
A Symbolic Emulator for Shuffle Synthesis
on the NVIDIA PTX Code

Kazuaki Matsumura
Barcelona Supercomputing Center, Spain

kmatsumura@nvidia.com

Simon Garcia De Gonzalo
Sandia National Laboratories, USA

simgarc@sandia.gov

Antonio J. Peña
Barcelona Supercomputing Center, Spain

antonio.pena@bsc.es

Abstract

Various kinds of applications take advantage of GPUs

through automation tools that attempt to automatically

exploit the available performance of the GPU’s parallel

architecture. Directive-based programming models, such as

OpenACC, are one such method that easily enables parallel

computing by just adhering code annotations to code loops.

Such abstract models, however, often prevent programmers

from making additional low-level optimizations to take

advantage of the advanced architectural features of GPUs

because the actual generated computation is hidden from

the application developer.

This paper describes and implements a novel flexible

optimization technique that operates by inserting a code

emulator phase to the tail-end of the compilation pipeline.

Our tool emulates the generated code using symbolic

analysis by substituting dynamic information and thus

allowing for further low-level code optimizations to be

applied. We implement our tool to support both CUDA and

OpenACC directives as the frontend of the compilation

pipeline, thus enabling low-level GPU optimizations for

OpenACC that were not previously possible. We

demonstrate the capabilities of our tool by automating

warp-level shuffle instructions that are difficult to use by

even advanced GPU programmers. Lastly, evaluating our

tool with a benchmark suite and complex application code,

we provide a detailed study to assess the benefits of shuffle

instructions across four generations of GPU architectures.

CCS Concepts: · Software and its engineering →

Source code generation.

Keywords: Compiler, Symbolic Analysis, Code Generation,

GPUs, NVIDIA PTX, Program Optimization

ACM Reference Format:

Kazuaki Matsumura, Simon Garcia De Gonzalo, and Antonio J. Peña.

2023. A Symbolic Emulator for Shuffle Synthesis on the NVIDIA

CC ’23, February 25ś26, 2023, Montréal, QC, Canada

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0088-0/23/02.

https://doi.org/10.1145/3578360.3580253

PTX Code. In Proceedings of the 32nd ACM SIGPLAN International

Conference on Compiler Construction (CC ’23), February 25ś26, 2023,

Montréal, QC, Canada. ACM, New York, NY, USA, 12 pages. https:

//doi.org/10.1145/3578360.3580253

1 Introduction

Effectively utilizing the vast amount of computational

performance available in modern supercomputers remains a

challenge to this day. Hardware, middleware, and parallel

algorithms should be carefully orchestrated so that ideal

efficiency may be obtained for solving large real-world

problems in high-performance computing (HPC). Compiler

technologies are developed with highly-automated program

optimizations that use domain-specific knowledge and

target architecture specialization to solve a part of this

puzzle. With the end of Moore’s Law [19] approaching, the

focus on supercomputing technology is shifting toward

even more specialized accelerators, which in turn increases

their complexity. This trend further signifies the importance

of compiler technology to relieve programmers from the

burden of understanding the complex architecture of

modern accelerators to be able to efficiently optimize their

applications.

Currently, Graphics Processing Units (GPUs) are the most

widely adopted accelerator technology, as these are present

in seven out of the top 10 systems in the TOP500 list [29].

GPUs work for accelerating application execution time

through their highly parallelized yet cooperative

architecture. To benefit the most from GPUs, however,

programmers must be proficient in writing complex

low-level GPU code, often a largely time-consuming task.

To overcome the complexity of low-level GPU code

development, pragma-based programming models such as

OpenACC/OpenMP [3, 24] have been developed or adapted

to be able to automatically retarget existing code for

acceleration. Although these automation tools have

improved the utilization of GPU acceleration by many

different types of applications, they lack the ability to

benefit from low-level architecture-specific optimizations.

One such type of optimizations is the use of warp-level

primitives, which have been available since NVIDIA Kepler

GPUs. Warp-level primitives, such as shuffle operations,

may be used to fill a gap between threads and thread-blocks

working as collaborative mechanisms, instead of relying on

shared and global memory accesses.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

110

https://doi.org/10.1145/3578360.3580253
https://doi.org/10.1145/3578360.3580253
https://doi.org/10.1145/3578360.3580253
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3578360.3580253&domain=pdf&date_stamp=2023-02-17

CC ’23, February 25ś26, 2023, Montréal, QC, Canada K. Matsumura, S. G. De Gonzalo, A. J. Peña

The main operation across the warp is the shuffle, which

delivers computed elements to neighbor threads to suppress

the redundancy of computation and memory accesses.

However, as many existing efforts [5, 7, 13, 25] have

demonstrated, those primitives often require non-trivial

modification of algorithms in the fundamental part of their

codes. Since the latency of the shuffle is similar to that of

shared memory loads [7] (apart from storing and

synchronization), it may serve as a cache system, holding

data in registers [5]. However, the effectiveness of this

technique is still unknown when disregarding domain-

specific knowledge.

Our work provides a middle-end environment to extend

the code of the NVIDIA GPU assembly PTX and enables, for

the first time in the literature, automatic shuffle synthesis to

explore the opportunity of this operation. Our environment,

PTXASWğ (Wrapper of PTX optimizing ASsembler),

addresses the entire computational flow of PTX, leveraging

a symbolic emulator that can symbolically extract

memory-access patterns. We introduce a Satisfiability

Modulo Theories (SMT) solver to prune avoidable control

flows while tracking down the register update.

Following the emulating results, PTXASW utilizes the

solver and detects the global-memory loads that are

possible to be covered by the shuffle operation. Around

those loads, additional instructions are implanted, while

supporting corner cases and circumventing overheads. We

conduct the shuffle synthesis on an OpenACC benchmark

suite, a directive-based programming model having no user

exposure to warp-level instructions. Our implementation

functions as a plugin of the compilation tool yielding

moderate overhead.

Applying our technique, we find various opportunities to

enable the shuffle over the original code of the benchmarks.

The performance improvement achieved is up to 132% with

no user intervention on the NVIDIA Maxwell GPU.

Additionally, based on the results of the experiments using

several generations of GPUs, we analyze the latency caused

for the shuffle operations to provide guidelines for shuffle

usage on each GPU architecture. In summary, the

contributions of our work are:

1. We create a symbolic emulator to analyze and optimize

GPU computing code, equipped with an SMT solver

for the comparison of symbolic expressions, induction

variable recognition for loops, and various optimizations

to reduce overheads.

2. Through symbolic analysis, we automatically find the

possible cases to utilize the shuffle operation, which

previously required in-depth domain knowledge to be

applied. Then, we synthesize those to the applications,

while avoiding expensive computation.

ğThe artifact is available at https://github.com/khaki3/ptxas-wrapper.

3. Using a directive-based programming model, we

generate various shuffle codes on several generations

of GPUs and show the cases that attain performance

improvement with no manual effort.

4. We show the latency breakdown of the optimization on

each GPU architecture and provide general guidelines

for the use of shuffle operations.

Our work is the first attempt at general utilization of

shuffles. Although manual warp-level operations often

contributed to domain-specific optimizations, the metrics to

be addressed by warp-level efforts have not been studied.

Even when computation or memory accesses are reducible,

the trade-offs have remained unknown to date, especially

when thread divergence is involved.

The rest of the paper is structured as follows. Section 2

provides the necessary background on GPUs for

general-purpose computing, PTX code, and shuffle

operations. Section 3 provides a high-level overview of our

work. Sections 4 and 5 describe our symbolic emulator and

shuffle synthesis, while Section 6 details our overall

methodology. Sections 7 and 8 provide the results of our

experimental evaluation and in-depth analysis. Section 9

discusses previous related work and Section 10 provides

concluding remarks.

2 Background

This section provides the necessary background on GPUs

for general-purpose computing, low-level PTX code, and

warp-level shuffle operations.

2.1 GPUs

A Graphics Processing Unit (GPU), is a massively parallel

accelerator architecture having with several computational

and communication layers. The minimum execution unit is

a thread. Each thread can collaborate with other threads

bound to a certain thread-block and grid, through per-block

shared memory and/or grid-wise global memory. The

architecture is composed of many streaming multiprocessors

(SMs), which execute distributed thread-blocks in groups of

threads (usually 32), called warps. Using inner parallel

processing units, the SM takes advantage of

instruction-level parallelism (ILP), as well as parallelism

among warps and thread-blocks. Since the memory-access

latency increases through the levels of the memory

hierarchy, the concept of locality is highly respected for

performance, while locality optimizations bring additional

synchronization and resource use to programs. Warp-level

primitives, available since the NVIDIA Kepler generation of

GPUs, allow for the communication among threads within

the same warp [21], avoiding access to either shared or

global memory.

All threads execute the same program code, known as

GPU kernels, customarily written in CUDA [22] for NVIDIA

111

https://github.com/khaki3/ptxas-wrapper

A Symbolic Emulator for Shuffle Synthesis on the NVIDIA PTX Code CC ’23, February 25ś26, 2023, Montréal, QC, Canada

GPUs, in a single-instruction multiple-data fashion. Threads

operate on different data, specified in kernels by

programmers, deriving from thread and thread-block

identifiers. Kernels accept arguments, and the number of

threads and thread-blocks is specified as variables.

2.2 NVIDIA PTX

User-level code implemented manually in CUDA or

OpenACC is brought to execution on GPUs through

NVIDIA PTX [23], a virtual machine and ISA for

general-purpose parallel thread execution. PTX programs

feature the syntax and sequential execution flow of

assembly language. Thread-specific variables are replicated

to be run over SMs in parallel using the same program but

different parameters. Since the actual machine code (SASS)

cannot be modified from official tools [35], PTX is the

nearest documented and standard GPU code layer that may

be modified.

PTX code consists of kernel and function declarations.

Those have parameters and instruction statements along

with variable declarations, labels, and predicates. Listing 2

provides the CUDA-generated PTX kernel from Listing 1.

Variable declarations from several data spaces and types

correspond to the usage of on-chip resources, especially

registers. Accepting options and types (e.g. .eq, .s32), PTX

instructions leverage defined registers and compute results,

__global__ void add(

float *c, float *a, float *b, int *f) {

int i = threadIdx.x + blockIdx.x * blockDim.x;

if (f[i]) c[i] = a[i] + b[i]; }

Listing 1. Addition kernel in CUDA

.visible .entry add(. param .u64 c, .param .u64 a,

.param .u64 b, .param .u64 f){

/* Variable Declarations */ .reg .pred %p<2>;

.reg .f32 %f<4>;.reg .b32 %r<6>;.reg .b64 %rd <15>;

/* PTX Statements */

ld.param.u64 %rd1 , [c]; ld.param.u64 %rd2 , [a];

ld.param.u64 %rd3 , [b]; ld.param.u64 %rd4 , [f];

cvta.to.global.u64 %rd5 , %rd4;

mov.u32 %r2, %ntid.x; mov.u32 %r3, %ctaid.x;

mov.u32 %r4, %tid.x; mad.lo.s32 %r1, %r3, %r2 ,%r4;

mul.wide.s32 %rd6 , %r1, 4; add.s64 %rd7 ,%rd5 ,%rd6;

// if (!f[i]) goto $LABEL_EXIT;

ld.global.u32 %r5, [%rd7]; setp.eq.s32 %p1 ,%r5 ,0;

@%p1 bra $LABEL_EXIT;

// %f3 = a[i] + b[i]

cvta.u64 %rd8 , %rd2; add.s64 %rd10 , %rd8 , %rd6;

cvta.u64 %rd11 ,%rd3; add.s64 %rd12 , %rd11 ,%rd6;

ld.global.f32 %f1, [%rd12];

ld.global.f32 %f2, [%rd10]; add.f32 %f3, %f2, %f1;

// c[i] = %f3

cvta.u64 %rd13 ,%rd1; add.s64 %rd14 , %rd13 ,%rd6;

st.global.f32 [%rd14], %f3;

$LABEL_EXIT: ret; }

Listing 2. Addition kernel in PTX (simplified)

while some of these enable access to other resources (e.g.,

ld.global.u32). Predicates (@%p1) limit the execution of

the instructions stated under them, which may lead to

branching based on the thread-specific values, such as

thread and thread-block IDs (%tid.x, %ctaid.x). Labels

(e.g., $LABEL_EXIT) are branch targets and allow backward

jumps that may create loops.

2.3 Shuffle Operation

In GPU architectures prior to NVIDIA Kepler, each

sequential execution of a given thread was allowed to

transfer data to another thread only through non-local

memories, accompanied by a block-level or grid-level

synchronization barrier. Modern GPU architectures now

support additional data sharing within warps. Intra-warp

communication is performed via shuffle operations.

Listing 3 shows the shfl.sync instruction in PTX, in which

data gets shifted unidirectionally (.up, .down) across the

threads of the warp, swapped in a butterfly way (.bfly), or

exchanged by precise indexing (.idx).

In the unidirectional shuffle, the delta part, which has no

source lane from the same warp, will be unchanged and

obtain a false value in the resultant predicate (%p1); only the

active threads (%mask) of the same control flow participate

in the same shuffle. Inactive threads or threads from

divergent flows produce neither valid results nor predicates

to destination lanes. Each operation is accompanied by the

warp-level synchronization, some of which are optimized

away during compilation. While shuffle instructions allow

for sub-warp granularity, our paper focuses on the

unidirectional instruction with 32 threads using 32-bit data,

as applying sub-warp granularity to applications tends to

feature corner cases and suffers from exception handling for

intricate patterns.

activemask.b32 %mask;

// val[warp_id] = %src; %dst = val[warp_id -%i]

shfl.sync.up.b32 %dst1|%p1, %src , %i, 0, %mask;

// val[warp_id] = %src; %dst = val[warp_id +%i]

shfl.sync.down.b32 %dst2|%p2, %src , %i, 31, %mask;

// val[warp_id] = %src; %dst = val[warp_id ^%i]

shfl.sync.bfly.b32 %dst3|%p3, %src , %i, 31, %mask;

// val[warp_id] = %src; %dst = val[%i]

shfl.sync.idx.b32 %dst4|%p4, %src , %i, 31, %mask;

Listing 3. The use of shfl.sync in PTX

Table 1 shows the latencies (clock cycles) of shared

memory (SM; no-conflict) and L1 cache as reported by [16],

besides that of shuffle, from a microbenchmark based

on [33]. In the table, Kepler is NVIDIA Tesla K80, Maxwell

is M60, Pascal is P100 and Volta is V100, while Tesla

K40c/TITAN X are used for the shuffle of Kepler/Maxwell.

This table reveals that shuffle brings benefits over shared

memory as a communication mechanism when data

movement is not redundantly performed, so storing and

112

CC ’23, February 25ś26, 2023, Montréal, QC, Canada K. Matsumura, S. G. De Gonzalo, A. J. Peña

NVHPC

User Program

OpenACC/OpenMP

NVCC

CUDA PTX Code

PTXAS

Execution BinaryCompiling Assembling

PTXAS

PTXASW

1 Allocate symbolic

registers

2A Update registers through the PTX execution

2B Gather branch conditions & memory accesses

3 Detect shuffle

opportunities

4 Synthesize

shuffles

𝑁 = ? 𝑁 =
Figure 1. Overview of PTXASW

synchronization are avoidable. In particular, latencies of L1

cache on Maxwell/Pascal are higher compared to

Kepler/Volta, which integrate shared memory with L1 cache.

Those allow the shuffle to be utilized as a register cache for

performance improvement, but the engineering efforts in

order to modify the fundamental parts of parallel

computation are considerably high.

Table 1. Latencies (clock cycles) as reported by [16, 33]

name Shuffle (up) SM Read L1 Hit

Kepler 24 26 35

Maxwell 33 23 82

Pascal 33 24 82

Volta 22 19 28

3 Overview

Our work PTXASW can substitute the original PTX

assembler, which accepts input code from arbitrary sources.

We do not rely on specific information of any certain

language or any certain generation of GPU architecture.

Figure 1 provides a high-level overview of PTXASW’s

execution flow. PTXASW primarily aims at shuffle synthesis

on PTX code. The input is produced by user-level code

compilers, while directive-based programming models

(OpenACC/OpenMP) do not expose control over warp-level

operations, and CUDA prevents code extension due to its

code complexities. Once PTXASW inserts shuffles, the

resultant code is assembled to GPU binary by the original

PTX assembler.

PTXASW emulates the PTX execution based on the input.

Since runtime information is not provided, we employ

symbolic evaluation for each operation. First, 1 register

declarations are processed to be mapped in a symbolic

register environment (described in Section 4.1). Second, 2A

for each statement of PTX instructions, a corresponding

operation is performed to update registers (Section 4.1).

While continuing the execution, 2B PTXASW gathers

branch conditions for avoiding unrealizable paths

(Section 4.2) and creates memory traces (Section 4.3). When

the entire emulation is finished, 3 we discover shuffle

opportunities from memory traces (Section 5.1). Finally, 4

we insert shuffle operations to the input code (Section 5.2);

then, the generated code is consumed by the original PTX

assembler.

4 Symbolic Emulator

Analysis of high-level code has posed questions about its

applicability to abstract program structures or other

user-level languages. While high-level code analysis may

process intact code information, enormous engineering

efforts are required just for specific forms within one

language [13, 32]. Therefore, virtual machines are utilized

for providing a cushion between real architectures and user

codes. In particular, analysis and optimization of the

virtual-machine code tend to be reusable without the

restriction of input types [12, 14, 34].

Our work uses PTX as the virtual machine layer and

performs general analysis through code emulation. We

introduce symbolic emulation to encapsulate the runtime

information in symbol expressions and compute concolic

(concrete + symbolic) values for each register. Although a

number of previous work have been conducted on symbolic

emulation for the purpose of software testing [4], our work

(PTXASW) especially aims at code optimization of memory

access on GPUs, since it is often regarded as one of the

bottlenecks of GPU computing [7]. Those computed values

are utilized for code generation as described in Section 5.

4.1 Instruction Encoding

Since the subsequent PTX assembler, while generating SASS

code, will eliminate redundant operations and resources, we

may abundantly use registers while not causing register

pressure by unnecessary data movement outside of the

static single assignment form (SSA). First, PTXASW

recognizes variable declarations and prepares a symbolic

bitvector of the corresponding size for each register. Since

arithmetic calculation and bitwise operations are supported

on the combination of concrete and symbolic bitvectors, we

encode each PTX instruction as the computation over

113

A Symbolic Emulator for Shuffle Synthesis on the NVIDIA PTX Code CC ’23, February 25ś26, 2023, Montréal, QC, Canada

vectors. For example, addition for 16-bit vectors is encoded

as in the following pseudocode:

a = [a_0 , a_1 , .., a_15]; //a_N is a 1-bit element

b = [b_0 , b_1 , .., b_15];

c = a + b

= [a_0 + b_0 , a_1 + b_1 , .., a_15 + b_15];

With the add instruction corresponding to the above

calculation, we detect the instruction type and source

registers (%a, %b) and compute the result:

add.u16 %c, %a, %b; // dst: %c; src: %a, %b

Then, having the binding with the name of the

destination register (%c), we keep the computed value in the

register environment. PTXASW defines each instruction to

update the destination registers according to the instruction

options and types, and those registers may be fully concrete

with the movement or computation from constant values.

Also, to support floating-point instructions, we insert the

conversion by uninterpreted functions at loading and

storing bitvectors to and from floating-point data.

Regarding casting operands among integer types and binary

types, truncating or extending is performed based on the

PTX specification. The computational instructions under

predicates issue conditional values in registers. Since

registers are not used before initialization, these always

have evaluated values, except for special registers, such as

thread IDs and uninterpreted functions of loops and

memory loads, which are described in following sections.

!$acc kernels loop independent gang (65535)

!$acc& present(w0(1:nx ,1:ny), w1(1:nx ,1:ny))

do j = 2, ny -1

!$acc loop independent vector (512)

do i = 2, nx -1

w1(i,j)=c0*w0(i,j) + c1*(w0(i-1,j)+w0(i,j-1)+&

w0(i+1,j)+w0(i,j+1)) + c2*(w0(i-1,j-1)+&

w0(i-1,j+1)+w0(i+1,j-1)+w0(i+1,j+1))

enddo enddo

Listing 4. Jacobi kernel in Fortran and OpenACC

4.2 Execution Branching

Branching is caused by jumping to labels under binary

predicates that are computed by preceding instructions.

Since inputs and several parameters are unknown at

compilation time, unsolvable values of predicates are often

observed leading to undetermined execution flows where

computation is boundless. Thus, we abstract the repeated

instructions in the same execution flow. At the entry point

to the iterative code block, we modify each iterator of the

block to have uninterpreted functions with unique identities

and perform operations only once upon those uninterpreted

functions. Since those uninterpreted functions produce

incomparable values, we clip the initial values out and add

them to registers containing uninterpreted functions at the

block entry, for better accuracy in the case of incremental

iterators to be found by induction variable

recognition [10, 11].

We continue each branching while duplicating the

register environment for succeeding flows. All the flows

finish at re-entry to iterative blocks or at the end of

instructions, completing their own results. The symbolic

expressions in predicates used at the prior divergence are

recorded as assumptions while updating those predicates, to

have constant booleans in the register environment, based

on whether it is assumed as true. Conflicting values in

assumptions are removed according to an SMT solver

(Z3 [9]) when new expressions are added. If the destination

of a new branch can be determined providing assumptions

to the solver, unrealizable paths are pruned for faster

emulation. Also, we skip redundant code-block entry

bringing the same register environment as other execution

flows by memoization, to force new results at each entry.

4.3 Memory Analysis

We collect memory loads forwardly through the emulation

and express them by uninterpreted functions accepting

addresses and returning data of corresponding sizes. The

trace of memory loads is intervened by memory stores, and

both loads and assumptions are invalidated by stores that

possibly overwrite them, using the same mechanism for

conflicting assumptions mentioned in Section 4.2.

LD: 0xc + (load(param2) + ((((0x1 + %ctaid.x) * load(param6) // w0(i-1, j+1)

+ ((% tid.x + %ctaid.y << 0x9) + (- load(param5)))) + loop(0, 14)) + loop(0, 53)) << 0x2)

LD: 0xc + (load(param2) + (((load(param6) * (0x3 + %ctaid.x) // w0(i+1, j+1)

+ ((% tid.x + %ctaid.y << 0x9) + (- load(param5)))) + loop(0, 13)) + loop(0, 52)) << 0x2)

LD: 0x4 + (load(param2) + ((((0x1 + %ctaid.x) * load(param6) // w0(i-1, j-1)

+ ((% tid.x + %ctaid.y << 0x9) + (- load(param5)))) + loop(0, 14)) + loop(0, 53)) << 0x2)

/* LD: w0(i+1, j-1), w0(i , j+1), w0(i+1, j), w0(i , j-1), w0(i-1, j), w0(i , j) */

ST: 0x8 + (load(param3) + (((% tid.x + %ctaid.y << 0x9) // w1(i , j)

+ loop(0, 57)) + ((- load(param5)) + load(param6) * ((0x2 + %ctaid.x) + loop(0, 21)))) << 0x2)

Listing 5. Global-memory trace of Jacobi kernel through the symbolic emulation in order. Sign extensions are omitted.

Numerical numbers, shown in hexadecimal, are originally in bitvectors. load/loop are uninterpreted functions for parameter

loads having addresses and loop iterators having unique identities, respectively)

114

CC ’23, February 25ś26, 2023, Montréal, QC, Canada K. Matsumura, S. G. De Gonzalo, A. J. Peña

Listing 4 shows a Jacobian kernel implemented in Fortran

for GPUs using OpenACC. Its memory trace is obtained as

in Listing 5 by PTXASW emulating the PTX code generated

by NVHPC compiler 22.3. The address of each load is

symbolically calculated as register values, thus containing

uninterpreted functions and special registers. In the case of

divergence, branched flows maintain such traces while

sharing the common parts of the original flow.

5 Shuffle Synthesis

Mapping programs over thread-level parallelism, while

pursuing the performance of modern complex architectures

and ensuring correctness, is a farśfromśeasy task. Most

likely, existing GPU programs are already optimized in

terms of resource use and scheduling, which does not

smoothly allow for further optimization, especially at the

low-level code. The shuffle operation performs at its best

when the communication is fully utilized [25], but such

cases are not common in compiler-optimized code or even

manually-tuned code in HPC. The big trouble is corner

cases. Not only halo, but fractional threads emerged from

rounding up dynamic input sizes, demand exceptional cases

to be operated on GPUs. While the generality and

applicability of GPU shuffle instructions for all types of

applications or computational patterns are yet unknown,

the level of difficulty in manually applying shuffle

instructions in different cases adds further hardness to the

already complex task of understanding the true nature of

the performance of shuffle operations.

Hence, we implement automatic shuffle synthesis

through PTXASW to drive the lower-latency operations

seen in Section 2.3, while supporting corner cases and

covering global-memory loads with warp-level

communication. PTXASW is accordingly extended to seek

shuffle candidates among loads, and embed shuffle

instructions into code while alleviating register pressure.

5.1 Detection

Warps are comprised of neighboring threads. We do not

consider adjacent threads in non-leading dimensions, since

those tend to generate non-sequential access patterns. Upon

finding a global-memory load, PTXAS compares its load

address to those of previous loads found through the same

execution flow and not invalidated by any store. If for all

threads in a warp the load is overlapped with existing loads,

those instructions are recorded as possible shuffle sources.

To utilize a load with an address represented as 𝐴(%tid.x)

for another having the address 𝐵(%tid.x), there must exist

an integer 𝑁 such that 𝐴(%tid.x + 𝑁) = 𝐵(%tid.x) and

−31 ⩽ 𝑁 ⩽ 31. For example, when 𝑁 = 0, the load can be

fully utilized in the same thread. When 𝑁 = 1, we can adapt

the shfl.sync.down instruction to convey existing register

values to next threads while issuing the original load for the

edge case (%warp_id = 31). In the case of the memory trace

in Listing 5, the load accesses of w0(i-1, j+1) and w0(i-1,

j-1) are uniformly aligned with the close addresses to each

other, so we can search the variable 𝑁 , which satisfies the

above condition, by supplying 𝑁 along with those addresses

to the solver and find 𝑁 = −2.

We make sure that each shuffle candidate has the same 𝑁

as a shuffle delta in all the execution flows. This delta must

be constant regardless of runtime parameters. Since the steps

of loop iterators in PTX code could be any size (e.g. NVHPC

Compiler uses the thread-block size), shuffles are detected

only in straight-line flows, whereas live variable analysis is

employed to exclude the case in which source values possibly

reflect a different iteration from the destination. For faster

analysis, we construct control-flow graphs before shuffle

detection, while pruning unrelated instructions to memory

operations and branches, and at the use of the SMT solver,

uninterpreted functions are converted to unique variables.

5.2 Code Generation

Warp divergence may be caused by various reasons,

including the dynamic nature of the program execution,

which is inconvenient to optimization, where the

uniformity of threads matters for collaboration. Not only

inactive threads, but an insufficient number of threads to

constitute complete warps, raises corner cases in which

original computation should be retained. Our shuffle

synthesis handles both situations by adding dynamic

checkers for uniformity.

Listing 6 presents an example of the synthesis by

PTXASW. Once all the emulation is finished, the results are

collected and filtered to satisfy all the above-mentioned

conditions. Then, PTXASW selects the possible shuffle for

each load with the smallest shuffle delta (𝑁) and allows only

the least corner cases. At the code generation, each source

load instruction is extended to be accompanied by the mov

instruction to prepare the source register (%source). The

destination load is covered with the shuffle operation and a

corner-case checker. First, we check if the thread has no

source from the same warp (%out_of_range). Second, the

ld.global.nc.f32 %f4, [%rd31 +12]; // w0(i-1, j+1)

/* ... */

ld.global.nc.f32 %f7, [%rd31 +4]; // w0(i-1, j-1)

ld.global.nc.f32 %f4, [%rd31 +12];

mov.f32 %source , %f4; /* ... */

mov.u32 %wid , %tid.x; rem.u32 %wid , %wid , 32;

activemask.b32 %m; setp.ne.s32 %incomplete , %m, -1;

setp.lt.u32 %out_of_range , %wid , 2;

or.pred %pred , %incomplete , %out_of_range;

shfl.sync.up.b32 %f7, %source , 2, 0, %mask;

@%pred ld.global.nc.f32 %f7, [%rd31 +4];

Listing 6. Shuffle synthesis on Jacobi kernel (Upper is

original and lower is synthesized code; variable declarations

are omitted and the naming is simplified)

PTXASW

115

A Symbolic Emulator for Shuffle Synthesis on the NVIDIA PTX Code CC ’23, February 25ś26, 2023, Montréal, QC, Canada

incompleteness of the warp (%incomplete) is confirmed

with a warp-level querying instruction. In any case, the

shuffle operation is performed at the position of the original

load, shifting the value of the source register with the

distance of the extracted shuffle delta. Finally, only the

threads participating in an incomplete warp or assuming no

source lane execute the original load under the predicate

(%pred). When 𝑁 < 0, the shfl instruction takes the .up

option and when 𝑁 > 0, the .down option is selected. If

𝑁 = 0, just the mov instruction is inserted instead of all the

synthesized code. In actual code, the calculation of

%warp_id is shared among shuffles and set at the beginning

of the execution to reduce the computational latency.

To preserve the original program characteristics, such as

the register use, uniformity, and ILP, following ways of

generation are avoided. We can produce the correct results

even if shfl is predicated by %incomplete, but it often

imperils the basic efficiency with an additional branch,

which limits ILP. On the other hand, our code introduces

only one predicate to each shuffle and does not leave any

new branch in the resultant SASS code. Also, we do not use

a select instruction for merging the results between shuffles

and corner cases, because it would aggravate register

pressure. The output predicate by shuffle poses execution

dependency and provides the invalid status of inactive

threads; thus, it is ignored. Moreover, we only create

shuffles from direct global-memory loads and do not

implement shuffles over shuffled elements for better ILP.

6 Experimental Methodology

We build PTXASW using Rosette [30], a symbolic-

evaluation system upon the Racket language. PTXASW is

equipped with a PTX parser and runs the emulation of the

parsed code while expressing runtime parameters as

symbolic bitvectors provided by Rosette. Our shuffle

synthesis is caused at code generation, which prints the

assembler-readable code. We evaluate our shuffle

mechanism with the NVHPC compiler [20] by hooking the

assembler invocation and overwriting the PTX code before

it is assembled. The NVHPC compiler accepts the

directive-based programming models OpenACC and

OpenMP to generate GPU code, which have no control over

warp-level instructions. The emulation is also tested for

GCC with OpenACC/OpenMP code and LLVM with

OpenMP code, but these use a master-worker model to

distribute computation across thread-blocks [15] and do not

directly refer to the thread ID in each thread, so mainly

ineffective results are obtained. Our synthesis is not limited

to global-memory loads and works on shared memory (such

as Halide [26]), but the performance is not improved due to

the similar latency of shared-memory loads and shuffles.

The NVHPC compiler utilizes the same style to translate

both OpenACC and OpenMP codes written in

C/C++/Fortran to PTX, hence supporting any combinations.

Table 2. The KernelGen benchmark suite. Lang indicates

the programming language used (C or Fortran). Shuffle/Load

shows the number of shuffles generated among the total

number of global-memory loads. Delta is the average shuffle

delta. Analysis is the execution time of PTXASW on Intel

Core i7-5930K

name Lang Shuffle/Load Delta Analysis

divergence C 1 / 6 2.00 4.281s

gameoflife C 6 / 9 1.50 3.470s

gaussblur C 20 / 25 2.50 7.938s

gradient C 1 / 6 2.00 4.668s

jacobi F 6 / 9 1.50 4.119s

lapgsrb C 12 / 25 1.83 14.296s

laplacian C 2 / 7 1.50 4.816s

matmul F 0 / 8 - 13.971s

matvec C 0 / 7 - 4.929s

sincos F 0 / 2 - 1m41.424s

tricubic C 48 / 67 2.00 1m39.476s

tricubic2 C 48 / 67 2.00 1m41.855s

uxx1 C 3 / 17 2.00 7.466s

vecadd C 0 / 2 - 3.281s

wave13pt C 4 / 14 2.50 6.967s

whispering C 6 / 19 0.83 6.288s

For the evaluation, we use the KernelGen benchmark

suite for OpenACC [18], shown in Table 2. Each benchmark

applies the operator indicated in the benchmark name, to

single or multiple arrays and updates different arrays. The

benchmarks gameoflife, gaussblur, jacobi, matmul,

matvec and whispering are two-dimensional, whereas

others are three-dimensional, both having a parallel loop for

each dimension, in which other loops might exist

insideÐexcept matvec, which features only one parallel

loop. The thread-level parallelism is assigned to the

innermost parallel loop and the thread-block level

parallelism to the outermost. We show the total time of

running the shuffle-synthesized kernel ten times on Kepler

(NVIDIA Tesla K40c with Intel i7-5930K CPU), Maxwell

(TITAN X with Intel i7-5930K), Pascal (Tesla P100 PCIE with

Intel Xeon E5-2640 v3), and Volta (Tesla V100 SXM2 with

IBM POWER9 8335-GTH). We use NVHPC compiler 22.3

with CUDA 11.6 at compilation, but due to environmental

restrictions, run the programs using CUDA driver

11.4/11.4/10.0/10.2 for Kepler/Maxwell/Pascal/Volta,

respectively. The compiler options in NVHPC are "-O3

-acc -ta=nvidia:cc(35|50|60|70),cuda11.6,loadcac

he:L1". To fully utilize computation, 2D benchmarks select

32768x32768 as their dynamic problem sizes and 3D

compute 512x1024x1024 grids, except uxx1, which

leverages 512x512x1024 datasets and whispering, where

more buffers are allocated, computing over 8192x16384 data

elements. To assess a performance breakdown, we prepare

two other versions of PTXASW: NO LOAD and NO

116

CC ’23, February 25ś26, 2023, Montréal, QC, Canada K. Matsumura, S. G. De Gonzalo, A. J. Peña

CORNER. The former eliminates loads that are covered by

shuffles, whereas the latter only executes shuffles instead of

original loads, without the support of corner cases.

The shuffle synthesis fails on four benchmarks. In

matmul and matvec, the innermost sequential loop

contains loads, but these do not have neighboring accesses

along the dimension of the thread ID. The benchmarks

sincos and vecadd do not have several loads sharing the

same input array.

7 Evaluation

Figure 2 shows the speed-ups of benchmarks on each GPU

with original code and PTXASW-generated code along with

the NO LOAD and NO CORNER versions. The line plots

provide the SM occupancy of each benchmark. Since there

is no resource change other than the register use from the

original execution, the occupancy rate is directly affected by

the number of registers. The performance improvement on

Kepler/Maxwell/Pascal/Volta is confirmed with 7/6/9/4

benchmarks showing up to 16.9%/132.3%/9.1%/14.7%

performance improvement, respectively. We see

performance degradation with Volta in the case where more

than ten shuffles are generated. Other GPUs mostly gain

better performance with such cases. With increased shuffle

deltas, more corner cases are expected. Volta shows optimal

efficiency when 𝑁 ⩽ 1.5, while other GPUs benefit from the

case of 𝑁 = 2.5. For example, Maxwell attains the best

performance with gaussblur (𝑁 = 2.5), although Volta’s

performance drops by half for the same case. The average

improvement across all GPU generations is -3.3%/10.9%/

1.8%/-15.2% for Kepler/Maxwell/Pascal/Volta, respectively.

Overall, the performance improvement by PTXASW is

found when NO LOAD and NO CORNER have sufficiently

better performance compared to the original and when the

occupancy typically rises on Kepler/Maxwell and drops on

Pascal/Volta. The average number of additional registers

with NO LOAD/NO CORNER/PTXASW compared to the

original is -6.4/-5.2/2.7 on Kepler, -6.6/-5.9/4.2 on Maxwell,

-7.0/-5.9/3.8 on Pascal, and -6.4/6.8/9.2 on Volta.

8 Analysis

This section provides the performance detail of our shuffle

synthesis on each GPU. Figure 3 shows the ratio of stall

reasons sampled by the profiler for all the benchmarks. Those

characteristics of computation appear as the results of the

program modification (e.g. register use, shuffle delta) and the

architecture difference (e.g. computational efficiency, cache

latency).

8.1 Kepler

The Kepler GPU has long stalls on computational

operations with each benchmark. The average execution

dependency is 24.7% and pipeline busyness is 7.5% with the

original. When we look at the memory-bound benchmarks

such as gameoflife, gaussblur, and tricubic, NO LOAD

significantly reduces the amounts of memory-related stalls.

Especially, tricubic has 56.0 percentage points below

memory throttles from the original to NO LOAD, yielding

2.53x performance. From NO LOAD to NO CORNER, the

execution dependency increases by 4.0 percentage points

and the pipeline busyness decreases by 1.6 percentage

points on average. The performance degradation at NO

CORNER with the memory-bound benchmarks is observed

with the latency of the pipelines and the wait for the SM

scheduler. PTXASW suffers from memory throttling and

additional computation for the corner cases, which limit the

improvement up to 16.9%.

The memory throttling and the additional computation

bottlenecks suffered by PTXASW may be hidden if the

shuffle operations reduce the original computation and

communication into just one transfer among threads,

functioning as a warp-level cache. Otherwise, there is a

need to face a trade-off between the redundancy of

operations and the efficiency on the architecture. On Kepler,

both heavy computation and memory requests are imposed

by the corner case. Therefore, in the general use of shuffles,

the uniformity of calculation is crucial and it requires

domain-specific knowledge.

8.2 Maxwell

There are two obvious compute-bound benchmarks:

gameoflife and tricubic. For these, no improvement is

perceived with NO LOAD, and there are no particular

changes in occupancy or stalls throughout the four different

versions. In summary, gameoflife experiences -0.1%/5.7%/

6.2% lower performance and tricubic shows -1.6%/7.7%/

15.4% lower performance with NO LOAD/NO CORNER/

PTXASW, respectively, compared to the original version. In

other cases, memory dependency is dominant. However, the

merit of NO LOAD is limited to gaussblur and lapgsrb,

which experience large texture-memory latency of

read-only cache loads, successfully replaced with shuffles by

PTXASW. The texture stall was reduced from 47.5% to 5.3%

in gaussblur and from 23.0% to 0.1% in lapgsrb from the

original to PTXASW, attaining 132.2% and 36.9% higher

throughput. Other benchmarks do not feature stalls that

allow for clear performance improvement by NO LOAD. As

it can be observed in Figure 3, the memory dependency

stalls are maintained for most benchmarks, except for that

of tricubic2, which shows 32.9 percentage points lower

memory dependency and only 14.3% overall improvement

with NO LOAD. Those values are mostly absorbed by the

corner cases.

On the Maxwell GPU, only the texture stalls are

improvable for efficiency in the tested cases. Since we

observe a moderate overhead of the corner cases, our

synthesis tool may enhance the overall performance. The

memory-dependency stalls work as a good indicator of the

117

A Symbolic Emulator for Shuffle Synthesis on the NVIDIA PTX Code CC ’23, February 25ś26, 2023, Montréal, QC, Canada

0.0

1.0

2.0

3.0

4.0

S
p
ee
d
-u
p Kepler

0.00

0.25

0.50

0.75

1.00

O
cc
u
p
a
n
cy

0.0

1.0

2.0

3.0

4.0 Maxwell

0.00

0.25

0.50

0.75

1.00

0.0

0.5

1.0

1.5

2.0 Pascal

0.00

0.25

0.50

0.75

1.00

0.0

0.5

1.0

1.5 Volta

0.00

0.33

0.66

1.00

div
erg

en
ce

ga
me

ofl
ife

ga
uss

blu
r

gra
die

nt
jac

ob
i

lap
gsr

b

lap
lac

ian

tri
cu
bic

tri
cu
bic

2
ux
x1

wa
ve1

3p
t

wh
isp

eri
ng

Original NO LOAD NO CORNER PTXASW

Figure 2. Speed-up compared to Original. NO LOAD/NO

CORNER produce invalid results

memory utilization. If, in addition, a high execution

dependency would exist, it would provide the warp-level

shuffle optimization the opportunity to be beneficial to

speed up the computation.

8.3 Pascal

Even more than in Maxwell, texture stalls are found in most

benchmarks and those produce higher throughput with NO

LOAD. Especially, gameoflife and tricubic, the

compute-bound kernels on Maxwell, become memory

intensive on Pascal and the performance increases by 5.9%

and 5.4% with PTXASW. The unspecific latency ("Other")

fills many parts of computation on Pascal. Further

investigation shows that this mainly consists of the latency

from register bank conflicts and the instructions after

branching. With the optimization adding a predicate to

check the activeness of the warp (@!incomplete) before the

shuffle and generating a uniform branch, the ratio of this

latency improves from 34.4% to 8.6% with PTXASW at

gameoflife, obtaining 150.8% efficiency compared to the

original. However, as mentioned in Section 5.2, it decreases

the average relative execution time to 0.88x slowdown.

Since the latency of the L1 cache is higher than that of

one shuffle operation, the computation may be hidden by

0
25
50
75
100

S
ta
ll
(%
)

Kepler

0
25
50
75
100

Maxwell

0
25
50
75
100

Pascal

0
25
50
75
100

Volta

div
erg

en
ce

ga
me

ofl
ife

ga
uss

blu
r

gra
die

nt
jac

ob
i

lap
gsr

b

lap
lac

ian

tri
cu
bic

tri
cu
bic

2
ux
x1

wa
ve1

3p
t

wh
isp

eri
ng

0.00

Mem Dep

Inst Fetch

Mem Thro�le

Not Selected

Exec Dep

Texture

Pipe Busy

Other

Figure 3. Stall breakdown in the order of Original/NO

LOAD/NO CORNER/PTXASW from left to right for each

benchmark

data transfers. Once the memory-dependency stall ratio

increases due to replacing the texture stalls, Pascal may

maintain the efficiency with the corner cases, resulting in

speed-up in nine benchmarks. For shuffle instructions to be

beneficial, the execution should be less divergent and

careful register allocation is recommended to maximize the

thread utilization.

8.4 Volta

On Volta, most benchmarks become memory-bound and

memory-intensive applications become sensitive to memory

throttles. Nevertheless, the speed-up by NO LOAD is

limited to up to 1.35x (gameoflife), due to the highly

efficient cache mechanism. As argued in Section 7, some of

the benchmarks attain higher performance with NO

CORNER than in the case of NO LOAD for the lower

occupancy. Other than that, we observe performance

degradation due to increased execution dependency for

lapgsrb and tricubic with NO CORNER. Those further

reduce the efficiency with PTXASW while featuring stalls

for instruction fetching. Also, the memory dependency of

tricubic develops a large latency for memory accesses with

PTXASW even though the corner cases experience fewer

loads. This leads to unstable speed-ups between 0.315x and

1.15x.

The calculation through shuffles is expected to be

effective depending on the utilization of communication,

118

CC ’23, February 25ś26, 2023, Montréal, QC, Canada K. Matsumura, S. G. De Gonzalo, A. J. Peña

and the nonentity of warp divergence. Especially, as Volta

shows minimal latency at each operation, the penalty of

non-aligned computation becomes apparent and must be

avoided by the algorithm.

8.5 Application Example

We also apply PTXASW for the compilation of CUDA

benchmarks extracted from applications. We select three

benchmarks that appeared as complex 3D stencil operations

in [27]: hypterm, rhs4th3fort, and derivative, to run on

the Pascal GPU. hypterm is a routine from a compressible

Navier-Stokes mini-app [1]. rhs4th3fort and derivative

are stencils from geodynamics seismic wave SW4

application code [2]. Each thread in the benchmarks

accesses 152/179/166 elements over 13/7/10 arrays,

respectively. We modify the execution parameters to

execute at least 32 threads along the leading thread-block

dimension and use the float data type. Since we saw in the

prior section the overhead of long-distance shuffles, which

generate many corner cases, we limited the shuffle synthesis

to be |𝑁 | ⩽ 1 and found shuffles only with |𝑁 | = 1.

hypterms contains three kernels that work along

different dimensions. In the kernel for the leading

dimension, 12 shuffles are generated over 48 loads,

producing 0.48% improvement. rhs4th3fort and

derivative feature a single kernel each. rhs4th3fort

experiences 2.49% higher throughput by PTXASW while

placing 44 shuffles among 179 loads. For derivative, having

52 shuffles from 166 loads, PTXASW attains 3.79% speed-up

compared to the original execution.

9 Related Work

Ever since warp-shuffle instructions were introduced during

the Kepler generation of GPUs, these have been the subject of

various lines of research. Early work described their manual

use for specific computational patterns such as reduction

operations [17] and matrix transposition [6]. Other research

described the use of warp-shuffle instructions in the context

of domain-specific optimizations such as employing them

as a register cache for stencil operations [5], or to replace

memory access for Finite Binary Field applications [5].

Research on the automatic generation of warp-shuffle

instructions has been explored. Swizzle Inventor [25] helps

programmers implement swizzle optimizations that map a

high-level "program sketch" to low-level resources such as

shuffle operations. The authors meticulously design the

abstraction of shuffles, synthesize actual code roughly based

on algorithms found in previous literature, and attain

enhanced performance while reducing the amounts of

computation. Tangram, a high-level kernel synthesis

framework, has also shown the ability to automatically

generate warp-level primitives [13]. Unlike the work

presented in this paper, both of the above-mentioned efforts

leverage domain-specific information to map computational

patterns such as stencil, matrix transposition, and

reductions to shuffle operations.

Recent code-generation techniques allow for obtaining

optimal SIMD code generation. Cowan et al. [8] generate

program sketches for execution on ARM processors, by

synthesizing additional instructions, as well as input/output

registers, to implement the shortest possible SIMD code of

reduction. Unlike PTXASW, which uses an SMT solver to

find the optimal shuffle deltas, this work runs a

comprehensive search of multiple possible code versions;

thus, the search space is exponential to the number of

instructions. VanHattum et al. [31] attain faster execution

on digital signal processors while employing equality

saturation [28], a modern way of optimization that

generates possible code as much as possible from a basic

program according to the rules of term rewriting. They

derive shuffles along with vector I/O and computation from

sequential C code. Their intermediate code contains

instructions in one nested expression and the shuffle

operation only works for memory loads that appear as

arguments of the same vector operation. Therefore, the

code rewriting for shuffles assumes a top-down style where

outer expressions have to be vectorized first, in order to

vectorize inner expressions containing shuffled loads. While

their technique may provide a powerful method to the

implementation of libraries, irregular patterns such as

corner cases found in HPC applications are out of scope.

10 Conclusion

This paper introduces symbolic emulation to compiling

GPU code in order to discover hidden opportunities for

optimization. We employ several languages, enabling

OpenACC directives such as in C and Fortran, for the

frontend to generate GPU assembly code. Then, our tool

emulates the code upon symbols that substitute dynamic

information. While pruning control flows to reduce the

emulation time, we automatically find possible warp-level

shuffles that may be synthesized to assembly code to bypass

global-memory accesses. We apply this technique to a

benchmark suite and complex application code showing

results that improve multiple benchmarks on several

generations of GPUs. We also provide the latency analysis

across multiple GPUs to identify the use case of shuffles.

Acknowledgement

We are funded by the EPEEC project from the European

Union’s Horizon 2020 research and innovation program

under grant agreement No. 801051 and the Ministerio de

Ciencia e InnovaciónÐAgencia Estatal de Investigación

(PID2019-107255GB-C21/AEI/10.13039/501100011033). This

work has been partially carried out on the ACME cluster

owned by CIEMAT and funded by the Spanish Ministry of

Economy and Competitiveness project CODEC-OSE

(RTI2018-096006-B-I00).

119

A Symbolic Emulator for Shuffle Synthesis on the NVIDIA PTX Code CC ’23, February 25ś26, 2023, Montréal, QC, Canada

References
[1] ExaCT 2013. 2013. ExaCT: Center for Exascale Simulation of

Combustion in Turbulence: Proxy App Software. http://www.

exactcodesign.org/proxy-app-software/

[2] SW4 2014. 2014. Seismic Wave Modelling (SW4) - Computational

Infrastructure for Geodynamics. https://geodynamics.org/resources/

sw4

[3] The OpenMP ARB. 1997. OpenMP. https://www.openmp.org/

[4] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil

Demetrescu, and Irene Finocchi. 2018. A survey of symbolic execution

techniques. ACM Comput. Surv. 51, 3, Article 50 (may 2018), 39 pages.

https://doi.org/10.1145/3182657

[5] Eli Ben-Sasson, Matan Hamilis, Mark Silberstein, and Eran Tromer.

2016. Fast multiplication in binary fields on GPUs via register cache.

In Proceedings of the 2016 International Conference on Supercomputing

(ICS ’16). Association for Computing Machinery, New York, NY, USA,

Article 35, 12 pages. https://doi.org/10.1145/2925426.2926259

[6] Bryan Catanzaro, Alexander Keller, and Michael Garland. 2014. A

decomposition for in-place matrix transposition. In Proceedings of the

19th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming (PPoPP ’14). Association for Computing Machinery, New

York, NY, USA, 193ś206. https://doi.org/10.1145/2555243.2555253

[7] Peng Chen, Mohamed Wahib, Shinichiro Takizawa, Ryousei Takano,

and Satoshi Matsuoka. 2019. A versatile software systolic execution

model for GPU memory-bound kernels. In Proceedings of the

International Conference for High Performance Computing, Networking,

Storage and Analysis (SC ’19). Association for Computing Machinery,

New York, NY, USA, Article 53, 81 pages. https://doi.org/10.1145/

3295500.3356162

[8] Meghan Cowan, Thierry Moreau, Tianqi Chen, James Bornholt, and

Luis Ceze. 2020. Automatic generation of high-performance quantized

machine learning kernels. Association for Computing Machinery, New

York, NY, USA, 305ś316. https://doi.org/10.1145/3368826.3377912

[9] Leonardo de Moura and Nikolaj Bjùrner. 2008. Z3: An efficient SMT

solver. In Tools and Algorithms for the Construction and Analysis of

Systems. Springer Berlin Heidelberg, Berlin, Heidelberg, 337ś340.

[10] Robert van Engelen. 2000. Symbolic evaluation of chains of recurrences

for loop optimization. Technical Report TR-000102. Computer Science

Dept., Florida State University.

[11] Robert van Engelen. 2001. Efficients symbolic analysis for optimizing

compilers. In Proceedings of the 10th International Conference on

Compiler Construction (CC ’01). Springer-Verlag, Berlin, Heidelberg,

118ś132.

[12] Philip Ginsbach, Toomas Remmelg, Michel Steuwer, Bruno Bodin,

Christophe Dubach, and Michael F. P. O’Boyle. 2018. Automatic

matching of legacy code to heterogeneous APIs: An idiomatic approach.

Association for Computing Machinery, New York, NY, USA, 139ś153.

https://doi.org/10.1145/3173162.3173182

[13] Simon Garcia De Gonzalo, Sitao Huang, Juan Gómez-Luna, Simon

Hammond, Onur Mutlu, and Wen-mei Hwu. 2019. Automatic

generation ofwarp-level primitives and atomic instructions for fast and

portable parallel reduction on GPUs. In 2019 IEEE/ACM International

Symposium on Code Generation and Optimization (CGO). 73ś84. https:

//doi.org/10.1109/CGO.2019.8661187

[14] Tobias Grosser, Armin Groesslinger, and Christian Lengauer.

2012. Polly Ð Performing polyhedral optimizations on a low-

level intermediate representation. Parallel Processing Letters 22,

04 (2012), 1250010. https://doi.org/10.1142/S0129626412500107

arXiv:https://doi.org/10.1142/S0129626412500107

[15] Arpith Chacko Jacob, Alexandre E Eichenberger, Hyojin Sung,

Samuel F Antao, Gheorghe-Teodor Bercea, Carlo Bertolli, Alexey

Bataev, Tian Jin, Tong Chen, Zehra Sura, Georgios Rokos, and Kevin

O’Brien. 2017. Efficient fork-join on GPUs through warp specialization.

In 2017 IEEE 24th International Conference on High Performance

Computing (HiPC). 358ś367. https://doi.org/10.1109/HiPC.2017.00048

[16] Zhe Jia, Marco Maggioni, Benjamin Staiger, and Daniele P. Scarpazza.

2018. Dissecting the NVIDIA Volta GPU architecture via

microbenchmarking. https://doi.org/10.48550/ARXIV.1804.06826

[17] Justin Luitjens. 2014. Faster parallel reductions on Kepler. https:

//developer.nvidia.com/blog/faster-parallel-reductions-kepler/

[18] Dmitry Mikushin, Nikolay Likhogrud, Eddy Z. Zhang, and Christopher

Bergström. 2014. KernelGen ś The design and implementation of a

next generation compiler platform for accelerating numerical models

on GPUs. In 2014 IEEE International Parallel Distributed Processing

Symposium Workshops. 1011ś1020. https://doi.org/10.1109/IPDPSW.

2014.115

[19] G. E. Moore. 1998. Cramming more components onto integrated

circuits. Proc. IEEE 86, 1 (Jan 1998), 82ś85. https://doi.org/10.1109/

JPROC.1998.658762

[20] NVIDIA Corporation. 2022. High Performance Computing (HPC) SDK

| NVIDIA. https://developer.nvidia.com/hpc-sdk

[21] NVIDIA Corporation. 2022. Kepler Tuning Guide :: CUDA Toolkit

Documentation. https://docs.nvidia.com/cuda/kepler-tuning-guide/

index.html

[22] NVIDIA Corporation. 2022. Programming Guide :: CUDA Toolkit

Documentation. https://docs.nvidia.com/cuda/cuda-c-programming-

guide/index.html

[23] NVIDIA Corporation. 2022. PTX ISA :: CUDA Toolkit Documentation.

https://docs.nvidia.com/cuda/parallel-thread-execution/index.html

[24] The OpenACC Organization. 2011. OpenACC. https://www.openacc.

org/

[25] Phitchaya Mangpo Phothilimthana, Archibald Samuel Elliott, An

Wang, Abhinav Jangda, Bastian Hagedorn, Henrik Barthels, Samuel J.

Kaufman, Vinod Grover, Emina Torlak, and Rastislav Bodik. 2019.

Swizzle Inventor: Data movement synthesis for GPU kernels.

In Proceedings of the Twenty-Fourth International Conference on

Architectural Support for Programming Languages and Operating

Systems (ASPLOS ’19). Association for Computing Machinery, New

York, NY, USA, 65ś78. https://doi.org/10.1145/3297858.3304059

[26] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain

Paris, Frédo Durand, and Saman Amarasinghe. 2013. Halide: A

language and compiler for optimizing parallelism, locality, and

recomputation in image processing pipelines. In Proceedings of the

34th ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI ’13). Association for ComputingMachinery, New

York, NY, USA, 519ś530. https://doi.org/10.1145/2491956.2462176

[27] Prashant Singh Rawat, Fabrice Rastello, Aravind Sukumaran-Rajam,

Louis-Noël Pouchet, Atanas Rountev, and P. Sadayappan. 2018.

Register Optimizations for Stencils on GPUs. In Proceedings of the

23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming (PPoPP ’18). Association for Computing Machinery, New

York, NY, USA, 168ś182. https://doi.org/10.1145/3178487.3178500

[28] Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. 2009.

Equality Saturation: A new approach to optimization. In Proceedings

of the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages (POPL ’09). Association for Computing

Machinery, New York, NY, USA, 264ś276. https://doi.org/10.1145/

1480881.1480915

[29] TOP500.org. 2022. November 2022 | TOP500. https://www.top500.

org/lists/top500/2021/11/

[30] Emina Torlak and Rastislav Bodik. 2013. Growing solver-aided

languages with Rosette. In Proceedings of the 2013 ACM International

Symposium on New Ideas, New Paradigms, and Reflections on

Programming & Software (Onward! 2013). Association for Computing

Machinery, New York, NY, USA, 135ś152. https://doi.org/10.1145/

2509578.2509586

[31] Alexa VanHattum, Rachit Nigam, Vincent T. Lee, James Bornholt, and

Adrian Sampson. 2021. Vectorization for Digital Signal Processors

via Equality Saturation (ASPLOS 2021). Association for Computing

120

http://www.exactcodesign.org/proxy-app-software/
http://www.exactcodesign.org/proxy-app-software/
https://geodynamics.org/resources/sw4
https://geodynamics.org/resources/sw4
https://www.openmp.org/
https://doi.org/10.1145/3182657
https://doi.org/10.1145/2925426.2926259
https://doi.org/10.1145/2555243.2555253
https://doi.org/10.1145/3295500.3356162
https://doi.org/10.1145/3295500.3356162
https://doi.org/10.1145/3368826.3377912
https://doi.org/10.1145/3173162.3173182
https://doi.org/10.1109/CGO.2019.8661187
https://doi.org/10.1109/CGO.2019.8661187
https://doi.org/10.1142/S0129626412500107
https://arxiv.org/abs/https://doi.org/10.1142/S0129626412500107
https://doi.org/10.1109/HiPC.2017.00048
https://doi.org/10.48550/ARXIV.1804.06826
https://developer.nvidia.com/blog/faster-parallel-reductions-kepler/
https://developer.nvidia.com/blog/faster-parallel-reductions-kepler/
https://doi.org/10.1109/IPDPSW.2014.115
https://doi.org/10.1109/IPDPSW.2014.115
https://doi.org/10.1109/JPROC.1998.658762
https://doi.org/10.1109/JPROC.1998.658762
https://developer.nvidia.com/hpc-sdk
https://docs.nvidia.com/cuda/kepler-tuning-guide/index.html
https://docs.nvidia.com/cuda/kepler-tuning-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://www.openacc.org/
https://www.openacc.org/
https://doi.org/10.1145/3297858.3304059
https://doi.org/10.1145/2491956.2462176
https://doi.org/10.1145/3178487.3178500
https://doi.org/10.1145/1480881.1480915
https://doi.org/10.1145/1480881.1480915
https://www.top500.org/lists/top500/2021/11/
https://www.top500.org/lists/top500/2021/11/
https://doi.org/10.1145/2509578.2509586
https://doi.org/10.1145/2509578.2509586

CC ’23, February 25ś26, 2023, Montréal, QC, Canada K. Matsumura, S. G. De Gonzalo, A. J. Peña

Machinery, New York, NY, USA, 874ś886. https://doi.org/10.1145/

3445814.3446707

[32] Sven Verdoolaege and Tobias Grosser. 2012. Polyhedral Extraction Tool.

In Second International Workshop on Polyhedral Compilation Techniques

(IMPACT). Paris, France. http://impact.gforge.inria.fr/impact2012/

[33] Henry Wong, Misel-Myrto Papadopoulou, Maryam Sadooghi-Alvandi,

and Andreas Moshovos. 2010. Demystifying GPU microarchitecture

through microbenchmarking. In 2010 IEEE International Symposium

on Performance Analysis of Systems Software (ISPASS). 235ś246. https:

//doi.org/10.1109/ISPASS.2010.5452013

[34] Xiaolong Xie, Yun Liang, Xiuhong Li, Yudong Wu, Guangyu Sun,

Tao Wang, and Dongrui Fan. 2015. Enabling coordinated register

allocation and thread-level parallelism optimization for GPUs. In 2015

48th Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO). 395ś406. https://doi.org/10.1145/2830772.2830813

[35] Da Yan, Wei Wang, and Xiaowen Chu. 2020. Optimizing batched

Winograd convolution on GPUs. Association for Computing Machinery,

New York, NY, USA, 32ś44. https://doi.org/10.1145/3332466.3374520

Received 2022-11-10; accepted 2022-12-19

121

https://doi.org/10.1145/3445814.3446707
https://doi.org/10.1145/3445814.3446707
http://impact.gforge.inria.fr/impact2012/
https://doi.org/10.1109/ISPASS.2010.5452013
https://doi.org/10.1109/ISPASS.2010.5452013
https://doi.org/10.1145/2830772.2830813
https://doi.org/10.1145/3332466.3374520

	Abstract
	1 Introduction
	2 Background
	2.1 GPUs
	2.2 NVIDIA PTX
	2.3 Shuffle Operation

	3 Overview
	4 Symbolic Emulator
	4.1 Instruction Encoding
	4.2 Execution Branching
	4.3 Memory Analysis

	5 Shuffle Synthesis
	5.1 Detection
	5.2 Code Generation

	6 Experimental Methodology
	7 Evaluation
	8 Analysis
	8.1 Kepler
	8.2 Maxwell
	8.3 Pascal
	8.4 Volta
	8.5 Application Example

	9 Related Work
	10 Conclusion
	References

