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Abstract— This paper presents an optimal approach for state es-
timation and Simultaneous Localization and Mapping (SLAM)
correction using Kalman gain obtained via Linear Matrix
Inequality (LMI). The technique utilizes a Linear Parameter
Varying (LPV) represention of the system, which allows to
model the complex non-linear dynamics in a way that lineariza-
tion is not required for the estimator or controller design. In
addition, the LPV polytopic representation is exploited to obtain
a real-time Kalman gain, avoiding expensive optimization of
LMIs at every step. The estimation schema is integrated with
a Non-linear Model Predictive Control (NMPC) in charge of
controlling the vehicle. For the demonstration, the approach is
tested in the simulation and for the practical validity, a small-
scale autonomous car is used.

I. INTRODUCTION

To solve the issue of traffic accidents and congestion, au-
tonomous vehicles provide a promising solution. Research
work on this technology has immensely progressed from
perception algorithms to vehicle control algorithms. The
perception stack exploits the sensor measurements to provide
the vehicle state as well as environmental information. The
correction of these measurements is very important task to
allow the vehicle to navigate safely within the environment.
On the other hand, the planner and the controller use this
information to plan the motion and achieve the desired
trajectory while maintaining some objectives such as speed,
time to reach the destination, and comfort. For such reasons,
the measurement filtering and the obtaining of unmeasured
states are paramount (e.g., lateral velocity in many cases
can not be measured directly, which is important for lateral
control). The advanced controllers (as e.g. NMPC) require a
full state observation, which can be achieved using a state
estimator in the loop for the full-body control.
The state estimation of an autonomous vehicle involves an
algorithm that fuses the raw information provided by the
sensors, which is affected by noise, and the system model,
which is affected by some uncertainty represented as a
disturbance. The estimation algorithm considers measure-
ment model, vehicle model, sensor uncertainty, and model
perturbation to estimate the correct states. The standard
approach is based on some form of Kalman filter, originally
developed by R.E Kalman [1]. Kalman filter provides an
optimal estimate in the least square sense assuming that
the model perfectly matches with the real system and con-
sidering that the noises/disturbances are Gaussian and their
covariances are known. The first assumption is not always
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true, especially in nonlinear systems with complex dynamics.
A variant named Extended Kalman Filter (EKF) for the
nonlinear systems has been developed, which provides the
solution by linearizing the system and the measurement
model around the current states. The linearization is based on
a Taylor series expansion, rejecting higher-order terms. The
linearization process does not preserve the random variable
distributions of the states and the measurements as Gaussian,
which means that the optimality condition is not guaranteed.
For the systems with a complex nonlinear model such as
vehicle, the assumption of a small range of operation for a
linear model acquired by linearizing the nonlinear model is
not valid. For all these reasons, new methods for extending
Kalman filters to non-linear systems are required.

The LPV framework offers a systematic approach to obtain a
multi-model system from the original mathematical model of
the system, see as e.g. for more details [2]. The main feature
of this approach is that it allows representing the model of
the nonlinear system as a set of linear system models and
the overall LPV model of the system is achieved by the
polytopic combination of these linear system models. This
allows extending the LMI design procedures for control and
estimation to the non-linear systems represented in polytopic
LPV form. Moreover, there exist a systematic procedures for
generating the LPV model for the non-linear model [3] and
approximating it in a polytopic way [4].

In this paper, the state estimation of an autonomous vehicle
is developed using an approach alternative to the use of EKF.
Moreover, this approach will be combined with an imprecise
SLAM algorithm that provides a rough pose estimation.
Other dynamic states such as longitudinal velocity, angular
velocity will be directly measured from the sensors. Then,
the rough pose obtained from the SLAM algorithm, direct
measurements from sensors will be corrected using the LPV
Kalman filter design. A similar work [5] is done to improve
the approximation error by utilizing Takagi-Sugeno model
which is analogous to LPV form. However, this approach
considers a limited and known number of landmarks and
neither ensures optimality. Another work [6] has shown the
performance in the simulation with different application.

The structure of the paper is the following: Section II de-
scribes the proposed approach and presents the autonomous
vehicle considered as a case study. Section III presents the
proposed LPV Kalman filter for the state estimation. Section
IV presents the simulation and experimental results using
the considered case study. Finally, Section V draws the main
conclusions of the paper and proposes future research paths.



II. PROPOSED APPROACH

Figure 1 presents the overall architecture and integration of
different modules for the autonomy. The proposed pipeline
also include an NMPC controller, details can be found in [7].
To generalize the SLAM algorithm, i.e. free from number of

Fig. 1: Architecture of the software modules, including
information flow and a conceptual overview of the intercon-
nections.

landmarks and environment, the rough pose estimation is
based on LIDAR scan end-point matching by exploiting the
Gauss-Newton optimization process. This matching approach
allows to estimate the pose without any prior information of
the environment or landmarks. The scan end-points matching
is similar to the work done in the paper [8] and due to
the limitation of pages, the SLAM algorithm is not pre-
sented here since it is not the focus of this work. In this
development, a LIDAR’s scan end-points are exploited for
observing the environment. Instead, a camera can also be
used for the rough localization using either feature matching
technique [9] or deep learning technique [10]. Then, to
correct the rough pose from the SLAM and acquired sensor
measurements, a LPV modeling approach is considered to
design an optimal and stable Kalman estimator.

A. Considered Autonomous Vehicle

To validate the proposed approach, a case based on a small
scale autonomous car1 is used. The states of the car have
to be estimated using available sensors and further this
information will be exploited by full-body controller. The
dynamic states, such as longitudinal velocity can be roughly
estimated using the radius and RPM of the rear wheel
measured by the motor encoder. Angular velocity can be
measured by an IMU sensor. The rough position of the
vehicle can be obtained using the scan end-point matching
algorithm and orientation from IMU.
As the estimator is based on a system model the dynamics of
the system are derived using bicycle model [11]. The vehicle
model includes kinematic as well as dynamic equations

1This car is being used in the SEAT autonomous driving chal-
lenge (http://carnetbarcelona.com/index.php/2017/07/19/carnet-presents-the-
seat-autonomous-driving-challenge/)

represented by

v̇x =
1

m
(Frx − Fflat sin(δ) +mvyω)

v̇y =
1

m
(Fflat cos(δ) + Fry −mvxω)

ω̇ =
1

Iz
(lfFflat cos(δ)− lrFry) (1)

Ẋ = vxcos(θ)− vysin(θ)

Ẏ = vxsin(θ) + vycos(θ)

θ̇ = ω

where there are six states [vx, vy, ω,X, Y, θ] of the vehicle.
The lateral velocity vy can not be measured and will be
estimated. Frx is the longitudinal force in the rear-wheel
which consists of force from the motor, drive-line resistance,
and drag force. Fflat and Fry are the lateral tire force in
the front and rear wheel respectively, which is obtained by
simplifying Pacejka tire model [12]. Longitudinal force on
the front wheel is considered to be negligible since no brake
nor torque is applied on it. The forces are given by

Frx = (Cm0 − Cm1vx)D − C0vx − C1 −
CDAρv2x

2

Fflat = 2Caf

(
δ − arctan

(
vy + lf θ̇

vx

))

Fry = −2Car arctan

(
vy − lr θ̇

vx

)

where δ and D are two control inputs, steering angle and
duty cycle respectively. Some of the system parameters
are obtained by physical measurement, and the remaining
ones by least-squares optimization. The obtained values and
description of the parameters are listed in Table I.

Parameters Values Description
m 2.424 kg Mass of the vehicle
lf 0.1377 m Distance from CoG to front wheel
lr 0.1203 m Distance from CoG to rear wheel
ρ 1.225 kg/m3 Air density
Cm0 9.4685 N Motor parameter 1
Cm1 0.6672 kg/s Motor parameter 2
C0 2.6104 kg/s Resistive driveline parameter
C1 −0.00213 N Static friction force
CDA 0.466 m2 Coefficient of drag multiplied with area
Caf 1.2354 N/rad Front wheel cornering stiffness
Car 1.4532 N/rad Rear wheel cornering stiffness
Iz 0.02 kg.m2 Moment of inertia

TABLE I: Vehicle model parameters.

1) Construction of LPV model: The goal is to derive a
LPV model from the nonlinear vehicle dynamics (1) as if
the response of the LPV model exactly matches with the
response of a nonlinear system within a specified domain
with the same input u. To form the LPV model the varying
nonlinear terms in the equations are set as varying parameters
or scheduling variables. The set of scheduling variables is
represented in Table II. These are the state and control



variables on which the nonlinear dynamics are dependent
and by embedding these terms inside the matrix the LPV
form (3) is obtained.

Variables (ϑi(t)) min (ϑi(t)) = ϑi max (ϑi(t)) = ϑi

vx −5.0 5.0
vy −3.0 3.0
ω −1.5 1.5
θ −π 0
δ −0.35 0.35

TABLE II: Scheduling variables i.e. states or inputs on
which the system matrix A(ϑ) and B(ϑ) are dependent. The
maximum and minimum value of these variables can define
any system vertices or polytopic systems.

The LPV model can be represented in polytopic form, using
often referred as a bounding box method [2], which will
be used to formulate the LMIs to obtain offline gain in the
Section III. Additionally, the polytopic representation will
also allow to compute the online gain using interpolation
technique without optimizing the LMIs at each time step.

v̇x
v̇y

ω̇
Ẋ
Ẏ
θ̇


︸ ︷︷ ︸

ẋ

=


A11 A12 0 0 0 0
A21 A22 0 0 0 0
A31 0 0 0 0 0
A41 A42 0 0 0 0
A51 A52 0 0 0 0
0 0 1 0 0 0


︸ ︷︷ ︸

A(ϑ)

 vx
vy
ω
X
Y
θ


︸ ︷︷ ︸

x

+

B11 B12

0 B22

0 B32
0 0
0 0
0 0


︸ ︷︷ ︸

B(ϑ)

[
D
δ

]︸︷︷︸
u

(3)

The polytopic representation of the LPV form is given by,

ẋ(t) =

32∑
i=1

hi(ϑ(t)){Aix(t) +Biu(t)} (4)

where,

hi(ϑ(t)) = µ1j(ϑ1(t)) · µ2j(ϑ2(t)) · µ3j(ϑ3(t))·
µ4j(ϑ4(t)) · µ5j(ϑ5(t)), j ∈ [1, 2] (5)

and ϑ(t) = [ϑ1(t), ϑ2(t), ϑ3(t), ϑ4(t), ϑ5(t)]. The term
µij(ϑi(t)) is the interpolation function of ϑi(t) and hi(ϑ(t))
is the weight applied to each corresponding system vertex.
The scheduling variables can be further represented as a set
of interpolation function as follows:

ϑi(t) = µi1(ϑi(t)) · ϑi) + µi2(ϑi(t)) · ϑi (6)
µi1(ϑi(t)) + µi2(ϑi(t)) = 1, i ∈ [1, 2, ..., 5] (7)

where ϑi, ϑi are the minimum and maximum scheduling
variable respectively and the µij(ϑi(t)) are two interpolation
function for each scheduling variables being in total 32
combinations.
2) Measurement model: The rough position of the vehicle is
obtained from the SLAM algorithm [8] and other information
is directly obtained from various sensors listed in Table
III. The discretized state-space measurement model for the
system is defined by y = Cxk + Duk + Evvk, where
vk ∈ Rny is the measurement noise and ny = 5, Ev is the
distribution matrix with appropriate dimension. D = 05×2

is taken as there is no interaction from control. C matrix
relates the system state to the output measurement y.

Ev =

[
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

]
, C =

[
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

]
(8)

The vector vk = [σ2
vx
, σ2

ω, σ
2
X , σ2

Y , σ
2
θ ]

T represents the noise
of each sensor with the variances listed in Table III.

States Sensors Variance (σ2)
vx Motor encoder 0.04
ω IMU 0.0187
X SLAM 0.0225
Y SLAM 0.0225
θ IMU 0.01

TABLE III: Dedicated sensors or algorithm to measure or
estimate rough information and their corresponding noise.

3) Observability analysis: Before designing the estimator,
the observability of the equation (3) needs to be analysed for
singularity. The equation consist of nx = 6 state variables
and the observability matrix defined by

O = [C,CAd,CA2
d,···,CAnx−1

d ]
T (9)

If the rank of observability is equal to nx, then the system
is observable. To check the observability the equation (3) is
discretized using Euler approximation Ad = I + A · ∆ts.
During the analysis, at certain state the rank of observability
matrix O reaches to singularity, precisely when any of the
vx = 0, vy = 0 and δ = 0. To resolve this issue whenever
this state variable attain this value a bias ϵ = 0.0001 is added
to this variable.

III. LINEAR PARAMETER VARYING KALMAN FILTER
DESIGN

For the development of the proposed estimator design, first
in Section III-A LMIs for the LPV Kalman filter design are
formulated. Second, in Section III-B the measurement noise
and system perturbation matrix are provided. Finally, the im-
plementation of the proposed approach and its improvement
is discussed in Section III-C.

A. LMI Design Procedure

The following Kalman filter to obtain the x̂ estimation is
required,

˙̂x(t)=(A(ϑ)−L(ϑ)C)x̂+(B(ϑ)−L(ϑ)D)u+L(ϑ)y (10)

where A(ϑ), B(ϑ) can be obtained by using LPV model
(3), L(ϑ) is the online Kalman gain and D = 05×2.
The above continuous Kalman estimator is discretized for
implementation on a real-time system. Now, the aim is to find
the optimal L(ϑ) which converges to the estimation ground
truth in presence of sensor noise and system disturbance.
To obtain an optimal Kalman gain L(ϑ), first, LMIs are
offline optimized to obtain gain Loff . Second, the obtained
Loff is interpolated in real-time to obtain L(ϑ) by exploiting
relation (4). To formulate LMIs for discretized system, the



continuous LPV model equation (4) is discretized using Euler
approximation with sampling time ∆ts:

x(k+1)=
32∑
i=1

hi(ϑ(t)){(I +Ai∆ts)︸ ︷︷ ︸
Adi

x(k) +Bi∆ts︸ ︷︷ ︸
Bdi

u(k)}

(11)
The following LMI optimization problem should be solved
at the vertices of the model (11) to design LPV Kalman filter
[13] [

γI I
I Y

]
> 0 (12)[ −Y Y Ad−WTCd Y HT WT

AT
d Y−CT

d W −Y 0 0
HY 0 −I 0
W 0 0 −R−1

]
< 0 (13)

such that the optimal gain can be found by L = (WY −1)T .
The solution involves optimization at each time step, due
to the varying system matrices (Ad, Bd), which is computa-
tionally expensive and slow. Instead, we exploit the method
developed in Section II-A.1. Any nonlinear system can be
represented in the form (11) which means the offline gain
can be found at the system vertices of these systems and later
on interpolated online using LPV interpolation function (5)
for the LPV model (3). So, for the 5 scheduling variables,
32 system matrices are obtained resulting in 32 LMIs and
corresponding offline gains for each system vertex. The
gain obtained from solving LMIs will be called Loff

i ∈
[1, · · ·, 32].

B. Disturbance and noise matrix

The disturbance of the vehicle model and sensor noise is
modeled by Gaussian distribution whose mean is set to zero
and variance is obtained experimentally. The disturbance in
the model is considered to be higher than the measurement
noise to compensate for uncaptured dynamics during parame-
ter estimation. Following weights were set for the disturbance
(Q) and noise (R) matrices respectively:

Q = diag(0.15, 0.05, 0.15, 0.25, 0.25, 0.1) (14)
R = diag(0.04, 0.0187, 0.0225, 0.0225, 0.01) (15)

C. Switching estimator design

During the experiment phase the scheduling variable θ ∈
[−π, 0] does not yields a better approximation of nonlinear
function. This can be seen by substituting the values in
element A41, A42, A51 and A52 in equation (3) and taking
only these subelements:

A4:5,1:2(θ) =
[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
(16)

A4:5,1:2(−π) =
[−1 0

0 −1

]
, A4:5,1:2(0) = [ 1 0

0 1 ] (17)

The above polytopic systems are true considering the min-
imum and maximum vertices in cos function but it is not
valid for sin function. To accurately model this effect the
θ scheduling variable is chosen for each quadrant ϑ4j =

[0, π
2 ,−π, −π

2 ], j ∈ [1, .., 4]. This improvement provides
the system vertex to reach all the possible values:

A4:5,1:2(0) = [ 1 0
0 1 ] , A4:5,1:2(−π) =

[−1 0
0 −1

]
(18)

A4:5,1:2

(π
2

)
= [ 0 1

1 0 ] , A4:5,1:2

(
−π

2

)
=
[

0 −1
−1 0

]
(19)

For the implementation, every four sections of the quad-
rant are considered and the LMIs for all the quadrant are
optimized to obtain offline gain Loff

ij , j ∈ [1, .., 4]. Then,
particular offline gain is applied according to the region in
which the previous yaw estimate lies.

IV. RESULTS

To validate the estimator performance experiments are per-
formed in simulator as well a real environment. First, the
estimator is tested using manual control input and once it
is proved to be working an NMPC controller is utilized to
follow a track. The vehicle is 41 cm long, 21 cm wide, and
the track has 50 cm width. The setting of the controller is
tuned to complete two laps while achieving a longitudinal
velocity of 0.8 m/s, keeping the vehicle inside the track and
closer to the center track, shown as dotted line in Figure 2.
The objective of the validation is to i) estimate full states
correctly, including unmeasured state vy , in the simulator
as well as real vehicle, ii) validate real-time performance.
For the simulator, the NRMSE evaluation metric is used to
compare the error between the simulated and estimated state,
which can be computed by

NRMSE =

√∑N
i=1(x− x̂)2

xmax − xmin
(20)

A. Simulation

The vehicle simulator is developed using the non-linear
dynamics obtained in Section II-A. The perturbations and
noises are injected into the vehicle model and sensor model
respectively to simulate the real world. The perturbation and
noises are kept a little higher than the actual one to ensure the
estimator work even in the worst cases. By analyzing Figure
2, the estimated position is very close to the simulator state
of the vehicle. The NRMSE error for all the estimated states
is presented in Table IV. Rest of the estimated states are
compared in Figure 3. The lateral velocity (vy) which can
not be measured directly has a NRMSE value of 0.0323
(Figure 3b). The errors of all the dynamic estimated states
are within a certain range which indicates the estimator is
fully working to be tested on the real vehicle.

States vx vy ω X Y θ
NRMSE 0.0781 0.0323 0.0913 0.0157 0.0175 0.0198

TABLE IV: NRMSE evaluation of estimated states

B. Real Experiment

Note that the RMSE error is not used here due to a lack of
ground truth measurement. The validation for this experiment
is done visually. The estimated X-Y position for the real



Fig. 2: Estimated trajectory in the presence of imprecise
SLAM and sensor measurement during the simulation.

(a) Longitudinal velocity (b) Lateral velocity

(c) Angular velocity (d) Yaw

Fig. 3: Estimated states on vehicle simulator

experiment is shown in Figure 4. Some snapshots for visual
validation are shown in Figure 5 and compared from Figure
4, it can be noticed that the estimated position of the vehicle
matches with the real position of the vehicle in the snapshots.
For properly substantiated illustration, the media https:
//youtu.be/Oey2ZxsxlnY shows the estimated states
and NMPC controller performance. The media validates the
performance of the estimator design. Additional estimated
states are shown in Figure 6. The velocity obtained from
the motor encoder is very noisy and inaccurate (see Figure
6a), but the LPV Kalman filter can provide a quite clean
estimation. Similarly happens with the angular velocity.
The lateral velocity was not measured and is successfully
estimated. The final corrected map after completing the laps
is shown in Figure 7b. Figure 7a represents the environment
which includes fixtures, obstacles, and free space. There are
some unoccupied cells particularly when the LIDAR scan
is hindered by the fixtures present in the environment. For
this reason, the error between ground truth and map is only
calculated for properly scanned area i.e. the fixture occlusion
region is excluded (see Figure 7a). The Intersection-Over-

Fig. 4: Estimated trajectory in the presence of imprecise
SLAM and sensor measurement during the real experiment.

Fig. 5: Snapshots of the vehicle following the track.

Union (IOU) score of 0.9388 is obtained between ground
truth and corrected map.

(a) Environment Representation (b) Obtained map

Fig. 7: The map formed during the trajectory following.

C. Simulated vs Real Experiment

It is worth noting that the time taken for completing two laps
in the simulator and real experiments are 38 sec and 32 sec
respectively. The real experiment completed the lap faster
than the simulation due to strictly maintaining a longitudinal
velocity of 0.8 m/s. There are discrepancies between some
estimated states which are due to different control input
in simulation and real experiment phase or mismatch of
simulator model from the real vehicle model.

V. CONCLUSIONS

This paper has presented an approach for state estimation
of an autonomous vehicle using a LPV Kalman Filter and
imprecise SLAM. Further, this technique can also correct the



(a) Longitudinal velocity (b) Lateral velocity

(c) Angular velocity (d) Yaw

Fig. 6: Estimated states on real vehicle

map obtained from the noisy LIDAR scan end-points match-
ing. The proposed approach provides a stable and optimal
solution in presence of model disturbance and measurement
noises at a high update rate of 100 Hz for state estimation
and simultaneously correction of obtained map. The update
rate can go much faster than 100Hz, the only limitation is the
update rate of the sensor measurements. The computational
cost of the proposed approach is fairly low if compared with
EKF SLAM which depends on the number of landmarks. The
result produced motivates the usage of the LPV based state
estimation and mapping in the field of autonomous vehicle
and robotics. The proposed estimation technique depends on
the model of the system and the measurement model with
certain disturbance and noise respectively. This requirement
is sometimes hard to full fill, and also for some system the
parameters changes within a certain range, for example, tire
coefficient of vehicle. For such kind of system, online model
learning techniques need to be incorporated [14, 15].
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