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Preface

The following work is written in order to fulfill the requirements of the master degree
in Statistics and Operations Research at the Polytechnic University of Catalonia.
In the master thesis the synchronization of random deterministic finite automata
is investigated making the topic part of the fields of combinatorics, graph theory
and stochastic processes. The structure of the work is as follows. In Sec. 1 a short
introduction and overview on finite deterministic automata is given. Sec. 2 focuses
on the synchronization of random automata using w-trees. In Sec. 3 an algorithm
is presented for determining whether the underlying directed graph generated by a
word w on an automaton A is a loop-rooted tree, implying that the automaton is
synchronizing, or that the underlying graph structure is not a tree, thus w does not
synchronize A. Sec. 4 shows several simulation results obtained with the help of
the previous algorithm. In Sec. 5 the results of Higgins on random finite mappings
are presented in order to prepare the consecutive Markov chains based analysis
performed in Sec. 6. In Sec. 7 the results are summarized.
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The synchronization properties of repeated words on deterministic finite automata were
investigated numerically and analytically in this work. A polynomial (O(n2)) algorithm
for finding short synchronizing words based on w-trees is presented. The algorithm is
capable of finding synchronizing words of length proportional to

√
n logn with automata

of size up to a few hundred thousand states. Experimental results on the height of w-
trees is also presented showing that the mean tree height is of O

(√
n
k

)
. Furthermore,

the modeling of the random DFA synchronization process by Markov chains is carried
out in this study. Three different experimentally justified estimates for the mean shortest
synchronizing word length are presented as well indicating that the shortest resetting word
length is proportional to the square root of the automaton size.



Notation

N Natural numbers

Z Integer numbers

Q Rational numbers

R Real numbers

C Complex numbers

A Automaton represented by the 5-tuple ⟨Σ,Γ, Q, δ, λ⟩
Σ Input alphabet of A

Γ Output alphabet of A

Q Set of states

δ Transition function δ : Q× Σ→ Q

λ Next-output function λ : Q× Σ→ Γ
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1. Introduction

In computer science the concept of an automaton is probably the most fundamental
abstraction for a computing device which automatically follows a predetermined
sequence of operations. The emergence of the mathematical description of automata
can be dated back to 1948 when John von Neumann expressed the need for a
theory to describe the possibilities and limits of the already existing electric circuits
[1]. During the next two decades the new scientific field of theoretical computing
emerged having its own research agenda and textbooks. In the beginning, automata
theory studied formal languages and the machines that accept them in a quasi-
algebraic manner. Later, from the 1960s, formal semantics emerged as a major
area of research leading to the development of extensible programming languages
using the same space to store values and functions.

In the beginning automaton theory was considered as a branch of mathematical
systems theory dealing with discrete-parameter systems. Instead of using differen-
tial calculus as in material systems, abstract algebra was used to describe automata
[2]. Automata can be defined by restricting the definition of a system by only al-
lowing discrete time-steps. The output of the automaton only depends on it state
and input through unchanging function defining the relations within them. The
automaton runs when processing some input, given in every time step, it passes
through its states (transition) in a way defined by the transition function. The
input is a word consisting of letters from the input alphabet. Simultaneously the
automaton produces output letters (from the output alphabet) using the output
function. The automaton runs as long as it has read the whole input word. The
state where it halts is called the final state.

Using formal language theory to investigate the possible sequences of states, inputs
and outputs a starting state and a set of accepting states can be assigned to the
automaton. Depending on whether the final state is in the set of accepting state,
the automaton can accept or reject a word. The set of all input sequences is called
the language recognized by the automaton [3].

An automaton either has finite or infinite states, and its transitions can either be
deterministic or non-deterministic. In this work, we are focusing on deterministic
finite automata (DFA).

1.1. Deterministic Finite Automata. Formally, a deterministic finite automa-
ton is a 5-tuple A = ⟨Q,Σ, δ, q0, F ⟩ with

• a finite set of states Q,

• a finite set of input symbols Σ (alphabet),

• a transition function δ : Q× Σ→ Q, with natural extension δ : Q× Σk → Q,

• an initial state q0 ∈ Q,

• a set of accept states F ⊆ Q.
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Fig. 1. A DFA with five states and two letters. The SSW is aabaa.
When applied, all states meet in state 5. From synchronizing words
of length 6 there exist multiple ones, for example aabaab or baabaa.

Having a word w = a1a2 . . . an over the alphabet Σ the automaton A accepts the
string w if there exists a set of states r0, r1, . . . , rn ∈ Q such that the following
holds:

• r0 = q0

• ri+1 = δ(ri, ai+1), for i = 0, 1, . . . n− 1

• rn ∈ F .

A DFA without starting state and without accept states is called a transition system.

In the following we will discuss complete DFA, i.e. such ones where in every state
the transition to the next state is defined for every possible letter of the input
sequence. Furthermore, the automata are assumed to be random, i.e., when setting
up the automata’s transition function every transition from a state to any state,
including the current state as well, is equally possible.

1.2. Synchronization of DFA. A synchronizing word or reset sequence is a word
ω ∈ {a, b} in the input alphabet that sends any state u ∈ [n] of a DFA to a common
final state v0 ∈ [n] irrespective of which the starting state was. Of course, not all
automata can be synchronized; reasons might be, e.g., that the automaton is not
connected or the transitions cause permutations. Finding such a word, especially
a short one, is obviously not easy and until now trial and error has proven to
be the only possible method. The problem is known to be computationally hard,
thus the expected time of finding the shortest synchronizing word (SSW) increases
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exponentially with the number of states. On the other hand, it is easy to see
that an automaton, if synchronizable, has a synchronizing word of length at most
n3: since by the pigeonhole principle every two vertex can be synchronized in
at most n2 steps (selecting two states and building pairs of vertices one finds n2

possible combinations, thus, any word longer than n2 would bring the two states
into a configuration that has already occurred before), repeated application of the
observations n times yields the n3 bound. Theoretical research on finding the
shortest reset word is mainly motivated by Černý’s conjecture stating that for
every synchronizing automata there is a reset word of length < (n− 1)2 [4]. Fig. 2
shows an example with 6 states for Černý’s automaton. The conjecture has been
proven only for a few special cases. Yet, a general cubic bound (n3−n)/6 has been
established [5, 6] and has been reduced to n(7n2 + 6n − 16)/48 by Trahtman [7].
The currently known smallest bound for general DFA is 0.1654n3 + o(n3) given by
Shitov [8].
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Fig. 2. Černý’s automaton for n = 6 with SSW of length
(n − 1)2 = 25. The SSW is w = abbbbbabbbbbabbbbbabbbbba. Note,
that the occupancy number can be reduced always only by one
when states 1 and 2 are occupied and the letter a is applied. Then,
the n− 1-fold application of b results in a configuration where two
states can be synchronized again by a. n−2-fold application of this
process and finally applying a the automaton is synchronized. It
is important to note that in the beginning the occupancy number
can reduced much faster than this by not applying b n − 1 times,
but only as many times that states 1 and 2 are non empty. How-
ever, in this case holes within occupied states emerge that hinder
synchronization in the followings. Thus, the occupied states has to
be shifted such that they occupy consecutive states. All in all, the
length of the synchronizing word cannot be reduced by synchro-
nizing words of different structure than the one described above.
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1.3. Synchronization of random DFA. On the other hand, many theoretical
and experimental results showed that in many cases DFA have significantly shorter
reset words and that with probability tending to 1 all random automata are syn-
chronizable if n → ∞. The latter statement was conjectured by Cameron[9] and
proven by Berlinkov [10] and quickly after by Nicaud [11]. Nicaud also showed
analytically that random DFA admit a synchronizing word of length less than n1+ϵ

with high probability (w.h.p.). Chapuy and Perarnau have shown analytically that
random DFA are synchronizable w.h.p. with some word of length O(n0.5 log n)
[12].

Several experimental studies were performed as well. The most natural approach
to the problem of finding a synchronizing word is the breadth-first-search method.
This method starts from the set of all states of the automaton and forms images
based on the letter transformations until a single state is reached. There exists also
computational packages utilizing this idea, e.g., COMPAS [13] and TESTAS [14].

To find short synchronizing words of random automata Roman used a genetic
algorithm and gave a linear bound for the shortest reset words [15]. The paper
starts with the reformulation of the problem of finding the SSW as an optimization
problem in the word length within all possible words over an alphabet A. In
the terms of genetic programming a word is understood as a chromosome and
letters represent genes. But since words can have different length, the chromosome
length is not fixed, which has important consequences when defining crossover and
mutation. Adaptation methods for changing mutation and crossover probability
during the algorithm work are used. Also, adaptation is used when modifying the
probability distribution P(A) over an alphabet, which is used in the initiation and
also in the mutation phase. The number of chromosomes is N , of which always
two pass into P t from P t−1 based on elitist selection. The rest N − 2 chromosomes
are selected based on the roulette wheel method. The ”best” chromosomes to
be selected are the shortest word with the highest deficiency, i.e., the difference
between the size of the DFA and the number of occupied states after the word w
has been applied. In Fig. 3 the findings are shown.

Skvortsov described an approach to find minimal reset words using a Boolean sat-
isfiability (SAT) solver [16]. The method consists of performing a binary search
on sub-problems of finding out whether an automaton of n states can be synchro-
nized in c steps. Then, the smallest value of c means the SSW. The experiment
performed multiple times yields a mean value for the minimal length of reset words
for automata of size n. The algorithm, not like the previous, genetic one, is exact,
thus it not only finds an upper bound on the shortest reset word, but indeed the
optimal solution. In return, it is an exponential algorithm, thus with increasing
number of states its convergence slows down rapidly. The method was applied to
perform an experimental study on automata of maximal 100 states. An estimate
of 1.95n0.55 was given for the shortest reset words.

Kisielewicz et al. introduced an algorithm able to find reset words of minimal length
of random automata with up to a few hundred states [17]. The main idea of the
method is to use bidirectional breadth-first search (BFS) and radix (Patricia) trees
to store and compare subsets. Kisielewicz et al. also found that the expected length
of the shortest resetting word is sublinear with the number of states and gave the
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Fig. 3. Figure taken from [15]. The mean minimal synchroniz-
ing word length depicted against the number of states. A linear
estimate y = 0.486x + 1.654 obtained for small automata with a
sampler size of 1000 (red line) is extrapolated for larger automata
and compared to the results found by the genetic algorithm (sam-
ple size is 10, blue line).

estimate ≈ 2.5
√
n− 5 for the shortest resetting word. The algorithm presented in

the paper first decides whether the underlying automaton is synchronizing or not,
which can be performed in polynomial time [18]. Then, they perform the BWS
on the power automaton of A starting from the set Q of all states applying letters
of the alphabet Σ. It is also possible to search backwards from a single state and
apply preimages of the of letters, which is called inverse breadth-first search. The
branching factor is k (|Σ|) in both cases, thus, the cumputational cost is O(kl) or
O(nkl) for IBFS. The bidirectional search uses two searches simultaneously and
check if they meet, thus, reducing the computational cost to O(nkl/2). To be able
to implement the idea an effective algorithm is necessary to check whether each
new subset has already appeared in the search tree of the other half of the search.

Szyku la et al. improved speed of the algorithm significantly by using more efficient
data structures, decision mechanisms, and reduction procedures [19]. Addition-
ally, the improved algorithm is also capable to be used in multithreading and GPU
computing. Using the algorithm the authors were able to find the SSWs of DFA
of up to 570 states. Fig. 4 shows the numerical results and the readjusted esti-
mate 2.284n0.515, which for large automata predicts bigger values than the estimate
2.5
√
n− 5 found in [17] by investigating smaller automata.

The change in the estimate for the expected minimal length of synchronizing words
highlights the problem of this kind of numerical experiments: the estimate is only
valid in the region, where the fitting was performed. The extrapolation of the fit to
automata with much larger number of states guarantees no exact results. Clearly,
to give a reliable value for the expected value of the SSW a better understanding
of the synchronization process is needed.
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Fig. 4. Figure taken from [19]. The mean reset threshold of
binary automata with n states. For every n ∈ {5, 10, ..., 300},
n ∈ {305, 310, ..., 400, 410, 420, ..., 500}, and n ∈ {510, 520, ..., 570}
they calculated resp. 10 000, 1 000, and 100 automata.

2. Random w-trees and automaton synchronization

Nicaud investigated random DFA by analytical means and proved that a random
DFA with an alphabet at least with two letters can be synchronized w.h.p. by a
word of length less than n1+ϵ. By that it is also shown that Černý’s conjecture
hold w.h.p. for random DFA.

Chapuy and Perarnau investigated the synchronization of random, 2-letter DFA
with words ω that consists of the repeated concatenation of short word chunks w,
i.e., ω = w|w|...|w|w [12]. The application of w-transitions might induce a (loop-
rooted) tree. They showed, that if |w| = (1 + ϵ) log2(n) then w.h.p. there exists a
ω of the above kind for which the automaton synchronizes and the length of the
synchronizing word |ω| is of O(n0.5 log n).

Theorem 1 ([12]). A uniformly random automaton with n states on a 2-letter
alphabet has a synchronizing word of length at most C

√
n log n w.h.p., where C is

an absolute constant.

Given an automaton A and a word w ∈ {a, b}∗, we let δw be a the function [n]→ [n]
induced by w-transitions (a one letter automaton). We say that a function is a loop-
rooted tree if it has a unique cyclic point, i.e., if there exists a unique x ∈ [n] such
that x ∈ {fk(x), k ≥ 1}. See Fig. 5-Right. If δw is a loop-rooted tree, we say that
A is a w-tree. The main technical result of [12] says that almost all automata are
w-trees for a very short word w: it is enough if its length is slightly greater than
log2 n.
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Fig. 5. Figure taken from [12]. Left: An automaton A with n = 4
states. A is synchronizable, since the word ω = abbabb is synchro-
nizing: it sends all the states to the state v0 = 1. Right: the
one-letter automaton δw induced by w-transitions, for w = abb. It
has a unique cyclic vertex, i.e., it is loop-rooted tree (equivalently,
A is w-tree).

Theorem 2 ([12]). Let A be a uniformly random automaton on n states, and let
ϵ > 0. Then, w.h.p., there exists a word w of length at most (1 + ϵ) log2(n) such
that A is a w-tree.

The idea of the proof is finding a word w of length (1+ ϵ) log2(n) such that δw is a
loop-rooted tree, then it is clear that the word ω = wH is synchronizing, where H
is the height of that tree. It is easily shown that the height of the tree H ≤ C

√
n

w.h.p.. Thus, the length of the word is of O(
√
n log(n)).

The authors of [12] suspect that the order of the expected value of the SSWs can

be reduced to O(
√
n log(n)). The reason for such an expectation is based on the

following theorem:

Theorem 3 ([12]). Assume that there is a random variable Xn such that the follow-
ing holds. For any non self-conjugated word w of length (1+ϵ) log2(n), the height Hn

(maximum distance of a vertex to the root) of a uniform random 0-shifted marked
w-tree is stochastically dominated by Xn. Then the SSW of a random automaton
is stochastically dominated by (1 + ϵ)Xn log(n).

Chapuy and Perarnau suspect that there exists such Xn satisfying Xn = Op(
√

n
k ),

where Op denotes a big-O in probability.

2.1. Heuristics: one-letter automata. The idea presented in [12] is inspired
by the well known problem of the synchronization of random one-letter automata,
i.e., of random functions f : [n]→ [n].

A function f : [n] → [n] divides the set [n] into a set of cyclic points S ⊂ [n],
restricted to which the function f is a permutation (forming a set if directed cycles),
and the set [n]\S of remaining points, which forms a forest of directed trees attached
to the cycles of S, see Fig. 6. The number of cyclic points is at least one, and if
|S| = 1 we say that the function is a loop-rooted tree.

Loop-rooted trees are identical to rooted labeled trees (Cayley trees) on n up to
the deletion of the loop at the root. The number of these trees is known to be nn−1
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Fig. 6. Figure taken from [12]. Left: A function f : [n] → [n].
The set of cyclic points is in red. Right: the function f transformed
into a doubly-marked tree via the Joyal bijection. Cycles of f have
been cut prior to their minima (underlined), and concatenated
by decreasing minima. One obtains a tree with a root (here 15)
and a marked vertex (here 9). Lower records on the branch are
underlined, they correspond to the cycle minima of the function f
(making the construction reversible).

[20]. The number of functions f : [n]→ [n] chosen uniformly at random is nn, thus
the probability that it is a loot-rooted tree is

nn−1

nn
=

1

n
,(1)

thus, the probability that a unique letter can synchronize the automaton goes to
0 as the size of it goes to infinity. However, conditionally that the automaton is
synchronizable, it can be synchronized by the word aH , where H is the height of
the tree. It is well known, that the height of a random tree is of order O(

√
n) w.h.p.

([21, 22]).

Before describing the main ideas of the proofs of [12] let us prove two simple
theorems.

Theorem 4. A random DFA synchronizes by the repetition of the word w if and
only if the application of w generates a loop-rooted tree.

Proof. a) Assume a word w synchronizes. Then, there are no cycles of length
greater than 1 in the function f (otherwise contradiction to the assumption). If
there are no loops, there can be only one tree or more non-connected trees. In the
latter case we have a contradiction to our assumption, since |S| is at least 2. Thus
if a word w synchronizes it is a loop-rooted tree.
b) Assume there is a loop-rooted tree. By the definition of a tree, there are no loops
in f . Since there is a loop-rooted tree, the directed graph is connected. Then, at
most in n−1 steps all states are mapped to the root by w. Thus w synchronizes. ⊓⊔

Definition 1. Two words are said to be conjugate if they differ only by a cyclic
permutation.

Theorem 5. If A is synchronized by w then A is synchronized by all conjugates of
w as well.

Proof. Given that w synchronizes, the root cycle C0 consists of |C0|, possibly
repeated states. Let w̃ be a conjugate of w. The proof is based on contradiction.
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Assume w̃ does not synchronize A. Then the application of w̃ results in either a
disconnected graph, or in a connected graph with a cycle of length greater than 1.

In the first case, the disconnected graph defined by w̃ has at least two cycles, C1

and C2. One of them (C1) might even be the the same as C0, however, the other
cycle C2 is distinct. But since w̃ is a cyclic permutation of w, the application of w,
starting at the appropriate state of C2 also leads to the same loop C2. Which is a
contradiction, since w generates a loop-rooted tree having only one cycle C0.

In the second case w̃ generates a connected graph with a cycle C3 longer than one.
w, being the conjugate of w̃, started at the right state also possesses the same loop
C3. But since w has only one loop C0, a contradiction is obtained. Thus, having
covered all cases, the proof is complete. ⊓⊔

The main ideas of the proofs of [12], as formulated in the original paper, are the
followings:

(1) one can hope that, for a relatively short (logarithmic) word w, and a random
automaton A, the one-letter automaton δw shares some qualitative properties
with a random function f . For example, one can expect that the probability
that it is a tree is of order roughly 1/n.

(2) if we take two words w1 ̸= w2 that are not conjugate, we can hope that
the facts that δw1 and δw2 are trees, are somehow independent. This intu-
ition relies on the fact that, from a given vertex v, the w1-transition and
the w2-transition outgoing from v, although they may share some underlying
transitions of A, are unlikely to coincide and thus close to being independent.

(3) consider the set of all words of length (1 + ϵ) log2(n), for ϵ > 0. The number
of such words is n1+ϵ ≫ n. From (1), we can hope that, in average, roughly
nϵ ≫ 1 of these words w are such that A is a w-tree. Moreover, from (2) we
can hope that this average value is in fact a typical value. That would imply
in particular that the number of such words goes to infinity w.h.p., and in
particular, that it is nonzero.





Part 1

Synchronization with w-trees



3. A numerical algorithm for finding w-trees

The main advantage of looking for short synchronizing words in the form of wH

for some short word w is the small amount of possible words, thus, the low compu-
tational cost. Since, based on [12] w.h.p. a word w of length l := ⌈(1 + ϵ) log2 n⌉
exists, such that ω = w|w|...w|w synchronizes A. The number of all possible w is
then roughly n, so even for very large automata the number of possibilities is quite
limited and a full search can be performed over the n possibilities. On the other
hand, the application of w on all states Q defines a directed graph with each vertex
having outdegree one. Thus, the whole structure of the graph might be explored in
n steps. However, by Theorem 4 only loop-rooted trees are synchronizing, and to
verify whether the underlying structure is a loop-rooted tree also at most n steps
are needed. Yet, to see that a w-transition does not result in a loop-rooted tree
much less steps might be enough.

In the following, we use the notation δ(Sl, w) = Sl+1, i.e., the application of w brings
state Sl to Sl+1. Starting in a state S1 and applying the w-transition m ≤ n times
the states will start to repeat themselves. If the first repetition satisfies Sm+1 ̸= Sm

the graph has a cycle longer than one, thus, it cannot be a loop-rooted tree, the
word w can be rejected and n−m operations are spared. If, however, Sm+1 = Sm

the search has to continue starting from a state Sm+2 which is not contained in
the set S1, S2, . . . , Sm+1. For this, the storage of the already investigated states is
necessary. Applying the mapping w to Sm+2 at most n −m times leads finally to
the attachment of the new branch to one of the states in S1, S2, ..Sm+1 (in which
case the search continues with a state not contained in the set of previously visited
states in the same manner until no states are left), or to the attachment of the chain
to itself, which means that the graph is not connected, thus not a w-tree, so it is
not synchronizing. This way, the search can be interrupted at any moment, and
the number of w-transitions reaches n almost only if the directed graph is indeed
a w-tree. In which case, as a byproduct of the procedure, the tree-structure along
with the height of the H tree is also obtained. The length of the synchronizing
word is then given by H × l.

The pseudocode of the algorithm is given in Algorithm 1. Since the algorithm is
linear with in n and the number of possible short words w changes also linear with n,
the finding of the SSW of the form w|w|...|w|w is proportional to n2. This algorithm,
in comparison to exact ones which are exponential in n, is very fast and can be
used effectively even for automata with many hundreds of thousands of states. In
contrast, the best exponential algorithm [19] known until now can efficiently handle
automata of less then 1000 states. The algorithm was implemented in MATLAB,
however, implementing it in e.g. C++ would probably increase its speed by several
factors. The parallelization of the algorithm is also easy since the processes after a
word w gets fixed are independent from each other.
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Algorithm 1 Decision algorithm whether A(Q, δ,Σ) is a w-tree

Synchable ← 1
SV ← ∅ ▷ Set of visited states
SN ←

⋃n
i=1 Qi ▷ Set of non-visited states

Qc ← Q1 ▷ Current state
loopFound ← 0
while loopFound = 0 do ▷ Finds the first loop in the graph

Qp ← Qc ▷ Previous state
Qc ← δ(Qc, w) ▷ w-transition
if Qc = Qp then

loopFound ← 1
else if Qc ∈ SV then

Synchable ← 0
return Synchable

end if
SV ← SV ∪Qc

SN ← SN\Qc

end while
while |SN | > 0 do ▷ Checks if the graph is a tree

Attached ← 0
Qc ← SN1

SB ← Qc ▷ Set of states in the current branch
while Attached = 0 do

Qc ← δ(Qc, w)
if Qc ∈ SB then ▷ New branch attaches to itself

Synchable ← 0
return Synchable

else if Qc ∈ SV then ▷ New branch attaches to the main branch
Attached ← 1
SV ← SV ∪ SB
SN ← SN/SB

else ▷ New branch visits a new cell
SB ← SB ∪Qc

end if
end while

end while
return Synchable ▷ Is only reached if the graph is a w-tree

4. Simulation results

In this section we present several simulation results obtained using Algorithm 1. To
obtain a first impression on the structure generated by w-transitions several plots
are shown in Fig. 7 for an automaton with n = 1000 states under the repeated
application of words w with different length.
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(a) |wk| = 1 (b) |wk| = 2

(c) |wk| = 10 (d) |wk| = 50

(e) |wk| = 200 (f) |wk| = 1000

Fig. 7. Graph structure generated by the repeated application of a
random word w of length k. In each case the size of the automaton
is n = 1000.
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Fig. 8. The probability of synchronization of a randomly selected
and repeated word w of length k on 10000 randomly selected au-
tomata of size n = 1000. The mean probability values for each k
are depicted with blue dots. The confidence bounds are given with
red; they can be obtained by assuming that the synchronization
probability follows a Bernoulli distribution with p(k).

4.1. Synchronizing probability of a repeated random word. A possible
experiment to get a better understanding of the structure of automata synchro-
nization with w-trees is the investigation of the probability that a repeated word
w of length k synchronizes. For k = 1 the result is already known and mentioned
in Eq. (1). However, no analytic results are known for k > 1. Fig. 8 shows the
results of a numerical experiment in which the size of the random automaton n was
fixed and a random word w of length k was repeated until it became clear whether
the automaton synchronizes or not. The experiment was repeated 10000 times for
every value of k from 1 to 2500 and the mean value for synchronization p̂(k) along
with its 95% confidence bound was calculated. Surprisingly, the function

p̃(k;n) = 1− exp(−k/n)(2)

fits p̂(k) with a very high accuracy. Its Taylor expansion around zero k/n shows
that for k = 1 the result is indeed p(k = 1) = 1/n, as the theory also predicts. It
would be interesting to obtain a heuristic argument about this problem.

In Fig. 9 the role of k and n are switched. In this case a randomly selected
word k of fixed length 50 is applied repeatedly on random automata of varying
size n. For each value of n, 10000 random automata are generated and evaluated.
The numerical results show, that the previously found function p(k, n) fits the
numerically obtained estimate of the probability p̂(n) with a good accuracy once
the automaton size n is large enough.
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Fig. 9. The probability of synchronization of a randomly selected
and repeated word w of length k = 50 depicted against the au-
tomaton size n. For each value of n, 10000 randomly selected
automata were evaluated. The mean probability values p̂(k) are
depicted with blue circles. The confidence bounds are given in
red. The function 1− exp(−k/n) fits p̂(n) with a a good accuracy
if the size of the automaton gets larger. The hyperbole k/n con-
verges to the experimental results only for very large values of n.
The value (1/2−

√
3/6)k estimates the n value where the function

1 − exp(−k/n) has its highest curvature. Around this value the
numerically obtained probabilities tend to have their maximum as
well.

4.2. Probability of the existence of a synchronizing word. In the previ-
ous section we investigated the synchronizing probability of a randomly selected
repeated word w of length k. However, the probability that any of the possible
2k word w of length k will synchronize when repeated is significantly larger. Con-
ditioned on the conjecture that the probability of synchronization of a two-letter
random automaton by the repeated application of a random word w of length k is
given by Eq. (2) the following result can be obtained.

Theorem 6. For increasing n and k, assume that w.h.p. a random word w of
length k by its repeated application synchronizes a random two-letter automaton A
of size n with probability p(k, n) = 1− exp(k/n). Further assume that

P (|δ(∞)(Q,w1)| = 1, |δ(∞)(Q,w2)| = 1) = P (|δ(∞)(Q,w1)| = 1)P (|δ(∞)(Q,w2)| = 1)

given w1 and w2 are not conjugates (otherwise P (|δ(∞)(Q,w1)| = 1, |δ(∞)(Q,w2)| =
1) = P (|δ(∞)(Q,w1)| = 1) ), i.e., whether w2 can synchronize A is independent of
the fact if w1 synchronizes A or not. Then, the probability that there exists a random
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word w of length k which synchronizes A approaches

pS(k, n) = 1− exp

(
−2k

n

)
.(3)

Note, that for sufficiently large k the assumption that two random words wH1

k,1 and

wH2

k,2 will synchronize with the same probability holds w.h.p.

Proof. First, we tackle the problem of self-conjugated words, as these have an
inner repetition, thus reducing the value of k to one of its divisors. Knowing that
the proportion of the number of self-conjugated words of length k to the number of
non-self-conjugated words tends to 0 with increasing k, we can neglect theses cases
in an asymptotic analysis. By the assumption that the synchronizing probability of
each random word is independent from the rest of the random words (except of its
conjugates) and by assuming that for the ”average” random word Eq. (2) holds, and
making it clear that these words represent the vast majority of all possible words
when k increases, we can write that the probability of A not being synchronizable
by any of the 2k words is

P (∄wk

∣∣|δ(∞)(Q,wk)| = 1) = (1− p(k, n))
2k

k

=

(
1−

(
1− exp

(
−k

n

))) 2k

k

= exp

(
−2k

n

)
(4)

where the exponent 2k

k takes into account the fact that if a word synchronizes then
all of its conjugates are synchronizing as well (see Theorem 5). Thus,

P (∃wk

∣∣|δ(∞)(Q,wk)| = 1) = 1− exp

(
−2k

n

)
.(5)

⊓⊔

Fig. 10 shows the comparison of formula (3) with numerically obtained values.

4.3. Syncronizing probability of individual words. Whether the assumption
of Proof 4.2 with regard to the equal probability of synchronizing of random words
is a good approximation can be investigated experimentally as well. In the following
experiment the size of the automaton are fixed to n = 1000 and the length of w
is chosen to be k = 64. 8 different words are investigated whether they generate
a w-tree. The first two words were generated randomly, however, the rest of the
words were chosen based on different strategies.

Table 1 shows the definition of words w1...w8. The last two words are only different
at the last entry. w2 is self-conjugate and has an effective length of k = 2, whereas
w7 has still effective length k = 64. This fact is highlighted evidently also in the
proportion of cases w8 generates a w-tree from the automaton. Fig. 11 shows
the numerically found probabilities of each word to generate a w-tree. Also the
experimentally obtained fit given by Eq. (2) is compared to the cases showing
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Fig. 10. Probability that a random two-letter automaton of size
n is synchronizable by the repeated application of any random
word w of length k. Numerically found mean probability values
for n = 21, 22, ..212 along with their 95% confidence intervals are
presented in gray-bluish colors. The analytic formula (3) is also
evaluated for the values n = 32, 128 and 1024. For large values of
n and k a good correspondence can be observed.

a good agreement with the first two words, which were generated by MATLAB’s
pseudo number generator. Somewhat surprisingly, the words w4-w7 having low
entropy, but yet being non-self-conjugate have significantly higher synchronizing
probability than randomly selected words. Word w3 possesses a pattern as well,
however, less trivial than words w4−w7 and its synchronizing probability is almost
the same as of the random words. This observation, might lead us to the idea to
formulate a conjecture about the higher synchronizing probability of low-entropy,
non-self-conjugated words. In the following experiment, though, it will be shown,
that the conjecture does not hold in general.

w1 = 1221121221121222111222121121222212221112221112112121121112111121
w2 = 2212212121121211121121122111112221211111111112221112221122111121
w3 = 1211211121111211111211111121111111211111111211111111121111111111
w4 = 1111111111111111111111111111111111111111111111111111111111111112
w5 = 1111111111111111111111111111111111111111111111122222222222222222
w6 = 1111111111111111111111111111111222222222222222222222222222222222
w7 = 1212121212121212121212121212121212121212121212121212121212121211
w8 = 1212121212121212121212121212121212121212121212121212121212121212

Table 1. Words used in the experiment. 1 and 2 corresponds to
the letter a and b, respectively

4.4. Synchronizing with low-entropy words. To investigate the performance
of low-entropy, non-self-conjugated words, we choose w based on the scheme of w4,
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Fig. 11. Synchronization probability of words of length k = 64 on
106 different random automata.

i.e., we choose every latter to be a, except the last one. In Fig. 12 convergence to a
certain probability value way below 1 can be observed. However, the synchronizing
probability is greater than the expected in the range of k = 20 . . . 80. From that on
the probability does not increase further with increasing k. The results of applying
the different, but still simple scheme w = 1212...121(1) is shown in Fig. 13. The
same effect can be observed as before, however, the interval where the probability
exceeds the prediction of Eq. (2) is a bit different, it lies in the range k = 30..100.

Remark. The interesting range of k in Eq. 3 is where O( 2
k

n ) = 1, i.e., log2(k) ≈ n.
In this range of values for k the synchronizability of automata is still not affected by
the effect of low-entropy words, which generally starts at somewhat larger values,
seemingly of order O(

√
n). Furthermore, the cardinality of such low entropy words

becomes negligibly small with respect to the total amount of possible words.

The experiment implies that trying to synchronize by the repeated use of a low-
entropy word instead of a random word is only advantageous if the word length is
rather short, but not too short. Otherwise, based on the approximation 1− exp

(
− k

n

)
a sufficiently long random words seems to synchronize the automaton almost surely.
This observation will be analyzed further by means of numerical simulations in the
next section.
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Fig. 12. Synchronization probability of a word in the form w =
111...112 of varying length k on 105 different random automata for
each value of k.

Fig. 13. Synchronization probability of a word in the form w =
1212...121(1) of varying length k on 104 different random automata
for each value of k.
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4.5. Experimental study of the height distribution of w-trees. Knowing
the height H of a w-tree immediately implies the knowledge of the length of the
reset word H × |w| associated with the tree. For k = 1 the generated trees are
random trees whose height distribution is known [21]. Let Hn be the random
variable denoting the height of a random loop-rooted tree with n vertices generated
by a single letter, i.e., k = 1. Then

lim
n→∞

P

(
Hn√
2n

< x

)
= H(x)(6)

where

H(x) = 4x−3π
5
2

∞∑
p=1

p2e−π2p2/x2

=

∞∑
ν=−∞

e−ν2x2

(1− 2ν2x2),(7)

whence

h(x) = H ′(x) = 4x

∞∑
ν=1

ν2(2ν2x2 − 3)e−ν2x2

.(8)

The moments of the distribution are given by

Ms =

∫ ∞

0

xsh(x)dx

= 2Γ(
1

2
s+ 1)(s− 1)ζ(s),(9)

where ζ(s) =
∑∞

m=1 1/m
s. For the first moment we have

M1 =
√
π(10)

and thus

E(Hn) ∼
√
2nπ ≈ 2.50663

√
n.(11)

The variance is

D2 = M2 −M1 =
π(π − 3)

3
.(12)

However, there are no analytical results on the height of random trees for k > 1.
Using Algorithm 1 a numerical study was performed to experimentally establish a
relationship between the height of a random w-tree generated by k-letter repeated
words on random DFA with n states. Figs. 14-15 show the structure of w-trees
generated by the repeated application of a word w of length k = 1 and k = 10
letters respectively. In Fig. 7 the same effect can be observed. Longer words w
tend to generate shorter trees.

Since not every repeated word generates a random tree, only the automata which
did so were considered . Fixing the value of n and k, random automata of size
n and random words of length k were generated until N w-trees were found. In
Fig. 16 the height distribution found in this way is depicted in a histogram. The
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Fig. 14. w-tree generated on an automaton with 50 states by the
repetition of one single letter (k = 1). H = 26.

Fig. 15. w-tree generated on an automaton with 50 states by the
repetition of a word w of length k = 10. H = 10.

lognormal distribution seems to fit the data well. The experiment was repeated
with different values of n and k and the lognormal fit with PDF

f(x) =
1

xσ
√
2π

exp

(
− (log x− µ)2

2σ2

)
(13)

with parameters µ(n, k) and σ(n, k) seems to fit the height distribution well in these
cases too. Note, that the expected value of the random variable X following the
lognormal distribution is given by

E[X] = exp

(
µ+

σ2

2

)
(14)

and its median is given by

X̃ := F−1(0.5) = eµ.(15)

Using this ansatz a parameter study can be performed. First, the value of k was
held fixed and the values of n were varied. Random DFA were generated until
10000 w-trees were found. The estimated value of exp(µ) is depicted in Fig. 17. A
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Fig. 16. Histogram of the height of w-trees generated on random
DFA of size n = 10000 by repeatedly applying a short random
word of length k = 14. The total number of generated random
DFA was 35 610 369 among which 50 000 w-trees were found. The
average length of synchronizing words were 917.95 The simulation
took 20231 seconds to perform. A lognormal fit with µ = 4.15891±
1.96 · 0.0009847 and σ = 0.220921 ± 1.96 · 0.0006963 seems to fit
the distribution well.

fit on the obtained results of the form

H̃(n, k) = a(k)
√
n− c(k) log(n)(16)

seems to have a good correspondence with the simulation results. The presence of
the logarithmic correction term will be justified in Sec. 6.3.

Secondly, we can fix the value of n and let k vary. Fig. 18 shows the results of an
experiment carried out this way: the estimated value exp(µ̂). A fit of the form

H̃(n, k) =
A(n)√

k
(17)

shows a good correspondence with the simulation results.

Combining Eq. (16) and Eq. (17) we can write

H̃(n, k) = a

√
n

k
− c

log n√
k

.(18)

Fig. 19 shows the fitted surface on the numerically obtained data of exp(µ̂) where at
each grid point 2000 w-trees were found. This numerical results also coincides with
the conjecture of [12] based on analytic results. The median length of synchronizing
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Fig. 17. The estimated value of expµ (black dots) is depicted
against the automaton size n. Its 95% confidence bounds are shown
in red. A fit of the form a

√
n− c log(n) is also shown in blue. The

estimates are obtained using 10000 w-trees for each value of n.
R2 = 0.9999.

words is obtained by multiplying the results by k, i.e.,

˜|ω| = a
√
nk − c log n

√
k.(19)

The values of the parameters based on the fit are

a = 2.497 (2.487, 2.506),(20)

c = 0.9242 (0.8789, 0.9694).(21)

Due to Eq. (3) w.h.p. a word w of length k ≈ ⌈log n⌉ exists such the the automaton
is synchronized by ω = w|w|..w|w. Thus, the expected length of the synchronizing
words in form of wH is approximately

˜|ω| = a
√
n log n− c log

3
2 n.(22)

Using this ansatz to fit a curve on numerically obtained data we find the values

a = 2.724(2.704, 2.745),(23)

c = 0.5284(0.221, 0.8359).(24)

The 95% confidence bounds of parameter c almost include 0, thus this parameter
is not really significant in the fit. Removing it the fit can be further simplified by

˜|ω| = a
√
n log n(25)
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Fig. 18. The estimated value of expµ (black dots) is depicted
against the length of the repeated word k. The automaton size is
fixed at the value n = 2000. A fit of the form a/

√
k is also shown

in blue. The estimates are obtained using 10000 w-trees for each
value of k. R2 = 0.9991.

Fig. 19. The estimated value of expµ (black dots) is depicted
against the size of the automata n and the length of the repeated
word k. The fitted equation is H̃(n, k) = 2.497

√
n
k − 0.9242 logn√

k
.

For each grid point 2000 w-trees were found. R2 = 0.9995.
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n 21 . . . 28 29 210 211 212 213 214 215 216

N 5 000 6 000 5 000 4 800 2 400 1 200 800 400 200

Table 2. Sample sizes used in the simulation to obtain the mean
SSWs using w-trees with k = log2 n.

Fig. 20. Mean SSW length depicted against the number of states
n using w-trees with k = log2(n).

where

a = 2.693(2.68, 2.706).(26)

In Fig. 20 the fit in Eq. (25) is depicted with automaton size given in Table 2.
Since the length of the repeated word k = |w| is very short even for large automata
(k = 1, 2, . . . , 16 in this simulation), the increment of k always influences the length
of SSWs of form wH . Some rule has to be made in order to determine a unique k
to each value of n: based on Eq. (3) a choice of the form k = log2 n is the most
reasonable. For automata with size differing from powers of 2 rounding to the next
integer is necessary. When the number of states is increased in a linear manner,
the increment of k at a certain value of n will take place increasing the number of
possible short words w by a factor of 2, which leads to a sudden decrease in the
SSWs of this kind. The increment of k can be only made seamless if the automaton
size is chosen to be a power of 2.

To get an idea about the standard deviation of the height of w-trees a numerical
study was performed first fixing tha value of k = 15 and increasing the value of
n = 50, 100, . . . , 5000. 5000 w-trees for each grid points were found. The standard
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Fig. 21. The standard deviation of the height of w-trees normal-
ized by the mean value of the tree height depicted against the
automaton size n for a fixed value of |w| = 15. In each grid point
5 000 w-trees were used.

deviation normalized by the mean tree height is plotted in Fig. 21. The normalized
standard deviation ofH does not seem to tend towards zero, based on the simulation
data the asymptotic value seems to be

σ(n =∞, k = 15)

µ(n =∞, k = 15)
= 0.219 (95% CI : 0.2173, 0.2208).(27)

Fig. 22 the case is shown where the value of n is fixed and the length k of the
repeated word w is increased where for each value of k 20 000 w-trees were found.
In the depicted region the normalized standard deviation shows a slight increase.
It is because the standard deviation of the tree height decreases less than the mean
value of the tree height. However, for k → ∞ we expect that the height of the
random trees tends to 2 and so the standard deviation tends to 0. Thus, the
normalized standard deviation will also tend to 0. The turning point, where the
normalized standard deviation starts to decrease, however, is certainly not achieved
yet for the investigated range of k = 1 . . . 50.
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Fig. 22. The standard deviation of the height of w-trees normal-
ized by the mean value of the tree height depicted against the
length of the repeated word |w| = k for fixed n = 2000. In each
grid point 20 000 w-trees were used.



Part 2

Synchronization with random

words



5. A result from the literature

In this chapter a modeling approach by Markov chains for the random automata
synchronization problem will be presented. To justify the approach, an old theorem
from the literature is presented first.

Higgins showed that a random automaton with an alphabet of size larger than 2n
has, w.h.p, a synchronizing word of length ≤ 2n [23]. His proof is repeated here
literally:

Definition 2. (Full transformation semigroup) The full transformation semigroup
of a finite set is a semigroup that consists of all functions from the set to itself. It is
called the ”full” transformation semigroup because it includes all possible functions
from the set to itself, rather than just a subset of them.

Let Tn denote the full transformation semigroup of a finite set {1, 2, . . . , n}. De-
note the range of α ∈ Tn by ∇α. Let Xi be the random variable with the value
|∇α1α2...αi|

n , where α1α2 . . . αi are randomly chosen members of Tn (meaning that
each member of Tn is equally likely to be chosen and repetitions are allowed). In [24]

it was shown that the limiting means ofX1 andX2 are 1−e−1 and 1−ee−1−1 respec-
tively. The natural extension of this result is given below. Denote limn→∞ E[Xi]
by Mi, and take M0 = 1.

Theorem 7. Mi+1 = 1− e−Mi for all i = 0, 1, 2, . . . , V ar[Xi] <
1
n and in addition

Mi ∼ 2/i as i→∞.

Proof. We approach the proof by first supposing that α1, α2, . . . , αi have been
randomly chosen from Tn and that |∇α1α2 . . . αi| = r. The value of |∇α1α2 . . . αi+1|
then has the same distribution as X, the number of non-empty boxes in a ball
tossing experiment in which r balls are tossed independently at random into n
boxes. From [25, Ch. 2,Sec. 11,exs 8 and 9] we obtain that for 1 ≤ m ≤ n,

P (X = n−m) =: pm(r, n) =

(
n

m

) n−m∑
ν=0

(−1)ν
(
n−m

ν

)
(n−m− ν)r

nr
.(28)

Replacing n and m by n− 1 and m− 1 respectively in (28) we obtain

pm−1(r, n− 1) =
m

n

(
n

n− 1

)r

pm(r, n).(29)

Adding equation (29) over m we get

1 =
1

n

(
n

n− 1

)r n∑
m=1

mpm(r, n),

or in other words

E[X] = n− n

(
n− 1

n

)r

.(30)
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All the factorial moments of Y = n − X can be calculated in this manner. In
particular

Pm−2(r, n− 2) =
m(m− 1)

n(n− 1)

(
n

n− 2

)r

pm(r, n), whence

1 =
1

n(n− 1)

(
n

n− 2

)r n∑
m=1

m(m− 1)pm(r, n)

⇒ E[Y (Y − 1)] = n(n− 1)

(
n− 2

n

)r

.

Since Var[X] = Var[Y ] we get

Var[X] = n(n− 1)

(
n− 2

n

)r

+ n

(
n− 1

n

)r

− n2

(
n− 1

n

)2r

(31)

or

Var[X]

n
= n

((
1− 2

n

)r

−
(
1− 1

n

)2r
)

+

(
1− 1

n

)r

−
(
1− 2

n

)r

.(32)

Note the first and third terms of the right hand side of (32) are negative while the
second is bounded above by one. Thus we have Var[X] < n, independently of the
rank r. Therefore Var[Xi] < 1/n. The first statement of the theorem can now
be proved. For i = 0 the result follows from (30) upon putting r = n. Assume
inductively that the statement holds for i = k− 1, k ≥ 1. Let ε, δ > 0 be given. By
Chebyshev’s Inequality and the fact that σXk

< 1√
n
it follows that for n sufficiently

large P (|Xk −Mk| < δ) > 1− ε.

The theorem is now obtained by noting that

E[Xk+1|Xk = λ] = 1−
(
1− 1

n

)nλ

where λ almost surely lies in the arbitrarily small interval (Mk − δ,Mk + δ) for
sufficiently large n. From what has been proved and the fact that 1− x < e−x for
all x > 0 we see that the sequence (Mi)i≥0 is a monotonically decreasing sequence
which must approach 0, the unique fixed point of f(x) = 1− e−x.

Denote iM(i ≥ 0) by Ni. We complete the proof by showing that Ni → 2 as
i → ∞. Indeed, as will be proved, the sequence (Ni)i≥0 is strictly increasing
and so 2/i is an over estimate for Mi. For illustration and later reference we
tabulate Ni for 0 < i < 10. First, we verify that Ni > 1 for all i > 2. By

i 1 2 3 4 5 6 7 8 9
Ni .632 .937 1.12 1.25 1.34 1.41 1.47 1.51 1.55

inspection N3 > 1. The claim is now established by showing that if Ni+1 ≤ 1
then Ni < 1 (i > 2). Since e > (1 + 1/i)i it follows that e−1/i < i/(i + 1). Also
Ni+1 ≤ 1⇒ e−Mi ≥ 1

i+1 > e−1/i ⇒ Ni < 1, as asserted.

Next we prove that

Ni < 2− 1

i
for all i > 0.(33)
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This statement is the same as saying that Mi < 2i−1
i2 . Certainly (33) is true for

i = 1. We prove (33) in general by showing that Mi ≥ 2i−1
i2 , (i > 1) implies that

Ni−1 > 2− 1
i−1 . From our assumption we obtain

Mi−1 = − log(1−Mi) ≥ −2 log
(
1− 1

i

)
= 2

∞∑
k=1

1

kik
.

Hence Mi−1 > 2
(
1
i +

1
2i2

)
= 2i+1

i2 . Thus

Ni−1 >
(i− 1)(2i+ 1)

i2
= 2− i+ 1

i2
> 2− 1

i− 1
,

as required. The next step is to prove that (Ni)i≥0 is strictly increasing. By the
table we see this is true for i < 10, so take i ≥ 10. We wish to prove that Ni > Ni−1,
for all i ≥ 10, and since

Ni−1

i− 1
= − log

(
1− Ni

i

)
this is equivalent to showing that

Ni

i− 1
>

Ni

i
+

N2
i

2i2
+

N3
i

3i3
+ . . . .(34)

Since

1

i− 1
− 1

i
=

∞∑
k=2

1

ik
,

statement (34) can be written as

S =

(
Ni −

N2
i

2

)
+

1

i

(
Ni −

N3
i

3

)
+

1

i2

(
Ni −

N4
i

4

)
+ . . . > 0.(35)

The function y = x− xk

k is strictly decreasing for all x > 1, and since 1 < Ni < 2− 1
i

we have

S >

(
2− 1

i

)
− 1

2

(
2− 1

i

)2

+
1

i

(
2− 23

3

)
+

1

i2

(
2− 24

4

)
+ . . . .

Hence

S >
1

i
− 1

2i2
+ 2

∞∑
k=1

1

ik
−

∞∑
k=3

2k

kik−2

>
1

i
− 1

2i2
+

2

i− 1
− 8

3i
−

∞∑
k=4

2k−2

k − 2

=
2

i− 1
− 5

3i
− 1

2i2
− 4

i(i− 2)

=
2i3 − 21i2 + 13i− 6

6i2(i− 1)(i− 2)
> 0 as i ≥ 10.

Therefore the sequence (Ni)i≥0 is strictly increasing.
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Since (Ni)i≥0 is increasing and bounded above by 2, limi→∞ Ni = N exists. We
have

0 < i(Ni+1 −Ni) = i
(
(i+ 1)

(
1− e−Mi

)
− iMi

)
= i

(
(i+ 1)

(
1−

(
1−Mi +

M2
i

2!
− . . .

))
− iMi

)
= i

(
Mi −

iM2
i

2
− M2

i

2
+

(i+ 1)M3
i

3!
− . . .

)
= Ni −

N2
i

2
− NiMi

2
+N2

i

∞∑
k=3

(−1)k−1Mk−2
i

k!
+Ni

∞∑
k=3

(−1)k−1Mk−1
i

k!
.

Now, limi→∞ Mi = 0, the series have alternating signs, and the absolute value of
the terms of the series are decreasing, whereupon it follows that

0 ≤ lim
i→∞

i(Ni+1 −Ni) = N − 1

2
N2.

If N − 1
2N

2 = δ > 0 then N =
∑∞

i=0(Ni+1−Ni) would be infinite as the harmonic

series diverges. Hence N − 1
2N

2 = 0, and so N = 2 or 0. The latter alternative is
impossible whence the proof is complete.

⊓⊔

Consequences. As n → ∞, T
n → U , where U has the same distribution as∑∞

j=2
2Vj

j(j−1) , where Vj has the standard exponential distribution: P (Vj > x) =

e−x, for x ≥ 0. Also limn→∞
E[T ]
n = 2.

Thus the average product length before a constant map results is about 2n. The
slow down in the rate of collapse towards the end of the process is highlighted
by the observation that given that |∇α0| = 2, the mean value of i such that
|∇α0α1 . . . αi| = 1 is n.

This result is in a good correspondence with the results of Quattropani and Sau on
the asymptotic mean value of the synchronization time of random DFA [26].

6. Modeling with Markov chains

The excerpt from Higgins’ paper ends here. The case of a two-letter automaton is
without doubt different from the case when a new, independent random mapping
is applied in every step, yet, simulation results do not differ significantly for both
cases. In Fig. 23 the mean occupancy number, i.e., the average number of non-
empty states is depicted against the number of randomly applied letters. The plot
also depicts the 95% percentiles of the distribution. The size of the automaton is
n = 1000 and N = 10000 automata were investigated in both cases. In the mean
value, practically no difference can be seen on the plot.

As we can observe, the two results are almost identical, we can give reasonable
asymptotics for automata sychronization by assuming a random mapping in every
step.
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Fig. 23. Mean occupancy number depicted against the number of
steps when applying a random letter from a 2-letter alphabet or a
new, independent random mapping in each step. With solid blue
line the mean occupancy number of the 2-letter alphabet and the
95% percentiles of the distributions are shown. With red the mean
and 95% percentiles of the distribution of the occupancy number
is shown when in every step a new random mapping is applied.
The size of the individual automata is n = 1000 and N = 10000
automata were generated in each case.

For a better graphical representation the relative error of the simplifying assumption
of new, independent random mappings compared to the application of random
letters from a 2-letter random automaton is depicted in Fig. 24. We can observe
that the relative error is mostly within 1%, but for small values of k it is significantly
less. Thus, in the following we replace our automaton with an urn model and
we construct a Markov process with n states. The transition probabilities of the
Markov chain are given in Eq. (36) by the classical occupancy distribution [23, 27].
For further details regarding the statistical properties of this distribution we refer to
[27]. Each state of the Markov chain corresponds to a given occupancy number. In
each step the occupancy number can only get reduced or stay the same, no increase
is possible, which simply means, that the already synchronized states cannot get
desynchronized. This implies that the structure of the transition probability matrix
is lower-diagonal. Every entry above the main diagonal is 0.

The mth column and rth row of the transition probability matrix is then given by

Pr,m =

(
n
m

)
m!
{

r
m

}
nr

=
n!

(n−m)!nr

m∑
i=0

(−1)i (m− i)r

i!(m− i)!
.(36)

The meaning of the formula is the following: in total, there are nr possible ordered
placements of r labeled balls into n urns. If m boxes are occupied, i.e., the oc-
cupancy number is m ≤ r, then there are

(
n
m

)
possible choices for the boxes into
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Fig. 24. Relative error of the mean occupancy number depicted
against the number of steps when applying a random letter from a
2-letter alphabet or a new, independent random mapping in every
step, the underlying data is also presented in Fig. 23. The size
of the individual automata is n = 1000 and N = 10000 automata
were generated in each case.
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Fig. 25. The structure of the probability transition matrix of the
Markov chain generated by the classical occupancy distribution for
n = 100.
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which balls are placed. By the inclusion-exclusion principle, the number of ways r
balls can be placed into m boxes by taking into account their order is

m∑
i=0

(−1)i (m− i)r

i!(m− i)!
= m!

{
r
m

}
.(37)

Combining these observations Eq. (36) is obtained. The fraction with curly brackets
denotes the Stirling numbers of the second kind. The significant probability values
lie around a backbone curve, defined by the mean value of the distribution for a
fixed r which is given by Eq. (30). The variance for fixed r is given by Eq. (31).
In Fig. 25 the matrix is visualized for the case n = 100.

Evaluation of the probability values of the classical occupancy distribution is some-
what difficult numerically, since the terms to sum become huge, yet the result is a
number between 0 and 1. To maintain precision, a symbolic script was used in the
software Mathematica. In the range n = 1, 2, . . . , 1000 the matrix P was evaluated
and stored to be able to perform calculations with it in MATLAB.

The Markov chain is absorbing with the only absorbing state m = 1 which corre-
sponds to the synchronization of the automaton. It can be rewritten in the form

P =

(
Q R
0 I

)
,(38)

where the rows and columns of the matrix are reorganized such, that the first row
and column is placed as last row and column. Q is the rest of the matrix, i.e., all
the transient states. I is the identity matrix. The fundamental matrix is given by

N = (I−Q)−1(39)

and the expected absorption time can be calculated by

τ = Nc with c = [11 . . . 1]⊤.(40)

Since the process always starts from the last state n, we are interested in the
last entry of the vector of the expected absorption time τn−1. Fig. 26 shows the
relative error of the estimate 2n compared to the numerically calculated expected
absorption times up to n = 1000. In the beginning the estimate 2n performs quite
badly and it is easy to understand why: for an automaton of size 1 it predicts the
absorption time 2, whereas the automaton is already synchronized. For n = 2 it is
easy to see that the expected time is 2 and not 4, which is based on the prediction.
For increasing n the prediction becomes more and more accurate and converges to
2n as it was shown by [23].

Furthermore, we can get the probability of the automaton being synchronized in k
steps under the application of random letters by computing

P (|δk(Q)| = 1) = (Pk)n,1.(41)

Since applying k random letters in a row offers us 2k possibilities, the solution of

(Pk)n,12
k = 1(42)

gives us a prediction for the expected value of the SSW. Fig.27 represents the results
compared to simulation results of exactly determined SSWs from [19] received as
a courtesy from the paper’s authors. The Markov chain based prediction gives a



6. MODELING WITH MARKOV CHAINS 37

Fig. 26. Relative error of the absorption time compared to the
asymptotic estimate 2n.

Fig. 27. Predicted length of the mean SSWs obtained by the
Markov chain approach depicted against the automaton size n
(blue circles). Fit on the data of the form a

√
n − c log n − d with

R2 > 0.9999 (orange line). The green line represents the simula-
tion results of [19] showing the mean value of exactly determined
SSWs.

result that is approximately 2 letters shorter on the whole interval than the ones
found by [19].
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Fig. 28. Distribution of the occupancy number after the 100 and
200-fold application of a random mapping with n = 2500.

6.1. Estimation of the mean SSW length using the probability transition
matrix. Let Xk be a random variable following the probability distribution

f(m;n, k) = (Pk)n,m for 1 ≤ m ≤ n.(43)

It is the distribution of the occupancy number after the application of k random
mappings. Fig. 28 shows f(m; 2500, 100) and f(m; 2500, 200) respectively. The
resulting distributions resemble normal ones with µ(n, k) and σ(n, k). Thus, by
fitting curves on the parameters, the SSW can be estimated by solving equation

f(m = 1)2k =
2k

σ(n, k)
√
2π

exp

(
− (1− µ(n, k)2)

2σ(n, k)2

)
= 1(44)

for k. To do so, we first have to find µ(n, k) and σ(n, k). We start with µ(n, k).
Considering that the expected value of non-empty boxes after tossing µk balls into
n containers is given by

µk+1 = n

(
1−

(
1− 1

n

)µk
)

(45)

with µ0 = n, we have defined a non-linear difference equation which also approxi-
mates the mean value of the occupancy number due to Theorem 7 . This equation
does not possess any analytic solution, therefore we perform some simplifications
by rearranging it into

log
(
1− µk+1

n

)
= µk log

(
1− 1

n

)
(46)

and expanding it into Taylor series around µ = 0:

−µk+1

n
−

µ2
k+1

2n2
−O(

1

n3
) = −µk

n
− µk

2n2
−O( 1

n3
).(47)
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Now, we neglect all the terms of order less than O( 1
n3 ), rearrange and divide by

∆k = 1.

µk+1 − µk =
µk − µ2

k+1

2n
: ∆k(= 1).(48)

After neglecting the indices of the right hand side and writing d instead of ∆ we
have the differential equation

∆µ

∆k
=

µ− µ2

2n
∆→ d(49)

dµ

dk
=

µ− µ2

2n
(50)

with the initial condition µ(0) = n. It is a Bernoulli differential equation which has
the solution

µk =
ne

k
2n

n(e
k
2n − 1) + 1

.(51)

If we are only interested in the solution for small values of k we can also neglect
the term µ in 49 yielding the solution

µk =
2n

2 + k
.(52)

This estimate is meaningful, since we are looking for the SSWs, thus the value of
k compared to n will always stay rather small. For large values of k this solution
tends to 0, thus it is unrealistic, since the smallest value the occupancy number can
take is 1. However, Eq. (51) fulfills this requirement. Surprisingly, Eqs. (51-52)
fit the simulation data quite well. Fig. 29 depicts the comparison of the analytic
estimated with simulation data. Thus for the mean of the normal distribution
observed in Fig. 29 we have

µ(n, k) ≈ 2n

2 + k
.(53)

It remains to find σ(n, k), which will be done through curve fitting. In Fig. 30
standard deviation of the distribution defined in (43) is depicted against the value
of k for n = 2500. A fit of the form

σ2(k;n) =
2n

3k +B
(54)

seems appropriate. Finding a plausible value for B is undertaken below. The
variance of a random variable with the PDF f(m;n, 1) is given by Eq. (31). One can
observe that the hyperbolic shape is followed only for k > 2, there is no reduction
in the variance from σ2(m;n, 1) to σ2(m;n, 2) since in the first step the distribution
of the occupancy number is degenerate with P (m = n|n, k = 0) = 1. Thus in the
first step, the values first spread out having a variance

Var[X1] = n(n− 1)

(
n− 2

n

)n

+ n

(
n− 1

n

)n

− n2

(
n− 1

n

)2n

.(55)

In the next step the variance Var[X2] stays more or less constant and only for
Var[Xk] with k > 2 a hyperbolic decrease might be observed. By assuming Var[X1] ≈
Var[X2] the value of B can be chosen such that the hyperbola passes through the
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Fig. 29. Mean occupancy number depicted against the number
of steps. Simulation data on random 2-letter automata is shown
in light blue along with its 95% confidence bound estimate. The
numerical solution of the recursive equation is shown in deep blue
which for large k overlaps almost perfectly with the solution of
Eq. (49) in red. The solution of the simplified differential equation
given in Eq. (52) is given in black. In purple the expected value of
a random variable is depicted which follows the distribution given
in Eq. (43). A very good correspondence with the simulation data
can be observed.

point (k = 1,VarX1). Taking into account Eq. (55) and approximating the power
terms by the exponential function the value

B := 2

(
1

e−1(1− 2e−1)
− 3

)
= 14.574(56)

can be derived. Combining Eq. (44) with Eqs. (53-54) we obtain

1√
2π 2n

3k+B

exp

(
−
(1− 2n

k+2
)2

2 2n
3k+B

)
2k = 1(57)

−1

2
(log 4π + logn− log(3k +B))−

(
1− 2n

k + 2

)2
3k +B

4n
+ k log 2 = 0(58)

−2 log(4π)n(k + 2)2 − 2 log(n)n(k + 2)2 + 2 log(3k +B)n(k + 2)2 − (3k +B)(k + 2)2

+4n(3k +B)(k + 2)− 4n2(3k +B) + 4n(k + 2)2 log(2)k = 0.(59)

Since we expect that k = O(n 1
2 ) we can neglect all the terms but the two last ones

for large values of n, as they are all of order less than O(n 5
2 ). Thus, neglecting the
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Fig. 30. Standard deviation of the occupancy number depicted
against the number of steps k. Fit in the form σ2(k;n) = 2n

3k+B

yields a good correspondence with the numeric data. The number
of states was chosen to be n = 2500. B ≈ 14.57

lower order terms of the remaining expression we find

k ≈
√

3

log 2
n ≈ 2.08

√
n.(60)

The comparison of the asymptotic simplification given by Eq. (60) with the nu-
merical solution of Eq. (57) is shown in Fig. 31. The mean length of the SSWs
grows with the square root of the number of states. The obtained formula predicts
a somewhat shorter length than the ones found by simulations in [17, 19]. It is
due to the fact that the tails of the normal distribution are much heavier than the
tails of the distribution defined in Eq. (43).



42

Fig. 31. Comparison of different estimates of the mean SSW of
a 2-letter random DFA depicted against the number of states n.
With green the numerically obtained solution of Eq. (57) is shown,
whereas yellow shows the asymptotic estimate obtained by Eq.
(60). With purple the numerically obtained solution of Eq. (67)
is shown, which coincides with its asymptotic estimate Eq. (68)
almost perfectly (shown in orange). The blue line represents the
estimate given by [17].

6.2. Hitting time based estimation of the length of SSWs. Without using
the simplified Markov chain model, we still can make an observation regarding the
distribution of the hitting time under application of random random letters, i.e.,
when the occupancy number of a 2-letter random DFA reaches the value 1.

Based on several simulations, the absorption time (or hitting time) of the random
variable corresponding to the occupancy number is approximated well by the inverse
Gaussian distribution (see Fig. 32 and Fig. 33). Classically, this distribution
emerges as the first passage time through a certain coordinate of a particle with
drift superposed with a Brownian motion. The PDF of the distribution is given by

f(x;µ, λ) =

√
λ

2πx3
exp

(
−λ(x− µ)2

2µ2x

)
(61)

where parameter µ denotes the mean of the distribution and λ is the shape param-
eter. If X follows an IG distribution then we have

E[X] = µ,(62)

E

[
1

X

]
=

1

µ
+

1

λ
.(63)
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Fig. 32. Histogram and Inverse Gaussian fit of the synchroniza-
tion time under the subsequent application of random letters. The
results were obtained on 100 000 random DFA of size n = 2500.
13 DFA did not synchronize even after 50000 random letters, thus
they were labeled as non-synchronizing and removed from the sam-
ple.

These facts are useful when estimating the parameters of the distribution. The re-
sults of a numerical analysis performed with automata of different size are presented
in Table 3. It seems that

lim
n→∞

µ

n
= 2,(64)

lim
n→∞

λ

µ
= const. ≈ 3.5− 3.6.(65)

Thus, the estimation of the SSWs becomes possible by solving√
λ

2πx3
exp

(
−λ(k − µ)2

2µ2k

)
2k = 1(66)

for k. Taking the logarithm and rearranging the terms we obtain(
log 2− λ

2µ2

)
k2 − 3

2
k log k +

(
λ

µ
+

1

2
log

λ

2π

)
k − λ

2
= 0.(67)

Note that limn→∞
λ
µ2 = 0. As limn→∞ λ = limn→∞ µ =∞ it is clear that the terms

of order less than O(k2) will become negligible, thus asymptotically the solution
tends to

k =

√
λ

2 log 2
≈
√

3.5

log 2
n ≈ 2.247

√
n,(68)
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Fig. 33. Probability plot comparing the distribution of data with
the inverse Gaussian distribution. The results were obtained on 100
000 random DFA of size n = 2500. 13 DFA did not synchronize
even after 50000 random letters, thus they were labeled as non-
synchronizing and removed from the sample.

n µ̂ λ̂ λ̂/µ̂
5 11.46 10.84 0.9458
10 25.72 30.06 1.1686
25 56.00 105.6 1.8717
50 105.6 246.7 2.3365
100 204.7 568.9 2.7785
200 403.7 1261 3.1222
300 603.9 1976 3.2711
500 1004 3411 3.3956
750 1503 5116 3.4020

1000 2009 6941 3.4551
1500 2996 10485 3.4986
2000 4003 14117 3.5269
2500 5002 17723 3.5435
4000 7992 28703 3.5917
6000 11961 42825 3.5804
10000 20003 71537 3.5763

Table 3. Parameter estimates depending on the automaton size.

which slightly underestimates the numerically obtained estimate 2.5
√
n− 5 found

by [17]. The reason why the asymptotic estimate is below the observed length of
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SSWs comes from the fact that the inverse Gaussian distribution has heavier left
tail than the true, but unknown distribution of the data. The estimate is plotted
in Fig. 31.

6.3. Estimation of the upper bound of the mean SSW length–The ”lucky”
word. In this section the estimation of the upper bound of the mean SSWs is un-
dertaken. Based on the observation that for small values of k a ”typical” word
follows the curve given in Eq. (52), that is,

m(k) ≈ 2n

2 + k
,(69)

where m denotes the occupancy number. m reaches the value
√
n in approximately

2
√
n steps. We assume that a realization mk of the random variable Xk, being

the occupancy number of the Markov process after k steps can lie in the lowest
2−k quantile of the distribution of Xk even if the values of mk−l with l > k/2
were around E[Xk−l]. In other words, a certain word performs quite mediocre with
its starting letters, i.e., not reducing the occupancy number more than any other
”typical” random words, but after a certain number of steps, the accumulated luck
of the words leads it into the 2−k quantile of the distribution after the kth step,
making it the SSW. Assuming that the word gets ”lucky” when the occupancy
number reaches the magnitude O(

√
n), more specifically the closest integer num-

ber to
√
n, that we denote by M := ⌊

√
n⌋, we can estimate the number of steps

the synchronization takes in the following way: the probability of decreasing the
occupancy number at least by one in a step is given by Eq. (36) as

P (mk+1 < mk) = 1− P (mk+1 = mk) = 1−
(

n
mk

)
mk!

{
mk

mk

}
nmk

= 1− (n)mk

nmk
,(70)

where (x)m denotes the falling factorial, i.e., (x)m = x(x−1)(x−2) . . . (x−m+1).
After expansion of the falling factorial the coefficient of xl is given by the Stirling
numbers of the first kind s(m, l) with 1 ≤ l ≤ m. The following identities regarding
Stirling numbers of the first kind are known

s(m,m) = 1,(71)

s(m,m− 1) = −
(
m

2

)
= −m(m− 1)

2
= −m2

2
+

m

2
,(72)

s(m,m− 2) =
3m− 1

4

(
m

3

)
=

1

8
m4 − 5

12
m3 +

3

8
m2 − 1

12
m,(73)

s(m,m− 3) = −
(
m

2

)(
m

4

)
= − 1

48
m6 +

7

48
m5 − 17

48
m4 +

17

48
m3 − 1

8
m2.(74)
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In case m ≤M we can rewrite Eq. (70) as

P (mk+1 < mk) = 1−
∑mk−1

i=0 s(mk,mk − i)nmk−i

nmk

= 1− s(mk,mk)−
s(mk,mk − 1)

n
− s(mk,mk − 2)

n2
− s(mk,mk − 3)

n3
−O(n−4)

=
mk(mk − 1)

2n
−

1
8m

4
k − 5

12m
3
k + 3

8m
2
k − 1

12mk

n2

+
1
48m

6
k − 7

48m
5
k + 17

48m
4
k − 17

48m
3
k + 1

8m
2
k

n3
−O(n−4))︸ ︷︷ ︸

>0 for mk≈
√
n otherwise o(1)

>
mk(mk − 1)

2n
−

1
8m

4
k − 5

12m
3
k + 3

8m
2
k − 1

12mk

n2

>
3mk(mk − 1)

8n
.

(75)

Now, the probability that from occupancy number m = M on the word w is such
that it decreases the value of mk in each step by one until it reaches 1 in m − 1
steps, is bounded below by

P (mk+i = mk+i−1 − 1 for all i ∈ (1,m− 1)) =

M∏
i=2

3i(i− 1)

8n
(76)

=

(
3

8

)M−1
(M !)2

MnM−1
.(77)

The probability is bounded below, since it assumes decrements always only by one,
however decrements by more than one are also possible.

After applying k letters w.h.p. one synchronizing word is such that the resulting
occupancy number lies in the lowest 2−k quantile of the distribution. Thus, using
a word of k letters the automaton is synchronized w.h.p. if(

3

8

)M−1
(M !)2

MnM−1
2k > 1.(78)

Finding the value of k where the above inequality is tight we can give an upper
bound on the mean value of the shortest syhncronizing words. Taking the logarithm
we can write

(M − 1) log
3

8
+ 2 log(M !)− logM − (M − 1) log n+ k log 2 = 0(79)

Making use of Stirling’s formula, i.e.,

M ! ≈
√
2πM

(
M

e

)M

,(80)

we can write Eq. (79) as

M log
3

8
− log

3

8
+ log(2π) + 2M logM − 2M −M log n+ log n+ k log 2 = 0.

(81)
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Using that M ≈
√
n we can solve the equation finally for k

k =
2 + log 8

3

log 2

√
n− log n

log 2
−

log 16π
3

log 2
(82)

k ≈ 4.3
√
n− 1.44 log n− 4.07.(83)

Thus, the mean value of the SSW is limited from above by Cn0.5. This analytic
results also provides a useful further hint about the form of the curve of the mean
SSWs might take:

E[|SSW |] ≈ a
√
n− c log n− d.(84)

In [19] the fitting ansatz |SSW | = 2.5
√
n− 5 suggested by [17] was found to be

predict to low values when extrapolated to larger n values and a fit of the form
|SSW | = anb with b = 0.515 was suggested. However, there is no theoretical
justification of this exponent, and extending the investigation to larger automata
this number certainly will have to be readjusted again.

Previously, we have already used the fit given in Eq. (84), in Fig. (27) the estimate
obtained of the SSW based on Markov chains were presented together with a fit of
the same form, resulting in

E[|SSW |Markov] ≈ 2.66
√
n− 0.4504 log n− 2.334(85)

with R2 > 0.9999.

This result also gives an insight into the behavior of random DFA based on an l-
letter alphabet. Eq. (78) shows, that the influence of the alphabet size comes solely
through the base of 2k. Thus, we conjecture that the mean SSWs of an n-state
random DFA with an l-letter alphabet is bounded from above by

E[|SSW |] <
2 + log 8

3

log l

√
n− log n

log l
−

log 16π
3

log l
.(86)

To validate the approach of the ”lucky word”, a fit on simulation data of explicitly
found SSW was also performed. The data was obtained from Szyku la et al. [19].
The results are plotted in Figs. 34-35. It turns out that the amount of data is too
small to perform a fit in the form of Eq. (84), as the 95% confidence interval of
value of c includes 0, implying that the log n term is not significative. However, the
author of this work believes that the logarithmic correction term will be necessary
when improved algorithms in the future become capable of find exact shortest
synchronizing words for even larger automata.
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Fig. 34. |SSW | = a
√
n−c log n type of fit on the length of SSW on

experimentally obtained data of [19]. The first few value of small
automata are excluded from the fit, since they still might exhibit
other effects due to the small number of states. R2 > 0.9999.
RMSE = 0.1248. The 95% confidence interval of the parameters
of a and c are (2.616, 2.635) and (0.3875, 0.4431), respectively.

Fig. 35. |SSW | = a
√
n − d type of fit on the length of SSW on

experimentally obtained data of [19]. R2 > 0.9999. RMSE =
0.1533. The 95% confidence interval of the parameters of a and d
are (2.562, 2.574) and (1.254, 1.437), respectively.
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7. Summary and conclusions

In this study we investigated the synchronization of random deterministic finite
automata using repeated short words and random words as well. The main goal
of the study was to get a better estimate for the mean SSWs of automata with
n states. When aiming to synchronize by the repetition of a short word w the
problem is identical to find the height of w-trees depending on the automaton size
and the length of w. In Sec. 3 an algorithm was introduced to check whether the
repeated application of a word w synchronizes. Using this algorithm several studies
were performed. In Eq. (2) the probability that by the repetition of a random word
of length k will synchronize an automaton of size n was obtained empirically. An
experimental investigation on the synchronizing probability of some selected words
was also performed in Sec. 4.4. The results show that when the repeated word has
low entropy, thus, it is not random, but also not self-conjugated, the probability of
synchronization differs from the probability random words have.

In Eq. (3) the probability that an automaton of size n is synchronizable by the
repetition of any of the words w with length k was derived. This equation supports
the analytic results of [12], i.e., w.h.p. an automaton of size n is synchronizable by
the repetition of some word w of length (1 + ϵ) log2 n.

In Sec. 4.5 the height of random w-trees was investigated experimentally. The
results show that the height of w-trees with |w| = k generated on an automaton of

size n can be well approximated by an equation of the form H̃(n, k) = a
√

n
k −c

logn√
k
.

Combining this with Theorem 6 implies the existence w.h.p. of a synching word of

length ˜|ω| = a
√
n log n− c log

3
2 n.

From Sec. 5 on, the general problem of synchronization of random DFA was inves-
tigated not limiting it to w-trees. In Sec. 5 Higgins’ results on repeated random
mappings on finite sets are presented which can be interpreted as the state transi-
tions in a random DFA when in every step a new letter is applied. Sec. 6 shows
by numerical means that the process described in Sec. 5 does not differ signifi-
cantly from the synchronization process of a two-letter automaton. Utilizing this
observation the synchronization process of a random DFA was modelled by means
of Markov chains, where the transition probability matrix is defined by the use
of the classical occupancy distribution. Well-known properties of Markov chains,
such as the calculation of the absorption time could be made use of showing a good
correspondence with experimental data.

Three estimates for the mean SSW length were given in Sec. 6 as well, two of which
are based on the Markov chain model and one relies on the observation that the
distribution of the synchronization time by random words of random DFA resembles
much to an inverse Gaussian distribution.

All these asymptotic results suggest that the mean synchronizing word length is of
O(
√
n) with no logarithmic correction. One of these results also suggests that the

mean SSW length can be represented asymptotically in a form a
√
n − c log n − d.

Comparison with numerical results show a good correspondence to this fit, however,
the data available currently is limited due to rather small automaton size that could
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be investigated by exponential algorithms, thus, the significance of the terms c and
d cannot by determined statistically based on the available data.
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