The final publication is available at ACM via http://dx.doi.org/10.1145/3577949.3577969

Space Compression Algorithms Acceleration on
Embedded Multi-Core and GPU Platforms

Alvaro Jover-Alvarez*, Ivan Rodriguez*, Leonidas Kosmidis

Barcelona Supercomputing Center (BSC) and Universitat Politecnica de Catalunya (UPC); email: {ajover, irodrig,

lkosmidi} @bsc.es

David Steenari

European Space Agency (ESA); email: David.Steenari@esa.int

Abstract

Future space missions will require increased on-board
computing power to process and compress massive
amounts of data. Consequently, embedded multi-core
and GPU platforms are considered, which have been
shown beneficial for data processing. However, the
acceleration of data compression - an inherently se-
quential task - has not been explored. In this on-going
research paper, we parallelize two space compression
standards on both CPUs and GPUs using two candidate
embedded GPU platforms for space showing that de-
spite the challenging nature of CCSDS algorithms, their
parallelization is possible and can provide significant
performance benefits.

Keywords: embedded GPUs, multi-core, space compres-
sion.

*Both first authors contributed equally to the paper.

1 Introduction

The on-board processing requirements of future space mis-
sions are constantly increasing, requiring new hardware to
satisfy this need.Embedded COTS platforms featuring multi-
core CPUs and GPUs are promising candidates, combining
high-performance and low power consumption. The GPU4S
(GPU for Space) ESA-funded project [1] studies whether
on-board processing algorithms are amenable to GPU par-
allelization as well as whether embedded GPUs can satisfy
the performance requirements of future space missions, effec-
tively paving the way for their adoption.

However space compression algorithms are among the most
challenging space processing algorithms in order to be par-
allelized, due to their inherent sequential nature, created by
data dependencies.

Due to the importance of data compression, current spacecraft
include specific ASIC or FPGA implementations of the vari-
ous space compression CCSDS standards for supporting these
tasks. However, an efficient parallel software implementation
of these standards targeting embedded multi-core CPUs and
GPUs can allow a series of benefits for future space missions.

There are 3 main families of space compression standards de-
fined by the Consultative Committee for Space Data Systems
(CCSDS) which consists of representatives from several space
agencies and private corporations: CCSDS 121 covers general
purpose data compression in a lossless way, CCSDS 122 cov-
ers both lossless and lossy image compression and CCSDS
123 focuses on hyper-spectral lossless and near-lossless com-
pression. Early project results in GPU4S with commonly
used processing algorithms [2] indicate that embedded GPUs
can provide significant processing improvements of several
orders of magnitude compared to existing space processors
such as LEON/SPARC. Compared to FPGAs, which are com-
monly used in on-board processing applications, GPUs offer
the capability to reconfigure the on-board processing using
software in a fast manner.

We present our work on the acceleration of two of the most
widely used space compression standards nowadays, CCSDS
121.0-B-3 [3] and CCSDS 122.0-B-2 [4] using parallel embed-
ded COTS platforms which are considered good candidates
for on board processing in the future.

Our results on two embedded platforms with multicore CPUs
and GPUs, the NVIDIA Xavier and the AMD Embedded
Ryzen V1605B show that the parallelization of space com-
pression algorithms for on-board processing is possible and
comparable with existing space solutions. Our implementa-
tions are available as open source, as part of ESA’s OBPMark
(On-Board Processing Benchmark) benchmarking suite [5],
focusing on the evaluation of general purpose devices for up-
coming space missions, using complex applications relevant
to the space domain.

2 Parallelisation approaches

2.1 CCSDS 121.0-B-3

The CCSDS 121.0-B-3 [3] implements a lossless compression
of 1D data. The algorithm architecture consists of two blocks,
a preprocessor and an adaptive entropy encoder.

The preprocessor step is optional and can be omitted. It ap-
plies a reversible function to the input data to remove the
correlation between its values and to convert them in a proba-
bility distribution. The predictors work with a block size J
parameter which needs to be provided for the decompression.

Ada User Journal

Volume 35, Number 1, March 2014

Selected
C

Sel
Option
=
Option
Option
2nd Extension
jon

1)

Figure 1: Structure of the CCSDS 121.0-B-3 [3] space compres-
sion algorithm. Image courtesy of [3].

The adaptive entropy encoder selects a different encoding of
the preprocessed input based on the input data distribution.
In fact, the input data are encoded using all the encoders
implemented in the adaptive encoder, and the best one is
selected i.e. the one which results to a higher compression
ratio for each input data block.

The standard defines a series of encoders which can be used:
Zero-Block, Second-Extension, Fundamental Sequence, Sam-
ple Splitting and No-compression (Figure 1). The Sample
Splitting encoder is parametric based on a value k, with
1 < k < 29, resulting to a total of 33 possible encoders.
Note that similar to the preprocessor, not all encoders are
required to be provided by a compliant implementation.

For the parallelization we follow a coarse-grain approach for
both the CPU and GPU. In the CPU implementation, which
is based on OpenMP, we distribute input data blocks of size J
to each of the CPUs in the system. Each of the CPUs applies
the entire pipeline shown in Figure 1 on its provided data, and
outputs its selected compression encoder and its compressed
data.

Our GPU parallelization uses a similar approach implemented
in CUDA for the NVIDIA and in OpenCL for the AMD plat-
form. However, instead of distributing the image blocks to the
CPUs, we are distributing them in separate Streams/Command
Queues. This version requires more frequent synchronisations
compared to the CPU version, in order to synchronise between
different kernel invocations, which are more costly.

2.2 CCSDS 122.0-B-2

The CCSDS 122 [4] standard provides lossless or lossy 2D
data compression based on the Discrete Wavelet Transform
(DWT). It consists of two main functional blocks, the Discrete
Wavelet Transform and a Bit-Plane encoder.

The purpose of the Discrete Wavelet Transform is to decom-
pose the input to a high and low frequency components to
decorrelate the input data before the encoding.

The standard uses 3 levels of 2D DWTs, each of which we
compute in parallel on both the multicore and GPU imple-
mentations by applying the one dimensional DWT first in
rows and then in columns. For each level, the process is
repeated for the top left part of the image in a pyramidal
fashion. The remaining values on the top left corner are the
ones containing the highest quantity of information and are
called DC coefficients. The rest of the values which only add

Template for Ada User Journal

extra information are called AC coefficients. Both lossless
and lossy compression can be achieved with this method, by
using an integer approximation or floating point version of
the transform with higher compression achieved by the latter.
We obtained similar performance for both lossless and lossy
compression for each parallel implementation.

The bit planar encoder encodes the coefficients of the de-
composed image in blocks consisting of coefficients which
correspond roughly to a region of the input image. When the
integer transform is used, the encoder exploits information
about least significant bits of certain frequency components
being O as a result of their scaling. DC and AC components
follow a different encoding scheme but despite their differ-
ent encoding algorithms, in both cases their characteristics
are taken into account in order to increase the compression
ratio, such as the dynamic range they represent. The selected
encoding method is specified in the output to enable its re-
construction later. Like CCSDS 121, it is possible that values
remain uncoded, especially if this minimizes the number of
required bits. If different component encodings require the
same number of bits with the uncoded option, the standard
mandates the use of the uncoded one.

3 Experimental Results

3.1 Experimental Setup

We execute our implementations on two embedded SoCs fea-
turing multiple CPUs and GPUs, the NVIDIA Xavier and
the AMD Embedded Ryzen V1605B. These two embedded
platforms are the latest embedded GPUs of these vendors and
have been identified as good candidates in terms of theoretical
performance and power consumption, by multiple indepen-
dent studies of using GPUs in space [6] [7] [8] [9] [10] and
they are considered for further evaluation of their properties.

Both boards have similar characteristics, and we are using
them with 4 enabled CPUs since in the case of the NVIDIA
Xavier the manufacturer ensures that the board maximum
power consumption is capped at 15W, which has been identi-
fied as a limit for on-board processing hardware [7]. For the
AMD board such information is not provided by the manu-
facturer, but it is configured with the same properties for fair
comparison. Both boards use Ubuntu 18.04 LTS. However,
it is worth to note that OpenCL is not currently supported by
AMD out of the box, so we are using a custom driver provided
by Bruhnpace AB [11], which might not be as optimized as a
driver provided by the GPU vendor.

3.2 Results

For the performance evaluation of our algorithms we report
both execution times as well as MSamples/s and MPixels/s
which are the standard metrics used in the literature. During
the execution we measure the voltage and the current and
report the maximum power consumption of the boards for
each experiment.

As we have mentioned, our GPU implementations are para-
metric, so the number of streams and thread block sizes are
configurable. We tune these parameters in order to select
the values that provide the best performance. For the CPU
version, OpenMP automatically uses the number of available
cores, which is 4 in both boards.

Volume 35, Number 1, March 2014

Ada User Journal

A. N. Author, B. Another, Y. Other

3.2.1 CCSDS 121

For the evaluation of our CCSDS 121 implementations, we
use the standard methodology followed by other works in the
literature, using randomly generated data. In particular, we
use 16 MB of randomly generated data which is divided in
1024 Steps, each of which consists of 256 blocks of 64 bytes.
Moreover, we ensure that all the compared implementations
use the same input data and produce identical output.

Figure 2 shows the results between the sequential implemen-
tation and our parallel versions for both platforms for various
Block Sizes (J values). We notice that the sequential CPU
version is faster in the AMD, which means that the Embedded
Ryzen x86 CPU has higher performance than the NVIDIA
designed "Carmel" ARM v8.2 CPU. Similarly, the OpenMP
version is faster in AMD than in the NVIDIA platform. In
both cases, we see a speedup of the parallel version compared
to the sequential one, 81% in the Xavier and an impressive
2.2x in the Emdedded Ryzen.

Regarding the GPU performance, the NVIDIA GPU provides
a speedup of up to 2.1 over the sequential version but equiv-
alent or lower performance than the parallel CPU version on
the same platform. However, in the AMD platform, the GPU
version provides similar performance with the sequential ver-
sion and it is 2x slower than the parallel CPU version on the
same platform.

We have identified that the reason of low GPU performance
comes from the use of atomic operations. We are using the
atomics operations for the implementation of the ZeroBlock
encoder. Due to the high overhead of atomics on the AMD
platform, ZeroBlock becomes the bottleneck of the GPU
implementation. In NVIDIA GPUs, each hardware generation
reduces the cost of atomics operations. However, in AMD
GPUs such information is not available.

The AMD platform contains a more powerful CPU than the
Xavier, as it can be seen in terms of absolute performance
(Mpixels/s) for the sequential version. This in addition to the
fact that the overhead of atomics is smaller in the CPU, due to
smaller number of threads translates to exceptional multicore
performance, which is faster than the GPU implementations
of both platforms.

Moreover, we observe that the maximum performance is ob-
tained for block size 16. Our multi-core performance on the
AMD V1605B is close to the requirement of 60 MSamples/s
which is usually a target for space applications, as specified
by a recent ESA funded FPGA development project which
resulted to the best state-of-the-art CCSDS 121 hardware im-
plementation [12]. Table 1 shows the power consumption for
the same experiments. However, there are no reported power
consumption data for state-of-the-art CCSDS 121 implemen-
tations for comparison.

3.2.2 CCSDS 122

For the evaluation of our parallel implementations in this
compression algorithm, again we have followed the standard
practice used in the literature for the performance evaluation
of this algorithm implementations, using uniform images
such as completely black, random generated images and real

Xavier and V16058 in CCSDS 121

a

22,45
12,81
115

15
1691
97 1031 . 1028

0

613 os2 on

4,49 55

s 5 I I I
. | i

. x s vieo

s vl -

Xavier 58

Figure 2: CSDS121 performance in MSamples/s for the NVIDIA
Xavier and V1605V fixed at 1024 steps with 256 sample intervals
for different Block Sizes J.

JSize CUDA | Sequential | OpenMP
16 9.16 W | 935 W 9.67 W
32 928 W | 9.03W 9.83 W
64 9.03W | 940 W 9.89 W

Table 1: Measured power consumption when running
CCSDS 121 with different J size on the NVIDIA
Xavier platform.

images from space missions. In particular, we have employed
several synthetic and real images of different sizes, such as
one from NASA’s Mars Pathfinder Mission from the area
surrounding Yogi [13] (a rock named by Geoffrey A. Landis)
and one from NOAA, taken by the Metop C satellite on 2019-
12-21 during its ascending orbit direction.

Table 2 shows the comparison of our implementations using
the floating point implementation of the DWT. Although we
implemented both integer and floating point version of the
DWT, the results are very similar, so we only show one of
them. The same trends observed with the CCSDS 121 im-
plementations are visible in this version, too, however on a
different scale. In this algorithm, the OpenMP implementa-
tions are only slightly faster than the sequential versions, and
the AMD CPU is faster than the ARM CPU. On the other
hand, the NVIDIA GPU provides a 10x performance benefit
compared to the sequential version. However, the AMD GPU
is significantly slower (4x) than the sequential CPU version.

According to our analysis, the bottleneck in the AMD GPU
implementation comes from additional memory copies and
the conversion operations between floating point and integers,
which are very costly in the AMD platform. These operations
are performed just before and after the DWT stage. As an
indication, in the integer version of DWT for the 122, the copy
operation takes 3s, while in the Xavier 20ms. Similarly, in
the floating point version, in the AMD platform the memory
copy and conversion takes 9.4s, while in the Xavier it takes
300ms. Again, we don’t know if this is a hardware issue e.g.
if the memory bandwidth of the AMD platform is lower than
the one of the Xavier, or an issue of the unofficial driver e.g.
the driver does not use DMA for the memory transfers, or
does not overlap kernels and memory copies. Of course, the
sequential version of the algorithm does not require these very

Ada User Journal

Volume 35, Number 1, March 2014

e Secuential | Sequential OpenMP | OpenMP CUDA OpenCL
(Xavier) (V1605B) (Xavier) | (V1605B) (Xavier) (V1605B)
NOAA 548 Mp/s | 7.194Mp/s 596 Mp/s | 7.918 Mp/s 6.466 Mp/s | 0.906 Mp/s
Image 9.07W ~15W 9.23 W ~15W 11.48 W ~15W
Mars 6.16 Mp/s | 7.434 Mp/s 5.01 Mp/s | 7.204 Mp/s 5.636 Mp/s | 0.878 Mp/s
marspath 9.02 W ~15W 8.96 W ~15W 935W ~15W
Random 3.844 Mp/s | 5478 Mp/s 432 Mp/s | 7.302Mp/s 17.047 Mp/s | 0.876 Mp/s
(2048 x 2048) 9.50 W ~I5W 9.76 W ~I5W 11.52W ~15W
Black 3.75Mp/s | 6.108 Mp/s 4.66 Mp/s | 7.866 Mp/s 16.78 Mp/s | 0.86 Mp/s
(2048 x2048) 9.35W ~15W 9.62W ~I5W 10.28 W ~15W
Random 3.308 Mp/s | 5.398 Mp/s 4.14 Mp/s | 6.014 Mp/s 30.642 Mp/s | 0.88 Mp/s
(4096 x 4096) 943 W ~I5W 9.70W ~I5W 13.08 W ~15W
Black 324 Mp/s | 5912Mp/s 4.21 Mp/s | 6.482Mp/s 32.43 Mp/s | 0.882 Mp/s
(4096 x4096) 9.24 W ~I15W 9.88 W ~I15W 12.54 W ~15W

Table 2: Performance in MPixels/s and average maximum power
execution for CCSDS122 with various images and sizes

expensive transfers, so the CPU sequential version is faster
than the GPU one in the AMD platform.

Compared to a state-of-the-art space qualified ASIC imple-
mentation [14], which matches the space requirement of 60
MPixels/s compression rate, we obtain half of its performance
with double power consumption on the Xavier GPU imple-
mentation. However, [14] only supports pixel ranges up to
16 bit, while our evaluation has been performed using 32 bit
arithmetic and it is configurable to use up to 64 bits per pixel.
This illustrates a significant difference between software im-
plementations and ASIC hardware implementations, that can
be easily extended for the requirements of future missions,
which will use higher resolutions and larger dynamic ranges
per pixel. Moreover, note that the highest performance in our
implementations is achieved with larger images, regardless
of whether they are random or uniform. This means that our
approach will benefit from the larger image sizes which will
be used in future missions.

4 Conclusions and Future Work

In this on-going research paper we presented our work on the
CPU and GPU parallelization for CCSDS 121 and 122.We
have shown that although the parallelization of compression
algorithms is challenging, it is possible to obtain significant
speedups with their CPU and GPU parallelization, as our
results on two embedded GPU platforms show. In fact, our
obtained results are very close to the requirements of existing
space missions both in terms of performance as well as in
power consumption. Moreover, they are competitive with
existing space processors.

As a future work we intend to finish our parallel implementa-
tions on the CCSDS 123.0-B-1, since it shares several com-
mon blocks with the CCSDS 121.0-B-3. Moreover, we would
like to further investigate the issue of the low performance of
the AMD GPU despite the fact that its characteristics are sim-
ilar to the NVIDIA one. A possible reason is the custom GPU
driver we are using, so we will explore other possibilities to
confirm this fact or rule it out.

5 Acknowledgments

This work was funded by the Ministerio de Ciencia e Innova-
cion - Agencia Estatal de Investigacion (PID2019-107255GB-
C21/AEL/10.13039/501100011033 and 1JC-2020-045931-I)
and partially supported by the European Space Agency (ESA)
through the GPU4S (GPU for Space) activity and the HIPEAC
Network of Excellence.

Template for Ada User Journal

References
[1] L. Kosmidis, I. Rodriguez-Ferrandez, A. Jover-Alvarez,
S. Alcaide, J. Lachaize, A. C. O. Notebaert, and
D. Steenari, “GPU4S: Major Project Outcomes, Lessons
Learnt and Way Forward,” in Design, Automation and
Test in Europe Conference and Exhibition, (DATE),
2021.

[2] L. Kosmidis, I. Rodriguez, A. Jover, S. Alcaide,
J. Lachaize, J. Abella, O. Notebaert, F. J. Cazorla, and
D. Steenari, “GPU4S: Embedded GPUs in Space - Lat-
est Project Updates,” Elsevier Microprocessors and Mi-
crosystems, vol. 77, Sept 2020.

[3] CCSDS The Consultative Committee for Space
Data Systems, CCSDS 121.0-B-3, Lossless
Data Compression. CCSDS Blue Book, 2020.
https://public.ccsds.org/Pubs/121x0b3.pdf.

[4] CCSDS The Consultative Committee for Space
Data Systems, CCSDS 122.0-B-2, Image Data
Compression. CCSDS Blue Book, 2017.
https://public.ccsds.org/Pubs/122x0b2.pdf.

[5] ESA, “OBPMark (On-Board Processing Benchmarks),”
2021. http://www.obpmark.org.

[6] Powell, Wesley and Campola, Michael and Sheets,
Teresa and Davidson, Abigail and Welsh, Sebastian,
“Commercial Off-The-Shelf GPU Qualification for
Space Applications,” tech. rep., NASA, 2018.

[7]1 L. Kosmidis, J. Lachaize, J. Abella, O. Notebaert, F. J.
Cazorla, and D. Steenari, “GPU4S: Embedded GPUs in
Space,” in 2019 22nd Euromicro Conference on Digital
System Design (DSD), pp. 399-405, Aug 2019.

[8] Mr. Nan Li, Mr. Aimin Xiao, Mr. Mengxi Yu, Dr. Jian-
quan Zhang, Dr. Wenbo Dong, “Application of GPU on-
orbit and Self-adaptive Scheduling by its Internal Ther-
mal Sensor,” in International Astronautical Congress

(IAC), 2018.

[9] E. C. Bruhn, N. Tsog, F. Kunkel, O. Flordal, and
L. Troxel, “Enabling Radiation Tolerant Heterogeneous
GPU-based Onboard Data Processing in Space ,” CEAS
Space Journal, vol. 12, pp. 551-564, June 2020.

[10] D. Luchena, V. Schiattarella, D. Spiller, M. Moriani,
and F. Curti, “A new complementary multi-core data
processor for space applications,” 10 2018.

[11] Unibap AB and Milardalen University, “"Bruhnspace
ROCm project for AMD APUs"” 2020.
https://bruhnspace.com/en/bruhnspace-rocm-for-
amd-apus/.

[12] U. de Las Palmas de Gran Canaria, “Expro+ esa ao/l-
8032/14/nl/ak ccsds lossless compression ip-core space
applications,” tech. rep., Universidad de Las Palmas de
Gran Canaria, 2017.

[13] N.P. Project, “False color image of the area surrounding
yogi, nasa mars pa,” jun 1998.

[14] J.-L. Poupat, “Cwicom & coreci: Towards a highly inte-
grated & innovative image compression unit,” ESASP,
vol. 694, p. 35, 2011.

Volume 35, Number 1, March 2014

Ada User Journal

