
Experimental Analysis on the NXP’s T2080 Cache
Coherence: A Step Towards MPSoCs in Critical Systems

Roger Pujol∗†, Mohamed Hassan§, Francisco J. Cazorla†‡,
∗Universitat Politècnica de Catalunya, Barcelona, Spain
†Barcelona Supercomputing Center, Barcelona, Spain

‡Maspatechnologies S.L., Barcelona, Spain
§McMaster University, Hamilton, Canada

E-mail: {roger.pujol, francisco.cazorla}@bsc.es, mohamed.hassan@mcmaster.ca

Keywords—Cache Coherence, Critical Systems, MPSoC, Certi-
fication.

I. EXTENDED ABSTRACT

The adoption of complex MPSoCs in critical real-time
embedded systems [1], [2] mandates a detailed analysis of
their architecture to facilitate certification [3]. This analysis is
hindered by the lack of a thorough understanding of the MPSoC
system due to the unobvious and/or insufficiently documented
behavior of some key hardware features [4], [5].

Confidence in those features can only be regained by
building specific tests to both, assess whether their behavior
matches specifications and unveil their behavior when it is not
fully known a priori.

In this line, in this work we develop a thorough understand-
ing of the cache coherence protocol in the avionics-relevant [6]
NXP T2080 [1] architecture.

II. SETUP

The NXP T2080 SoC [1] (see Figure 1), assessed for its
use in avionics, features four PowerPC e6500 cores [7], each
with its private instruction and data cache (IL1 and DL1,
respectively) as well as a private Memory Management Unit
(MMU). Each core communicates with the shared L2 cache via
the cache-core interface (CCI). The L2 cache is shared between
all the cores. A “CoreNet” coherence fabric (CCF) provides
access to the DDR SDRAM memory controller as well as other
interfaces present in the board like the Direct Memory Access
(DMA). The L2 has a single port to the CCF whose access is
controlled by the Bus Interface Unit (BIU). The L2 cache is
the point of coherency in the cluster. DL1 caches contain no
modified data as they are write-through. The L2 is inclusive of
the DL1 of each core, so if a data line is evicted from the L2
cache, it is invalidated in the corresponding DL1 caches. The
T2080 implements a 4-state Modified-Exclusive-Shared-Invalid
(MESI) cache coherence protocol. The coherence granularity is
a L2 cache line, such that each line has its own coherence state
information.

DMA transfers can ‘generate’ snoop requests to the L2.
This can lead to invalidations of data in the DL1 caches and/or
the L2 since this data becomes not up to date with respect to
the latest value written by the DMA to memory.

A. Observability

Hardware Monitors. Several hardware event monitors
in the T2080 [7] provide information about the L2 cache
coherence activity, which we show in Table I.

Debugger Support. Using CodeWarrior, the standard IDE
for the T2080, we access several flags for each cache line with
information about their coherence state: Dirty (i.e. Modified),
Valid, Shared, and Exclusive.

Fig. 1. Simplified block diagram of the T2080
TABLE I. COHERENT RELATED EVENT COUNTERS IN FOR THE L2

Counter Description
L2DA Number of L2 data accesses.
L2DM Number of L2 data misses.
L2SH Number of L2 cache snoop hits.
L2SP Number of L2 cache snoop pushes.
ESR Externally generated snoop requests.
L2SM L2 snoops causing MINT (Modified INTervention).
L2SS L2 snoops causing SINT (Shared INTervention).
L2RC Number of L2 reloads from CoreNet.
BL BLINK requests from L2 to core (e.g. back invalidates)
CL CLINK requests from L2 to core(CoreNet data forwarding)

B. Experimental Setup

We seek to observe the behavior of the L2 cache when
transitioning from one coherence state to another. To that
end, we execute a benchmark during the warm-up phase that
sets several lines in the L2 cache to a given coherence state.
Afterwards, during the execution phase, another benchmark is
executed to force the coherence state of those cache lines to
change. Such benchmark accesses a subset of the addresses
accessed in the warm-up phase. Moreover, the benchmark in the
execution phase can access other addresses not shared with the
benchmark executed in the warm-up phase. This is explained
on a per experiment basis.

We set a breakpoint right after the warm-up phase (right
before the execution phase) to confirm that the state is the
one we expect. We also set another breakpoint right after the
execution phase to verify that the cache lines have changed to
the desired state.

Benchmarks. We use two micro-benchmark types, CPU
and DMA, each with read (r) and write (w) variants, resulting
in 4 combinations (CPUr, CPUw, DMAr, DMAw). The CPU
benchmarks perform 128,000 accesses mapped to a set of
either 4,096 or 8,192 different addresses. We refer to these
benchmarks as CPUx(4K) and CPUx(8K) respectively, where
‘x’ is either ‘r’ or ‘w’ and the number of accesses is omitted
as it is the same in all variants.

The DMAr benchmark reads data from a memory address
range including the one used by the CPU benchmarks and
writes it to a not overlapping memory address range, while
the DMAw benchmark reads from the non-overlapping range
and writes to the overlapping one. Both benchmarks, transfer
either 2MB or 4MB of data. Hence, they perform 32,768 or

79



65,536 64B accesses to the overlapping range and the same
number to the non-overlapping. We refer to these benchmarks
as DMAx(32K) and DMAx(64K) respectively. Note that DMAr
and DMAw perform necessarily both read and write operations.

Workloads. A workload comprises the execution of
one or several benchmarks during the warm-up phase
and one during the execution phase. For instance,
[CPUw(4K), DMAr(32K);DMAw(32K)] shows that
during the warm-up CPUw(4K) and DMA4r(32K) are
executed one after the other; and in the execution phase the
DMAw(32K) is executed.

III. ANALYSIS

We analyzed all the Coherence Protocol transitions; here,
we only show the two transitions with the most interesting
details. The full analysis of all transitions can be found in [8].

TABLE II. PMCS FOR ”M TO S” AND ”S TO M” TRANSITIONS.
State L2DA L2SHL2SP ESR L2SML2SSL2RCL2DM BL CL

M2S

A 13 3968 3968 65536 3968 0 6432 0 0 6447
B 12 8064 8064 65536 8064 0 6418 0 0 6418
C 13 3968 3968 32768 3968 0 3226 0 0 3241
D 13 8064 8064 32768 8064 0 3226 0 0 3242

S2M A127998 0 0 0 0 0 3968 0 3968 0
B127998 0 0 0 0 0 8064 0 8064 0

Modified to Shared. During the warm-up phase, we
run CPUw that causes the data to be dirty in L2. In
the execution phase, we run DMAr to force snoops from
the CoreNet addressed to the L2 that has to (i) send the
data to the main memory, (ii) clean the dirty flag and
(iii) move the cache line to the shared state. We eval-
uate four scenarios: (A) [CPUw(4K); DMAr(64K)], (B)
[CPUw(8K); DMAr(64K)], (C) [CPUw(4K); DMAr(32K)],
and (D) [CPUw(8K); DMAr(32K)].

As we start measuring right after the warm-up (i.e. the
execution of CPUw), there can be few accesses that are pending
to L2, causing the few L2DA, as shown in (M2S) case in
Table II.A GetS/GetM message is sent for every address read or
written by the DMAr 1. Hence, the number of expected ESR is
65,536 in (A) and (B) and 32,768 in (C) and (D), matching the
observed results in Table II (M2S).The GetS messages hit in
the L2 for the memory locations that were accessed previously
by the CPUw, which results in 4K2 L2SH in (A) and (C) and
8K3 in (B) and (D).

Unexpectedly, the L2 responds to each of these snoop hits
in the L2 by requesting other coherent devices to set such lines
as shared, but there is no other coherent device in the T2080.
This matches L2SP and L2SM values.

Shared to Modified. During the warm-up, we run CPUw
that causes the data to be dirty in L2, and then we run
DMAr, which sends a request for the data and the L2 sends
the dirty data to the CoreNet moving to Shared state. In the
execution phase, we run CPUw, which sends GetM requests to
the CoreNet to invalidate all the valid copies in any potential
device with that data set as shared, despite there is none. As
a simultaneous modification of this data could have occurred
in another device with a shared copy of the data, the L2 sends
a data forward request to CoreNet. This request might bring
either no new data or an updated copy if a remote modification
occurred between the local modification and its notification

1Recall that DMAr also performs writes that result in GetM requests.
2In reality, we expect 4, 096 − 128 and 8, 192 − 128 respectively, as we

perform 31 and 63 iterations respectively of 128 accesses each.

to other coherent devices. We evaluate the following four
scenarios: (A) [CPUw(4K),DMAr(64K); CPUw(4K)], and
(B) [CPUw(8K),DMAr(64K); CPUw(4K)].

The task analyzed (CPUw) generates accesses from the
CPU as captured by the L2DA counter in Table II (S2M). Each
of these accesses triggers the L2 to send a GetM message to ask
all other sharers to invalidate their own copy of the shared data
to the CoreNet, generating around 4K BL in (A) and around
8K in (B). As explained, since other coherent devices could
be performing simultaneous modifications of the shared data,
the L2 performs 4K L2RC in (A) and around 8K in (B). Those
L2RC receive no answer since there is no other coherent device
in the platform.

IV. CONCLUSIONS

Our empirical analysis of cache coherence in the T2080
brings some lessons learned. First, we can identify the events
triggered by each coherence state transition, providing a clearer
understanding of the implemented cache coherence behavior.
Second, there are some hardware monitors with ambiguous
or incomplete descriptions of the events tracked. And third,
we detect unexpected coherence messages for a single L2
coherent cache processor. All these elements help validate the
cache coherence protocol itself and allow building other further
validation evidence on top of it.

V. ACKNOWLEDGMENT

This work has been partially supported by the Spanish
Ministry of Science and Innovation under grant PID2019-
107255GB; the European Union’s Horizon 2020 research and
innovation programme under grant agreement No. 878752
(MASTECS) and the European Research Council (ERC) grant
agreement No. 772773 (SuPerCom); the HiPEAC Network of
Excellence; and the Natural Sciences and Engineering Research
Council of Canada (NSERC).

REFERENCES

[1] Freescale Semiconductor, “QorIQ T2080 Reference Manual,” 2016, Also
supports T2081. Doc. No.: T2080RM. Rev. 3, 11/2016.

[2] Xilinx, “Zynq UltraScale+ Device Technical Reference Manual,”
https://www.xilinx.com/support/documentation/user guides/ug1085-
zynq-ultrascale-trm.pdf, 2019, UG1085 (v2.1).

[3] G. Fernandez et al, “Contention in multicore hardware shared resources:
Understanding of the state of the art,” in WCET Workshop, 2014.

[4] J. Barrera et al., “On the reliability of hardware event monitors in mpsocs
for critical domains,” in ACM SAC, 2020.

[5] N. Sensfelder et al., “On how to identify cache coherence: Case of the
NXP qoriq T4240,” in ECRTS, 2020.

[6] D. Radack et al. (Rockwell Collins), “Civil Certification of Multi-core
Processing Systems in Commercial Avionics,” 2018.

[7] Freescale Semiconductor, “e6500 Core Reference Manual,”
https://www.nxp.com/docs/en/reference-manual/E6500RM.pdf, 2014,
E6500RM. Rev 0. 06/2014.

[8] R. Pujol et al, “Empirical evidence for mpsocs in critical systems: The
case of nxp’s t2080 cache coherence,” in DATE, 2021.

Roger Pujol received his BSc degree in Computer
Engineering with specialization in Computation from
Universitat Politècnica de Catalunya (UPC), Spain,
in 2018. That same year, he started working as
Research Student at the Computer Architecture -
Operating Systems (CAOS) group of Barcelona Su-
percomputing Center (BSC). He also completed his
Master in Innovation and Research in Informatics
with specialization in Advanced Computing from
UPC, Spain, in 2020. Since then, he remained in
BSC’s CAOS group and started as a Ph.D. student

at the Department of Computer Architecture of UPC, Spain.

80




