotted time was dedicated to the revision of state-of-the-
art technologies and implementing the initial version of the system. During the latter part of the
project development, I focused on refining the system and running experiments with the selected
models. The depth of the project and requirements of the system limited the breadth of the system,
which required a deep look into the types of models we wanted to test and how to implement these.
Furthermore, the experimentation of the system took a very long time which limited further the
scope of the study.

The state-of-the-art review also showcased a lot of blind spots in our contextualization, specifi-
cally the base with which the reader would receive the documentation would be very weak. This
prompted the addition of the section fundamentals (T1.6). This section describes the base of trans-
formers, starting from the most simple concepts of neural networks and scaling up to the different
types of attention found in a transformer model. This also increased the time required to recompile
state-of-the-art technologies.

Another change in our initial planning was the proposal of a pipeline. The models we tested
were coded in Colaboratory (T5.1). This made it harder to run all of the different fine-tuning tech-
niques for every model at the same time. There was also a lack of RAM to run the training on the
pre-trained T5 model due to its size. This meant adding a translation task between Colaboratory
and running on a local machine by adding a main method that can parallelize the different fine-
tuning techniques and the different models. This isn’t a very big task, given that local machines
(and sometimes servers) have less access to resources than running in Colaboratory it is a very
important task to consider.

While trying to learn Tensorflow for our specific system we realized that Tensorflow was on the
fall and in turn, PyTorch is gaining importance in the field. Due to the overbearing amount of
information and training found that used PyTorch, we decided to replace Tensorflow with PyTorch.
These two systems are similar libraries but PyTorch has gained significant importance because it
has ”useful abstractions to reduce amounts of boilerplate code and speed up model development”
[48].

We have also seen that thanks to the tools Huggingface there is a large ease of use in the imple-
mentation of basic fine-tuning techniques, this simplification has Having established these changes
we can now identify the new task management and timeline.

In the experimentation section, we saw the analysis of the results was lacking when speaking in
generic terms. Therefore, we added a task to perform some simple data analysis and visual assis-

33

tance for the analysis of the system. Finally, the time taken to run the experiments of the test was
a lot greater than what we expected, this severely increased the time requirement due to waiting
times. However, thanks to the implementation of the Google Cloud VPN, we could have these tests
running in the background while working on a different model or documentation. Therefore there
is no direct increase reflected in the table.

The following table is the updated task list.

ID Task Time Deps.
T1 Project Planning 95 –
T1.1 Contextualization and Scope 25 –
T1.2 Project and Temporal Planning 10 T1.1
T1.3 Economic Planning and Sustainability 15 T1.2
T1.4 Correction and Final Documentation 15 T1.3
T1.5 Meetings 20 –
T1.6 Fundamentals Formalization 10 –
T2 State-of-the-art Review 150 –
T2.1 Describe transformer architecture 75 –
T2.2 Compute time, space and bounded loss 37.5 –
T2.3 Compare generic transformer use cases 37.5 –
T3 Practical Implementation of Transformer Models 115 T2
T3.1 Learn PyTorch 25 –
T3.2 Program transformer models 65 T3.1
T3.3 Test correct functioning of transformer models 25 T3.2
T4 Practical Implementation of Fine Tuning Techniques 90 T2
T4.1 Check generalization of fine-tuning techniques. 10 –
T4.2 Program fine-tuning technique 40 T4.1
T4.3 Implement parameter sweeping to tune hyper-parameters 15
T4.4 Test correct functioning of fine-tuning techniques 25 T4.3
T5 Experimentation, Analysis and Conclusions 130 T3, T4
T5.1 [NEW] Translate Colaboratory Notebooks to source code 20 T3, T4
T5.2 [NEW] Learn Google Cloud Infrastructure & Deploy training on Google Cloud 10 T3, T4
T5.3 Generate dataset and labelling 10 –
T5.4 Select appropriate benchmarks to avoid bias 20 T3, T4
T5.5 Experiment over different models and fine-tuning techniques 25 T3, T4
T5.6 Draw conclusions from results 20 T5.3
T5.7 [NEW] Generate visual graphs from training and evaluation metrics 15 T5.3
T6 Documentation and Presentation 50 –
T6.1 Project Memory Write Up 25 –
T6.2 Thesis Write Up 25 –

Table 14: Evolution of Tasks summary - duration and dependencies (own creation)

34

4.2 Resources

All the previously exposed resources will still be used, we will however require more resources to
complete this study. We have seen that the Colaboratory tool is not enough to run all the exper-
iments. This tool requires the user to be active and has a limited amount of RAM, even with the
pro Colaboratory version it is not enough to run all the experiments we require. We decided to run
these in a virtual machine. Initially, this Virtual Machine was meant to be requested from the ESSI
research team’s resources but due to time constraints, we decided to opt for running this virtual
machine on Google Cloud. This will also allow the experiments to continue running overnight and
therefore extract all the experiment information we require. While this is great for running experi-
ments, we will run initial small experiments in Colaboratory and prepare the code to be easily run
in the virtual machine. We will identify the virtual machine as SR10.

The hardware resources will remain the same as those specified in the initial documentation, taking
into consideration the specifications of the virtual machine we require. In summary, our hardware
specifications will now be the following:

• MacBook Pro M1 with 512 GB memory and 16 GB RAM (HR1)

• CPU, GPU, and TPU resources from the Colaboratory software (HR2)

• Router (HR3)

• GPU from the virtual machine (HR4)

The added virtual machine will have the following characteristics. The following table (Table 15)

Resource Quantity
vCPU Cores 2
RAM memory 13 GB

Amount of GPUs 1 NVIDIA Tesla K80
Framework Pytorch

Hard Disk Drive (Boot Disk) 100 GB

Table 15: Evolution of Hardware Resources - duration and dependencies (own creation)

is the distribution of the resources with the specific tasks taking into account the added tasks and
resources.

35

Task ID Hardware Resources Software Resources
T1.1 HR1, HR3 SR5, SR7
T1.2 HR1, HR3 SR3, SR5, SR7
T1.3 HR1, HR3 SR5, SR7
T1.4 HR1, HR3 SR5, SR7
T1.5 HR1, HR3 SR2, SR3, SR9
T1.6 HR1, HR3 SR5, SR7
T2.1 HR1, HR3 SR7
T2.2 HR1, HR3 SR7
T2.3 HR1, HR3 SR7
T3.1 HR1, HR2, HR3 SR1, SR4, SR7
T3.2 HR1, HR2, HR3 SR1, SR4, SR7, SR8
T3.3 HR1, HR2, HR3 SR1, SR4, SR7, SR8
T4.1 HR1, HR2 SR1, SR4
T4.2 HR1, HR2, HR3 SR1, SR4, SR7, SR8
T4.3 HR1, HR2, HR3 SR1, SR4, SR7, SR8
T4.4 HR1, HR2, HR3 SR1, SR4, SR7, SR8
T5.1 HR1, HR2, HR4 SR7, SR10
T5.2 HR1, HR2 SR4, SR7, SR8
T5.3 HR1, HR2 SR4, SR7, SR8
T5.4 HR1, HR2, HR3 SR4, SR7, SR8, SR10
T5.5 HR1, HR2, HR3, HR4 SR7
T5.6 HR1, HR3 SR1
T6.1 HR1, HR3 SR6, SR7
T6.2 HR1, HR3 SR6, SR7

Table 16: Evolution of Hardware & Software Requirements by Task (own creation)

36

4.3 Gantt Chart

Given all of these considerations, we have drafted an updated version of our initial Gantt chart.
The Gantt chart contains a blue line marking the current state of the project.

Figure 3: Evolution of Planned Tasks - Gantt Chart (own creation)

4.4 Budget

These slight deviations from the initial plans will also have an impact on our budget. These
deviations are outlined in this section. Although the hardware requirements have changed, the
amortization of these will stay constant, we will be using GPU and TPU for the same amount of
time. The staff salaries are still the same, but the hours for these have changed. Table 16 reflects
these changes with the addition of new tasks.

37

Task Hours TL EM TPM JR MLE T DA
Project Planning 95 20 20 85 0 0 0 0

Contextualization and Scope 25 0 0 25 0 0 0 0
Project and Temporal Planning 10 0 0 10 0 0 0 0

Economic Planning and Sustainability 15 0 0 15 0 0 0 0
Correction and Final Documentation 15 0 0 15 0 0 0 0

Meetings 20 20 20 20 0 0 0 0
Fundamentals Formalization 10 0 0 10 0 0 0 0
State-of-the-art Review 150 0 0 0 150 0 0 0

Describe transformer architecture 75 0 0 0 75 0 0 0
Compute time, space and bounded loss 37.5 0 0 0 37.5 0 0 0
Compare generic transformer use cases 37.5 0 0 0 37.5 0 0 0

Practical Implementation of Transformer Models 125 0 0 0 0 100 25 0
Learn Tensorflow 25 0 0 0 0 25 0 0

Program transformer models 65 0 0 0 0 65 0 0
Test correct functioning of transformer models 25 0 0 0 0 0 25 0

Practical Implementation of Fine Tuning Techniques 90 0 0 0 0 75 25 0
Check the generalization of fine-tuning techniques. 10 0 0 0 0 10 0 0

Program fine-tuning technique 50 0 0 0 0 50 0 0
Implement parameter sweeping to tune hyper-parameters 15 0 0 0 0 15 0 0

Test correct functioning of transformer models 25 0 0 0 0 0 25 0
Experimentation, Analysis and Conclusions 130 0 0 0 0 85 0 45
Translate Colaboratory Notebooks to source code 20 0 0 0 0 20 0 0

Learn Google Cloud Infrastructure & Deploy training on Google Cloud 10 0 0 0 0 10 0 0
Generate dataset and labelling 20 0 0 0 0 20 0 0

Select appropriate benchmarks to avoid bias 20 0 0 0 0 20 0 0
Experiment over different models and fine-tuning techniques 25 0 0 0 0 15 0 10

Draw conclusions from results 20 0 0 0 0 0 0 20
Generate visual graphs from training and evaluation metrics 15 0 0 0 0 0 0 15

Documentation and Presentation 50 0 0 0 50 0 0 0

Table 17: Fixed Temporal Dependencies Split By Role (own creation)

To view this in perspective, the following tables represent the cost by role and the cost by generic
task.

38

Role Cost (€/h) Hours Total (€)
Team Lead 48 20 960

Engineering Manager 70 20 1400
Technical Project Manager 34 85 2890

Junior Researcher 36 200 7200
Machine Learning Engineer 30 260 7800

Tester 20 50 1000
Data Analyst 24 45 1080

Table 18: Fixed Estimated Total Costs by Project Roles (own creation)

Role Total (€)
Project Planning 5250

State-of-the-art Review 5400
Practical Implementation of Transformer Models 3500

Practical Implementation of Fine Tuning Techniques 2750
Experimentation, Analysis, and Conclusions 3630

Documentation and Presentation 1800

Table 19: Fixed Estimated Costs by Tasks (own creation)

The total staff costs with the proper modifications from the extra tasks bring the total required
budget to 22,330€.

4.5 Risks Encountered

There were various issues we encountered during the development of this project. Most of these
were previously captured in the previous risk management section.

Project Deadline

The initial scope of this project was very large, attempting to make a pipeline with various models
and various fine-tuning techniques. The project deadline and the issues encountered forced both the
breadth and depth of this project to shorten. This required a more critical view of the requirements
the study required for our specific domain and limiting the experimentation to this.

Computational Power

Computational power was a big issue for experimentation in this system. Our initial plan was
to use Colab Pro to train and test the model. The maximum capacity of Colab Pro was still not
enough to properly train this model. Therefore, we opted to transfer the experimentation to Google
Cloud. This required the addition of two tasks:

• Translate Colaboratory Notebooks to source code (T5.1)

• Learn Google Cloud Infrastructure & Deploy training on Google Cloud (T5.2)

39

These tasks limited the time for experimentation and the quantity of experimentation we could
reach. To do this, we limited the number of models to train to two and the fine-tuning techniques
for the removal/addition of layers.

Inexperience in the field

The inexperience in the field played a big part in the amount of work we could get done and
the decisions made. There are three instances where this has played a part.

• We had some issues with the T5 training. BERT is fine-tuned on the model output, whereas
T5 is meant to be trained on the model generation. Initially, there were a lot of issues with
the metrics that I wasn’t sure how to deal with. To mend this we searched online and figured
out what the issue was. This took a hefty amount of time. Having scoured the internet I have
seen that there is a common misconception about this if the user does not have added metrics
the loss will be calculated all the same. Therefore, the incorrect training goes unnoticed.

• Inexperience played a large part in the memory issues that went into the selection of the
platform. Not only would understanding the model requirements have identified this problem
previous to its development but it would have also played a part in the Virtual Machine
selection. This initial selection was guided by that of the team but was too slow to obtain in
the final stages of our project development.

• The time required to execute the tests would have also been an important giveaway to the
scope we could have reached in this paper. This would have helped to initially determine
suitable experiment limitations.

40

5 Sustainability

This section was an initial look into the sustainability of our project and if we understood the
impact that this project would have on the different sustainability metrics. This initial work was
done during the project management technique as a self-evaluation and introspective look.

5.1 Self-assessment

The current technological sector is affecting our environment at a greater rate than ever before.
From creating landfills with old technology to mining for a mineral that is already scarce. This
context leaves a sore feeling to anyone entering any technological field. Although I did understand
the concept of sustainability and sustainable development I didn’t realize the scope and impact
that it could have on our day-to-day projects.

While doing the survey I realized I was thinking about sustainability in the more common sense of
creating tangible products that are zero waste but not as much in the sense of sustainable software
development. Throughout the course of Computer Engineering at this faculty, we have talked about
economical aspects but haven’t focused as much on the societal and environmental impacts of our
products. In my case, this meant that a lot of the concepts (especially the metrics and how to
calculate them) were new concepts for me.

Although the environmental impact is always at the back of my mind I had never focused much
time on deciphering how to conceptualize the potential impact. The metrics I saw during this initial
exploration were surprisingly detailed and I believe there should be more education on these.

5.2 Economic Dimension

Regarding Project Put into Production (PPP): Reflection on the cost you have esti-
mated for the completion of the project

The estimation for the cost has been developed in the previous section. I believe this is fully
extended and admits different routes and possible risks. The times that have been estimated seem
reasonable for the project type, although in the case of doubt I have always taken the maximum
expected time. This way we ensure we are setting a budget with which we will be able to cover the
totality of the project.

Regarding Useful Life: How are currently solved economic issues (costs...) related
to the problem that you want to address (state of the art)? How will your solution
improve economic issues (costs ...) with respect other existing solutions?

There have been a few advances in fine-tuning techniques that have attempted to solved the eco-
nomic issue related to training models. This means that people spend less time labeling data and
training these models, the capacity required is minor and therefore costs less for the company and
the work time for investigations has diminished.

This thesis attempts to create a simple pipeline for testing and attaining relevant data for a grap-
ple of transformer-based NLP models for the task of domain specific mobile application feature

41

extraction. The generated results and the conclusions raised from this research will provide the
groundwork for simplifying the process of running experiments and analysis over a different set of
models. Furthermore, the investigation of the generalization of fine-tuning to different models will
allow us to extrapolate the technique to the different models that may appear in the future.

5.3 Environmental Dimension

Regarding PPP: Have you estimated the environmental impact of the project?

Although we haven’t fully developed a sustainability report at this point, we have noted that
there are several benefits to fine-tuning models rather than training due to the smaller amount of
information required for training. Using less electricity and being in general more sustainable. We
will be investigating this further during the duration of the thesis development.

Regarding PPP: Did you plan to minimize its impact, for example, by reusing re-
sources?

One of the general goals of this thesis is to create a pipeline for fine-tuning different transformer
models. Through this, we will also investigate how to generalize fine-tuning for the different chosen
models. This will reduce the work done to tune the different models by reusing the previous work
needed.

Regarding Useful Life: How is currently solved the problem that you want to ad-
dress (state of the art)? How will your solution improve the environment with respect
to other existing solutions?

The current state-of-the-art involves deep investigation into how transfer learning is best and how
to perform this. There are a few pipelines created to facilitate the process. These have been inves-
tigating different concepts such as unifying machine learning pipelines [28], assembling models for
fine-tuning [1], or creating a pipeline (data to model) [29] for model tuning.

This thesis attempts to amend all of the different models in order to provide an easy pipeline
for investigation of the best model to use. This unifies the field and attempts to make the whole
process more efficient by not re-running work and reusing all possible steps.

5.4 Social Dimension

Regarding PPP: What do you think you will achieve -in terms of personal growth-
from doing this project?

This project will allow me to discover in depth the field of NLP. Although I have seen this is
a very broad spectrum as a developer I will be able to fully immerse myself in the concepts and
tools. Furthermore, the work I have done in the field has shown me that usually companies have
to move fast and don’t have enough time to test different models. This will facilitate future work
that I have to do in the field.

42

Regarding Useful Life: How is currently solved the problem that you want to ad-
dress (state of the art)? How will your solution improve the quality of life (social di-
mension) with respect to other existing solutions? Is there a real need for the project?

Currently, companies should have a great number of resources and a great amount of time to
launch a product. Start-ups and mid-size companies don’t have the luxury to fully investigate the
options that they have. Currently, there is a choice made after the analysis of data. Although this
is an informed solution, it won’t always give the best performance for the company. This project
will change the outlook of that by giving them access to a tool that will automatically process the
different models and return the best-fine-tuned model for any NLP task given the labeled data.

Regarding Useful Life: Is there a real need for the project?

As seen previously there are several benefits to this project. We have seen the need to conduct
this project and obtain the structure for a potential fine-tuning pipeline, especially for the startup
climate. Furthermore, the specific application in which we are treating the project is a specific use
case of the project. We have identified a specific section of the market that requires a simple com-
ponent to be able to simplify the process and give better results for these use cases. This justifies
the need for this project and identifies use cases for it.

43

6 Deep Learning Fundamentals

The following section describes the base concepts on which this research is being build. This
section describes the base of deep learning and identifies the main characteristics to get a total
comprehension of this study. These fundamentals will run through the bases of deep learning,
giving a necessary introduction to understand transformer models and fine-tuning.

6.1 Artificial Neural Networks (ANN)

Artificial Neural Networks (ANNs), also known as Simulated Neural Networks (SNNs) and in short
Neural Networks have played a part in the evolution of Machine Learning, forming the basic build-
ing block of Deep Learning. ”A Neural Network is a computational learning system that uses a
network of functions to understand and translate a data input of one form into the desired output,
usually in another form” [30]. This technical definition is a simplification of what neural networks
do, receive input, and output the desired information. A visual example would be given an image
identifying if the main focus of the image is a cat or a dog.

ANNs are inspired by the human brain, this is an attempt to mimic the way a biological neu-
ron sends signals to another. It uses perceptrons as building blocks to create entangled networks
that identify the context and important characteristics of the desired output. Neural networks
are trained on large datasets, this allows for the neural network to distinguish different cases that
might be inputted and learn how to identify the correct output. Seen in Figure 4 is the structure

Figure 4: Neural Network [2]

44

of a basic neural network. The input layer is the layer where we introduce the data to the neural
network. This layer is connected to a hidden layer, which manipulates the initial data through
weights and biases to obtain meaningful characteristics for the desired (input, output) pairs. There
can be many hidden layers with varying amounts of nodes. Finally, a hidden layer is connected to
the final layer of the neural network, the output layer. This layer contains as many nodes as the
number of classes or characteristics we want to identify from the input data (i.e. the output that
we expect). To properly understand these concepts, let’s focus on the building blocks.

6.1.1 The Perceptron

The perceptron consists of four different aspects:

• Numerical Input Values

• Weights and a bias

• Weighted sum

• Activation Function

Figure 5: Perceptron [3]

Figure 5 shows a graphical representation of the aspects enumerated previously. Let’s assume
we have three input data points (x1, x2, x3), for a single perceptron these have individual weights
(w1, w2, w3). The output of the weighted sum wo(t) = x1 ∗ w1 + x2 ∗ w2 + x3 ∗ w3. This provides
the weighted sum based on the assigned weights for the specific proton and the input variables. the
last component of the perceptron is the bias. The bias is a maintained threshold that the specific
proton is required to reach before it can produce an output. Therefore the final equation for our
weighted sum is the following: wo(t) =

∑
X ∗ Y + b [31].

The final step for data processing by the perceptron is the activation function. This provides a
normalization step for our data. For example, if we want the output data to range between 0 and
1. There are various activation functions possible, the activation function used is largely dependent
on which stage of the neural network we are at (input layer, hidden layer, output layer) and the
type of problem we are dealing with (regression, classification...).

45

6.1.2 Training

In order to adjust the weights and biases to the training data we have procured we have to identify
a method to compute the error of the neural network and change the weights to minimize this error.
Training of neural networks is made up of two parts: the forward pass and the backward pass (also
known as backpropagation). The forward pass is calculating the outputs for each neuron in the
neural network and the loss (error) of the output of the neural network, which we can do using
the formulas and concepts exposed previously. Similar to the activation function, there are various
loss functions that can serve to calculate the loss of the output. These are selected based on the
problem type and the architecture of the neural network.

Backpropagation is a step in which we will recalculate the weight and biases of the neural net-
work based on the loss of the function. This step is essential to the network being able to properly
identify the functioning of the data and correct the output. In other words, backpropagation has
as an objective to minimize the cost by adjusting the model’s weights and biases [32], The gradient
is computed in order to assimilate the amount of change required for a specific layer and a specific
perceptron. The computation of the gradients is a very simple computation using the chain rule:

dz
dx = dz

dy * dy
dx

Propagating the error through the different layers means that each layer is dependent on the
change produced by the previous layer, all the way up to the first hidden layer. This way the loss
affects the weights and biases of each layer until we have found a local minima and have identified
the best potential functioning of our neural network [32].

6.2 Sequence to Sequence Learning

Sequence to Sequence (Seq2Seq) models are neural networks that take in sequences of tokens (char-
acters, words...) and output transformed sequences [4]. These models’ architecture contains an
Encoder and a Decoder. Both the Encoder and Decoder are the most popular Long Short Term
Memory (LSTM) [33] although there have been other implementations such as Gated Recurrent
Unit (GRU) [34]. The following figure graphically demonstrates the Encoder-Decoder architecture
used in Seq2Seq models.

46

Figure 6: Encoder-Decoder Architecture Visualization [4]

The Encoder takes in the input sequence in the form of tokens, it then summarizes the informa-
tion within the tokens and stores the important information in internal state vectors (also known as
context vectors). The outputs of the Encoder model are discarded and the cell states are preserved.

The Decoders initial state is initialized to the context vectors in the final stages of the Encoder.
Using these the decoder will generate the output sequence and take into consideration these outputs
for future prediction of the sequence.

Within these models, a very important concept is that of Attention. The attention mechanism
decides which part of the sequence is relevant for the current token and registers these within the
internal state. The LSTM will consider several other inputs at the same time by adding weights to
the different tokens in the sequence. This attention can be bidirectional (tokens before and after
the current token are considered) or one-directional (only previously seen tokens are considered)
[35].

6.3 Recurrent Neural Networks (RNN)

Recurrent Neural Networks (RNNs) are a type of ANN that allows the nodes to create a cycle, it
is known for its excellent progress in structured data usage and manipulation. The data we are
proposing, in this case, is sequential data. Sequential data refers to any type of data that contains
a series of elements structured into a sequence. Examples of this are video, audio, and text. To
deal with these kinds of inputs we require the network to remember previous inputs in order to
link them together. RNNs introduce an information cycle within the perceptron that introduces a
memory. Figure 7 shows the architecture of an RNN.

47

Figure 7: Recurrent Neural Network Architecture [5]

Using this architecture the network is able to remember past words and link them together. In
this way, sequential data can be linked together to create artificial understanding. There have been
variations of these that have increased the learning capacity associated such as (Long Short Term
Memory) LSTM and (Gated Recurrent Unit) GRU.

6.3.1 Temporal and Spatial Complexity

The paper Attention is All You Need [4] introduces the temporal and spatial complexity of many
of these models. RNN models introduce complexity per layer and the number of sequential steps.
The complexity per layer introduced as O(n∗d2) is the multiplication of the matrices of the hidden
states from the previous step and the weight matrix. This multiplication takes d2 operations and
is processed for n steps.

The number of sequential steps is bounded by O(n). All the n tokens are processed sequentially
and therefore, the processing of the n tokens requires n steps.

6.3.2 Long Short Term Memory (LSTM) & Gated Recurrent Unit (GRU)

RNNs have a very short-term memory which serves a good purpose when small texts have to be
processed. As this text grows more and more the link between two words is easily lost on RNNs.
Although in theory, it is possible for the RNNs to link two words that are far away, in practice these
networks have not shown the same capabilities. The introduction of LSTMs procured the ability
to link words in long texts. The LSTM is a type of RNN with a complex structure. The following
diagram (Figure 8) shows the repeating module structure.

48

Figure 8: Long Short Term Memory Architecture [6]

The main part of the LSTM is the cell state (the horizontal line running through the top of the
diagram. The LSTM has the ability to add or remove information to the cell state through the
gates. Gates are made up of a sigmoid neural net layer and a pointwise multiplication operation,
these are a form to let information through. The sigmoid layer outputs a number between zero
(nothing goes through) and one (everything goes through) to identify how much of each token is
let through. This is the attention mechanism. GRUs are LSTMs with a forged gate and without
an output gate, it has fewer parameters than an LSTM.

6.4 Transformer Models

”A transformer model is a neural network that learns context and thus meaning by tracking rela-
tionships in sequential data like the words in this sentence. Transformer models apply an evolving
set of mathematical techniques, called attention or self-attention, to detect subtle ways even dis-
tant data elements in a series influence and depend on each other” [36]. As explained above, the
transformer model follows an encoder-decoder architecture.

Essentially, the transformer model is a Convolutional Neural Network with attention. Looking
back at figure 2 we can see that: each encoder consists of a self-attention layer and a feed-forward
network. The attention layer serves to identify the relevant parts of the input sentence. The decoder
has an encoder-decoder attention layer between the self-attention and the feed-forward network,
this extra layer works to specify important parts of the input.

6.4.1 Convolutional Neural Network (CNNs)

Convolutional Neural Networks solve the following problems: trivial to parallelize per layer, exploit
local dependencies, and the distance between the positions is logarithmic. Input in CNNs are
independent of each other, this aspect allows them to easily parallelize the network. For comparison,
the distance of RNNs is O(N), making the CNN distance of O(log N) much more efficient. The
issue with CNNs is that they don’t identify dependencies between input tokens, which is where
attention plays an important role in modeling these for natural language tasks.

49

6.4.2 Attention

RNNs introduce the concept of attention. Rather than encoding the whole sentence within a hidden
state, RNNs encode each token with a corresponding hidden state passed from the encoder to the
decoder. These states are then used to decode the input information for any given task. This
computes a score from the given input to all other tokens and uses a softmax layer to level out
the outputs, creating attention. The biggest hitch this technique has is that it can not compute
different words in parallel, meaning that it cannot add any extra context to a single token.

6.4.3 Encoder Self-Attention

The initial input sequence is passed through to the input embedding and into the positional encod-
ing. These produce encoded representations for each word. The encoded representations capture
the meaning and position of each word. These are then passed to the Query, Key, and Value
parameters in the Self-Attention layers. This layer adds attention to all the other input tokens
with respect to our current token. The different encoders will add their attention representation to
extract a world representation of the attention.

6.4.4 Decoder Self-Attention

In the same way that the encoder self-attention works, the decoder self-attention passes the input
through the output embedding and positional encoding this in turn produces an encoded represen-
tation of the input. Once again, this is passed through to all three parameters Query, Key, and
Value into the self-attention layer. Once we have obtained the attention scores we feed the query
parameter to the Encoder-Decoder Attention.

6.4.5 Encoder-Decoder Attention

The Encoder-Decoder Attention gets a representation of the target and the input sequence, Decoder
Self-Attention, and Encoder stack respectively. This produces a representation for each target
sequence capturing the influence of the attention scores on the input sequence. This is continuously
revised with every Encoder-Decoder pair.

6.4.6 Multi-head Attention

Transformer models parallelize multiple calculations of the attention in what is called attention
heads. This is done by splitting the Query, Key, and Value tuples into N heads and passing it
independently to each head. These are then combined together to produce the final attention.

6.4.7 Temporal and Spatial Complexity of Self-Attention

The paper Attention is All You Need [4]. The complexity per layer O(d ∗ n2). In this case, d is
the embedding dimension and the task at hand is to compute the attention weights for each word
with respect to all the rest of the words. Therefore since it has to compute the attention for every
word with respect to every word it will do n2 computations of size d embeddings. The number
of sequential steps is constant. All operations happen in the same time step, not sequential like
previously seen in the RNN computations.

50

6.5 Importance of Fine-Tuning

There are a lot of cases in which using the full architecture of a proposed model (such as those
proposed in the state-of-the-art review section) will be too much for the task at hand and will
therefore be prone to over-fitting. This will make the model unreliable over unseen data. The idea
of fine-tuning is reducing the amount of training required for your specific data. By doing this the
model we train will have seen different tasks and will be re-trained with our specific task. This
gives our model versatility.

Another important factor of fine-tuning is the versatility of the model architecture. Through fine-
tuning, we will be reducing or augment the size of the model while maintaining the pre-trained
weights. These techniques will be further explored and explained. This will allow us to find not
only the best architecture for our given problem but the smallest one that will give us the best
results.

51

7 State of the Art

This section covers the state-of-the-art models and fine-tuning techniques. In order to go through
these. To do these we have examined a few related surveys of the technologies. These will be
exposed in the pertaining sections. This section covers an in-depth look into these techniques.

7.1 Transformer Models Review

For this section, the scope is focused on surveys pertaining to transformer models, two models
specially stood out and marked increasing importance in the formalization of this process. A
Survey of Transformers [37] not only provides insight on the model efficiency, their capacity to
generalize and ability to adapt but also a comprehensive figure that divides the transformer model
by their different types. AMMUS : A Survey of Transformer-based Pretrained Models in Natural
Language Processing specifies the survey into pre-trained transformer models for natural language
tasks. The specification is useful to understand how the model fits into the fine-tuning scope.

7.1.1 Bidirectional Encoder Representations from Transformers (BERT)

BERT is a language model pre-trained on a plain text corpus [17]. The pretraining serves as a base
of knowledge, this model can then be fine-tuned to user-specified queries. BERT is pre-trained on
two unsupervised: tasks masked language modeling (MLM) and next sentence prediction (NSP).
The following figure represents the architecture and training process of the BERT model.

Figure 9: BERT pre-training and fine-tuning [11]

BERT uses an encoder-decoder architecture alongside MLM. The encoder masks part of the corpus

52

and the decoder attempts to figure out which word is contained within the [MASK] token. The
predictor only predicts the masked word, it does not restructure the sentence. There is a slight
mismatch in the fine-tuning, in training with MLM, the training process has a ‘[MASK]‘ token to
identify the word to be predicted, this does not exist and the has to be a user-set mask to replace
it. To mitigate this, we do not always replace the token with [MASK]. 80% of the time it will be
replaced with the [MASK] token, 10% of the time a random token will be used and the other 10%
of the time we will use the unchanged token.

BERT is also pre-trained on NSP, and can therefore be tuned on this task. The sentences are
generated in < A,B > pairs. In order for this to be effective, we have to generate negative sam-
pling for our data. Half of the sentences should be matched to their appropriate representation,
and the other half should be matched to a random sentence of the corpus. BERT is pre-trained on
110 million parameters.

• Performing sentiment analysis, such as predicting the sentiment of a movie.

• Question answering, such as chatbots.

• Text prediction, this is specifically used in Gmail.

• Text generation, such as writing an article from a prompt.

• Summarization, such as generating summaries from articles.

7.1.2 Text to Text Transfer Transformer (T5)

The T5 model proposes a unified text-to-text format where all input and output are in text format.
This is trained on the C4 dataset (Colossal Clean Crawled Corpus). This text is the processed
version of the Common Crawl dataset, and it has been preprocessed by extracting only English
excerpts, removing code lines and duplicates.

Figure 10: T5 framework diagram [7]

Figure 10 shows how the T5 model is trained. Different tasks such as translation, question an-
swering, and classification, are fed into the model as input. The model is therefore trained to
generate the target text. This model, therefore, allows us to use the same hyperparameters, loss
functions, etc. to generate a model for various tasks [7]. T5 follows a similar training process as

53

BERT’s masked language modeling with a slight modification. MLMs are bidirectional models,
context is derived from both left and right, and T5 replaces consecutive tokens with a single mask
keyword, unlike BERT which uses a mask token for each word. Figure 11 shows a representation
of this [38].

Figure 11: T5 Training [7]

As shown in Figure 11, T5 masks different lengths of tokens as part of the mask language modeling
to obtain different representations of the input. This is ideal for text processing purposes such as
summarization, feature extraction, etc. T5 is pre-trained on 11 billion parameters. The following
are some example tasks this model can perform.

• Translate between two languages.

• Check if a sentence makes sense, such as essay revision.

• Semantic Textual Similarity, checking if two sentences mean the same thing.

• Summarization, such as generating summaries from articles.

• Keyword generation, generate keywords from a set of documents.

7.1.3 Pathways Language Mode (PaLM)

PaLM is a large language model evaluated on several natural language processing tasks and has
shown great performance and generalization ability. It has been trained on 780 billion parameters
to achieve great performance over a plethora of tasks.

This model was trained on the Pathways system which made the model able to train on vari-
ous TPU v4 Pods [39]. PaLM has generation capabilities rather than just understanding and is
specifically beneficial for categorical prediction and regression. Figure 12 shows the distribution of
data the model was trained on. The various different sections make the model able to generalize
in various different contexts. The PaLM model is pre-trained in an unstructured nature, the full
training explanation falls out of the scope of this paper.

54

Figure 12: PaLM data distribution [8]

The following are some of the tasks it has been evaluated on.

• Reasoning, such as explaining tricks

• Multi-modal understanding, such as guessing a film from emojis

• Contextualization and scope of the text, such as distinguishing cause and result

• Question answering, such as chatbots

7.1.4 Pre-training with Extracted Gap-sentences for Abstractive Summarization (PE-
GASUS)

PEGASUS has an encoder-decoder architecture, the encoder takes the context of the input text
and encodes it into the context vector. The decoder then decodes the context vector to produce
the summary.

55

Figure 13: PEGASUS architecture [9]

PEGASUS is trained in MLM (similar to BERT) and Gap Sentences Generation (GSG). GSG
selects several sentences from documents and concatenates pseudo-summaries to them. These
pseudo-summaries are used as labels for training the model. PEGASUS is pre-trained on 568
million parameters. These models’ skills lie uniquely in abstractive summarization.

7.1.5 Generative Pretrained Transformer 3 (GPT3)

GPT-3 is the latest version of LLMs created by OpenAI, this is a revision of the previous models
GPT-1 and GPT-2. These models are pre-trained in a generative, unsupervised manner that shows
good performance for zero, one, and few-shot applications. There have been a few recompilations
done of what the GPT-3 can do, the following examples provide a brief overview of this model.

• Nonfiction: Dialogue, impersonation, essays, news articles, plot summaries, tweets, teaching.

• Professional: Ads, emails, copywriting, CV generation, team management, content marketing,
note-taking.

• Code: Python, SQL, JSX, React app, Figma, javascript, CSS, HTML, LaTeX

• Creativity: Fiction, poetry, songs, humor, online games, board games, memes, cooking recipes,
guitar tabs, writing in your unique style.

• Rational skills: Logic, uncertainty, common sense, analogies, concept blending, counting,
anagrams, forecasting.

• Philosophy: Meaning of life, number 42, responses to philosophers.

Similar to most, GPT-3 follows an encoder-decoder architecture. This model is specific in that it is
trained with generative pre-training, meaning it is trained to predict the next token. This model is
the only one of those presented previously that does not have a readily available public pre-trained
model. In order to use the OpenAI model you have to access their platform and fine-tune it using

56

their tokens. This limits the possibilities we have for fine-tuning the model. GPT-3 is pre-trained
on 173 billion parameters.

7.1.6 Transformer Summary

To determine the models we want to use. For this, we have compiled a summary table of the
essential characteristics used to make this decision.

Model Parameters #Hidden Layers #Attention Heads Open Source Access Last Update
BERT 110 million 12 [1] 12 [1] YES March 17th 2020
T5 11 billion 6 [1] 8 [1] YES December 25th 2022

PaLM 780 billion 20 [1] 20 [1] NO April 4th 2022
PEGASUS 568 million 12 [1] 16 [1] YES November 21st 2022
GPT-3 173 billion NA NA NO May 5th 2022

Table 20: State-of-the-art model summarization (own creation)

7.2 Fine-Tuning Techniques Review

Fine-tuning reviews are more complex than the previous ones, these are very specific to the type of
model being handled. Therefore we concentrated on obtaining fine-tuning surveys or explorations
within the scope of text summarization and keyword extraction. The most influential article, in
this case, was Tech-Talk-Sum: fine-tuning extractive summarization and enhancing BERT text
contextualization for technological talk videos [40], this article treats a very similar topic and scopes
out the fine-tuning techniques in depth. The basis of fine-tuning lies in inheriting the weights of
another model. This model has either been trained with unsupervised learning which already has
a strong basis for the data that we will be inputting into the model. This would then classify as
few-shot training. The other way of fine-tuning is taking a model trained on a specific task and
using tuning this model to your, somewhat similar task. With this latter type, we are using the
base of the first but making sure that the model is previously trained on a related task.

7.2.1 Input/Output Layer

The most common form of fine-tuning in neural networks is adding or truncating the input and
output layers. This makes the input and output layers fit your specific situation, setting the number
of neural networks as output for classification tasks, amending the input shape to the input layers,
etc. This is the most common practice due to the versatility this provides to the neural network.
We can fit most neural networks to most tasks thanks to this technique.

This has less effectivity with neural networks dealing with text. Text is usually truncated to a
certain amount of tokens, this means that even though we would be using. The output is more the
same, we will be adapting the input data but not the output format or training task. Therefore
although somewhat effective, it doesn’t have the same effectivity for natural language as it does for
image processing or other deep learning tasks.

57

This technique does not generalize between models, we have to understand what each model requires
as input and as output in order to properly inject or extract the information into the model. This
correlates directly to the malleability of the system. In this case, it will be difficult to implement
the input and output layers for our model.

7.2.2 Freezing Weights

Freezing the weight in some layers will allow us to train specific layers while maintaining the weights
from others. There are a few techniques associated with it one of which is adding new layers and
training only these new layers. Adapting this therefore to the pre-trained weights. Another way to
do this is to freeze the input layers and calculate the weights on the output layers.

This makes sure that we are training the model to understand the desired input and output rather
than understanding a more holistic scope, or overfitting to our data.

This technique is easy to generalize. Thanks to the abstraction we have created by using Hug-
gingface. This will allow us to freeze the layers of the different models without having to specify
the model that we are working with. This provides high malleability of the fine-tuning technique
without much programming effort.

7.2.3 Adding and Removing Layers

While maintaining the structure and architecture of the base model we want to add specific layers
or remove them in accordance with our necessities, if we see the task is overfitting to our model, we
can simplify the structure while maintaining the pre-trained nature of the model and being able to
build from its previous knowledge.

The addition and removal of layers can be controlled through the Huggingface library. Although
each model has its own configuration, the HuggingFace library has a parent class that encapsulates
the main components that can be manipulated in transformer models. In this way, the addition
and removal of layers can be easily generalized to the different systems but can also

7.2.4 Transfer Learning

Transfer learning is the most intricate of fine-tuning techniques, it requires training another model
and making the input for our model the output of this second model. This serves a good purpose for
contextualizing our models. The current state-of-the-art technologies for transfer learning are ”Us-
ing Transformer-based Sequential Denoising Auto-Encoder for Unsupervised Sentence Embedding
Learning” (TSDAE) [?] and Generative Pseudo Labeling for Unsupervised Domain Adaptation of
Dense Retrieval (GPL) [?], whose main purpose is to create unsupervised sentence embeddings that
in turn take into consideration the context in which we are working in.

We encounter the same problem with transfer learning that we do for adding input/output lay-
ers. We have to understand what input each model requires in order to be able to ensure the
correct functioning of the system.

58

7.2.5 Fine-Tuning Techniques

The table below is a summary of important aspects obtained in the previous descriptions. These
main points will then be examined further for the decisions on which techniques to use.

Fine-Tune Ease of Generalization Meability
Input/Output Layer HARD LOW
Freezing Weights EASY HIGH

Adding and Removing Layers MEDIUM MEDIUM
Transfer Learning HARD LOW

Table 21: State-of-the-art model summarization (own creation)

59

7.3 Technique Selection

7.3.1 Model Selection

In order to complete the model selection process we took into account the following criteria.

• Open source availability of the model.

• Tasks trained on, capable of doing different NLP tasks.

• Size of the model.

Starting with the open source availability of the model, we require a deeper look into the model
(how it is trained, what parameters we can change, etc.) in order to properly pan out the exper-
iments we want to run. Referencing back to Table 20, we can see that the models GPT-3 and
PaLM are not available in an open-source setting. There is a major difference between these two,
PaLM is available to use on HuggingFace (the library we will be using to support the system) while
GPT-3 requires using their propierty system to fine-tune the model. Therefore although there is
some lack of visibility in PaLM we get free use of fine-tuning while in GPT-3 we are more subject
to their restrictions. In this case, it is restricted to prompt tuning, which slightly differs from that
of fine-tuning in the sense that we can only use input and output expectations to fine-tune the
model. The lack of control in this model has culminated in us removing it from the list of possible
models. An alternative would be to use GPT-2 which has not been updated since more than three
years back. Therefore, we have decided to opt out of using the family of Generative Pre-trained
Transformers from OpenAI.

The second criterion is the tasks the model is trained on. This is a big indication of how greatly the
model will be able to generalize to our task. We, therefore, have to take a look at the previously
exposed tasks, most models have many facets from which to pull, and the great majority have the
ability to rationalize, and question answering, amongst others. However, a clear outlier in this is
the PEGASUS model which has been trained specifically on abstractive summarization. Although
this model might be able to capture the necessities of our system, it is a smaller model that has
been greatly concentrated into one specific task.

The remaining models are BERT, T5, and PaLM, from these, we will look at the last criteria,
the size of the model, and determine the best model to fine-tune for the purpose of domain-specific
feature extraction. To do this, we will look at the number of hidden layers, attention heads, and
parameters. BERT and T5 lie in the hundred million parameters while PaLM lies in the hundred
billion parameters. In contrast, the sizes of the hidden layers and attention heads between BERT
and PaLM do not variate drastically, whereas T5 is around half of the size. The drastic difference
between the parameters will allow BERT to be faster at training and predicting, for the purpose of
this study we require efficiency and therefore will prefer lowering costs. In this case, we can choose
BERT and T5 over PaLM:

Finally, since we have identified the training base for both of these task types, changing the model
for any of these other models that are trained, and used, in similar ways will require little to no
effort on our part. Therefore, the extensibility and scalability provided by the system design will
augment the ease of use of this fine-tuning pipeline to scope out user requirements.

60

7.3.2 Fine-Tuning Techniques Selection

Fine-tuning has been proven to have ease of implementation due to the currently available libraries
such as HugginFace and PyTorch. This means there can be a quick implementation of each tech-
nique, refer to Table 21 column Ease of Generalization to understand the ease of implementation.
However, this study was greatly limited due to the runtime of the experiments. Therefore, we will
have to select which of these techniques is easier to implement. Given the libraries, we will be
working with have certain facilities for the manipulation of the models. This will therefore facili-
tate the use of techniques that deal directly with the model implementation (e.g. freezing weights,
adding/removing layers). On the other hand, anything that deals with externalizing information
extraction passes this to the model (e.g. adding input/output layers, transfer learning). Therefore,
due to ease of implementation, we will prefer techniques dealing specifically with the model. We
have opted to move forward with the addition and removal of layers. These allow us to run several
tests at once and increase the number of experiments if time allows it. The ability to run multiple
tests per fine-tuning technique will allow us to increase the depth of the proposed system.

61

8 Laws And Regulations

8.1 Data Privacy

For the purpose of an initial analysis, we will be using data from the website AlternativeTo, there-
fore we will adhere to regulations of data usage within this. The data that we are using is publicly
sourced (no specific user data will be used for model training) and therefore we do not have to
adhere to any data protection regulations.

AlernativeTo’s privacy section [41] suggests the terms of use of user data (reviews, descriptions,
crowd-sourced data, etc). This ensures the data we obtain adheres to regulations and is available
for use. AlternativeTo states the registration of username, full legal name, email, etc. These are
not publicly visible and will not be recorded by our system. We will strictly use descriptions, char-
acteristics, and review text. Nonetheless, we do have to consider copyright and implications on ML
training in the EU. Data in AlternativeTo is not protected under any Creative Commons license or
copyrighted in any form. This means it is available for our free use.

The implication of creating a pipeline for ease of fine-tuning also requires making the potential
users of the pipeline aware of the regulations applied to data processing. When using public data
we have to be aware of the Creative Commons license and copyright infringement norms (as seen
with our use case). If the data we use is private user data, we will require a deeper understanding
of regulations within the area the information was captured/used. The EU has the General Data
Protection Regulation (GDPR) which protects the usage and free movement of data [42].

8.2 International Organization for Standardization (ISO) Standards

The data we are using should also be up to par, to ensure the correct processing and usage of the
data we will adhere to ISO Standards. The following are the identified ISO standards relevant to
this project:

• ISO/IEC CD 5259: Data quality for analytics and machine learning (ML)

– Overview, terminology, and examples [43]: The terminology in this paper has been
fine-grained and exhaustively explained to be able to adapt to this standard.

– Data quality measures [44]: The data quality in our sense is done through the use of
one website in order to adhere to the same standards.

– Data quality management requirements and guidelines [44]: By using data from
AlternativeTo, our system will adhere to these to follow their required guidelines.

– Data quality process framework [45]: The framework we have created for extracting
data is very simple, the data is revised at the end by a human (in this case the author)
in order to ensure its quality.

– Data quality governance [46]: The quality will remain stable due to the use of a single
website for this project.

• ISO/IEC TS 4213:2022 Assessment of machine learning classification performance [47].
This is done by adhering to strong regulations and running the assessments under stable
conditions.

62

• ISO/IEC AWI TS 17847 Verification and validation analysis of AI systems [48]. This
is done by splitting the test data into train, test, and validation and ensuring its correct
functioning in validation.

The standards identified to account for the treatment of data, results, and assessment of the results
of our machine learning system.

63

9 Design and Implementation of Machine Learning Pipeline

This section will serve as an in-depth understanding of how the developed pipeline works and the
functionalities that running it will provide. This will go over the preparation of the model, training,
evaluation, and eventual deployment. This preparation will go through what libraries we have used
for each step, how each step works, and finally the output of the pipeline. The code for the machine
learning pipeline is available on GitHub [49].

9.1 Model Preparation

After selecting the models and the fine-tuning techniques that will build the base for our system
we can start preparing the basis of the implementation of these models. In order to prepare the
models, we did some research on potential libraries we could use to ease the process. The library
best suited to fine-tune models based on their pre-trained version is Huggingface. This library
allows us to extract training weights and use models stemming from a repository in GitHub. Since
all of the models we will be using are Open Source, and therefore published in GitHub we will be
able to use these directly from Huggingface.

The preparation of the models will be structured in classes. These classes will have as input
the data we want to train on, whether we want to initialize the model with the weights from the
pre-trained model and the configuration of the model. From this, we will load the model we want
to work on, train it and evaluate it on a subset of the input data. The expectation of the model
is that the data is pre-processed previous to the execution of the model for which we will create
a separate class. The following diagram shows the data flow for preparing the data previously to
training or evaluate the model.

Figure 14: Data pipeline for model initialization (own creation)

This initial process will make sure that the data is ready to be consumed by the model. The
dataset class we have created is a child class of the PyTorch DataLoader class. This will facilitate
the incorporation of the data for training and testing. This class will use the tokenizer (BERTTok-
enizer or T5Tokenizer) which will stem from a pre-trained version of the models. This will serve to
transform the data from a string representation to a numerical representation that the model can
interpret. The model outputs the data as a numerical representation, this tokenizer will also serve
as a decoder used to obtain the string representations of the features our model outputs.

Once this initial preparation step has been done, we can initialize the training of the model with our
training dataset. To do this we have incorporated the Trainer class from the transformers library.
A deeper exploration on the arguments used for training will be explored in the following section.
The trained model will then be evaluated with the validation dataset to check the metrics of the

64

model in circumstances it hasn’t previously seen. These metrics will let us know how well the model
generalizes to unseen data and will therefore give us better insight in how well the models would
preform in real-life circumstances. The final training pipeline for an individual model will be the
following:

Figure 15: Model training & testing pipeline (own creation)

The final step in this process is to generate the pipeline from which we will be able to extract
the best model and configuration. This will be done by parallelizing the models that are currently
implemented (BERT and T5). We will run the pipeline in figure 15 for both models and from the
final metrics extract the best. Therefore, abstracting the pipeline of training and testing the model,
Figure 16 represents the fine-tuning and selection pipeline in our system.

Figure 16: Fine Tuning Pipeline for Model Selection (own creation)

65

For the purpose of ease of deployment and use the pipeline can easily be deployed to a Google
Cloud Virtual Machine instance [50]. This will ease the complications in training and make the
pipeline process faster. In our case, we were using a very small amount of data, but this might
differ based on the requirements of the system and the amount of data we are using to train. In
general, when training we will require the following:

• A multi-threaded CPU.

• Memory to fit big batches of data and model’s weights.

• Fast storage (solid-state) to store and read the dataset.

• GPU (Graphics Processing Unit) with enough RAM for a big batch of data and the model’s
weights.

• Fast network for distributed training.

These requirements are generally not found in at-home setups. Generally, training on at-home
GPUs is rare and usually requires a vast amount of technical knowledge. Cloud computing comes
in to provide these services, allowing us to train and access the model from anywhere. The spe-
cific setup for our virtual machine will be a 10 GB Ubuntu 20.04 with the specifications mentioned
in Table 15. This is, generally speaking, a large enough machine to fine-tune the transformer model.

A general specification of fine-tuning transformer models that have been pre-trained on a large
dataset of data is that the dataset we fine-tune has to be kept small. This is because these models
learn pretty quickly how to do a specific task. Taking into account that these models have been
pre-trained in massive amounts of data, they pick up the task at hand with relative ease. Too
much training will make these models grossly overfit the data. This strengthens the importance of
validating the model on unseen data.

9.1.1 Data preparation - BERT

Due to the nature of the tasks at hand, we will have to prepare the data in two different ways for the
different models. BERT will be trained on a classification task, which means we have to generate
the data by matching correct and incorrect features and labeling them accordingly. The following
is the simple algorithm we used for generating this dataset. Sentence a will be the description
of the application, sentence b will be the resulting expected facets and the label will be either 0
or 1, 0 representing that the facets in sentence b are not correct for the given description and 1
representing that the facets in sentence b are correct for the given description.

1. Initialize empty lists to store sentence a, sentence b, and the labels.

2. For half of the examples we match the correct corresponding features to the description. Any
example that falls under this category will have the label 1.

3. For the rest we will match it to any other random features from any other description. Any
example that falls under this category will have the label 0.

66

This data could have been generated in a vast amount of ways, the decision for this study was
to make it as simple as possible to see how well the model could understand basic next-sentence
prediction based on the description. There are different ways the BERT model could be trained.
Another possibility would have been training the task on masked modeling, masking the last word,
and attempting to predict one of the input features as the next word. This is a harder task to learn.
This option will be further explored in the Future Work section.

9.1.2 Data preparation - T5

On the other hand, T5 has a simpler form of data preparation. To prepare the data to be inputted
into the T5 model we have to tokenize the input and the expected output. From this, we will
extract the input ids and the attention mask for both the input and the expected output. We will
label these according to the model input restrictions. In short, the following algorithm will provide
the desired input for the T5 model:

1. Tokenize descriptions.

2. Tokenize features.

3. Set input ids as the input ids from the tokenized descriptions.

4. Set attention mask as the attention mask from the tokenized descriptions.

5. Set decoder input ids as the input ids from the tokenized features.

6. Set decoder attention mask as the attention mask from the tokenized features.

9.2 Model Training

As mentioned previously, we will be using the TrainingArguments and Training classes from the
transformer library to abstract the process of training and evaluation. Previously, we had explained
how the training process works for deep learning models. These classes will allow for the implemen-
tation of complex training strategies while simplifying the process of implementation and allowing
for a more accurate training process. In this section, we will specify the training decisions, explain
these and explain how these are portrayed in the code.

9.2.1 Evaluation Strategy

The evaluation strategy specifies how often we evaluate the model. For the TrainingArguments, we
will be using the IntervalStrategy class. This class distinguishes between three different evaluation
strategies ”no”, ”steps” and ”batch”. The ”no” strategy signifies that the model will not be eval-
uated until the training is finished. The ”steps” strategy consists of evaluating the model every X
steps (batches), where the steps are determined by the user. Finally, the batch strategy consists of
evaluating the model every batch feed through the model. To consider which strategy is better we
have to consider how the model will be evaluated and tuned. As explained previously, to train the
model we are using the Gradient Descent strategy therefore the evaluation at different steps will
cause different movements of the gradient space. The following diagram demonstrates how gradient
descent responds to each strategy.

67

Figure 17: Evaluation Strategies Visualization [10]

Figure 17 shows that the batch strategy performs the best, leading mostly in the correct direc-
tion and quickly getting to the local minima. The steps get somewhat deviated but get to the
local minima faster than evaluating after training. In our case, we have to pay attention to the
evaluation to avoid overfitting the training data. Therefore, we should work with the batch or the
steps strategy to ensure we aren’t overfitting. In terms of computational complexity, having to
calculate the evaluation of every batch is more costly than evaluating every x step. For our purpose
and limitations, it will therefore be better to start with steps and give the user the option to run
batch evaluation instead.

9.2.2 Callbacks

”A callback is a set of functions to be applied at given stages of the training procedure. You can
use callbacks to get a view on internal states and statistics of the model during training” [51].
There are various callbacks our system will implement, we have to take into consideration that
adding callbacks will add computational complexity and increase the memory storage required by
our system. The following list contains some of the most common callbacks.

• Early Stopping: This function attempts to stop training whenever the loss significantly in-
creases, locating in this way the local minima without having to pre-determine the number
of epochs we would like the model to train for.

• Model Checkpoint: Stores the after every epoch.

• Learning Rate Scheduler: The scheduler adjusts the learning rate over time using a schedule,
it returns the desired learning rate based on the current epoch.

In our case, we require the handling of hyper-parameters without having to implement systems that
will further increase our training and testing time. Therefore, we will implement the early stopping
and learning rate scheduler to simplify this process for us.

68

9.2.3 Epochs, Batch Size & Learning Rate

Other important factors to consider are the epochs, batch size, and learning rate. The epoch refers
to an entire passing of the training data through the model, in our case we have determined that
the epochs will be controlled by early stopping. We have to set a maximum amount of epochs that
we will allow our model to train for. This will make sure that we are not over-computing in any
specific set of the model. The fact that we have early stopping allows us to increase the number of
epochs while still being able to assume that we will be stopping earlier. Therefore, we will set the
maximum amount of epochs to 200.

The batch size determines the number of samples to work through before updating the internal
model parameters. This parameter will be overshadowed by the evaluation strategy proposed above.
Therefore we will set this to a standard 64 and we will leave the evaluation strategy to change these.

Finally, ”the learning rate is a hyperparameter that controls how much to change the model in
response to the estimated error each time the model weights are updated” [52]. Choosing the learn-
ing rate is a critical task for the training process. Due to this reason, we have decided to implement
a learning rate scheduler callback. There are a copious amount of learning rate scheduler strategies
that we are able to choose from. Figure 18 gives a comprehensive study of the different learning
rate scheduler techniques.

Figure 18: Learning Rate Schedulers [11]

Due to the limited amount of time, we had to develop this project, we have decided to go with
a stable learning scheduler that has shown great promise in a great number of projects. For this
purpose, we opted to go with the StepLR scheduler. This scheduler takes in a multiplicative factor
which will reduce the learning rate at every iteration.

69

All of these values will also be controllable through user-handled input. The values mentioned
above will provide default values and those necessary for determining the features in applications.

9.2.4 Metrics

The metrics for our model will vary depending on the type of model we are using. We will be train-
ing on two different types of tasks for the two models we are proposing. This means that we will
have to figure out which metrics we will be selected based on the training type. The basic metric
calculated by the Training class in HuggingFace is the loss. We will be using this for selecting the
best model.

The BERT model will be trained on next-sentence prediction, a classification task. Therefore
we can obtain some metrics set for classification tasks. These are described below:

• Logarithmic Loss: This loss works by penalizing false classifications and can also be very
efficient for multi-class classification. Log loss lies in the range [0, ∞). It has been proven that
using log loss as an evaluation metric increases the accuracy of the classifier. The following
is the formula for calculating the Logarithmic Loss: −1

N

∑N
i=1

∑M
j=1 yij ∗ log(pij). Where yij

identifies if the sample i belongs to class j and pij is the probability the model outputted for
sample i belongs to class j.

• Accuracy: The number of correct predictions divided by the total amount of samples.
Accuracy = num.ofcorrectpredictions

totalnum.samples .

• Precision: The number of correctly identified positive results divided by the number of posi-
tive results outputted by the classifier. The formula for precision is the following: Precision =

TruePositives
TruePositives+FalsePositives , true positives are constituted by any data point tagged as positive
that has been identified as positive by the model. False Positives are those data points that
have been tagged as negative by the model but are actually positive data points.

• Recall: The number of correct positive results divided by the number of true positives
and the number of false negatives. The formula for the recall is the following: Recall =

TruePositives
TruePositives+FalseNegatives .

• F1: The F1 score is a metric that lies in the range [0, 1] which identifies how precise the
classifier is. In short, it is the harmonic mean between the precision and recall of our model.
The following is the formula for the F1 metric: F1 = 2 ∗ 1

1
precision+ 1

recall

.

The next model we will be training for is the T5. This is a text-to-text model and will be training on
the same. Therefore, we have to select different metrics to analyze this model. These text-to-text
models are increasingly complicated to evaluate, this is because most evaluation systems have been
proven to hallucinate information, therefore providing an unreliable base for the prediction. This
has been greatly explored for similar tasks such as summarization, machine translation, etc. This
goes hand in hand with the evaluation method of both models. We have obtained an initial look
into which metrics we can use for text-to-text generation.

• Recall-Oriented Understanding for Gisting Evaluation (ROUGE): The ROUGE
metric calculates the syntactic overlap between the desired outputs and the model outputs.
This metric is very popular for summarization tasks. It is calculated as ROUGE-N, where N

70

stands for the words of overlap we want to calculate. In our case, we would be interested in
Rouge-1 and Rouge-2 since features tend to be between one and two words. [53]. From this,
we can also extract R1-precision and R1-recall.

• Bilingual Evaluation Understudy (BLEU): This metric is usually used in machine
translation tasks, this metric compares the model’s output translation to one or more source
translations. Although the specific case presented in this paper does not make for a good
metric, in the case we decided to expand the sources where we obtained the features it would
make for a good matching between the different sources. [54]

• Cosine Similarity: Cosine similarity is a very basic calculation that can be made to check
semantic similarity between phrases. This uses vector spaces to calculate the distance between
the different words in the phrase and extract a value from the embeddings generated by a
generic sentence transformer. From this value, we can extract Precision, Recall, and F-score.

• BERTScore: ”Unlike most of the methods that majorly make use of token or phrasal level
syntactic overlaps between hypothesis and reference text pieces, BERTScore, on the other
hand, captures the semantic aspect by using the contextualized embeddings generated by
the BERT model.” [54]. To do this, we generate contextualize embeddings for each word in
the model output and expected output. From this, we use cosine similarity to generate a
comparison metric.

• Word Mover’s Distance (WMD): This method calculates the distance between a word
from the model output and from the expected output. Similar to many used for these tasks,
it is used to calculate the semantic similarity between the two outputs. The computational
complexity grows exponentially with this method, which means that it works very well for
shorter inputs but is very slow for larger pieces of text [54].

Although initially we thought about using cosine similarity due to it’s versatility in understanding,
we opted to go with ROUGE. This metric was very easy to implement and has been widely used for
experimentation in similar areas. It also provides comparison metrics for precision and recall. We
would otherwise be missing these metrics for the text-to-text models. On the other hand, ROUGE
is a metric that uses n-grams to check the overlap between the model output and the expected
output. In terms of this paper however, we preferred the ease of comparison provided by the
precision and recall metrics, and the explainability that they introduced to the system, therefore
we prefered ROUGE over cosine similarity.

9.3 Model Evaluation

The model evaluation will be based on the text-to-text transformation of the system. There are
various things to take into account when considering the evaluation of the models. In an ideal case,
we would compare the metrics for training, testing, and evaluation. This is somewhat complicated
to achieve given the difference in training from our system. We will therefore have to take care of
the evaluation of these systems individually and combine them once an initial choice has been made.

Initially, we will have to select the model individually between BERT and T5. To do this we
will have to rely on heuristic measures to automatize the process. In order to ensure that the user
has complete control of the system, the user will be able to disable the heuristic implementation

71

of model choice and manually enter the configuration and model they prefer. The implemented
heuristic measure makes sure that there isn’t overfitting or underfitting to either the training or
evaluation data by taking into account the differences between these and setting a maximum differ-
ence between these. In our case, we will allow for a 10% increase or decrease between the training
and testing losses.

Once the overfitting or underfitting models have been discarded we will extract the best-performing
configuration for each model type. To do this we will select the model with the lowest average loss
between the training, testing, and evaluation. Another possibility would be to choose the model
with the lowest disparity between the losses, ensuring the generalization of the model. Finally, once
we have the best-performing models from each model type we can select the best-functioning model
from the text-to-text evaluation metric.

Using a common testing sample we will extract the text-to-text evaluation method and obtain
the lowest value for either cosine similarity or ROUGE. This will ensure an equitable comparison of
both and the final value extracted. The data we will evaluate will not have previously been seen by
any of the models, ensuring that the metrics extracted are those that would appear in real-world
use of the model.

9.4 Model Deployment

The development of the model essentially culminates in a usable model, in order to be able to ex-
tract predictions from this model, we will want to deploy the model. In order to follow the already
implemented system we have opted to deploy the final model on Google Cloud. For this, we require
a Cloud Storage bucket, and in this bucket, we can export the best model by saving it into the
bucket. It is then externally accessible with the use of a simple command.

The model can also be uploaded to HuggingFace. This is thanks to the use of the Trainer class,
which enables the uploading of the best model by setting a simple field in the Trainer class. The
development of the HuggingFace models and platforms also allows us to pick the best model and
uploaded it after we have selected the model we want to use. This option allows for external use
within any system and free storage of the model. It also provides the abstraction of the process for
the user, which will simplify the use of the model within any platform.

72

10 Experimentation

10.1 Experiment Set Up

Once the models are set up and the fine-tuning techniques are ready to be used, we have to set up
a generic experimentation plan and then observe which are the best possible experiments with the
limited amount of time and resources that we have.

10.1.1 General Experimentation Set Up

In order to generate a general experimentation set up we have to consider which layers we will be
able to add/remove. In order to allow for generic experimentation we will create a class function
that will take in the generic parameters for the system will run all experiments and return the
metrics for every experiment run. The consideration here is that the more experiments we run
the larger the memory usage will be, therefore the user should be aware of what the limit of their
system is and decide what type of experiment to run based on that.

For the BERT model, we have identified the following parameters to fine-tune by:

• Number of hidden Layers (defaults to 12).

• Number of attention heads (defaults to 12).

• Dropout probability in hidden layers (defaults to 0.1).

• Dropout probability in attention heads (defaults to 0.1).

The default values constitute the initial architecture of the model. Any extra layers added to these
configurations represent adding previously unseen layers to the model, otherwise, we will be remov-
ing layers. While removing layers we can still obtain the pre-trained weights any added layers will
have to be trained from the beginning.

The T5 has the following parameters:

• Number of hidden layers in the encoder (defaults to 6).

• Number of hidden layers in the decoder (defaults to 6). If the number of encoder layers
changes, the decoder layers will default to the value of hidden layers in the encoder.

• Number of attention heads for each encoder layer (defaults to 8).

• Dropout rate (defaults to 0.1).

From these, we can identify our experimentation technique. In our case, we have opted for granu-
larizing the possible fine-tuning parameters to allow for the user to fine-tune and select the models
over smaller computer architectures. Therefore, for every model, we set up an individual testing
process for each parameter. To enable easier testing for those people able to run the experiments
on larger machines, we will also set up an experiment method for changes of layers in the model
and a generic experiment to test all possible parameters.

73

10.1.2 Feature Extraction Experimentation

The experimentation for feature extraction, the specific case treated throughout this paper, will be
a smaller portion of the experimentation cases developed for the pipeline. This will be contained
specifically to the resources and time available for this project. As we can see in the ”Modifications
with Respect to Initial Planning” due to various different unexpected incident we had to reduce
significantly the initially allotted time for the experiments.

As explained in the selection of fine-tuning techniques we will be experimenting with the addi-
tion and removal of layers as a fine-tuning techniques. In terms of the previously set up experi-
ments, we will be running all hidden layers with all possible attention heads. For the purpose of
proper comparison in the T5 configuration we will always set the number of hidden layers in the
encoder and the number of layers in the decoder to the same number. In this way all the exper-
iments run in BERT can be replicated in the T5 model, therefore establishing a base of comparison.

As mentioned previously, we have some pre-defined parameter tuning by using callbacks. This
will simplify the amount of times we have to run the code as well as the duration of the tests
themselves. This simplification will allow our tests to run quickly and iterate the least amount of
times possible throughout the process. In order to ensure the extraction of proper metrics, we will
be running each experiment, for each model, three times.

For both models, the experiments will follow the format shown below:

1. Set number of hidden layers to minimum number of layers desired.

2. Set number of attention heads to minimum number of attention heads desired.

3. Run fine-tuning

4. Run evaluation with text-to-text metrics

5. Augment number of attention heads by one

6. If the number of attention heads reaches the maximum, increase number of hidden layers and
set number of attention heads back to minimum number of attention heads desired.

7. Repeat instructions 3 to 6 until we reach the configuration with the maxiumum number of
hidden layers and attention heads.

8. Repeat items 1 to 7 three times and take the average of all results.

To understand the metrics and the importance of fine-tuning rather than training a model from the
start, we will train the model architecture from scratch and we will train the model architecture
from the pre-trained model. This will allow us to have a better insight into the effects of fine-tuning
in previously unseen tasks.

74

10.2 Experiment Review and Results

Having established the scope and limitations of our experiments we can run the experiments and
extract the results. From these, we can extract the pertinent conclusions and establish which
transformer model works best for our specific use case. In the previous section, we explained
the process of implementation of the tests, therefore the model experimentation will be split into
training models and fine-tuning the models. All obtained values from experimentation are appended
in Annex B.

10.2.1 Training BERT Model

In order to set the base for the BERT model we will be training the model from scratch and ex-
tracting the metrics to compare with the fine-tuned BERT model. We ran these experiments with
the following layer conditions:

• Number of Attention Heads: Range [1, 12]

• Number of Hidden Layers: Range [1, 12]

Figure 19 reflects the cross entropy loss for training and evaluation.

Figure 19: Training BERT Training and Evaluation Loss (own creation)

75

There are two major factors to discuss for this model. The first one is the disparity between the
training and evaluation loss when the number of hidden layers is high (more than 2) and the other
is the metric when the hidden layers are low (less than 2).

The disparity between the training and evaluation loss is easily explained by overfitting. This
could be one of two things: the model learns the task at hand with such ease that it can easily learn
the task at hand and in the following iterations of the learning process will overfit to the training
data provided. On the other hand, this could be that the task at hand is very complicated for the
model to understand and it is not learning to properly generalize to the input data. This latter
option seems more adept for our situation.

We can further analyze this concept by using accuracy, precision, and recall. The metrics for
training and evaluation are shown in figures 20 and 21 respectively.

Figure 20: Training BERT Training Metrics (own creation)

Figure 21: Training BERT Evaluation Metrics (own creation)

76

These graphs correspond to the accuracy (total correct predictions over the total number of sam-
ples), precision (true positives over true positives and false positives), and recall (true positives over
the sum of true positives and false negatives). We can clearly see a very high variation of these
data points. However, looking at the training metrics we can clearly identify a pattern between
increasing the number of hidden layers and the metrics rising/lowering accordingly.

As mentioned previously, the loss for both training and evaluation seems to be very low when
the number of hidden layers is very low. When taking a closer look at the metrics we can see that
when the number of hidden layers (irrespective of the number of attention heads) lies in the range
[0, 3] the accuracy and precision lie around 0.5, and the recall around 1. If we pay attention to the
previously stated functions we get the following conclusions:

• Accuracy: Around 50% of the total number of predictions are computed correctly. When
we think of the data we have generated for this model 50% of the data is labeled as ’true’
and 50% of the data is labeled as ’false’. Therefore, to get an accuracy of 50% the model can
learn to generate a prediction of either ’true’ or ’false’ regardless of the input.

• Precision: The precision for this range tends to be around the same value as the accuracy.
The amount of true positives over all of the positives is around 50%. This means that the
amount of positives that our model generates correctly is around half of the total positive
predictions of our model. Given that our initial dataset is split halfway into positives and
negatives, we can assume that our model is only predicting true labels.

• Recall: The recall in this range tends to be high values close to 1. Referencing the previous
formula, this recall is stating that the number of true positives is equal to the sum of the true
positives and false negatives. From this, we can conclude that our model does not predict any
false negatives.

As we can see, in the lower ranges of hidden layers learn to predict the true label to optimize the
classification by selecting true for all the labels the models have to generate. This distribution
is also seen in the evaluation metrics graph. For the lower ranges of hidden layers, maintain a
very similar pattern. However, as the hidden layers increase the accuracy, precision, and recall fall
drastically. In these values, we can see an increase in the disparity between the training loss and
the evaluation loss, we can also see that all the metrics observed oscillate over low ranges [0, 0.25].
However, the loss associated with training still oscillates over low loss values. Once again we can
tend to our metric definitions to understand these outputs.

• Accuracy: Low accuracy shows that the total correct predictions are very low compared
to the number of samples (e.g. when the data point is true it constantly identifies false and
vice-versa). This is a clear indicator that the model is not correctly understanding which
features are extracted from which segments of text.

• Precision: The precision contemplates the number of true positives over the total amount
of true and false positives. The low value of this metric lets us know that there are a large
number of false positives. This means that our model is generating positive labels for negative
data and negative labels for positive data.

• Recall: The recall identifies that there are a large number of false negatives.

77

From this, we can extract that the number of true positives identified is limited to a very specific
set of examples. This can mean that the model has adjusted itself to a very specific set of examples.
However, the evaluation accuracy, precision, and recall stay around the 50% identifying therefore
that although the model has somewhat low metrics it can do well in unseen situations.

Taking into account that this architecture is very large and the input was a very small subset
of examples, it is natural for the neural network to identify very concrete patterns specific to that
data.

10.2.2 Fine-Tuning BERT Model

Next, we will fine-tune the BERT model by training the model from the pre-trained weights. Doing
this will ensure that the model has previously learned different tasks and obtained unstructured
knowledge of various forms. The pre-training of this model should allow it to be able to understand
the task at hand to a greater extent than the trained model. Figure 22 shows the training and
evaluation loss metric for the pre-trained model.

Figure 22: Fine-Tuned BERT Training and Evaluation Loss (own creation)

There is a clear difference between the pre-trained model (Figure 22) and the non-pre-trained model
(Figure 20). We can see that the training loss has considerably improved. It has mostly flattened
with small peaks and valleys throughout the different architecture. Although not apparent, we can
see that the same thing has happened with the evaluation loss. The loss, previously bounded by a
maximum loss of 5 has flattened to a maximum loss of 4. The same peaks and valleys remain seen

78

but with greater fluctuations over smaller architectures. These fluctuations encase the ability to un-
derstand the data and task at hand that the model has. To make these data points more apparent,
we can again take a look at the metrics for evaluation and training of the fine-tuned model. Figure
23 and Figure 24 encase the accuracy, precision, and recall of training and evaluation respectively.

Figure 23: Fine-Tuning BERT Training Metrics (own creation)

Figure 24: Fine-Tuning BERT Evaluation Metrics (own creation)

These graphs share many characteristics with Figure 23 and Figure 24. We can see the same pat-
terns, somewhat stagnated for the training accuracy, precision, and recall. The accuracy, precision,
and recall metrics have faltered down in smaller architectures, reflecting a deeper understanding of
the input with a smaller amount of resources. In the evaluation metrics, we see slight changes. The
accuracy, precision, and recall are more focused around the 50% point. In other words, the 50%
precision and accuracy rate indicates that the model is correct 50% of the time, whereas the 50%

79

recall rate indicates that it properly identifies 50% of the expected output features.

These metrics indicate that the model is learning to understand the data and understand the
key characteristics that relate the input data to the desired output features. The pre-training of
the model has enabled a deeper understanding of the input data.

There is clear evidence of improvement from training the model from scratch to the pre-trained
model. The pre-trained nature of fine-tuning allows smaller architectures to provide a better un-
derstanding of the input data. This ensures the model does not overfit the training data and is able
to understand and generalize with greater ease.

10.2.3 BERT Result Discussion

Although there are great improvements concerning the BERT model trained from scratch, there
are clear lagoons with both the trained and fine-tuned models. Various factors could have played a
part in the functioning of this model.

One related factor can be the complexity of the task due to the type of data extracted. The
features obtained were crowd-sourced from the AlternativeTo website. It is important to differenti-
ate between abstractive and extractive. Abstractive tasks abstract the knowledge in the input text
to generate the desired output, this desired output may or may not be contained in the input. An
extractive task uses the input to generate the expected output.

Results obtained with BERT have shown that it learns to generalize very well over extractive
tasks but is not able to reach the same metrics in abstractive tasks [55]. The nature of our data
implies that we will be using an abstractive task. In this study, BERT has been proven to have a
significant disadvantage.

The main reason for the incongruencies that BERT generates during abstractive tasks is the hal-
lucination aspect of the model. As mentioned in the paper On Faithfulness and Factuality in
Abstractive Summarization by Google researchers, ”these models are highly prone to hallucinate
content that is unfaithful to the input document” [56]. Due to the limited scope of our fine-tuning
dataset, the hallucination aspect might add context to the data that confuses the model. This
aspect is therefore counterproductive for our task, focusing this model on a specific context will
allow more specific hallucinations and therefore further confuse the input data.

A potential solution to this would be training the model in different formats. The task we are
currently training on is a binary classification of the features, identifying whether features fit with
the input text. This general contextualization might increase the hardship the model has to cor-
rectly identify the output. However, as previously seen, this model can also be trained using masked
language modeling. In this case, we could use the next-word prediction until a stop token was found.
The word-to-word nature of this training task would force the model to understand and manipulate
the input data.

80

10.2.4 Training T5 Model

In the previous section we introduced the T5 model, this model is pre-trained on various text-to-text
tasks. Therefore, we will be training this model on next-word prediction, expecting it to obtain the
fine-tuned features. This initial graph shows the loss for the T5 model trained from scratch.

Figure 25: Trained T5 Training and Evaluation Loss (own creation)

The loss associated with the T5 training shows a clear pattern of decreasing losses while increasing
architectures. However, the evaluation loss is quite erratic and does not follow the increases and
decreases of the training loss. In certain cases, such as those of smaller architectures, the model
cannot generalize past the scope of the training data. This is due to the fact that the model does
not understand the main characteristics of the training data and is unable to reflect these on un-
seen data. However, as the architecture increases we see that the evaluation loss also increases, this
might be due to overfitting our model. The latter architectures are very large with a small amount
of training data. Therefore, it learns to understand very fine characteristics that the training data
suggests to greatly improve the training metrics. Due to the capacity of the model, this decrease
in the training metric does not reflect in the evaluation metrics.

As mentioned previously, the Rouge-1 score allows us to extract metrics for precision, recall, and
F1. ROUGE-1 precision can be computed as the ratio of the number of unigrams in the expected
input that can also be found in the model output. ROUGE-1 recall can be computed as the ratio of
unigrams in the model output that also appear in the expected output. Finally, F1 is maintained
as the harmonic mean between precision and recall. To further understand the model we will have
a look at the precision and recall, Figure 26 and Figure 27 show these metrics for training and
evaluation.

81

Figure 26: Trained T5 Training Metrics (own creation)

Figure 27: Trained T5 Evaluation Metrics (own creation)

We can clearly see the difference between the training and evaluation metrics. The training data
follows a clear pattern, as the architecture increases the precision and recall increase with it. We
can see there is very clear evidence of this with the increase in the number of hidden layers, when
the amount of hidden layers drops the metrics tend to decrease with it. On the other hand, the
metrics associated with the evaluation of the model tend to be erratic. The behavior associated
with this, as explained in the BERT section is consistent with overfitting.

It is important to note that due to the early stopping metric that we have set, most overfitting
is not caused by the train time the model has gone through but rather by the data and training

82

task that it tries to comprehend. There are key characteristics in the training data, that is not
found in the evaluation data. When training the model from scratch (without using the weights
of the pre-trained model) this is due to a low amount of examples. Since it doesn’t have a base
understanding of previous text it generates all its assumptions from the input examples. To prop-
erly understand the text and extract proper knowledge from it, a model would require upwards
of a thousand examples to extract proper knowledge. However, this step can be avoided with by
pre-training the model with unstructured data and fine-tuning it to the specific task.

10.2.5 Fine-Tuning T5 Model

In the same way that using a pre-trained model adapted the learning that BERT had, we expect
the T5 model to be able to easily generalize and quickly learn the task at hand. T5 has had great
results in summarization [57] and key phrase generation [58] tasks in previous experimentation,
therefore we expect the behavior to be similar for feature extraction.

For this study, we will get the weights of the pre-trained layers and modify the architecture of
the T5 model by removing and adding layers. Due to the size of the T5 model and the number
of parameters that it has been pre-trained on we are not able to increase the number of attention
layers and the number of hidden layers to the same extent as the BERT model.

Figure 28: Fine-Tuned T5 Training and Evaluation Loss (own creation)

Figure 28 shows the training and evaluation loss corresponding to the fine-tuned T5 model. We
can clearly see the difference between Figure 26 and Figure 27. The training loss has significantly
decreased and the evaluation loss follows the same trend as the training loss. Therefore, using the
pre-trained model has allowed our model to properly fit the data and understand the given patterns
to generalize to unseen examples. This model can therefore understand the context and extract

83

the desired features from the description. To further evaluate this model, Figure 29 and Figure 30
contain the ROUGE-1 recall and precision for the fine-tuned T5 training and evaluation.

Figure 29: Fine-Tuning T5 Training Metrics (own creation)

Figure 30: Fine-Tuning T5 Evaluation Metrics (own creation)

These graphs reinforce the distinction between the pre-trained T5 and the base T5. The metrics
show great improvement and stabilization both from evaluation and training. We can clearly see
that the training metrics have significantly increased, determining fewer false negatives (precision)
and fewer false positives (recall) than in the previously seen trained model. There is also a significant
increase and stabilization in the evaluation metrics. In Figure 29 we can see the erratic behavior
that these metrics have. However, although not as good as the training metrics the fine-tuned T5
shows the evaluation metrics following the same patterns. In turn, the stabilization of these metrics
means that the model is able to generalize patterns and obtain a good base from which to generate

84

features. As discussed previously, this being an abstractive natural language task, it also means
that the model understands the scope it is being used in and generates appropriately contextualized
features.

10.2.6 T5 Result Discussion

The T5 is a model trained on text-to-text generation, it has shown great value in related tasks such
as abstractive summarization and key phrase generation. Therefore, the introduction of this model
to the study seems apparent. The T5, unsurprisingly, performed very well and generated very good
metrics for both evaluation and training.

The T5 training versus fine-tuning results is a great highlight of the importance of fine-tuning
for specific tasks. With the help of fine-tuning our model learns the base to which it corresponds
(mobile applications domain), learns the task it has been requested to do (feature extraction) and
generates proper, understandable features comparable to those that had been crowdsourced. Even
so, the metrics obtained from the T5 model were far from ideal. In the state-of-the-art review, we
saw plenty of models pre-trained on far more data.

The current trend in NLP suggests the more parameters a model is trained on the easier it will be
for this model to pick up on the queues of our specific task. Therefore, in a less limited study, using
larger text-to-text models can result in a great improvement in the training metrics.

10.2.7 BERT vs T5

Having explored both models in depth and compared their capabilities in a fine-tuning capacity
and in a training capacity, we are now ready to compare these models side-by-side. The metric we
will be used to evaluate the extracted features is ROUGE. We will be using three different ROUGE
values that will allow an in-depth look at how these models perform:

• ROUGE-1: Overlap of unigrams between the model output and the expected output.

• ROUGE-2: Overlap of bigrams between the model output and the expected output.

• ROUGE-L: Longest Common Subsequences (LCS) ”takes into account sentence level struc-
ture similarity naturally and identifies longest co-occurring in sequence n-grams automati-
cally.” [59]

These metrics are seen in the table below for BERT and T5. These models were chosen heuristically
by the training and evaluation loss. Both of the selected models were fine-tuned.

85

BERT T5
Minimum 0.182 0.325

ROUGE-1 Average 0.287 0.496
Maximum 0.359 0.530
Minimum 0.0 0.210

ROUGE-2 Average 0.129 0.354
Maximum 0.241 0.412
Minimum 0.182 0.325

ROUGE-L Average 0.287 0.496
Maximum 0.359 0.530

Table 22: Estimated Total Costs by Project Roles (own creation)

Having seen the loss metrics and the ROUGE metrics for the evaluation dataset, we can con-
clude that our T5 model outperforms the BERT model by a significant increase. As mentioned
previously, this model still has a lot of room for improvement, but the results obtained are com-
parable to those in previous studies. We can further analyze these by comparing the individual
metrics shown in the graph.

Although this initial evaluation gives us a computational view of how both of these models work,
there are other real-world requirements that play a part in the current surge of machine-learning
models. Therefore we will consider the following metrics as a measure of the real-world applicability
of these models.

The ROUGE-1 metric contains the unigrams matching the model output and the expected output.
Therefore, we are matching any word with any word. Features tend to contain similar words to
express different aspects of the application. Therefore, expectedly so, the ROUGE-1 metric is high.
In the BERT model the ROUGE-1 metric matches around 30% of the unigrams. This means around
30% of the words in the output is found in the expected output. Putting this into perspective, three
out of ten words will be correctly matched. In the T5 the ROUGE-1 metric reaches This metric
does not guarantee that the features are correctly identified, most features in our data have more
than one token. This, therefore, is not a significant metric for our system.

The Rouge-2 metric shows bigrams, there is a big proportion of our feature distributions. There-
fore, this metric might have a better perception. We can see a significant decrease in both the T5
and the BERT models, however, this metric shows a realistic overview of how many features are
matched correctly to both models.

The ROUGE-L metric counts the longest sequence that is shared between both. This gives us
an insight into the ordering of the extracted features. Whether the model keeps up the structure of
the input or generates a different output sequence. This is not a crucial aspect of our system but
is a good insight into the functioning of the model and the relation it generates between the words.
Both the BERT model and the T5 model end up with the same ROUGE-L metric as ROUGE-1,
this indicates the proper training of the model.

86

11 Conclusions

The current scope of NLP in the research field is bounded by Large Language Models (LLMs).
LLMs have outperformed small models trained in specific tasks at performing these tasks. These
models require a vast amount of computational capacity and memory storage. The training re-
quirements for LLMs have made the creation of these systems a niche market for those companies
with a great number of resources. In these terms, the research in the field of Natural Language
Processing has been bounded by LLMs.

The research in this field has transformed into keeping an inside look into these models. Rather
than attempting to create new smaller models that outperform LLMs, the field has focused on
disseminating LLMs. The research is focused on finding security flaws in the models, attempting to
find techniques to specify the models to different areas, and simplifying these to be more accessible
among others.

This research has also been outsourced to many companies which require Natural Language so-
lutions. This has made it more accessible for smaller companies to use these models in day-to-day
solutions. The system made through the implementation of this paper extracts an easy-to-use
pipeline to identify the best model for any specific Natural Language task. This simplifies the
usage of these models and requires less knowledge of the training pipeline from part of the user.

11.1 Analysis of Completion of Objectives

The objectives for this study have been divided into theoretical objectives and practical objectives.
These are divided into sub-objectives that granize the overhead objective and make easier points
more accessible and explainable. Exploring the completion of these sub-objectives gives a more
extensive look at the extent of accomplishment of the system.

11.1.1 Theoretical Sub-Objectives

Research state-of-the-art transformer models and architecture

This objective concluded in the subsection of State of the Art Review titles Transformer Mod-
els Review. This section reviews the training and expected uses of each model as well as the spatial
capacity of these.

Research fine-tuning techniques for transformer models

This objective concluded in the subsection of State of the Art Review titles Fine-Tuning Tech-
niques Review. This section includes a survey of the current techniques and the expectations and
requirements of these.

Explore regularization techniques for fine-tuning deep learning models.

Regularization is used to make sure that the fine-tuning process does not overfit the small amount
of data provided to the model. In order to do this we implemented Learning Rate Schedulers
and Early Stopping callbacks, more information is found in the Overview of the Machine Learning

87

Pipeline Design section.

Compute Spatial and Temporal Complexities

The temporal complexities of the systems are analyzed in the fundamentals section, which explores
the temporal complexities of RNNs and transformer models. The spatial complexity is calculated
based on parameters with which the model has been pre-trained in.

Analyze Expected Loss and Accuracy of Models

Section 10.2 - Experiment Review and Results explores the model losses and gives a compara-
tive view of the expected results. This has been somewhat generalized to the trends that training
and evaluating give us and how this relates in the conceptual field.

11.1.2 Practical Sub-Objectives

Program studied transformer models and fine-tuning techniques

The chosen models have been programmed using the HuggingFace library as a base. The code
can be found on GitHub, these models were programmed both for fine-tuning and training.

Generalize fine-tuning process to be applicable to different transformer models.

There are some fine-tuning techniques that we have been able to generalize. A great part of
this generalization is due to the inheritance of the model architecture classes. Through this, our
experiments are able to run simultaneously for both models. The base code that has been made for
this paper is also able to be extended for other models seen in the State of the Art Review section.
Although out of the scope of the currently implemented system, the other feasible models presented
already have a base from which to train and can easily be transferable to the rest of the models.

Analyze the loss and accuracy of the fine-tuned model

After the creation of the pipeline, we ran experiments and analyzed the output of these in the
Experiment Review and Results section. There have been slight variations of the metrics we will
want to analyze, aside from loss and accuracy we want to measure ROUGE, precision, and recall.

Automatize ranking of models and fine-tuning techniques and draw conclusions on
obtained results.

The implementation of automatic rankings of the model is implemented to automatically launch the
best resulting option. The implementation of ranking is discussed in the Overview of the Machine
Learning Pipeline Design section.

11.2 Analysis of Completion of Technical Competences

CCO1.1: To evaluate the computational complexity of a problem, know the algorith-
mic strategies which can solve it, and recommend, develop and implement the solution

88

which guarantees the best performance according to the established requirements. [In
depth]

The nature of this study is to compile different techniques previously used to solve similar tasks
to that proposed and generate a comprehensive solution for it. For this purpose, we evaluate the
computational complexity of the state-of-the-art models and technologies being used within these
models. These have been evaluated on a time and space complexity basis. The technique selec-
tion section speaks to the limitations of the user and the scope this study can cover. The model
implementation and the specifics added to the training and testing are covered in the Overview of
the Machine Learning Pipeline Development section. This section covers how we guarantee that
training and testing take the least amount of computational power and generates a comprehensive
solution to guarantee the best performance.

CCO1.3: To define, evaluate and select platforms to develop and produce hardware
and software for developing computer applications and services of different complexi-
ties. [In depth]

One of the main objectives of the development of this study was to create a platform that con-
tained a series of transformer models and fine-tuning techniques to select the best model for natural
language processing tasks. To do this, we selected initial platforms for testing the model develop-
ment, determined the scope and requirements of the system, and selected a proper platform for
development, training, testing, and deployment. This is reflected in the Planning section and the
Modifications From Initial Planning sections.

CCO2.1: To demonstrate knowledge about the fundamentals, paradigms, and the own
techniques of intelligent systems, and analyze, design, and build computer systems,
services, and applications that use these techniques in any applicable field. [Enough]

Intelligent systems are defined as ”technologically advanced machines that perceive and respond to
the world around them” [60]. A main characteristic of human interaction is text, in this sense, this
study is attempting to understand the use of natural language and extract key information from
this. The developed system designed for will study the use of transformer models for a specific
context and task and deploy a ready-to-use model. The design of this system is detailed in the
Overview of the Machine Learning Pipeline Design.

CCO2.2: Capacity to acquire, obtain, formalize and represent human knowledge in
a computable way to solve problems through a computer system in any applicable
field, in particular in the fields related to computation, perception, and operation in
intelligent environments. [In depth]

The idea behind this system is to take human-made descriptions and crowdsourced features ex-
tracted from using an application and generate a model that can extract these features. This model
will be ready to use and deployed in Google Cloud.

CCO2.4: To demonstrate knowledge and develop techniques about computational
learning; to design and implement applications and systems that use them, includ-

89

ing those dedicated to the automatic extraction of information and knowledge from
large data volumes. [Enough]

The models used in this system are trained in a large corpus of data. The large amount of data
used for these systems makes them able to generalize to other tasks. In this paper, we analyze
the use of models trained from large data volumes to fine-tune them using smaller, more specific,
datasets. The output of this paper is a ready-to-use model that can generate key features from an
application description.

CCO3.1: To implement critical code following criteria like execution time, efficiency,
and security. [A little bit]

The code for training and testing has been developed with time and efficiency in mind, the details
of how this has been attempted can be found in the Overview of the Machine Learning Pipeline
Design section. In terms of security, we have abstracted a large part of the training and testing
process to ensure that the model development and deployment do not have major data leakages.
The data used for this system is publicly accessible and is therefore not subject to any important
data leakages.

90

12 Future Work

This section covers the work that can still be done both developmentally and experimentally. These
cover a vast amount of aspects somewhat explored during the paper but have increasing potential
to be explored and added to the pipeline that this work culminates in.

The scope of this paper is limited to transformer models (T5 and BERT), using fine-tuning tech-
niques to explore the usability of the system in domain-specific feature extraction.

Add models

The most amount of work that can be done towards generating a better pipeline is adding more
models. The classes created for the models and experimentation can easily be generalized to dif-
ferent classifications and text-to-text training models. There are a few models proposed in the
state-of-art section that propose new systems. Although out of scope for this project, they would
be great additions to the pipeline. Models such as PEGASUS and GPT-3 have proven to be very
useful for generalization, although they do carry a great necessity for computational power. If the
user has this capacity these models will ensure great results, even better than those showcased in
this paper.

Other models that could be taken into consideration are subsidiary models that stem from BERT.
There are a few that have been mentioned previously such as RoBERTa or DestilBERT. These
models could add an edge to the exploration of BERT and how this can be used for our specific
task.

Add Transfer Learning

As mentioned previously, Transfer Learning gets the output from one model and uses this out-
put through another model. This way the information extracted from one model can add to what
the model understands and can achieve from the data. This includes adding layers previous to the
model input and previous to the model output. This approach can achieve great contextualization
of the data and make sure that the model understands the context it is focused in as well as the
task at hand.

Add Monitoring Values

There are various values extracted for every model and for every model type. Although we output
the number sometimes these can get overwhelming. Especially for non-technical users, these values
will not have any worth. To make this task more visual and allow non-technical users (or users not
specialized in machine learning) to understand these metrics better we can add visual monitoring
values which are added while training and testing. This will show more visual graphs that will
explain these numbers in a visual graphic. There are embedded systems within PyTorch that can
allow for this. A commonly used monitoring tool is Tensorboard [61].

91

Exploration of different Learning Rate Schedulers

As mentioned previously, for simplicity and proper updating of the training parameters we have
added a Learning Rate Scheduler. There are many other options for Learning Rate Schedulers that
could be explored and experimented on. Different Learning Rate Schedulers might be more suitable
for different problem types. There are two potential explorations within this: experimenting with
different Learning Rate Schedulers or identifying types of problems within which each Learning
Rate Scheduler would work best and breaking the experimentation by a problem.

In the first, within each task, we would run the experimentation with a set of different Learn-
ing Rate Schedulers and determine which one works best as a whole with the rest of the model
architectures. This would increase the computation time exponentially. The other option would be
identifying tasks, within our expected tasks, that would go well with the different learning rates.
This would mean that we would identify one learning rate per expected type and build on this for
the system. To do this, we would have to undergo an exploration of previous papers as well as
hands-on experimentation to consolidate our knowledge before we can apply this to our system.

Heuristics for Model Training and Testing.

In the current implementation, we are running every model from the most basic to the most complex
architecture selected by the user. In this way, we are running too many experiments where we could
have already determined to stop any further experiments. As an example, when the model is very
large it can easily overfit the training data. This means that we can stop increasing the model’s size
(the number of layers) and concentrate on other factors. Doing this will decrease the time required
to run the experiments. Instead of running all experiments, in all models, with all possible archi-
tectures we will be selecting the best time to stop will be based on the output metrics of the models.

Compatibility with different deployment types.

Due to the simplicity of using Google Cloud for deployment, our current system only allows for this
type of model deployment. A task that would allow for more users to use this system would be
adding different deployment types. This could also affect the sustainability of our system, opting
for more sustainable options when deploying and predicting.

Exploration of Multi-modal and Computer Vision Applications

Another option is to make the pipeline extensible to not only Natural Language Processing tasks
but also Multi-modal tasks and Computer Vision tasks. This can mean extending the model scope
by adding models outside the transformer’s scope. Therefore we would have to initially disseminate
which task we would be working towards and create specific pipelines for these. Another option
would be keeping the transformer constraint and adding tasks that focused on sequential data such
as video and speech processing. Doing this would therefore require understanding what dataset we
had and adding new data processing classes for each type.

92

Adjust Metrics for Text-to-Text Generation

The current implementation uses ROUGE as a metric for a text-to-text generation. As discussed,
this metric was beneficial for our specific system, especially due to the ease of implementation and
the metrics we could extract. The issue rises due to the difference in syntax format and word
representations that we may find. For this reason, a different metric might be better suited. A few
of these were presented previously, a good way to adjust these metrics would be to test a few and
see how the model develops within them.

93

13 Annex A: Gnatt Chart

Figure 31: Planned Tasks - Gnatt Chart Large (own creation)

94

14 Annex B: Modified Gnatt Chart

Figure 32: Planned Tasks - Gnatt Chart Large (own creation)

95

15 Annex C: Trained BERT data - Training Metrics

Figure 33: Trained BERT - Train Metrics (own creation)

96

Figure 34: Trained BERT - Train Metrics (own creation)

97

Figure 35: Trained BERT - Train Metrics (own creation)

98

16 Annex D: Trained BERT data - Evaluation Metrics

Figure 36: Trained BERT - Evaluation Metrics (own creation)

99

Figure 37: Trained BERT - Evaluation Metrics (own creation)

100

Figure 38: Trained BERT - Evaluation Metrics (own creation)

101

17 Annex E: Fine-Tuned BERT data - Evaluation Metrics

Figure 39: Fine-Tuned BERT - Train Metrics (own creation)

102

Figure 40: Fine-Tuned BERT - Train Metrics (own creation)
103

Figure 41: Fine-Tuned BERT - Train Metrics (own creation)
104

18 Annex F: Fine-Tuned BERT data - Evaluation Metrics

Figure 42: Fine-Tuned BERT - Evaluation Metrics (own creation)

105

Figure 43: Fine-Tuned BERT - Evaluation Metrics (own creation)

106

Figure 44: Fine-Tuned BERT - Evaluation Metrics (own creation)

107

19 Annex G: Trained T5 data - Training Metrics

Figure 45: Trained T5 - Train Metrics (own creation)

108

20 Annex H: Trained T5 data - Evaluation Metrics

Figure 46: Trained T5 - Evaluation Metrics (own creation)

109

21 Annex I: Fine-Tuned T5 data - Evaluation Metrics

Figure 47: Fine-Tuned T5 - Train Metrics (own creation)

110

22 Annex J: Fine-Tuned T5 data - Evaluation Metrics

Figure 48: Fine-Tuned T5 - Evaluation Metrics (own creation)

111

References

[1] Hugging face – the ai community building the future.

[2] What are neural networks?

[3] Team rédac. Perceptron : Qu’est-ce que c’est et à quoi ça sert ?, Sep 2022.

[4] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017.

[5] Simeon Kostadinov. How recurrent neural networks work, Nov 2019.

[6] Home - colah’s blog.

[7] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer, 2019.

[8] State of the art nlp.

[9] Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Peter J. Liu. Pegasus: Pre-training with
extracted gap-sentences for abstractive summarization, 2019.

[10] Sweta. Batch , mini batch and stochastic gradient descent, Aug 2020.

[11] Leonie Monigatti. A visual guide to learning rate schedulers in pytorch, Dec 2022.

[12] What is natural language processing?

[13] Natural language processing, Dec 2022.

[14] Marcello Politi. Fine-tuning for domain adaptation in nlp, May 2022.

[15] Why tensorflow.

[16] Pytorch.

[17] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding, 2018.

[18] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert
pretraining approach, 2019.

[19] Alec Radford and Karthik Narasimhan. Improving language understanding by generative pre-
training. 2018.

[20] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

112

[21] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners,
2020.

[22] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer,
Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain
Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Huggingface’s transform-
ers: State-of-the-art natural language processing, 2019.

[23] Kexin Wang, Nils Reimers, and Iryna Gurevych. Tsdae: Using transformer-based sequential
denoising auto-encoder for unsupervised sentence embedding learning, 2021.

[24] Kexin Wang, Nandan Thakur, Nils Reimers, and Iryna Gurevych. Gpl: Generative pseudo
labeling for unsupervised domain adaptation of dense retrieval, 2021.

[25] Hasan Tercan, Alexandro Guajardo, and Tobias Meisen. Industrial transfer learning: Boosting
machine learning in production. In 2019 IEEE 17th International Conference on Industrial
Informatics (INDIN), volume 1, pages 274–279, 2019.

[26] Yoshua Bengio. Deep learning of representations for unsupervised and transfer learning. In Pro-
ceedings of the 2011 International Conference on Unsupervised and Transfer Learning Work-
shop - Volume 27, UTLW’11, page 17–37. JMLR.org, 2011.

[27] Site built by: Salary.com. Benchmark electronics inc packaging development engineering senior
manager salary.

[28] Ivy - the unified machine learning framework.

[29] Enterprise ml/nlp products and solutions for semantic search and question answering.

[30] Deepanshi. Artificial neural network: Beginners guide to ann, May 2021.

[31] Anjali Bhardwaj. What is a perceptron? – basics of neural networks, Oct 2020.

[32] Simeon Kostadinov. Understanding backpropagation algorithm, Aug 2019.

[33] Christian Bakke Vennerød, Adrian Kjærran, and Erling Stray Bugge. Long short-term memory
rnn, 2021.

[34] Yuan Gao and Dorota Glowacka. Deep gate recurrent neural network, 2016.

[35] Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches to
attention-based neural machine translation, 2015.

[36] Rick Merritt. What is a transformer model?, Sep 2022.

[37] Tianyang Lin, Yuxin Wang, Xiangyang Liu, and Xipeng Qiu. A survey of transformers, 2021.

113

[38] Prakhar Mishra. Understanding t5 modelnbsp;: Text to text transfer transformer model, May
2021.

[39] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker
Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes,
Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson,
Reiner Pope, James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier
Garcia, Vedant Misra, Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David
Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shiv-
ani Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie
Pellat, Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Ja-
son Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm:
Scaling language modeling with pathways, 2022.

[40] Chalothon Chootong and Timothy K. Shih. Tech-talk-sum: Fine-tuning extractive summa-
rization and enhancing bert text contextualization for technological talk videos. Multimedia
Tools and Applications, 81(22):31295–31312, 2022.

[41] Alternativeto.

[42] Iso/iec awi ts 17847.

[43] Iso/iec cd 5259-2.

[44] Iso/iec cd 5259-3.

[45] Iso/iec cd 5259-4.

[46] Iso/iec cd 5259-5.

[47] Iso/iec ts 4213:2022.

[48] Iso/iec awi ts 17847.

[49] Github pipeline.

[50] Compute engine: Virtual machines (vms) nbsp;—nbsp; google cloud.

[51] Keras Team. Keras documentation: Callbacks api.

[52] Jason Brownlee. Understand the impact of learning rate on neural network performance, Sep
2020.

[53] Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain, July 2004. Association for Computational
Linguistics.

[54] Prakhar Mishra. Automated metrics for evaluating the quality of text generation, Jul 2022.

114

[55] Yang Liu. Fine-tune bert for extractive summarization, 2019.

[56] Joshua Maynez, Shashi Narayan, Bernd Bohnet, and Ryan McDonald. On faithfulness and
factuality in abstractive summarization, 2020.

[57] Diyah Puspitaningrum. A survey of recent abstract summarization techniques, 2021.

[58] Anna Glazkova and Dmitry Morozov. Applying transformer-based text summarization for
keyphrase generation, 2022.

[59] Rouge (metric), Nov 2022.

[60] What are intelligent systems: Computer science amp; engineering.

[61] Tensorboard nbsp;: nbsp; tensorflow.

115

