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Abstract 

The Brugada Syndrome (BrS) is a rare but serious cardiovascular disorder that can cause dangerously 

fast heartbeats and is characterized by a particular set of electrocardiogram (ECG) patterns. It’s a very 

unpredictable condition. Many people don’t present symptoms at all, while for others, unfortunately, 

the first symptom is death. 

For high risk patients, having an implantable cardioverter-defibrillator placed is recommended. 

Unfortunately, that has severe risks associated, like infections and inappropriate shocks, so it’s key to 

identify those high risk patients. 

The objective of this project was to develop machine learning based tools that are able to tell 

symptomatic Brugada Syndrome patients apart from those who are not. Symptomatic patients were 

considered those who had recovered from cardiac death, suffered an arrhythmogenic syncope or 

sustained tachycardia. 

In order to do so, after an investigation of the state of the art of the relevant subjects, several 

biomarkers related with Brugada ECG patterns were extracted from 24h ECG recordings of 45 

different patients, after having been processed by signal averaging in order to reduce their noise. 

Those biomarkers, alongside some clinical data, were then separated in different ways in order to 

train and test different machine learning based automated classifier models. 

The performances of those models were very poor. None of them was able to reliably classify BrS 

patients as desired. Nevertheless, valuable conclusions can be extracted from this first approach to 

pursue the intended goal further, and useful tools were developed that would allow for a faster 

processing of the database used. 
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Resum 

La Síndrome de Brugada (BrS) és un trastorn cardiovascular poc comú però greu que pot causar 

batecs perillosament ràpids i es caracteritza per presentar un conjunt particular de patrons 

d'electrocardiograma (ECG) als seus pacients. És una condició molt impredictible. Moltes persones no 

presenten cap símptoma, mentre que per altres, lamentablement, el primer símptoma és la mort. 

Per a pacients d'alt risc es recomana col·locar un desfibril·lador cardioversor implantable. 

Desafortunadament, això té greus riscos associats, com infeccions i descàrregues inadequades, per la 

qual cosa és clau identificar aquests pacients d'alt risc correctament.  

L'objectiu d'aquest projecte ha estat desenvolupar eines basades en aprenentatge automàtic que 

poguessin diferenciar els pacients amb Síndrome de Brugada simptomàtics dels quals no ho són. Es 

van considerar pacients simptomàtics aquells que s'havien recuperat de mort cardíaca, van patir 

un síncope arritmogènic o taquicàrdia sostinguda.  

Per fer-ho, després d'una investigació de l'estat de l'art dels temes pertinents, es van extreure 

diversos biomarcadors relacionats amb els patrons d'ECG de Brugada a partir de registres d'ECG de 

24 hores de 45 pacients diferents, després d'haver estat processats per mitjà de promediat de senyal 

per reduir el soroll. 

Aquests biomarcadors, juntament amb algunes dades clíniques, es van separar de diferents maneres 

per entrenar i provar diferents models de classificació automatitzats basats en aprenentatge 

automàtic.  

Els resultats obtinguts dels models han estat molt pobres. Cap d'ells no ha pogut classificar de 

manera fiable els pacients amb BrS com es desitjava. Això no obstant, d'aquesta primera aproximació 

es poden extreure conclusions valuoses per assolir l'objectiu del projecte, i s’han desenvolupat eines 

útils que poden permetre un processament més ràpid de la base de dades utilitzada.  
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Resumen 

El Síndrome de Brugada (BrS) es un trastorno cardiovascular poco común pero grave que puede 

causar latidos peligrosamente rápidos y se caracteriza por presentar un conjunto particular de 

patrones de electrocardiograma (ECG) en sus pacientes. Es una condición muy impredecible. Muchas 

personas no presentan ningún síntoma, mientras que para otras, lamentablemente, el primer 

síntoma es la muerte.  

Para pacientes de alto riesgo se recomienda la colocación de un desfibrilador cardioversor 

implantable. Desafortunadamente, eso tiene graves riesgos asociados, como infecciones y descargas 

inapropiadas, por lo que es clave identificar a esos pacientes de alto riesgo correctamente.  

El objetivo de este proyecto era desarrollar herramientas basadas en aprendizaje automático que 

puedan diferenciar a los pacientes con Síndrome de Brugada sintomáticos de aquellos que no lo son.  

Se consideraron pacientes sintomáticos aquellos que se habían recuperado de muerte cardiaca, 

sufrieron un síncope arritmogénico o una taquicardia sostenida. Para ello, tras una investigación del 

estado del arte de los temas relevantes, se extrajeron varios biomarcadores relacionados con los 

patrones de ECG de Brugada a partir de registros de ECG de 24h de 45 pacientes diferentes, después 

de haber sido procesados mediante promedio de señal para reducir su ruido.  

Estos biomarcadores, junto con algunos datos clínicos, se separaron de diferentes maneras para 

entrenar y probar diferentes modelos de clasificación automatizados basados en aprendizaje 

automático.  

Los resultados de los modelos obtenidos han sido muy pobres. Ninguno de ellos pudo clasificar de 

manera confiable a los pacientes con BrS como se deseaba. No obstante, de esta primera 

aproximación se pueden extraer valiosas conclusiones para continuar avanzando hacia el objetivo 

perseguido, y se desarrollaron herramientas útiles que permitirán un procesamiento más rápido de la 

base de datos utilizada. 
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Glossary 

ECG: Electrocardiogram 

BrS: Brugada Syndrome 

ICD: Implantable Cardioverter Defibrillator 

ML: Machine Learning 

McW: Misclassification Weights 

TP: True Positive 

TPR: True Positive Rate 

ATPR: Asymptomatic True Positive Rate  

STPR: Symptomatic True Positive Rate 

OVA: Overall Validation Accuracy 

ATPRV: Asymptomatic True Positive Rate in Validation 

STPRV: Symptomatic True Positive Rate in Validation 

OTA: Overall Test Accuracy 

STPRV: Symptomatic True Positive Rate in Test 

ATPRT: Asymptomatic True Positive Rate in Test 
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1. Preface 

1.1  Origin of the study 

Brugada Syndrome (BrS) is a rare but serious condition that can cause unusually fast heartbeats that 

can be life-threatening in some cases. The long-term outlook for people with BrS is uncertain because 

the condition is very unpredictable. Many people with Brugada Syndrome don't show any symptoms 

and don't even realize they have it. Other experience dizziness, sporadic noticeable heartbeats, 

seizures or blackouts. Unfortunately, in some cases, the first symptom is death. 

Aside from avoiding certain habits and medicines, in cases of high risk of developing a dangerously 

fast heartbeat, specialists recommend having an implantable cardioverter-defibrillator (ICD) placed. 

They don’t prevent a fast heartbeat, but can help stop it and avoid them becoming life threatening. 

Sadly, these devices are not without risks (infections, inappropriate shocks, etc.), so it’s key to identify 

individuals at high risk of life-threatening arrhythmias. 

Affected people with a history of sudden cardiac arrest or fainting are known to have an increased 

risk for suffering further episodes compared to people with no previous symptoms. However, in 

people without prior symptoms of BrS, the tools for evaluating the risk of sudden death are 

suboptimal and may require invasive interventions with associated risks.  

This project is part of a collaboration between the cardiology department of the Hospital Clinic, the 

Centre de Recerca de Investigació Biomèdica (CREB) and the Bioinformatics and Biomedical Signals 

Laboratory (B2SLab), and has been researching BrS in regards to its diagnosis for various years, 

among other heart diseases. 

The main, long term aim of the collaboration is to use machine learning techniques for the 

identification of individuals carrying the BrS before symptoms develop, as well as those that have the 

highest probability of a life-threatening arrhythmia and need the placement of an ICD. This 

technology could potentially be better than currently available tools and avoid invasive interventions 

in otherwise healthy individuals. 
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2. Introduction 

It is hypothesized that it is possible to prognosticate symptomatic Brugada Syndrome patients using 

machine learning tools to process biomarkers extracted from 24h electrocardiograms, possibly 

alongside clinical data. 

2.1 Objectives 

This project aims to test the initial hypothesis. That is to predict if any given Brugada Syndrome 

patient is symptomatic, based on machine learning tools and biomarkers calculated from 24h 

electrocardiogram (ECG) recordings. Symptomatic patients are considered those patients that have 

been recovered from cardiac death, suffered an arrhythmogenic syncope or sustained tachycardia. 

In order to do so, an investigation of the current state of the art of the different fields of research is 

conducted. After that, 24h recordings around 45 different patients with Brugada Syndrome, including 

several symptomatic and asymptomatic ones, are processed and biomarkers extracted from them. 

These data are then used to train and later test different machine learning models. 

On a long term perspective, the goal would be to use a successful model on the described task as a 

basis to develop other machine learning based models that could predict the development of future 

symptoms in previously asymptomatic patients. 

More specifically, the goals for the project can be divided as: 

 Develop an algorithm that allows a quick, automated reading of multiple consecutive 

electrocardiograms in the chosen software (Matlab), originally incompatible with it, in a 

desired format.   

 Apply noise reduction techniques to eliminate as much of it as possible to the entire 24h ECG 

signal and while losing as little information as possible. 

 Create an algorithm that can apply those techniques to many signals consecutively, 

streamlining its processing for future uses. 

 Develop an algorithm to extract biomarkers related to the Brugada Syndrome from the 

processed signals. 

 Determine an optimal way to combine those biomarkers with clinical data from their 

respective patients in order use both sets of information in conjunction, as well to arrange 

the combined information properly for its use on machine learning. 
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 Train and test multiple machine learning models with the resulting datasets in order to make 

an extensive but initial evaluation of their ability to classify Brugada Syndrome patients into 

symptomatic and asymptomatic. 

 Analyze the obtained results to understand the functioning of the resulting models. This, 

alongside the previous one, are the main objectives of the study. 

2.2  Scope 

This work was developed in the framework of the project "Characterization and risk stratification in 

Brugada Syndrome through the development and validation of novel artificial intelligence model-

based approaches for precision medicine, AI4BrS (Artificial Intelligence FOR precision medicine in 

Brugada Syndrome)", a project dedicated to the automatic and continuous analysis of 

electrocardiographic variables in relation to the risk of sudden death in patients with Brugada 

syndrome using Artificial Intelligence.  

The AI4BrS project is mainly carried out at the August Pi i Sunyer Biomedical Research Institute 

(Consorci Institut d'Investigacions Biomèdiques August Pi i Sunyer) and Cardiology Department of 

Hospital Clinic (in Barcelona) with Dr. Elena Arbelo-Lainez, a researcher in the arrhythmia unit of the 

Cardiology Department of the Hospital Clínic, as the main investigator.  

The main scope of the project is the assessment of several ECG biomarkers related with the prognosis 

for sudden death risk stratification in patients with Brugada syndrome. Following that, the main 

objective of the group is to develop an automatic algorithm that detects electrocardiographic 

parameters related to worse prognosis in Brugada syndrome.  

In this work, the main interest is to assess several machine learning tools, using 24h 

electrocardiogram recordings to predict patients with Brugada Syndrome at high risks of sudden 

cardiac death. To carry this out, a database composed of various tens of patients suffering from 

Brugada Syndrome is already available from Hospital Clinic, including electrocardiogram signals 

obtained through a Holter recorder placed on symptomatic and asymptomatic patients attended at 

Hospital Clinic, for a period of 24 hours. 
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3 Background 

3.1 The heart 

The heart is a human organ made of muscular tissue that has two main functions: pumping blood 

from the lungs to the organs of the body, including itself, and collecting blood from them and 

carrying it into the lungs, in order to keep it oxygenated and free of metabolic waste [1] [2]. 

It is structurally divided in four chambers, as can be seen in the image bellow (Figure 3.1). The upper 

ones are called atriums, left and right accordingly, and the lower ones are called ventricles, also left 

and right accordingly, both in relation to the perspective of the body it’s on. The blood vessels, the 

conducts blood is pumped through, are named according to whether they carry blood into the heart, 

the veins, or out of it, the arteries. 

 

 

 

 

 

 

 

Figure 3.1 Anatomy of the heart with labeled parts. The blood vessels colored in blue go from the organs and 

towards the lungs, the ones in red from the lungs and towards the organs [3]. 

The mechanism through which the heart pumps blood is called cardiac cycle, schematized in Figure 

3.2. It’s divided in two parts, systole and diastole. During the systole, the ventricles contract, 

increasing blood pressure and ejecting blood from the heart. The diastole occurs when the ventricles 

relax after that, being filled of blood through the auricles [2]. 

It is located in the protective thorax, posterior to the sternum and with an oblique position, between 

the lungs and above the abdomen, with its upper part located below the third rib and its lower tip 

(apex) located between the fifth and sixth rib [1].  
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Figure 3.2. Blood flow of the heart during the cardiac cycle. The arrows indicate the blood flow on the heart 

during diastole and systole [4]. 

 

3.2 Electrocardiogram 

The electrocardiogram (ECG) is a signal that registers the changes in the electric potential patterns of 

depolarization and repolarization of cardiac cells, captured by electrodes placed on the surface of the 

body, in order to represent cardiac activity of the heart [5]. On an ECG signal, the x axis represents 

time and the y axis voltage, usually in the order of mV.  

ECG is considered the non-invasive gold standard to assess cardiac activity. It is extremely useful for 

cardiac diagnosis because of its simplicity, ease for the patients, low cost, and effectiveness in 

relation to those positive traits. ECG evaluation is widely considered the best technique for the 

diagnosis, among others, of cardiac arrhythmias, acute coronary syndromes and chronic myocardial 

infarction [6]. It is also the main criterion for diagnosis of the Brugada Syndrome [7]. 

Another fundamental element to consider is the concept of leads. An ECG lead is a graphical 

description of the aforementioned electrical activity of the heart and is obtained by combining the 

data proportioned by several electrodes on different parts of the body. There is a standardized 12-
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lead ECG that requires the use of 10 electrodes placed on different positions. The leads can be 

divided into two groups: limb, and chest or precordial leads. 

  

 

 

 

 

 

 

 

 

Figure 3.3. Schematic of the parts of a typical ECG, adapted from [8]. 

The resulting ECG signal of each heartbeat can be divided, as seen in figure 3.3, as follows [9] [10]: 

 Baseline: also known as isoelectric line, it can be most easily spotted as the generally and 

approximately horizontal line that goes between one beat and another and it represents the 

basal electromagnetic currents that circulate through the heart when no active stimuli is 

happening. 

 P wave: as an academic consensus, it’s considered the first peak in the wave, and it appears 

because of the defibrillation, with its consequent contraction, of the atriums. 

 PR segment: it’s the part of the baseline that goes after the P wave and up until the next 

peak. In this period, the auricles are emptied and the transmission of electrical currents 

through the heart is slowed until the contraction of the ventricles. 

 PR interval: it’s the interval that goes from the begging of the P wave until the beginning of 

the QRS complex. 

 QRS complex: it occurs because of the contractions of the ventricles, as they pump out the 

blood in them, and it’s composed of three consecutive waves, Q, R and S. The Q wave is 

negative and usually small, the R wave is positive and can vary widely in height, and the S 

wave is, again, negative. 

 ST segment: it’s the part of the isoelectric line that goes from the end of the S wave, also 

referred to as J-point, and up to the beginning of the T wave. 

Time (arbitrary units) 

Voltage 

(arbitrary 

units) 

J  
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(Eq 3.1) 

 QT interval: the part of the signal found between the beginning of the Q wave and the end of 

the T wave. 

 T wave: it’s considered the final wave in the ECG signal and is, in most cases, a positive wave. 

It occurs because of the repolarization of the ventricles’ cells. 

3.3 Biomarkers  

Biomarkers can be defined as quantitative indications of medical state observed from outside the 

patient that can be measured accurately and reproducibly [11]. They are a very broad subcategory 

however, being described by researchers in collaboration with the World Health Organization as a 

term used broadly to refer to close to any measurement (physiological, biochemical at a cellular level 

or molecular interaction) between a biological system and a potential hazard, be it chemical, physical 

or biological [12]. 

Biomarkers are fundamental in biomedical research, this project being an example of just that, but 

they are often advised to be used with caution and a systematic perspective, as an inadequate use of 

biomarkers can run the risk of obfuscating the medical realities behind them. Shortcomings of their 

measurement and factors external to the core of the research must be taken into account to use 

them properly. It’s also recommended to periodically revise their use and effectiveness, as well as to 

make an effort to always contrast conclusions taken from them with clinical outcomes [11].  

The following biomarkers have been used on throughout the present work (the units they are often 

and have been calculated on in this project are written between parentheses): 

 RR intervals (ms):  

The only biomarker used in the project that was obtained in order to calculate another one, the QT 

corrected specifically, but not used in the machine learning process.  

In and of itself, it is simply the time interval between the R peak of one heartbeat and the next one. In 

this project, it has been used by averaging every RR interval in a segment of a signal. 

 Average power of the QRS complex or PavgQRS (mV2): 

The average power of a continuous signal is calculated as: 

        
 

 
∫ |     |   
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(Eq 3.2) 

(Eq 3.3) 

(Eq 3.4) 

(Eq 3.5) 

Where xa(t) is the QRS, beginning at 0 and T being its duration (QRSd). Therefore, the average power 

of a digitized QRS, where N is the number of QRS samples, is given by: 

        
 

 
∑ |      |  

    

 

 Absolute area of the QRS complex or AbsAreaQRS (mV·s):  

The QRS area on a continuous signal would be calculated as: 

        ∫         
      

     
 

In a digital signal sampled at sampling rate fs, approximating the integral with the rectangular 

integration method, is 

        
 

  
∑        

    

And finally, the absolute value of the QRS area is  

           
 

  
∑ |      | 

    

The difference between the two is illustratet in the following image: 

 

 

 

 

QRS Area: -A1+A2-A3 

Absolute QRS Area: |A1|+|A2|+|A3| 

Figure 3.4. Example of calculation of the QRS area and the Absolute QRS area. Adapted from [13]. 

As can be seen, simply adding A1, A2 and A3 together would mean, on a typical ECG heartbeat like 

the one in the image, subtracting the value of A1 and A3. As in this case the goal is to account for the 

entire area of the QRS segment, the absolute values of the areas will be used instead  
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(Eq 3.6) 

(Eq 3.7) 

 QT interval or QT (s):  

Time interval between the end of the QRS complex (J-point) and the end of the T wave. 

 Corrected QT or QTc  (s):  

Normalized calculation of the QT interval as to account for the heart rate, using the Barzett equation 

[14], considered adequate when examining an ECG with an average heart rate [15]. The RR interval is 

divided by 1 second in order to account for the unit adjustment. 

    
  

√
  

  

 

 ST0 or J-point (mV): 

Voltage amplitude of the ECG signal at the J-point, where the ST segment begins. In the case of this 

project and the digital signals worked with, it was calculated by obtaining the median found between 

two samples prior and two samples after the J-point. 

 ST60 or J-point + 60ms (mV): 

Voltage amplitude of the ECG signal 60 ms after the J-point. In the case of this project and the digital 

signals worked with, it was calculated by obtaining the median found between two samples prior and 

two samples after the J-point.  

 ST slope (µV/ms): 

Slope formed by the two previous biomarkers and time (60 being the time between them in ms), as 

can be seen in Figure 3.5, calculated as:  

        
        

  
 

 

Figure 3.5. Types of slope of the ST segment adapted from [16]. 
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3.4 Brugada Syndrome 

The Brugada Syndrome (BrS) is a rare heritable cardiovascular disorder characterized by a peculiar 

electrocardiogram pattern and associated with a bigger risk of suffering ventricular arrhythmia, 

cardiac fibrillation and sudden cardiac death [17] [18] [19]. It has traditionally been considered to 

appear in structurally normal hearts [17] [18], although recent studies seem to be challenging that 

notion and point to a complex combination and interplay of structural alterations and ion channel 

dysfunctions [19]. 

3.4.1 Diagnosis and Brugada morphology 

It was first reported by Pedro and Josep Brugada in 1992, on a report concerning 8 patients of very 

different who had been resuscitated from sudden cardiac death and presented ST-segment elevation 

in the right precordial leads of their electrocardiograms [20].  

Since then, the understanding of the specific Brugada ECG pattern has been widened and deepened 

quickly and significantly. Current expert consensus recommends diagnosing with Brugada Syndrome 

in two scenarios. 

First, when a spontaneous BrS ECG type 1 pattern is detected (see figure 3.6). Second, when that 

same pattern is successfully induced by sodium channel blockers (a common diagnose technique for 

BrS) or fever, but only when a type 2 or type 3 ECG (figure 3.6) appear spontaneously and that is 

accompanied by a pertinent score the ‘Shangai Score System’ (see figure 3.8) [21]. 

 

 

 

 

 

 

 

 

 

Figure 3.6. Schematics of the 3 Brugada ECG types, detailed below [21].  
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Type 1 is characterized by a lead V2 J-point (always marked with the first vertical grey line) elevation 

of 0.2 mV or bigger and a ST60 (J-point after 60 ms, second grey line) elevation of the same size. 

Compared to the standard ECG pattern, as depicted in figure 3.3, the QRS interval is also wider, and 

the S wave is noticeably wider and deeper in lead I. 

Type 2 similarly has a V2 lead J-point, or ST0, elevation of 0.2 mV or bigger, but a ST60 elevation of 

0.1mV or more in this case, followed by a positive T wave. The T wave is less wide and deep than the 

one from type 1. The patient this signal is from developed a type 1 ECG when trying to induce it 

through specific medicine. 

Type 3 also presents a V2 lead ST0 elevation of 0.2 mV or bigger, but also a ST60 elevation of less than 

0.1mV, alongside a T wave that is neither deep nor as wide as their counterparts in types 1 and 2. The 

patient this signal was recorded from also was successfully induced type 1 ECG. 

 
Figure 3.7. Shangai Score System for the diagnosis of BrS from type 2 and 3 ECGs [21].  

Crucially however, patients presenting any other conditions, detailed in Figure 3.7, that may explain 

BrS patterns, referred to as phenocopies, should be excluded, requiring further examination [21].  



Prognosis of symptomatic patients with Brugada Syndrome through electrocardiogram biomarkers and machine learning   

  13 

 

Figure 3.8. Examples of phenocopies of Brugada Syndrome [21].  

It must be noted that the standardized 12-lead ECG precordial electrode collocation used for the 

detection of the BrS ECG patterns seen in the previous type descriptions, as is usual practice, is 

different than the usual one (see figure 3.9) [17] [22].  

  

 

 

 

 

 

 

Figure 3.9. A: General standardized precordial electrode collocation for 12 lead ECG [23]. B: Standardized 

precordial electrode collocation for 12 lead ECG for Brugada Syndrome pattern detection [22].  

BrS has been studied only for a very short period of time and is a fairly complex disorder, and so is its 

diagnosis. Ever-changing and with research still challenging many assumptions, further changes on its 

diagnosis criteria, or relevant findings in general about its diagnosis or prognosis would not come as a 

surprise. 

A B 
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3.4.2 Management and treatment 

And any such finding could be very impactful. Although the data coming from a source previous to 

changes in the consensus for diagnosis criteria, pretty recent studies cited Brugada Syndrome as a 

cause for as many as 4 to 12% of all sudden deaths [17]. Estimates on prevalence vary significantly, 

between 0.12% and 0.8%.  

Very importantly however, the management and treatment of BrS are a complicated issue [21]. All 

patients with BrS are advised to avoid potential triggers for ventricular fibrillation and sudden cardiac 

death, including excessive alcohol consumption and certain drugs, while developing high body 

temperatures because of fever should be avoided by taking adequate medicine, which is very 

relevant in the context of some vaccinations, such as COVID-19 ones. These last two measures 

require very precise and informed balancing of risks. 

There is a unanimous consensus on recent work for advising the use of an implantable cardioverter-

defibrillator (ICD) on symptomatic patients with BrS, which are highly effective for SCD prevention, 

despite discrepancies of the criteria for the symptomatic label [17] [21]. However, the implantation 

of one of these devices comes with high associated risks, such as potentially lethal device-related 

complications and a high prevalence of inadequate shocks. 

These factors make an effective assertion of the risk associated to each patient a crucial task for the 

proper management of this disease, as well as the development of strong tools that could aid to 

determine such risks. 

3.4.3 Regional differences in incidence  

An aspect left to discuss is the differences in prevalence of BrS in different populations. Its genetic 

heritability, despite nuances in the genetic transmission of the disease [24], means that the disorder 

is unevenly distributed around different regions in the world.  

A recent estimate, which was non-exhaustive, but fruit of a combination of multiple studies 

nevertheless [21], showed some of the highest prevalence of the type I Brugada ECG pattern to be in 

Thailand, with a 0.94%, and Iran, with a 0.359%. The US, Germany and Denmark, among others, had 

a prevalence of 0.005% or lower, and France, Italy and Greece a somewhat higher one, of 0.02% or 

bellow.  

As most studies covering the topic also point towards [17] [18], the highest prevalence was unevenly 

found in different points of what could be considered Asia (although it must be noted how big, and 



Prognosis of symptomatic patients with Brugada Syndrome through electrocardiogram biomarkers and machine learning   

  15 

possibly unuseful, of a generalization that is), with Pakistan, Philippines and Japan all having over a 

0.15% prevalence, aside from the two previously mentioned countries. 

3.4.4 On sex in regards to Brugada Syndrome and its research 

Differences in incidence and sudden cardiac rates between males and females are reported in every 

article that entertains the question and in every region examined [17] [18] [21]. However, contrary to 

populations of specific regions, where the heritability of BrS directly explains this occurrence, the 

causes for this discrepancy between sexes are not immediately apparent [17] [21]. 

Several factors point at sex hormone levels, linked to transmembrane ion current expression, being 

the fundamental cause for these differences, as prostate cancer treatment that involved decreasing 

testosterone levels minimized sex-related BrS ECG differences, higher testosterone levels have been 

detected in men with BrS, and reported differences between males and females are much lower in 

younger people [17] [25]. 

A recent study focused on examining current knowledge about BrS in women considered that 

‘current knowledge supported that sex-related differences not only to sex hormone levels, but 

possibly also to a complex interplay of gender and age dependent genetic factors that modulate the 

expression and function of cardiac ion channels’ [25]. It, nevertheless, considered further studies 

necessary to determine the pathophysiological mechanisms underlying such differences. That, 

however, does not seem to dispute the relevancy of sex hormone levels in the previously mentioned 

situations, nor does it point to a concrete mechanism for that expression. 

A factor that is likely playing a role in the difficulties for the finding of these differences is the 

shortcomings of the concepts of sex itself, understood as the binary and mutually exclusive 

classification of humans into males and females at or before birth upon inspection of the babies’ 

genitalia, a classification that assumes an expected development of a certain range of expression of 

their characteristics of sexual dimorphism, which typically, but not always, occur [26] [27]. It must be 

brought up that recent literature has often challenged the general understanding of these categories, 

despite the scope of this project not allowing for a deep dive into those [26] [27] [28]. 

What the shortcomings of sex as defined earlier definitely cause in regards to the BrS is a very 

difficult assessment of the risk suffered by anyone who doesn’t clearly fit the categories of ‘male’ or 

‘female’, such as intersex people and trans people on hormone replacement therapy (HRT). The word 

trans is being used here to refer to anyone whose gender does not align with their assigned gender at 

birth, assigned alongside sex, which was explained before. 

What risk are trans men on HRT comparable to? They have the usual levels of testosterone of a 

cisgender man (cisgender being someone who is not trans), but their genetic factors at play are most 
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likely different. This is a common issue, among many, that trans people face regarding healthcare 

[29]. And in this case, it is clearly an unresolved matter, as the mechanisms that produce sex-related 

differences are unclear in general, but they are in a particularly precarious condition, because 

researchers often don’t consider their bodies’ situation as a possibility to ponder at all.  

And being aware the previously exposed information about hormone levels could be very useful for 

anyone wanting to better understand the risks associated to a particular group of intersex or trans 

people on HRT.  

However, aside from being ultimately inconclusive, it required specifically searching for that specific 

information among academic texts and navigating various sources. Far from a difficult task for 

someone used to it, but one that may be inaccessible to people unfamiliar with academic research, a 

majority of the population, specially accounting for the amount of articles blocked behind paywalls. 

Less researchers and medical professionals will be aware of that information too.  

That inaccessibility occurred both because of the long amount of time that took for the reasons 

behind sex-related discrepancies to be hypothesized about (coupled with an unfortunate lack of 

effort to include female patients in studies) [25], and because those differences were usually 

mentioned focusing only on the resulting differences in populations, with general disinterest to 

explore their causes, known or not. This could change if more researchers avoided glossing over the 

reasons behind sex-related differences and gave at least a brief mention of them, as they necessarily 

have to be, or the shortcomings of the research in the area should be otherwise noted. 

On a final note, it must be added that the words ‘sex’ and ‘gender’ are often used interchangeably in 

most, if not all of the previously cited works, as well as other literature consulted, as well as terms 

such as ‘women’ and ‘female’. However, sex and gender are long since commonly accepted to be 

separate, even if interconnected, concepts, with gender not referring to biological aspects and 

instead to social ones [27] [28] [30]. 

A rigorous definition of gender would need a wider scale discussion that goes beyond the scope of 

this project, but it is unlikely for Brugada Syndrome patients to have been asked for their self-

identified gender at any point of the research or treatment. The studies do, most likely, refer to 

biological sex in its traditional binary notion, although it may be unclear at some points if social 

behavior correlated to gender is being considered at some points [25], which makes their reading 

unclear at times. 

None of this goes to say that differences related to sexual dimorphism should not be considered 

when examining BrS, quite the opposite. Current use of assigned at birth sex in BrS research as a 

binary category to separate the population into two different, mutually excluding groups, even if 
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(Eq 3.8) 

(Eq 3.9) 

(Eq 3.10) 

lacking [25] has shown positive results and is clearly preferable to the ignoring of sexual dimorphism 

when studying the disorder.  

However, an approach that considers focusing on the specific physiopathologic mechanisms 

underlying the differences between people with different sexual dimorphism characteristics, instead 

of the categories themselves, could benefit future research and would definitely benefit trans and 

intersex people. 

Further examination of this topic is outside the scope of this project, but could definitely be 

expanded upon.  

3.5 Noise reduction by Signal Averaging 

Signal averaging is a signal processing technique that can be used to reduce noise in periodic and 

quasi-periodic signals [31] [32]. Noise which will inevitably appear in some level or another in 

continuous, digitally stored ECG recordings, mainly from muscle activity and main line interferences. 

Continuous, digitally stored ECG recordings can’t avoid being contaminated with noise, mainly from 

chest muscle activity and main line interferences. As the ECG is a quasi-periodic signal, it can be 

divided into equally sized segments (the different heartbeats) by being aligned in reference to, for 

example, their R peaks. Thus, transforming the original signal into an ensemble of M different beats, 

with each beat, xm(n), described by N samples (see equation 3.8) [31]. 

                      

The ensemble is represented by the N x M matrix X 

                

Where the mth beat is contained in the column vector 

    [

     

     
 

     

] 

Although more complex ways of performing the averaging exist, the average signal,   , can be, as 

has been in done in this project, calculated as:  
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(Eq 3.11) 
    

 

 
∑       
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Where sm(n) could be considered the deterministic part of the signal, which does not change from 

beat to beat, and m(n) the noise. Assuming random noise, signal averaging will produce a reduction 

of the root mean square amplitude of the signal, a √  factor. Figure 3.10 depicts schematically 

the signal averaging process, aligned with the R-peaks of QRS complexes. 

 

 

 

 

 

Figure 3.10. Diagram representing the signal averaging of an ECG. R waves are aligned and later summed, 

creating a noise reduced signal. Adapted from [33]. 

3.6 Machine Learning and Classification 

Machine learning (ML), concept whose introduction is attributed to Alan Turing [34], although initially 

using the slightly altered but much more stylized ‘learning machines’ in his 1950 article ‘Computing 

machinery and intelligence’ [35]; can be broadly defined as enabling computers to make successful 

predictions using past experiences [36]. 

 

 

 

 

 

 

 

 

Figure 3.11 Non-exhaustive schematic of the different types of Machine Learning [37]. 

Averaging  Noise-reduced signal  R peak alignment 
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As can be seen in Figure 3.11, ML can be divided into two broad categories, unsupervised and 

supervised learning. On the latter, training entries are presented as a set of variables and a category 

or class linked to each set, and the algorithm develops a function which relates the variables of the 

entry with a given outcome. Unsupervised learning tools have no prior knowledge of the entry 

variables, they find common characteristics or occult patterns among them. 

Machine learning is a vast field, which has gained a lot of popularity in recent decades but has been 

discussed since the 1950s, as shown just before. In this section, however, the focus will be on 

introducing the concepts more directly applied and explored on this project.  

3.6.1 Machine learning classification 

ML classification, or automated classification from now on, is a technique consisting in the use of 

machine learning algorithms to assign a specific class label to a group of examples (the so-called 

training group) in order to later apply that process to new data [34] [38]. 

Generally, in order to create a ML classifier, a portion of the available data for the creation of the 

classifier is separated from the rest. That set of data is called the test dataset. The test dataset is used 

to evaluate the final classifier with data that has not been used for the creation of the model (specific 

ML classifiers are often referred to as ‘models’). 

The rest of the data, on its turn, has to be divided in order to train a classifier, which can be done in 

multiple ways. A common approach for large dataset, and the approach taken in this project, was to 

create two separate datasets as well: the validation data (or validation holdout) and the training data. 

For the training itself, the model gives predictions using the variables and following different criteria 

depending on its type, which are then compared with the classification targets. Depending on the 

results, the type of model and its specific settings, the parameters of the model will be changed, with 

the goal of maximizing the accuracy of the predictions. 

During that process, the model in training is used to predict the desired categories of the validation 

dataset, which has not been used in the training prior to that. That provides an unbiased evaluation 

of the model, with which the model adjusts its parameters further in order to maximize its accuracy. 

Finally, once the training is completed, the model should be evaluated with the test dataset, which 

has remained independent during the entire process. The results for the test, provided that its data is 

adequately independent from the data used in the training process and it is large and diverse 

enough, should give an accurate estimate of the performance of the model with any new data 

processed through it. 
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3.6.2 Misclassification costs 

A concept strongly linked to ML classification in general and this project in particular, is the concept 

of misclassification costs or misclassification weights (McW) [34] [39].  

As explained before, models are adjusted in training according to their performance on predictions, 

keeping or changing adjustments according to whether they have a positive or negative impact on 

accuracy. 

The calculations that determine said accuracy can be modified by changing its misclassification costs, 

which means the relative weight of wrong predictions of particular types. For example, it might be 

desirable to set a higher McW for predicting a sick patient as healthy than for doing the opposite. 

As McW have no units, they can be expressed as ratios. 

 

3.6.3 Automated classifier types 

Here, some of the main types of machine learning classification, the ones most relevant to the 

project, will be enumerated briefly [38]: 

 Decision Trees. 

 Discriminant Analysis Classifiers. 

 Logistic Regression Classifiers. 

 Naïve Bayes Classifiers. 

 Support Vector Machines. 

 Nearest Neighbor Classifiers. 

 Kernell Approximation Classifiers. 

 Ensemble Classifiers. 

 Neural Network Classifiers. 
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4. Materials 

Most of the work of this project has been done in an HP Pavilion Laptop 15-cs1xxx, with the ECG data 

being transferred on a portable solid state drive of 1 TB of capacity, model Samsung Portable SSD T5. 

The entire dataset comprised dozens of gigabytes of information and was therefore impractical to 

store in a computer destined for daily use and without a huge storing capacity. 

However, this is largely inconsequential to the project itself. The material described in the following 

sections is that which had a fundamental role in the shaping of the outcome of the project. 

4.1 ECG Holter recorder 

A Holter consists of the uninterrupted and ambulatory (without the need to stay at the hospital) 

register of an ECG from a patient, typically for no less than 24h, through a portable electronic device 

that both records and stores the information, often of homonymous name [40]. 

4.1.1 SpiderView Digital Holter Recorder 

The Holter monitors employed to record the data used in this project were SpiderView® models [41], 

from the company Livanova [42] and distributed by MicroPort [43]. 

 

 

 

 

 

Figure 4.1 Spider Digital Holter Recorder [41]. 

4.1.2 Holter recorder placement 

As exposed previously on the background section, the standard for 12-lead ECG recording for the 

examination of Brugada Syndrome ECG patterns is different from the general one (see figure 3.9). 

The placement of the Holter was approximately similar to figure 4.2. 
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Figure 4.2. Schematic of the placement of the Holter used in the project. Adapted from [44].  

4.2 Database 

The database used in this project was provided by the Arrhythmia Section of the Cardiology 

Department of the Hospital Clínic of Barcelona.  

ECG signals from BrS patients were obtained using the aforementioned Spiderview Plus 12-lead ECG 

Holter recorders [41] using a configuration of 2.5 µV of voltage amplitude resolution (16 bits) and 

sampling frequency of 1000 Hz for each channel. ECG signals from the recorder flashcard were 

uploaded to Synescope analysis software [41], also from Livanova [42], which allowed exporting the 

ECG signals in ISHNE format [45] for posterior analysis. The ISHNE files were the ones initially 

available at the beginning of the project. 

Signals of 53 different patients were available in the initial database. However, only 47 of those were 

found to have their complete, corresponding clinical data available, including their status as 

symptomatic or asymptomatic, so that was the number of signals that was finally worked with. 

However, 2 of them were later discarded, so the final number ended up being 45. 

The following table, Table 4.1, synthesizes basic information about the patients from the database. As 

only 45 patients were finally used, the information of the patients whose signals were discarded has 

not been included. 

Just below clavicle 
Just below clavicle 

Lower end of ribcage 

This would be the 

position for the V1 lead 

of a standard ECG Holter 

V1 

V5 

V3 

V2 

V6 

V4 
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Table 4.1. Number of asymptomatic and symptomatic patients on the database, separated between 

females and males, and with the mean age and age range at the time of recording specified 

Number of patients Asymptomatic Symptomatic Age1 Total 

Females 8 3 - 11 
Males 29 5 - 34 
Total 37 8 54 [29-79] 45 

1 Mean [Minimum - Maximum] 

Symptomatic patients were defined as those having recovered from sudden cardiac death, suffered 

an arrhythmogenic syncope and/or sustained tachycardia that derived to an appropriate therapy 

response (electrical shock or anti-tachycardia stimulation) from their implantable cardioverter-

defibrillators. That is the definition of the term that will be used throughout the project. 

As can be seen, there are more male and asymptomatic patients, as compared to their assigned 

counterparts. The most common group is, by a large margin, asymptomatic males, followed by 

asymptomatic females, symptomatic males, and symptomatic females being last, with only 3 

patients. A more detailed assessment of these imbalances will be made when detailing the 

methodology followed. 

The ages of the patients at the time of the recording was estimated by the approximate date of 

creation of the files and the year the patients were diagnosed on, so some margin of error can be 

expected. 

Each signal is stored as a 24 hour file. However, as will be discussed further bellow, the last portions 

of most recordings are flat 0 signals, leaving usually between 21h and 23h of actual recording. 

The total of the biomarkers finally used were the result of almost 932h of ECG recording. The smallest 

dataset used in the classifier, including training and testing, obtained its data from over 330h of 

recordings. 

Before the recording, each patient agreed to share their data through a document of informed 

consent that can be seen in the Annex E. 
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4.3 Matlab 

Matlab is a programming and numeric computer platform designed by MathWorks for use in science 

and engineering primarily [46] [47]. It allows for many different uses with great versatility, in no small 

way thanks to its toolboxes, which expand the capabilities of the platform; and its apps, which are 

interactive applications that give additional tools for multiple technical tasks. Some toolboxes include 

apps that can be accessed on the Matlab workspace once installed.  

In this project, programming was done exclusively in Matlab, alongside its signal processing and ECG-

kit toolboxes, as well as the Classification Learner App, also from Matlab. 

 

4.3.1 Signal Processing Toolbox 

Matlab’s Signal Processing Toolbox provides tools for analyzing, filtering and extract characteristics 

from signals in the form of several functions and apps [48]. Its provider highlights its capacity to 

design filters, do time-frequency analysis, and apply deep learning and machine learning to signal 

processing.  

 

4.3.2 ECG-kit  

The electrocardiogram kit, or ECG-kit, which will be used from now on, is a free software Matlab 

Toolbox, described by its creators, Llamedo Soria and Demski, as an application-programming 

interface, that allows to access and process cardiovascular signals in different formats, including the 

ISHNE format the signals of the database used in this project are on [49]. 

The aspects within the processing capabilities that will be more relevant to the project are the 

detection of the beginning, end and peaks of the different waves in ECGs. The toolbox provides 

different techniques through which to specifically detect R peaks, from which, after consideration 

with the director of the project, the Wavelet method [50] was the one used throughout the project. 
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4.3.3 Classification Learner App  

The Classification Learner App from Matlab is a Matlab application that allows training, validating, 

modifying and testing automated classification models through a specifically designed interface that 

also facilitates examining the data used, among other things, see figure 4.3 [51]. 

It can develop classifier models based, as self-described within the app, on the following methods:  

 Decision Trees. 

 Discriminant Analysis Classifiers. 

 Logistic Regression Classifiers. 

 Naïve Bayes Classifiers. 

 Support Vector Machines. 

 Nearest Neighbor Classifiers. 

 Kernell Approximation Classifiers. 

 Ensemble Classifiers. 

 Neural Network Classifiers. 

It also allows the changing of misclassification costs and adjustment of several parameters of most of 

its models, such as the maximum number of splits in decision trees or the number of neighbors in the 

nearest neighbor classifiers. 

 

Figure 4.3. Interface of the Classification Learner App from Matlab, depicting a scatter plot of data. 
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5. Methodology 

In this section, the process made from the obtaining of the raw ECG signals handed from Hospital 

Clínic up until the application of the Classification Learner App using the processed data will be 

described. 

The following schematic briefly summarizes the different steps followed. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1. Summary of the process developed along the entire project, from the conversion of the raw files to 

the adjustments of the machine learning models to improve performances. 
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5.1 Signal Processing  

The following section describes the process of conversion of the original ISHNE format file into a 

Matlab readable format and the noise reduction techniques used, mainly signal averaging. 

Some low (under 1 Hz) and high (of 40 Hz and above) frequency filtering could remove important 

information from the ECG signal, and noise in both of those frequency ranges were quite 

predominant in the original signals [52]. In order to calculate the biomarkers, however, it is important 

to have a good signal to noise ratio, which could be obtained through signal averaging while leaving 

the deterministic signal more unaffected than some alternatives, as described in section 3.5.  

Another crucial advantage of using this method is that it can be effectively applied to signals with 

many different types of noise, something ideal to filter 24h ECG Holter signals recorded under very 

different circumstances.  

The results of the signal averaging process are shown in figure 5.3, page 31. 

5.1.1 ISHNE file reading and segmentation 

In order to access the 12-lead ECG signals form the patients, originally in ISHNE format [45], which 

can’t be directly worked with through Matlab, the function ECGwrapper() from the ECG-kit was used. 

This last command also requires an initial and final sample to read and later convert to int16 format, 

so this function was also used to splice the signal into 3 minute segments that will later be processed 

separately.   

Once the 3 minute segments were obtained, they were first turned into double format, in order to 

make them easier to manipulate, and then removed their baseline through the detrend() function, 

from the Signal Processing Toolbox and changed its units from nV to mV. 

Each file was saved after this processing in a .mat file containing both the signal in double format and 

a struct variable containing the original header, modifying only the number of samples, which would 

now be 180000 (3 minutes at 1000Hz of sample frequency). The resulting headers had the following 

structure: 

nsamp: 180000 

btime: '11:8:59' 

bdate: '1/1/2007' 

nsig: 12 

desc: [12×3 char] 
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gain: [12×1 double] 

freq: 1000 

adcres: [12×1 double] 

adczero: [12×1 double] 

units: [12×2 char] 

recname: 'BH0001' 

In the header nsamp represents the number of samples in the given file, btime and bdate the time 

and date of recording, although both of them were typically set to their default mode (1/1/2007). 

After that, nsig gives the number of derivations, 12 in this case, and desc their name (I, II, III, aVL, aVR, 

aVF, V1, V2, V3, V4, V5, V6). Finally, gain gives the signal gain (4x10-4), freq the sampling frequency 

(1000Hz), adcres the resolution of the analog to digital converter (16 bit), adczero the signal’s zero 

(0), units the original units of the signal (nV), unmodified as they were not going to be used, and 

recname the code assigned to each patient (BH0001 in this case), from which will the patient 

numbers are given. The only value that changes among files is recname, changing from patient to 

patient. 

Each ISHNE file was 24h long, so processing each of them always resulted in 479 .mat files. However, 

due to Holter battery runtime limitations, almost every signal lasted less than that, resulting in some 

dozens of files containing zeros or very small numbers (after stabilizing sometimes), which had to 

later be removed from each patient’s dataset. 

A 

 



Prognosis of symptomatic patients with Brugada Syndrome through electrocardiogram biomarkers and machine learning   

  29 

B 

 

Figure 5.2. Signals were modified to appear cleanly in the figure, as will be the case for all signals displayed. The 

code used for that can be found in Annex D. A: Typical 3 minute segment of the ECG recording. B: 3 minute 

segment that began the empty segments in patient 1. 

 

5.1.2 Signal averaging and lead selection 

The biomarkers were calculated from a 60 second signal of a single heartbeat, obtained through the 

signal averaging of the beats corresponding to each 3 minute segment of the signal. 

However, before performing the averaging, and just after reading each signal segment in order to 

minimize processing time, an if clause made it so only signals of an amplitude bigger than 0.5mV in at 

least one of its leads are processed. This sorted out the empty segments mentioned in the previous 

section.  

Additionally, by setting a relatively higher threshold (the empty segments had often an amplitude of 

0, and never anywhere close to 0.5mV), it also leaves out segments which, for one reason or another, 

had a very small amplitude and carried close to no or very unreliable information. The speculated 

reason for this occurring is errors in electrode leads connection. 
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The signals from patients 40 and 41 were finally discarded entirely because they mostly presented 

those same characteristics through their entire duration, reducing the total number of signals from 

47 to 45. 

After that, through the ECG-kit function ECG.ECGtaskHandle.detectors, the R peaks in the QRS 

complex were detected in order to use them as a reference point to align the signals for the signal 

averaging. Different detection methods can be used by calling this function, from which the Wavelet 

method was finally selected, as it showed a slightly better performance with many of the signals 

used. 

The resulting file contains the position of the R peaks in the 12 leads the Holter originally recorded. 

However, in order to work with a more manageable dataset for this initial approach and perform the 

remaining processes faster, it was considered worthwhile to reduce the leads that would be used 

from this point forward to three: II, V1 and V2 (determined by the Holter placement specified earlier, 

see figure 4.2, with Brugada specific precordial leads).  

These were considered by both the cardiologist and the director of the project to be the most 

adequate ones because they are among the ones who carry the most relevant information of the 

Brugada patterns, being commonly used for diagnosis [21]. 

This lead selection was carried out during this part of the averaging, by iterating only through the 

selected leads on the files. 

The selection of the signal fragments to average was then performed by selecting 1 second (1000 

samples at 1000 Hz) windows around each R peak (399 samples before it and the remaining 600 after 

it, as an approximation for its common position), except for the first and the last 5 R peaks.  

That was decided because, at times, not doing so caused indexing errors, as some R peaks, possibly 

incorrectly detected sometimes, appeared earlier than the 399th or after the 600th sample of the 

segment. The noise reduction on most of the segments was satisfying using the remaining 90 beats 

to perform the averaging regardless.  

The resulting signal segments were then averaged with the function mean() to create a single 1 

second signal. An example of the initial and resulting signals can be seen in figure 5.3. 

 

 

 



Prognosis of symptomatic patients with Brugada Syndrome through electrocardiogram biomarkers and machine learning   

  31 

A 

 

 

 

 

 

B 

 

 

 

 

 

 

C 

 

 

 

 

 

Figure 5.3. A: Original 3 minute ECG segment from patient 15. B: close-up of approximately two heartbeats on 

that same segment, lead II. C: Signal resulting from the averaging of the segment. 
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The resulting files with the averaged signals will be referred to as ‘beat files’ or just ‘beats’ from now 

on, with the latter being used to refer to the information they carry as well, regardless of the format. 

 

5.1.3 Recounting the final files to be worked with 

A simple yet essential code was created in order to obtain the number of averaged beat files that 

resulted from each patient’s signal after the processing, the position the first beat from each patient 

would have in the final dataset table and the total number of averaged beats that would be used. 

Those resulted in double variables named Nbeats, Pbeats and Tbeats respectively. 

It can of course be included in another code file, but during the development of each step of the 

process it was useful to have them separated, both for better organization, to making it quicker to 

run the code after modification and to incentivize a more careful assessment of each process and its 

results. 

The number of files for each patient were simply obtained by iterating through each file through a for 

loop for the patient number and a while loop for the beat number, and checking, through the 

function isfile(), if a file exists with the naming structure and numbers. 

While the while loop made the code simpler, it had the side effect of not adding any valid file that 

came after a 3 minute segment file that could not be previously averaged. However, that was not 

considered as a big enough flaw to adapt the code to it, as in the only case where that happened, 120 

averaged beats from patient 22’s signal, the already noisy signal only seemed to get worse after that 

point (as it is to be expected when a given 3 minute segment doesn’t go above the 0.5 mV threshold), 

and minimizing the weight of noisy signals in the final classification seemed positive either way. 

An independent variable counted the total number of beats, which was useful to obtain the position 

of the first beat of each patient, by simply subtracting the number of beats of each patient to the 

total number of beats at the end of each patient cycle. 

The three variables were saved in a single .mat file named ‘BeatsData.mat’ that will later need to be 

loaded in following codes. 
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5.1.4 Calculation of the RR intervals  

As was shown previously, in order to calculate the corrected QT biomarker it is necessary to know the 

RR interval of each biomarker, the distance between its R peak and the previous one. As the 

biomarkers are going to be calculated in a single averaged beat, the RR interval will also have to be 

calculated from the entire 3 minute averaged segment of the signal, as the RR interval can’t be 

obtained from a single beat.  

In order to both have a more organized code, be able to check the results of this particular process 

more carefully, and iterate the code that calculates the biomarkers, which takes a while to process, 

faster while writing it; it was decided to have this part of the process to be in a separate file. 

However, the process to calculate the RR intervals themselves is fairly simple. For each patient and 

each segment of their signals, R peaks are detected through the same ECG-kit command that was 

used in the averaging, ECG.ECGtaskHandle.detectors, through the Wavelet method only in this case, 

and the time for each peak extracted. 

Then, the diff() Matlab command is used to obtain the intervals from the previous positions, the 

intervals are divided by the sampling frequency to convert them into seconds, and the average of all 

the intervals is calculated in order to obtain a single value per segment. 

The final version of this program include lines that check if detection files in a given folder for each 

beat file already exist, be it because of previous interrupted iterations or different processes that 

used the same command, in order to avoid unnecessary repetitions of processing, if possible. 

The final results were saved in a .mat file containing a double variable, named ‘RRmean.mat’. 

 

5.2 Calculation of the biomarkers 

Before starting to calculate the biomarkers, both the BeatsData.mat and RRmean.mat files need to 

be loaded, and both the patient numbers that will be processed and the leads their signals have 

properly determined. 

Also, in later iterations of the program, an if clause was added that will load previous versions of the 

final resulting file if it already exists in order to be able to stop the relatively long processing halfway 

through and continue it from where it had stopped, with minimal adaptations further in the code. If it 

does not, it creates a zeros matrix of the final size the table will have. 
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Once that is done, a loop is started that will comprise most of the following process, that goes both 

through each patient’s folder, containing all of their beat files, and through each beat file itself. To 

properly iterate the later, the length of the loop is obtained from the number of files, saved in each 

according value from each patient on the Nbeats double variable, contained in the BeatsData file 

created previously. 

The final result from this script will be a single Matlab file in table format that will contain the 

biomarkers from each patient, ordered by patient number, which will be included in the first column. 

In order to set the position of the biomarkers of each beat right, their corresponding Pbeats is used, 

also from BeatsData which indicates the position of the first beat of each patient within the table. 

An additional if clause checks on whether each of the rows of the table has already been filled or not, 

continuing the process only if hasn’t. This is, again, to make the process quicker (as most of the 

processing time is spent on the delineation, which comes afterwards), which is only necessary and 

possible because of the if clause that may load a previously started but not completed table that was 

included before. 

If possible, the delineation process would go next, right after loading the files. The delineation refers 

to the task ECG_delineation on the ECG-kit that calculates, among other data, the beginning and end 

of the different segments of each beat captured in the ECG signal, which will be used to calculate the 

biomarkers. 

However, because of the programming of the function from the ECG-kit, the delineation can only 

begin after one second of the signal, something meant to avoid errors when detecting cut beats or 

other issues at the beginning of the recording, but which is only an obstacle in this case, where the 

signal records a single, one second, processed beat.  

In order to avoid this, 1000 samples (1 second, as the sampling frequency is 1000 Hz) of the same 

value as the first one in the original sample are added at the beginning of the signal. The modified 

signal is saved in a new file. 

A final if clause of this kind checks whether or not a delineation file for the two second beat file has 

already been created in the file they are two be saved in, and loads it in case it has. As this is way 

faster than the delineation process and is repeated thousands of times, it may save up quite some 

time.  

It was especially useful while creating the code, as changes in desired presentation or plain mistakes 

made the final resulting file unusable, but the delineation files are always going to be the same as 

long as the signal stays the same too. This may be useful again if anyone tries to adapt the code to 

their specific needs or improve its efficiency in the future and several different attempts are needed. 
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After the delineation is performed or loaded, the beginning and end of the QRS segment and the 

beginning and end of the T wave are loaded for each lead, and the proper calculation of the 

biomarkers begins. 

The biomarkers (in bold) are calculated as follows (omitting checks to avoid errors in case the 

delineation values are NaN, Not a Number), based on the formulas described in section 3.3 (Eq. 1-7): 

qrs = signal(QRSon:QRSoff,k);  % QRS segment values are separated 

QRSl = length(qrs);    % QRS segment length  

 

Pavg = 1/QRSl*sum(qrs.^2); %  Average potency of QRS (mV^2) 

AreaQRSabs = 1/fs*sum(abs(qrs))*1000; % Absolute QRS area (µV·s) 

 

qt = Toff - QRSon +1; 

qt = qt/fs;  % QT in seconds 

 
% The particular RR value is selected for each beat         

RRi = RRmean(i,Npat); 

         

QTc = qt/RRi.^(1/2);  % QTc_Bazett vector 

QTc = QTc*fs;     % Turned to miliseconds (ms) 

 

ST_0 = median(signal(QRSoff+(-2:2),k)); % mV 

ST_60 = median(signal(QRSoff+60+(-2:2),k)); % mV 

ST_slope = 1000*(ST_60 - ST_0)/60; % µV/ms 

 

This process is performed for every lead of each beat file, and repeated for all beats and patients. If 

the delineation function was unable to obtain any of the required data to calculate each biomarker, 

its result will be a NaN value. 

The biomarker values are saved in a single file, with each line containing all the biomarkers for each 

beat, and each column containing a biomarker, except for the first one, with the patient number on 

it, which will be necessary on later processing. The three biomarkers of the same type but a different 

lead are grouped together, and the biomarkers go in the same order as presented before.  

Once this process is over, the only step left is to save an additional file in excel format with its first 

row containing the different names of the biomarkers, added after transforming the variable 

containing the biomarkers into a cell, in the format seen in the code above. 
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5.3 Machine Learning 

After having completed the calculation of the biomarkers, all data that was planned to be used on the 

classifier was finally available. As the biomarkers can be considered as a filtered condensation of all 

the original ECGs, the whole of them alongside their according clinical data will still be referred as 

‘dataset’, ‘main dataset’ or ‘database’ if not specified in context that they refer to other sets of data. 

The Classification Learner was always trained with data from this same pool, but the efficacy of the 

classifiers will change a lot depending on how the training and test datasets are selected from the 

main dataset, as well as whether or not all the data is used and how that selection is done. 

The following sections describe the criteria used to separate each training and test dataset, as well as 

outline the criteria for which clinical data was finally used. 

The Matlab Classification Learner App was considered the best available tool for the implementation 

of machine learning to this dataset within this project for different reasons. Although a secondary 

one, as other programming platforms could have been used, it being a Matlab app was a 

considerable positive, as it kept the process simple and allowed the application of machine learning 

through already familiar tools.  

Mainly however, it was selected because it is a quite intuitive and adequate for users without much 

experience in the field, and allows for an extensive approach to training models, allowing to easily 

train several models at once that work very different principles. That is especially useful on a first 

approach to a particular goal for a machine learning model, such as this one. 

Despite unsupervised machine learning being a completely valid and possibly promising venue 

through which approaching this problem, it was decided that supervised machine learning was a 

better fit for a first approach to the task at hand with the established tools. 

The code used to add the clinical data, separate the dataset in different train and test datasets, as 

well as to separate carry out the process described on section 5.3.5, was fairly rudimentary. For the 

former, it iterated through the beats main file and added the clinical data desired  

For the two latter ones, it simply iterated on a loop through the main database, already including the 

clinical data, and added the beats with the desired characteristics to the according files, following the 

criteria detailed on the following sections. Each arrangement of the data was created through a 

different Matlab file, but their code was nearly identical, as can be seen in the Annex C. 
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5.3.1 Use of clinical data 

Using clinical data from the patients as a part of the machine learning process was a part of the 

conception of the project since its beginning, but various approaches were considered regarding its 

particular use through the course of the project.  

The first aspect on this regard to be firmly decided was to not present the data from different beats 

to the classifier as belonging to particular patients, meaning that different beats were, in the ‘eyes’ of 

the classifier, independent from each other. 

Directly including the patient numerical identifier as a parameter to analyze in the classification 

would not be of much use in and of itself, as models would not only correlate them to a single value 

(that links the beats to the patient), they would associate certain numerical values to being 

asymptomatic or symptomatic, as correlation would be absolute, and that would be absolutely 

counterproductive when testing the model with untrained patients. 

Grouping beats from the same patient before feeding them to the classifier, which could be done in 

many different ways, is an interesting method to explore, as it could allow to identify cardiac patterns 

displayed over an extended period of time. However, this approach has its own downsides, as the 

number of samples in which to find whose patterns would be smaller, and it would require additional 

processing and analysis, and likely control and knowledge over the machine learning models, which 

time and scope limitations would not have allowed to do optimally. 

The Brugada Syndrome, as stated previously, is diagnosed over patterns on specific waves, patterns 

captured in the selected biomarkers. The classifier, by processing individual beats, tried to identify 

particularities on the patterns, represented by biomarkers, of the symptomatic patients in particular. 

A remarkable benefit of this approach is that it maximizes the number of items the models were 

trained and tested on. 

Another fundamental decision was whether to use clinical data about patient’s pathologies and 

genetic data as parameters to be added to each beat for the classifier or not. 

The final consensus was not to use them at all, as more or less apparent or direct interconnections 

may exist between those pathologies or genetic factors and the symptoms linked to the 

‘symptomatic’ category, which could derive into the models relying on them not as risk factors but as 

direct predictors, diverting attention for the much preferable direct clinical analysis of the 

biomarkers. Also, not all of these data are or may be accessible for all patients on the current or 

future databases used, which would diminish the model’s utility. 
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It was also considered to only use sex and age as additional clinical data. However, age was also 

considered to be a poor addition to this dataset as, despite being almost always available without the 

need for any test, it is to be expected for symptoms of Brugada Syndrome to have appeared more 

often in older people. Not only because of worsening health conditions in general with an older age, 

but also because more time has passed in which symptoms could have manifested.  

That could increase accuracy, yet that increase would not be based on underlying patterns in the 

beats but in a statistical tendency. It could be considered a valuable addition to a model that already 

accurately identifies the proposed patterns that remained the core driving factor behind the 

classification, but that should be first achieved in a model proper.  

Not including it even on such a model would also be a reasonable proposition if the goal were to 

perform an analysis of the beats only based on clinical information, and the person operating the 

model could later evaluate the additional risk themselves if desired. It could also be assessed that, 

despite people in a group being more unlikely to suffer symptoms, avoiding worst case scenarios is a 

priority, so efforts should be made to avoid that imbalance lessen their prognosis rates. 

Finally, it was decided to only use sex as additional clinical data for the classifier, aside from the 

symptomatic or asymptomatic labels of course. Despite the nuance around the label, as exposed in 

the Background section, there are common differences in ECG patterns between sexes that could 

probably aid the classification of the beats, and it is often an easily available data that could be 

probably be fed to a model on further iterations or tests. 

From now on, for the sake of convenience, the terms ‘symptomatic beat’ and ‘asymptomatic beat’ 

will be used when referring to the set of biomarkers extracted from each averaged beat, alongside 

the sex of the patient, if such patient is symptomatic or asymptomatic respectively, despite this 

categories not being strictly applicable to heartbeats themselves, be they product of signal 

 

5.3.2 Creation of different train and test datasets 

In order to be able, not only to create an automated classifier, but to also improve its performance, 

different test and train datasets must be created in order to understand its functioning, correct its 

biases, consider different scenarios, etc. 

Describing the process of creating these and discussing the results obtained from the models 

required using some key words very often, so additionally to the some abbreviations being used in 

further sections, for the sake of convenience, the different distributions of training and testing data 

drawn and selected from the main dataset in the following sections are referred as ‘sub-datasets’. 
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Each of them has a number assigned in order to distinguish them easily. When a training dataset or a 

test dataset is mentioned, it is referring to the specific test or training set of data that are part of a 

specific sub-dataset, although it will be opted for alternative formulations as often as possible in 

order to avoid confusion. 

On the next sections, the characteristics of each sub-dataset will be described alongside the 

considerations had when creating it, in order to properly contextualize the results shown in the 

following sections. 

Table 5.1 displays a summary of the information presented in those sections. The patient identifiers 

used for each sub-dataset are shown, in parenthesis, in order to give more precise information about 

the data used for the tests and its possible biases. 

Table 5.1. Summary of the main characteristics of the sub-datasets 

 
Sub-

dataset 1 

Sub-

dataset 2 

Sub-

dataset 3 

Sub-

dataset 4 

Sub-dataset 5 

[Large Test | Small Test] 

Separate patients for the test No Yes Yes Yes Yes 

Patients separated for testing 

[Total (Patient Identifier)] 
- 

4 

(2, 10, 

23, 33) 

4 

(2, 10, 

23, 33) 

2 

(3, 5) 

12|2 

(1, 3, 5, 6, 14, 18, 29, 32, 

35, 36, 37, 42)|(3, 6) 

Beat Trimming No No Yes Yes No 

Manually selected signals No No No No Yes 

 

5.3.3 Sub-dataset 1 

The sub-dataset 1 was composed by the totality of the beats in the dataset whose clinical data was 

available, with seven beats for each of the 45 patients, located always on the same positions (which 

were away from the very first and last ones, as they tended to be slightly noisier), being selected to 

conform the test dataset. 

It was intended as a first approach to the classifier, using as much data as possible from as many 

patients as possible and with the least possible filtering of it. Even if the way of selecting this test 

dataset meant that it wouldn’t be too reliable, it would give potentially useful and unique 

information about the behavior of the models with this general dataset. 

As with the rest of the sub-datasets, the following two tables underneath show some general data 

about the train and test data from the dataset. 
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Table 5.2. Patient data on sub-dataset 1 training and test 

Number of 

patients 

Asymptomatic, 

Training 

Symptomatic 

Training 

Total 

Training 

Asymptomatic 

Test 

Symptomatic 

Test 

Total 

Test 

Females 8 3 11 8 3 11 

Males 29 5 34 29 5 34 

Total 37 8 45 37 8 45 

 

Table 5.3. Number and percentages of beats on training and test of sub-dataset 1 

 
Total beats Asymptomatic % Asymptomatic Symptomatic % Symptomatic 

Training Data 18639 15278 82% 3361 18% 

Test Data 360 296 82% 64 18% 

 

5.3.4 Sub-dataset 2 

The test of the sub-dataset 1 allowed examining how well it could classify beats it had not been 

trained with from patients it had been trained with. If the model wasn’t able to do that, it could 

hardly perform any further tasks correctly. However, that is not the real use scenario the model is 

aiming for. Its purpose is to be able to correctly classify heartbeats from patients whose ECG it has 

never been trained on before. 

Therefore, the second sub-dataset is meant to check that. The pool of beats it pulls from is the exact 

same but, when creating it, instead of selecting certain beats from each patient, 4 different patients 

(2 symptomatic and 2 asymptomatic) were selected among the ones with less noisy and more typical 

signals, and their beats were not included in the training, being left to be used only for the test after 

the training is completed. 

This is expected, with almost certainty, to reduce the accuracy of the model, as less beats ()))) are 

used in the training and their diversity is reduced. Further than that, the ones being removed are 

checked to be among the less noisy ones, which should further impact the model’s performance.  

Nevertheless, it only makes sense for the most reliable possible beats to be used in the testing, as to 

make sure the information deduced from there, being the test the most important part of the 

evaluation of a model, is as trustworthy as possible. 
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Table 5.4. Patient data on sub-dataset 2 training and test 

Number of 

patients 

Asymptomatic, 

Training 

Symptomatic 

Training 

Total 

Training 

Asymptomatic 

Test 

Symptomatic 

Test 

Total 

Test 

Females 7 2 9 1 1 2 
Males 28 4 32 1 1 2 
Total 35 6 43 2 2 4 

 

Table 5.5. Number and percentages of beats on training and test of sub-dataset 2 

 
Total beats Asymptomatic % Asymptomatic Symptomatic % Symptomatic 

Training Data 17273 14708 85% 2565 15% 

Test Data 1723 863 50% 860 50% 

 

5.3.5 Sub-dataset 3 

Sub-dataset 3 aims to evaluate the models’ performance when trained with a cleaner dataset, 

composed by beats that more closely resemble the typical ECG pattern and have less noise left. That, 

however, can only be achieved at the expense of the sub-database size, the reason why those less 

reliable beats were used in the first place. 

The chosen method to do so was to eliminate every beat that included one or more biomarkers 

within a certain range on the total of that biomarker’s values. 

It was considered to discard the beats one of whose biomarkers’ value belonged in the upper and 

lower 5% of their specific type of biomarker within the database. However, this left the database with 

fewer than 5000 beats. 

Contrary to what was believed previously to the first attempt at performing this filtering of the data, 

the extreme biomarkers did not, in general, belong to the same beats. Many of the noisier beats had 

average signal width after the averaging, therefore not being outliers despite carrying little useful 

information. 

Therefore, the same process was performed but removing beats with biomarkers whose values 

belonged in the upper and lower 1% of their specific type of biomarker. After this process, almost 

11250 beats remained, which is still a severe decrease, but far from the previous one. 

The processed described has been referred as ‘trimming’ in this project. 
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These resulting beats were distributed as the following tables indicate. The number of patients in 

total, test and validation remains the same, but a table describing those was added as well for the 

sake of convenience. 

Additional statistics on this trimmed dataset, used both in sub-dataset 3 and the following sub-

dataset 4, can be found in the Annex F. 

Table 5.6. Patient data on sub-dataset 3 training and test 

Number of 

patients 

Asymptomatic, 

Training 

Symptomatic 

Training 

Total 

Training 

Asymptomatic 

Test 

Symptomatic 

Test 

Total 

Test 

Females 7 2 9 1 1 2 

Males 28 4 32 1 1 2 

Total 35 6 41 2 2 4 

 

Table 5.7. Number and percentages of beats on training and test of sub-dataset 3 

 
Total beats Asymptomatic  % Asymptomatic Symptomatic % Symptomatic 

Training Data 10095 8898 88% 1197 12% 

Test Data 1150 540 47% 610 53% 

 

5.3.6 Sub-dataset 4 

After two sub-datasets whose tests were made up of all the beats of 4 specific patients, each with 

specific characteristics, the sub-dataset 4 allowed to carefully assess the performance of the model 

when leaving all beats from 2 completely different patients to be used in the testing, and training the 

model with the rest of the data, while keeping on using only the beats that went through the cut in 

the previous section. 

Doing so, additional information was obtained that allowed contrasting the performance when 

leaving out of the train dataset the 4 particular patients of sub-datasets 2 and 3, with the 

performance when 2 entirely different patients are left out and tested with.  

The model itself was of course different, as the training dataset was not the same, but it nevertheless 

provided relevant information in order to determine whether or not the behavior of models trained 

with the previous sub-datasets was a product of the particularities of the patients selected to be 

separated. 
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A smaller test has downsides when trying to analyze this aspect, as a good fit would only allow to 

extract conclusions about these two particular patient’s data. However, a poor performance with this 

sub-dataset would be a solid indicator that the model performs poorly overall.  

Additionally, having only two patients reserved for the test, one symptomatic and one asymptomatic 

to check both results, and both males and not on the extreme ends of the ages of the patients, in 

order to reduce variables and test the model with the more common cases; allows for a very clear 

and direct analysis of the results. And, of course, the more data the model is trained on, the more 

accurate it can get to be. 

Table 5.8. Patient data on sub-dataset 4 training and test 

Number of 

patients 

Asymptomatic, 

Training 

Symptomatic 

Training 

Total 

Training 

Asymptomatic 

Test 

Symptomatic 

Test 

Total 

Test 

Females 8 3 11 0 0 0 

Males 28 4 32 1 1 2 

Total 36 7 43 1 1 2 

 

Table 5.9. Number and percentages of beats on training and test of sub-dataset 4 

 
Total beats Asymptomatic % Asymptomatic Symptomatic % Symptomatic 

Training Data 10557 9133 87% 1424 13% 

Test Data 687 304 44% 383 56% 

 

5.3.7 Sub-dataset 5 

This fifth and final sub-dataset aimed to be composed, both in training and testing, exclusively by 

beats from patients whose signals were generally stable, clear and therefore assumed to be more 

reliable, regardless of the size of the training or testing datasets.  

After semi random inspection of multiple segments of every patient recorded at different moments 

in time, 4 out of the 8 symptomatic patients were evaluated to have remarkably clear signals with 

easily distinguishable segments, as well as a complete and reliable clinical dataset. Figure 5.4 

exemplifies a beat that fulfills those characteristics and one that doesn’t. 
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Figure 5.4. A: Example of a beat from a patient used in this sub-dataset. B: Example of a beat from a patient 

who was decided not to be used in this dataset. 

In consequence, 12 additional asymptomatic patients were selected using the same criteria in order 

to complete the sub-dataset. More asymptomatic patients could have been added, with only slightly 

less clean signals, but there were already many more asymptomatic than symptomatic patients in the 

sub-dataset, and with the latter being the most relevant of the two, there were no further additions. 

It was considered that at least 2 symptomatic patients had to be separated for testing so it could 

have a minimum diversity on the symptomatic side. Considering their correct classification as a 

priority, as well as how every model up until now had been trained on a much larger amount of 

asymptomatic than symptomatic beats, it was decided to attempt to train the models on a sub-

dataset that was balanced in that proportion, finally selecting only two additional patients, both 
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asymptomatic in this case. The rest were used for testing, being the largest test dataset used up until 

that point. 

Two of the patients’ beats used in the test dataset, one patient being symptomatic and the other 

asymptomatic, were selected in order to test the resulting models with data that could be quickly and 

directly analyzed. This test dataset will be referred from now on as ‘small test’ and the previous, 

bigger one as ‘large test’, for the sake of simplicity. 

This smaller scale dataset was not expected to return reliably accurate and precise predictions for a 

variety of patients, as its training dataset is simply too small to account for many scenarios. However, 

it was considered that valuable information could be extracted from its performance. 

Table 5.10. Patient data on sub-dataset 5 training and test 

Number 

of 

patients 

Asymp, 

Training 

Symp, 

Training 

Total 

Training 

Asymp, 

Large 

Test 

Symp, 

Large 

Test 

Total 

Large 

Test 

Asymp, 

Small 

Test 

Symp, 

Small 

Test 

Total 

Small 

Test 

Females 1 1 2 2 0 2 1 0 1 

Males 1 1 2 8 2 10 0 1 1 

Total 2 2 4 10 2 12 1 1 2 

 

Table 5.11. Number and percentages of beats on training and tests of sub-dataset 5 

 Total beats Asymptomatic % Asymptomatic Symptomatic % Symptomatic 

Training 

Data 
1724 864 50% 860 50% 

Large Test 

Data 
5121 4300 84% 821 16% 

Small Test 

Data 
853 433 51% 420 49% 
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5.4 Brief statistics on the different sub-datasets 

Although statistical analysis of the obtained biomarkers is not a part of this project, the mean, 

median and percentiles 5 and 95 of the biomarkers were calculated from the different sub-datasets.  

Sub-datasets 1 and 2, as well as 3 and 4, have each pair only a single group of data they pool from (all 

the beats and beats after trimming respectively). They are simply distributed differently in training 

and test sets of data, as explained previously. Therefore, their statistics are the same and were 

presented together. 

The main goal of presenting these statistical data is to allow the reader a broad comprehension of the 

value ranges of the data used, if so desired, so they will not be discussed here.    

5.4.1 Sub-datasets 1 and 2 

Table 5.12. Statistical data from average power and absolute value of the QRS area on sub-datasets 1 

and 2 

 

Pavg 

(mV2) 

Pavg  

(mV2) 

Pavg  

(mV2) 

AbsAreaQRS II 

(mV·s) 

AbsAreaQRS V1 

(mV·s) 

AbsAreaQRS V2 

(mV·s) 

Mean 0.285 0.076 0.066 36.697 21.603 20.351 

Median 0.375 0.090 0.096 37.302 22.773 22.254 

Perct. 0.05 0.009 0.015 0.009 10.21 9.524 7.165 

Perct. 0.95 1.168 0.231 0.284 72.76 45.18 50.86 

Number of patients: N=45. Number of beats: B=18999 

 

Table 5.13. Statistical data from QT, QTc and ST deviation at J-point (ST0) on sub-datasets 1 and 2 

 
QT II 
(s) 

QT V1 
(s) 

QT V2 
(s) 

QTc II 
(ms) 

QTc V1 
(ms) 

QTc V2 
(ms) 

ST0 II 
(mV) 

ST0 V1 
(mV) 

ST0 V2 
(mV) 

Mean 0.374 0.379 0.382 414.2 424.7 422.5 0.003 0.069 0.374 
Median 0.337 0.329 0.324 386.2 380.0 367.3 -0.036 0.086 0.337 
Perct. 0.95 0.328 0.333 0.316 372.9 375.5 370.0 -0.336 -0.045 0.328 
Perct. 0.05 0.481 0.479 0.482 567.6 554.4 546.4 0.123 0.239 0.481 

Number of patients: N=45. Number of beats: B=18999 

 



Prognosis of symptomatic patients with Brugada Syndrome through electrocardiogram biomarkers and machine learning   

  47 

Table 5.14. Statistical data from ST deviation at J-point + 60 ms (ST60) and ST slope from J-point to J-

point + 60 ms on sub-datasets 1 and 2 

 ST60 II 
(mV) 

ST60 V1 
(mV) 

ST60 V2 
(mV) 

STslope II 
(µV/ms) 

STslope V1 
(µV/ms) 

STslope V2 
(µV/ms) 

Mean 0.071 0.007 0.035 1.553 -1.147 -0.813 
Median 0.074 0.004 0.040 1.832 -1.353 -1.179 
Perct. 0.05 -0.096 -0.143 -0.093 -1.145 -3.820 -5.357 
Perct. 0.95 0.239 0.131 0.185 6.661 0.598 0.935 

Number of patients: N=45. Number of beats: B=18999 

 

5.4.2 Sub-datasets 3 and 4 

Table 5.15. Statistical data from average power and absolute value of the QRS area on sub-datasets 3 

and 4 

 

Pavg 

(mV2) 

Pavg  

(mV2) 

Pavg  

(mV2) 

AbsAreaQRS II 

(mV·s) 

AbsAreaQRS V1 

(mV·s) 

AbsAreaQRS V2 

(mV·s) 

Mean 0.412 0.097 0.089 38.952 23.806 22.114 

Median 0.315 0.084 0.067 38.367 23.028 21.021 

Perct. 0.05 0.021 0.019 0.010 12.968 10.672 7.987 

Perct. 0.95 1.143 0.232 0.246 65.892 42.904 42.097 

Number of patients: N=45. Number of beats: B=11244 

 

Table 5.16. Statistical data from QT, QTc and ST deviation at J-point (ST_0) on sub-datasets 3 and 4 

 
QT II 
(s) 

QT V1 
(s) 

QT V2 
(s) 

QTc II 
(ms) 

QTc V1 
(ms) 

QTc V2 
(ms) 

ST0 II 
(mV) 

ST0 V1 
(mV) 

ST0 V2 
(mV) 

Mean 0.374 0.382 0.382 420.1 428.9 429.1 -0.035 0.080 0.112 

Median 0.369 0.377 0.382 411.6 422.6 421.3 0.003 0.066 0.074 

Perct. 0.05 0.330 0.336 0.324 373.6 377.9 374.5 -0.262 -0.038 -0.032 

Perct. 0.95 0.441 0.455 0.444 484.9 499.9 511.2 0.099 0.230 0.405 

Number of patients: N=45. Number of beats: B=11244 
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Table 5.17. Statistical data from ST deviation at J-point + 60 ms (ST_60) and ST slope from J-point to J-

point + 60 ms on sub-datasets 3 and 4 

 ST60 II 
(mV) 

ST60 V1 
(mV) 

ST60 V2 
(mV) 

STslope II 
(µV/ms) 

STslope V1 
(µV/ms) 

STslope V2 
(µV/ms) 

Mean 0.087 -0.007 0.032 2.032 -1.457 -1.344 

Median 0.079 -0.004 0.025 1.673 -1.343 -0.891 

Perct. 0.05 -0.016 -0.131 -0.086 0.122 -3.607 -5.287 

Perct. 0.95 0.220 0.095 0.170 5.381 0.232 0.658 

Number of patients: N=45. Number of beats: B=11244 

 

5.4.3 Sub-dataset 5 

Table 5.18. Statistical data from average power and absolute value of the QRS area on sub-dataset 5 

 

Pavg 

(mV2) 

Pavg  

(mV2) 

Pavg  

(mV2) 

AbsAreaQRS II 

(mV·s) 

AbsAreaQRS V1 

(mV·s) 

AbsAreaQRS V2 

(mV·s) 

Mean 0.554 0.120 0.097 40.61 24.54 21.00 
Median 0.401 0.099 0.075 37.30 23.58 20.76 

Perct. 0.05 0.102 0.028 0.008 16.19 9.04 5.997 
Perct. 0.95 1.335 0.263 0.261 66.91 46.05 41.50 

Number of patients: N=16. Number of beats: B=6844 

 

Table 5.19. Statistical data from QT, QTc and ST deviation at J-point (ST_0) on sub-datasets 5 

 

 
QT II 
(s) 

QT V1 
(s) 

QT V2 
(s) 

QTc II 
(ms) 

QTc V1 
(ms) 

QTc V2 
(ms) 

ST0 II 
(mV) 

ST0 V1 
(mV) 

ST0 V2 
(mV) 

Mean 0.325 0.318 0.322 360.9 355.9 359.7 -0.083 0.064 0.099 
Median 0.367 0.375 0.377 405.6 415.5 414.3 -0.056 0.055 0.057 

Perct. 0.05 0.332 0.336 0.330 376.5 375.9 375.7 -0.500 -0.048 -0.036 
Perct. 0.95 0.461 0.485 0.439 492.0 553.9 489.0 0.116 0.192 0.356 

Number of patients: N=16. Number of beats: B=6844 
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Table 5.20. Statistical data from ST deviation at J-point + 60 ms (ST_60) and ST slope from J-point to J-

point + 60 ms on sub-datasets 5 

 ST60 II 
(mV) 

ST60 V1 
(mV) 

ST60 V2 
(mV) 

STslope II 
(µV/ms) 

STslope V1 
(µV/ms) 

STslope V2 
(µV/ms) 

Mean 0.047 0.002 0.041 2.171 -1.043 -0.958 
Median 0.058 0.001 0.031 1.847 -1.014 -0.619 

Perct. 0.05 -0.172 -0.140 -0.085 -1.598 -3.459 -5.220 
Perct. 0.95 0.212 0.140 0.195 7.914 0.727 0.991 

Number of patients: N=16. Number of beats: B=6844 
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6. Results 

The following results are extracted from the accuracies depicted in the confusion matrixes the 

Classification Learner App presents its success and failure rates on, as can be seen in figure 6.1. 

 

Figure 6.1. Confusion matrix example from the Classification Learner App 

As the data is being classified into two possible categories, the confusion matrix (in the left table) is 2 

by 2. As the legend indicates, vertical axis indicates the true class and the horizontal one the 

predicted class. Asymptomatic patients were assigned a 0 and symptomatic patients a 1 to indicate 

that same status.  

Therefore, the top left value of that same table is the true positive rate for the asymptomatic beats, 

the top right value is the false negative rate for the asymptomatic beats, the bottom left value is the 

false negative rate for the symptomatic beats and the bottom right value is the true positive rate for 

the symptomatic beats. True positive rates and false negative rates are grouped in the left and right 

columns respectively in the table in the right, an alternative and potentially easier to read 

presentation. 

The overall accuracies, not featured in the previous table, but easily available in the interface of the 

classifier app, see figure 4.3, are a result in percentage of the division of the totality of the correct 

guesses by the totality amount of data, be it on the training or test, depending on what it’s referring 
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to. True and false positive rates are calculated following the same principle, applied to the particular 

aspect they represent. 

In order to synthesize the information presented hereunder, only the overall accuracy of each model 

and both true positive rates will be displayed, as false negative rates would practically give redundant 

information and having the overall accuracy as well as both of the other true positive rates allows to 

approximately deduce the approximate weight of each type of beat in a given dataset without 

needing to search for that information. 

One might notice by the previous paragraphs that the following sections are going to include a lot of 

repetition around terms such as true positive rate, overall accuracy, etc. In order to make reading 

(and writing) more agile, from this point on and most of the times, true positive rate was abbreviated 

as TPR (TP will also sometimes be used to refer simply to ‘true positive’), ATPR when referred to the 

TPR of asymptomatic beats and STPR when referred to the same for symptomatic beats. 

An additional, and final, letter is added to those two last acronyms in order to refer to each of them 

in the context of a validation or in a test, resulting in ATPRV and STPRV on one side, and ATPRT and 

STPRT in the other. 

Finally, OVA refers to the overall validation accuracy, OTA refers to the overall test accuracy, and 

McW to misclassification weights. Although not an acronym, the process of training and testing 

machine learning models for each sub-dataset will be sometimes referred as iteration from now on. 

The results of these processes can be reproduced approximately, however slight discrepancies in 

performance are most likely going to appear, as the random generated number based validation 

holdout selects different beats on different iterations.  

The validation data were composed by a 25% of the training data in all iterations of the training, and 

was selected automatically by the Classification Learner App. 

If not stated otherwise, the models’ settings were the default ones. 

The Classification Learner App allows training and testing models of all its available types with each 

dataset uploaded consecutively and through a single command. In order to maximize the final 

accuracies obtained, that was always done initially with each train and test dataset, although further 

modifications were often performed exclusively to the best performing models. 

It is set as a priority in the project to put additional emphasis on trying to maximize the ATPR on the 

models. That is in order to, on an a faraway future application scenario, not miss on symptomatic 

patients over the possibility of a false positive for symptomatic leading to additional tests that would, 
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most likely, not lead to significant negative consequences to their health without additional 

reassurance of the necessity of such procedures.  

McW were, in consequence, often modified to improve STPR, most often successfully. It is a usual 

course to take, especially when using training databases that over represent a part of its population, 

as in this case.  

However, increasing the McW for symptomatic beats further than a certain point, usually 7:1 or 8:1, 

made performances consistently worse no matter how much the ratio was increased, often in all 

characteristics examined, although sometimes the STPR increased somewhat, while the ATPR 

decreased several times more. Whenever that’s the case, in order to keep this section concise, the 

worse performing model’s accuracies won’t be shown, and it will mostly be commented on passingly 

(if so), as their behavior was very similar and is considered to be outlined here. 

At times, the best performing model with a given set of misclassification costs is taken and its 

misclassification costs changed only to that one, assuming that, if the McW were changed to all 

models, this best performing one would remain the best performing. This is far from a certainty, but 

on subsequent attempts where McW were changed to all models in order to maximize accuracy, it 

has been observed to be a pretty reasonable assumption, happening most times and with small 

differences when that happens. That’s especially true if the modified model is a Bagged Tree model, 

which was consistently among the models that improved the most when its McW were modified. 

The models presented in the results will be the best performing ones in one of the characteristics 

considered as most important: overall validation accuracy (OVA), overall test accuracy (OTA), 

symptomatic true positive rate in validation (STPRV), symptomatic true positive rate in test (STPRT) 

or, occasionally, serve to illustrate a particular point about the models or performances. 

The models were assigned numeric codes according to the sub section they are presented on, and 

were often referred as in the following format: ‘MX.Y’. With M referring to model, and sometimes 

serving to omit the word, ‘X’ being the number of the sub section, and Y an additional number 

assigned in order of appearance. 
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6.1 Sub-dataset 1 

Every accuracy rate turned out around the 98% on their best performing models, as can be seen in 

the table below. 

Table 6.1. Best overall accuracy and STPR for validation and test on sub-dataset 1 (right sub-columns) 

alongside their corresponding models (left sub-columns) 

 Validation Test 

Best Overall Accuracy 97.9% M1.2 98.0% M1.4 

Best True Positive Rate 

(Symptomatic) 
98.6% M1.3 98.4% 

M1.3, 

M1.4 

 

Table 6.2. Model number, type, McW, OVA and OTA of each model discussed from sub-dataset 2 

Model 

Num. 
Model Type 

Misclassification Weights 

(Sympt.:Asympt.) 

Validation 

Accuracy 

Test 

Accuracy 

1.1 Bagged Trees 1:1 95.6% 96.1% 

1.2 Bagged Trees 4:1 97.9% 98.1% 

1.3 Bagged Trees 5:1 97.7% 98.6% 

1.4 Bagged Trees 6:1 96.9% 98.1% 

The initial best performing model had very high, even if improvable OVA. However, observing only 

the overall accuracies gives only a limited view of the models. This model had lacking aspects that, as 

will be often the case when examining the rest of the models, can be better understood when 

examining ATPRs and STPRs, displayed in the following table. 

Table 6.3. Model number, ATPRV, STPRV, ATPRT and STPRT of each model discussed from sub-

dataset 1 

Model 

Num. 

TP Rate 

Asymptomatic 

Validation 

TP Rate 

Symptomatic 

Validation 

TP Rate 

Asymptomatic 

Test 

TP Rate 

Symptomatic 

Test 

1.1 99.9% 76.5% 100% 78.1% 

1.2 99.4% 90.8% 99.3% 92.2% 

1.3 97.8% 97.1% 98.6% 98.4% 

1.4 96.7% 98.0% 98.0% 98.4% 
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As can be seen in this table, despite the high overall accuracy of M1.1, its STPR is significantly lower 

than its ATPR (76.5% to 99.9%). The comparatively high overall accuracy occurs due to the much 

larger number of symptomatic beats, under 20% of the total. In order to change that, in accordance 

to the objectives set for the classifier, its misclassification weights (McW) were modified.  

Model 1.2, with McW of 4:1 (these will always be favoring symptomatic patients in the project), 

obtained the best OVA, and its STPRV was significantly higher, but the difference between STPR and 

ATPR was still quite large. 

Model 1.3, with 5:1 McW, had slightly worse OVA, but a much better STPRV (97.1% compared to 

90.8%). Model 1.4, with 6:1 McW, achieved an even STPRV than that, hitting the 98% mark, although 

of course that meant a drop in both ATPRV and OVA. Increasing McW to 7:1 or higher started to 

show diminishing returns.7:1, for example, resulted in a 97.7% STPRV, while still dropping on OVA. 

As these values are pretty high already, possible further improvements by adjusting other 

parameters in the model (such as the maximum number of splits or the number of learners for these 

models) were delayed until further tests and the models were trained with differently arranged 

datasets, in order to understand them more. 

Test results were very similar to validation results for each model. Model 1.3 had the best overall test 

accuracy, and M1.3 and M1.4 had the same STPRT, leaving the former as the clear best performing 

one with the test. Similarly, models that performed worse than these on validation also performed 

worse when being tested. 

 

6.2 Sub-dataset 2 

Table 6.4. Best overall accuracy and STPR for validation and test on sub-dataset 2 (right sub-columns) 

alongside their corresponding models (left sub-columns) 

 Validation Test 

Best Overall Accuracy 98.3% M2.2 54.3% M2.4 
Best True Positive Rate 
(Symptomatic) 

97.7% M2.4 17.9% M2.4 
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Accuracies on this dataset remain, on the best performing models, very high for the validation, over 

95% both overall and on STPR. These results contrast with the test accuracies, with a maximum of 

54.3% and 17.9% respectively. 

Table 6.5. Model number, type, McW, OVA and OTA of each model discussed from sub-dataset 2 

Model 

Num. 
Model Type 

Misclassification Weights 

(Sympt.:Asympt.) 

Validation 

Accuracy 

Test 

Accuracy 

2.1 Subspace KNN 1:1 94.9% 51.0% 

2.2 Bagged Trees 5:1 98.3% 45.5% 

2.3 Bagged Trees 6:1 98.2% 45.3% 

2.4 Bilayered Neural Network - 77.1% 54.3% 

2.5 RUS Boosted Trees 1:1 94.2% 52.8% 

2.6 RUS Boosted Trees 6:1 93.2% 53.2% 

2.7 Coarse KNN 1:1 88.5% 21.0% 

 

Table 6.6. Model number, ATPRV, STPRV, ATPRT and STPRT of each model discussed from sub-

dataset 2 

Model 

Num. 

TP Rate 

Asymptomatic 

Validation 

TP Rate 

Symptomatic 

Validation 

TP Rate 

Asymptomatic 

Test 

TP Rate 

Symptomatic 

Test 

2.1 99.6% 68.0% 98.6% 3.1% 

2.2 99.3% 92.8% 90.5% 0.3% 

2.3 98.6% 96.3% 90.3% 0.2% 

2.4 73.5% 97.7% 90.6% 17.9% 

2.5 96.6% 80.0% 88.2% 17.2% 

2.6 95.5% 80.2% 88.8% 17.4% 

2.7 94.3% 55.4% 31.4% 10.6% 

 

Examining models individually, it can be seen that, in this case, the best performing model on overall 

accuracy on validation with 1:1 McW is of KNN type (M1.1), Subspace KNN specifically. It has an 

accuracy quite similar to its homonymous in the previous section, and a similarly lower STPRV. 

Bagged Tree models were, again, the best performing ones when McW were modified. M2.2 has 

slightly a better OVA and M2.3 has a substantially higher STPRV. 
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Test results for these three models, however, were much lower. Their OTA were between 45 and 

51%, but their STPRT did not go above 4%, not even above 1% in the case of M2.2 and M2.3. 

The best performing model on the test, both overall and on STPR, was M2.4, a Bilayered Neural 

Network, with a 54.3% and a 17.9% respectively. These accuracies are still very low, so parameters on 

the models were modified in order to try to improve its performance, which could also benefit its 

STPRV, 73.5%, the reason why despite its 97.7% STPRV (the highest with this dataset) its OVA was 

among the lower ones, 77.1%.  

However, every change in setting decreased the model’s performance significantly. McW can’t be 

changed in this type of models but, for example, when the model was trained with its first layer size 

reduced from 10 to 9, which could somewhat minimize overfitting, the STPRT dropped from 17.9% to 

9.1%. 

Other models were modified in order to try to maximize OTA and STPRT, but no significant results 

were achieved. M2.5, a RUS Boosted Trees model, one of the overall higher performing models on 

test before these changes and the best performing one among decision trees, could only have its OTA 

increased from 52.8% to 53.2% and it STPRT from 17.2% to 17.4% (see M2.6). Those improvements 

were achieved, again, through changing its McW. Changes oriented to reduce overfitting had 

diminishing returns. 

M2.7 had the lowest OTA, with a 21.0%. It must be noted that, despite its OVA being 88.5% (lower, 

but not too far away from the best performing ones), its STPRV was 55.4%. 

 

6.3 Sub-dataset 3 

Table 6.7. Best overall accuracy and STPR for validation and test on sub-dataset 3 (right sub-columns) 

alongside their corresponding models (left sub-columns) 

 Validation Test 

Best Overall Accuracy 99.6% M3.2 53.7% M3.3 
Best True Positive Rate 

(Symptomatic) 
98.3% M3.2 29.5% M3.4 

Compared to the last iteration, the highest accuracies for validation slightly increase, while the 

highest OTA stays practically equal and STPRT, despite increasing significantly, remains very low. 
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Table 6.8. Model number, type, McW, OVA and OTA of each model discussed from sub-dataset 3 

Model 

Num. 
Model Type 

Misclassification Weights 

(Sympt.:Asympt.) 

Validation 

Accuracy 

Test 

Accuracy 

3.1 Bagged Trees 1:1 99.5% 45.1% 

3.2 Bagged Trees 7:1 99.6% 41.9% 

3.3 Kernel Naive Bayes 9:1 90.8% 53.7% 

3.4 Gaussian Naive Bayes 6:1 76.3% 47.3% 

3.5 Cubic SVM 6:1 99.0% 14.8% 

 

Table 6.9. Model number, ATPRV, STPRV, ATPRT and STPRT of each model discussed from sub-

dataset 3 

Model 

Num. 

TP Rate 

Asymptomatic 

Validation 

TP Rate 

Symptomatic 

Validation 

TP Rate 

Asymptomatic 

Test 

TP Rate 

Symptomatic 

Test 

3.1 99.8% 97.3% 96.1% 0.0% 

3.2 99.8% 98.3% 89.2% 0.2% 

3.3 91.4% 86.6% 87.0% 24.3% 

3.4 77.2% 69.9% 67.3% 29.5% 

3.5 99.2% 97.7% 20.8% 9.5% 

In this iteration, Bagged Trees were again the best performing models on the validation, as M3.1 and 

M3.2 show. The adjustment of McW only brought forth a 1% improvement in STPRV and a 0.1% 

improvement in OVA, but the original rates were already close to the highest in all models. 

The OTA and STPRT of these models are similar to the best performing models on validation of the 

previous dataset, with an even slightly lower STPRT, being 0.0% and 0.3% on M3.1 and M3.2 

respectively. 

After changing McW in order to maximize this parameter, the classifier with the best OTA, M3.3, was 

a Kernel Naive Bayes model and had a 53.7% OTA, a smaller value than the best from the previous 

dataset only by a 0.6%. 

Its STPRT is quite higher than the best ones in the previous iteration though, with a 24.3% against a 

17.9%, both being very low still. When trying to maximize this parameter, the best performing model 

created was M3.4, a Gaussian Naive Bayes classifier with modified McW and a 29.5% STPRT. It may 

be worth pointing out that its OVA is by far the lowest among the selected models though, a 76.3%. 
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The model that achieved the lowest OTA was a Cubic SVM one, with only a 14.8%, and yet a 99.0% 

OVA. STPRT was higher than the ones from M3.1 and M3.2, with a 9.5%. 

6.4 Sub-dataset 4 

Table 6.10. Best overall accuracy and STPR for validation and test on sub-dataset 4 (right sub-

columns) alongside their corresponding models (left sub-columns) 

 Validation Test 

Best Overall Accuracy 99.5% M4.1 54.7% M4.2 

Best True Positive Rate 

(Symptomatic) 
98.7% M4.1 20.6% M4.2 

 

All the best rates are close to the same as in the previous sub-dataset, except for the STPRT, which is 

around a 9% lower.  

Table 6.11. Model number, type, McW, OVA and OTA of each model discussed from sub-dataset 4 

Model 

Num. 
Model Type 

Misclassification Weights 

(Sympt.:Asympt.) 

Validation 

Accuracy 

Test 

Accuracy 

4.1 Fine KNN 1:1 99.5% 26.6% 

4.2 Subspace KNN 1:1 97.6% 54.7% 

4.3 Fine Gaussian SVM 1:1 98.5% 44.3% 

4.4 Wide Neural Network 1:1 99.4% 1.9% 

 

Table 6.12. Model number, ATPRV, STPRV, ATPRT and STPRT of each model discussed from sub-

dataset 4 

Model 

Num. 

TP Rate 

Asymptomatic 

Validation 

TP Rate 

Symptomatic 

Validation 

TP Rate 

Asymptomatic 

Test 

TP Rate 

Symptomatic 

Test 

4.1 99.7% 98.7% 60.2% 0.0% 

4.2 99.9% 83.3% 97.7% 20.6% 

4.3 100.0% 88.6% 100.0% 0.0% 

4.4 99.6% 98.1% 4.3% 0.0% 
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The model with the best OVA (99.5%) and STPRV (98.7%) was the same one in this iteration, M4.1, a 

Fine KNN type with 1:1 McW. McW were modified in this and the rest of the models in order to check 

if improvements on their, already pretty high, validation performances could be made, but no 

improvement was achieved. 

A particularity of this iteration is that it’s the only one where none of the best performing models are 

Bagged Trees, and in fact none of the models are decision trees. Nevertheless, it should be noted that 

Bagged Trees models were among the best performing on validation when weights were changed, as 

in the rest of the iterations, just not the absolute best. 

The best performances on both OVT and STPRT, 54.7% and 20.6% respectively, were also achieved in 

the same model, M4.2; also a KNN classifier, but using the Subspace KNN method in this case. 

M4.1 had a 26.6% OTA, the lowest among top-performing models on validation, with an also low 

60.2% ATPRT compared to those, and a 0.0% STPRT, the only test performance that was not unusual. 

Models 4.3 and 4.4 display the most extreme performances found among models with a 0.0% STPRT, 

whose ATPRT went from M4.3’s 100% to M4.4’s 4.3%. M4.4, therefore, guessed almost the exact 

opposite to the desired prediction. 

Despite these results on the test, M4.3 has a 98.5% OVA and a 88.6% STPRV, and M4.4 has a 99.4% 

OVA and a 98.1% STPRV, close to this iteration’s best one (98.7%). 

 

6.5 Sub-dataset 5 

Table 6.13. Best overall accuracy and STPR for validation, small and large tests on sub-dataset 5 (right 

sub-columns) alongside their corresponding models (left sub-columns) 

 Validation Large Test Small Test 

Best Overall Accuracy 100% M5.1 75.5% M5.2 100% M5.1 

Best True Positive Rate 

(Symptomatic) 
100% M5.1 58.7% M5.3 100% 

M5.1, 

M5.3 

 

Despite not being much higher than in previous iterations, as those were close to perfect as 

well, validation accuracies, both overall and STPR, reach 100% in this iteration, although it 
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must be noted that the validation holdout for this sub-dataset is smaller than in previous 

ones. 

The small test also hits 100% accuracies for both of those rates, but the best performances 

for the large test remain far from those numbers, despite 75.5% being the highest any OTA 

has been on sub-datasets that use test datasets composed by patient’s beats that have not 

been used in training (and the same happening with the 58.7% STPRT). 

Table 6.14. Model number, type, McW, OVA, large test overall accuracy and small test overall 

accuracy of each model discussed from sub-dataset 5 

Model 

Num. 
Model Type 

Misclassification 

Weights (S.:As.) 

Validation 

Accuracy 

Large test 

Accuracy 

Small test 

Accuracy 

5.1 Bagged Trees 1:1 100% 52.8% 100% 

5.2 Linear Discriminant 7:1 88.1% 75.5% 83.7% 

5.3 Coarse Tree 1:1 98.4% 40.3% 76.2% 

 

Table 6.15. Model number, ATPRV, STPRV, ATPR and STPR for the large test and ATPR and STPR for 

the small test of each model discussed from sub-dataset 5 

Model 

Num. 

TP Rate 

Asympt. 

Validation 

TP Rate 

Sympt. 

Validation 

TP Rate 

Asympt. 

Large Test 

TP Rate 

Sympt. 

Large Test 

TP Rate 

Asympt. 

Small Test 

TP Rate 

Sympt. 

Small Test 

5.1 100% 100% 53.0% 51.3% 100% 100% 

5.2 99.5% 76.7% 82.6% 38.5% 97.9% 69.0% 

5.3 98.6% 98.1% 24.8% 58.7% 53.1% 100% 

 

Model 5.1, a Bagged Trees classifier, achieved a 100% OVA, STPRV, OTA and STPR for the small test, 

all without requiring any modifications. Its McW were not changed from the by default 1:1. 

Additionally, these results were achieved consistently on repeated trainings. 

However, once again, the large test showed much worse results, with an overall accuracy of 52.8% 

and a STPR of 51.3%. 

It should be noted, nonetheless, that the small test was roughly equal in size to the sub-dataset 4 

one, in fact it shared one of its two patients with it, and yet its best OTA was 54.7%. 
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As with many previous models, it was attempted to modify the numbers of learners in M5.1 in order 

to see if the performance improved as a consequence.  The attempt, however, was not successful, as 

severe decreases were required to provoke minor differences in the model, and performance mostly 

tended to worsen overall. 

Other models, most of them classification trees, achieved similarly outstanding performances in the 

same parameters as M5.1, but also similarly lower ones in the rest. 

After changing parameters in multiple models of different types, a Linear Discriminant model (M5.2) 

achieved the best overall accuracy on the large test, a 75.5%. Its OVA, though, was significantly lower 

than that of M5.1, 88.1%, and its STPR was only 38.5% on this same test. 

In that regard, the best STPR was achieved by a Coarse Tree classifier (M5.3), with a 58.7%.  

It’s also the first instance since the test is performed with patients completely outside of the train 

dataset where a model has a higher tendency to guess a beat as pertaining to a symptomatic than an 

asymptomatic patient, with the small test having a 100% STPR and a 53.1% ATPR and an equal 

amount of beats (although other models in this iteration behaved similarly, M5.3 is just an example). 
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7. Discussion 

7.1 General Results 

Overall, results were consistently strong on validations: the best OVA were always between 98.5% 

and 100% on each sub-dataset, and the best STPRV between 97.7% and 100%.  

Crucially though, results were mostly terrible for tests composed of beats from patients the entirety 

of whose beats were used in the test only, those of sub-datasets 2-5.  

The best OTA were between 54.7% and 53.7% in sub-datasets 2-4, barely performing better than 

throwing a coin to do the guesses would. STPRT were the truly appalling results however, with the 

best falling between 17.9% and 29.5%. 

Only models from sub-dataset 5 showed results above that, M5.1 in particular obtained an OVA for 

the small test of a 100%. The other two models, M5.2 and M5.3, appeared to have performed much 

better than usual as well, with OVA of 83.7% and 76.2%.  

However, their results on the large test of their sub-dataset, much more reliable than the small one 

due to its size, were around the same as the rest: 52.8%, 75.5% and 40.3%, in numerical order. M5.2 

is the best test performance overall, yet that must be put in context with its 38.5% STPR in this same 

test, obtaining a better overall result only due to its tendency to classify beats more often as 

symptomatic and the overrepresentation of those in the test dataset. 

Only sub-dataset 1 is left to mention in regards to test performance. Its test was made of seven beats 

selected from each of the 45 patients in the same positions, with the rest of the beats being used to 

train the dataset. Its performance was very good on the test, and that information can be useful to 

analyze the model’s behavior on different scenarios, but it does little to influence the general 

conclusions of the general efficacy of a model oriented to be able to make predictions on data that 

the model has not been trained on. 

From all of this, it can be concluded that the models created were not able to reliably classify ECGs as 

belonging to a symptomatic or asymptomatic Brugada Syndrome patient with the resources here 

used and described. 

7.2 Analysis of the classification criteria 

Despite the models not being able to classify beats as symptomatic and asymptomatic reliably, 

results seem to indicate that models, at least the best performing ones on validation, and possibly 

others too; are finding specific patterns in specific patient’s beats (and maybe groups of them at 
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times), common for some of the validation symptomatic or asymptomatic beats, and classifying the 

test beats according to which of those patterns they more closely adhere to. 

These patterns, however, would not be common to all, or even most, symptomatic or asymptomatic 

patients, nor directly correlated with these groups in any meaningful way, hence the overall 

accuracies of tests being usually somewhere close to 50%. Again, they seem to be mostly patterns 

found in particular patients beats, be they common or from specific segments of the signal. 

The higher ATPR in tests would also fit this explanation. Training a model with more data of one 

specific feature is likely to make it skew towards guessing that feature more often, and this would be 

the explanation for that in this case, both for the effect and its proportions.  

In a model trained with more asymptomatic patients, if a common pattern (or similar amount of sets 

of patterns) is not found for symptomatic patients on one side and asymptomatic patients on 

another, and instead the models find patterns common on individual patients or small groups of 

them that are unrelated to the two explored conditions, it is to be expected for more beats to be 

classified as asymptomatic.  

Such a model, given those previous assumptions, has a larger set of patterns associated with the 

asymptomatic label, so beats will be therefore more likely to resemble one of them. 

Again, this is a common tendency on machine learning when training datasets are unbalanced, but it 

is important to analyze how such tendencies occur in each instance in order to create better 

performing ones in the future and understand their less apparent mechanisms, even when they 

achieve the proposed goals. 

Results from models trained and tested on sub-dataset 1 are also coherent with this assessment. 

Their high performance would be explained by the fact that, in this case, the patterns found on 

particular patient’s beats are not being applied on beats from new patients, independent to the 

model up to that point, and with their own individual particularities unrelated to BrS symptoms; but 

to beats whose patterns the model has already examined.  

They, of course, more closely resemble patterns pertaining to the patients they’re from, and 

therefore get correctly classified as symptomatic or asymptomatic, just as their patients were on the 

training. 

Finally, the results of the sub-dataset 5 models also point to the specified behavior of the model. The 

100% accuracy of the small test is an outlier, as no model had achieved such a strong accuracy 

before, even though the one from sub-dataset 4 was even smaller (687 beats versus 853), and the 

explanation for that doesn’t seem to be that it’s correctly identifying patterns  

However, that would make perfect sense if the model was classifying beats according to patient 

specific patterns. This model was trained only with 4 patients, selected for being 2 symptomatic and 

2 asymptomatic and having very clear signals.  
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It is not unlikely for the beats of the two patients used in the test to, by chance, be more similar to 

one or more patients who just also happened to be symptomatic or asymptomatic. 

That was not the case on sub-dataset 4 despite testing only with 2 patients as well, though. Patients 

were not classified uniformly there. A possible explanation for that is simply that, having been trained 

with 43 different patients, there were many more patient or section specific patterns for them to be 

considered similar to, thus not having any instance where accuracy happened to be really high and 

mostly evening out to 50% instead.  

There was model 4.4 though, which did have an impressively low test accuracy while having a high 

validation accuracy, which could mean that the exact opposite to model 5.1 could have happened. 

Neural networks did not performed well most often however, so its results are not too reliable. 

It must be addressed, to conclude this section, why only the best performing models on validation 

have been meaningfully discussed. The best performing models on both validation and tests, 

alongside a few, often outlier ones, were showcased in the results in order to give an accurate and 

minimally broad perspective on the results of the training of the dozens of available models. 

However, when training dozens of models that classify data into a binary category under a wrong 

criteria that gives usually around a 50% accuracy on tests, and a much lower one to one of its options 

because of its bias, it is likely for some model that is simply not performing the task properly at any 

level at all to perform better than others that at least do on validation just because of sheer 

probability. 

7.3 Attempts at avoiding this issue 

Trying to improve the performance of the models of the test had no positive. Good validation results 

alongside poor test results often happen because of overfitting, which is similar to the hypothesized 

reason for the poor results on the test, although not knowing for certain the attempted classification 

is possible gives additional nuance to the matter. 

The same classification tendencies, however, did not seem to change when measures to avoid 

overfitting were taken, as reducing the number of learners or splits in tree models. Performances 

generally worsened alongside those decreases, but rates stayed pretty similar. Changes on opposite 

directions were attempted briefly, as they would likely be counterproductive, to similar effect. 

These changes in settings in order to prove the models were far from exhaustive, however. This will 

be expanded on when discussing future work but, despite not estimating this to be the major driving 

factor for the ultimate ineffectiveness of the models, but further investigation could benefit 

significantly from an approach geared towards a deeper control of the features of few models 

estimated to be able to give good results when given sufficient and adequate data.  

That rings especially true when considering taking measures against overfitting while creating models 

that account for the many differences that necessarily appear between different groups of people 
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within both the symptomatic and asymptomatic populations, even on most optimal conditions of 

signal registering. 

7.4 Data quality and quantity 

There is a tension between having a big amount of data and that data being of the best possible 

quality, under criteria determined in each instance, at least most often. A balance must be found 

between the two. However, it is hard to evaluate that when the proposed goal has not been achieved 

or meaningfully approached, when concerning results. 

Performances seemed to be slightly better on sub-datasets with more refined data, and models of 

more types reached high validation accuracies, but that can hardly be considered a reliable source of 

information. 

That said, in case the beats were indeed classified following patient specific patterns, minimizing 

differences in their signals arisen from non-physiological factors should likely be a priority (noise, 

differences in behavior during the recording, used equipment…), as well as accounting for those that 

are unavoidable, such as population differences (regarding many factors, from which conditions they 

might have suffered previously to the how frequently they exercise). 

7.5 Limitations 

There are several limitations to be taken into account when examining this project. First, is the use of 

only 3 of the 12 leads of the ECG recordings, chosen because of time restrictions added to the 

potential additional difficulties of processing and manipulating 4 times as much information. 

Also, there is the proposed used by the team in Hospital Clinic of the entire 24 hour runtime of the 

signals. That should, in principle, not be much of an impediment, as a big number of information is 

usually positive for machine learning. And, while the approach is reasonable and worth exploring, 

and no alternatives to this approach would’ve probably been taken regardless of that indication, that 

meant limiting the control over the balance between quantity and quality of information, as it 

implied avoiding the elimination of noisy segments of the signal. 

As briefly stated right before, there are of course time constraints. Machine learning takes time, both 

for preparing the data it processes and for iterating its models. 

Finally, and crucially, the main limitation is, as usual with machine learning, the amount and quality of 

the data used. From the initial 53 patients, only 45 could be used because of several reasons, and 

among those, around 20 were later informally classified later as being suboptimal recordings. Some 

studies have situated realistic number of patients necessary for ECG machine learning applications far 

from the forties and in the order of thousands [53]. The amount of data was initially conceived by the 

amount of time available. That seemed indeed significant, in the upper hundreds of hours. However, 

if the amount of data is considered by patients, the amount is much smaller. 
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Despite the previous mention of thousands of patients, an extreme estimate, it’s likely that the main 

goal would be achievable with many less patients. A recent study, published during the course of this 

project, has seemingly been able to determine if patients were going to suffer (in a controlled period 

of time, which was later checked) or had suffered potentially fatal arrhythmias in the past with 

substantial performance [54].  

They did so through deep learning techniques, specifically a convolutional neural network, concluding 

that subtle patterns, undetectable by humans, had been detected by the AI to do so. It did so for that 

single event, drawing from 2053 much smaller (10 s) ECG recordings, but supervised by professionals 

on a clinical, controlled environment and from 157 different patients. 

Keeping in mind that the most fundamental aspect for the data quantity seems to be the number of 

patients, the previous study helps to put into perspective the limitations of this project and its 

difficulty.  

However, it also seems to point, with quite certainty, towards the possibility of the detection of 

specific patterns for particular BrS related symptoms, as has been the goal in this project despite their 

grouping into a single ‘symptomatic’ category; as well as to give many indications on how to go 

forward with such a task.  
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8. Environmental study 

This project has a minimal environmental impact, as only a set of computers, mainly the author’s, the 

hardware the data was stored on, and a set of Holter devices, if those are even to be accounted for, 

as the data was generally long since collected and used for multiple different purposes. 

It can be noted that the use of hardware to store the used data, despite implemented for the sake of 

convenience, meant a lesser energy use than cloud storing would have, and would be advisable if 

that was a priority. 

In order to provide some calculations on the matter, the carbon emissions associated to the energy 

consumption during this project will be roughly estimated. 

Laptop average 

wattage (W) 

Total hours worked + hours 

of processing of data (h) 

Emission equivalent of energy 

consumption in Spain in April of 

2022 (g CO2eq/kWh) 

TOTAL 

(kg CO2eq) 

65 640 259 g CO2eq/kWh 10.77 

The result is around 10,8kg of CO2 equivalent. To put that into perspective, a private jet emits around 

2 metric tons of CO2 an hour [55].  

Aside from that, any rigorous environmental analysis, however, should consider the place of its 

specific subject on the larger whole of the environment, how that influences it and, more 

importantly, the state of the former and the utility of the present analysis in relation to the state of 

the totality examined. 

That is, of course, a monumental task that is not possible to do so under the scope of a section of a 

final degree thesis, pushing the analysis to a simpler, likely more isolated plane, likely concerning the 

project in hand alone, which renders it unfortunately pointless. 

Isolated differences are not going to cause meaningful changes concerning the curate ecological 

crisis, or mostly any matter at all really. This is an issue that must be acted upon with a systematical 

approach, as many experts on the field have been claiming for a long time [56]. Without changes in 

the current economic structure, any small change is mostly inconsequential. 
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Therefore, efforts would be better spent discussing those matters and how to achieve them. 

Hereunder is a brief listing of some measures that experts that share this vision estimate would 

seriously begin to tackle the situation and prevent the terrible consequences that may arise due to 

climate collapse and the economic crisis that will entail [56]: 

 Annulation of current debts. 

 Radical reform of the financial system in order to separate it from private enterprise, 

charging interests and an economic management oriented towards growth. 

 Redefinition of money to more localized forms. 

 Changing the nature of states into more localized and truly democratic structures. 

 Definition of localized, specific plans for the adjustment to the worsening of conditions, 

while collaboration between localities is kept. 

 Orienting economic and social policies to the preservation of basic services. 
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Conclusions 

The initial hypothesis, stating that it would be possible to prognosticate symptomatic patients of 

Brugada Syndrome through machine learning trained with biomarkers extracted from 

electrocardiograms and clinical data, was not demonstrated. 

When tested with beats from patients not present in the training group, the best performing ML 

models developed seemed to classify the test beats according to their adherence to patterns specific 

to individual patients from the training phase, but not common to all (or most) symptomatic or 

asymptomatic patients.  

In other words, tests beats were likely classified depending on which training signals they resembled 

the most in aspects unrelated to symptomatic or asymptomatic ECG patterns. 

In any case, results were very poor without exception when trained with beats from patients not 

used on the training, an implied part of their established goal. 

The fact that the ML models seemed to be able to distinguish specific patterns in individual patients 

indicates that the ECG processing was effective and that the selected biomarkers contained useful 

and detailed clinical information that allows classifying their beats consistently. 

Algorithms that allowed a successive processing of multiple files for all of those aspects were 

successfully developed, and would be easy to modify for different, future applications. 

This, however, does not imply that proving the initial hypothesis is an impossibility, and in fact some 

cited research seems to point towards a likely feasibility. Many aspects could be altered in the steps 

here taken to process the ECG, extract data from them and then apply the machine learning that 

could allow for that premise to be realized, and some suggestions of possible alterations will be made 

hereunder.  

Future Work 

Future exploration of the general premise and goals of this project could probably benefit 

substantially from the groundwork laid here, especially if the basic structure of the processing of the 

signals and biomarker extraction is kept. 

However, it is fundamental to keep an open mind when considering data treatment and processing in 

machine learning. In that line, a very important consideration for future development is the use of 
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entire signals instead of biomarkers to train the models, as that could potentially allow for the 

detection of differences not considered or registered by the comparatively more limited and biased 

information that biomarkers can provide. The length of those signals would also be a key aspect to 

consider when applying that approach, as different longer term patterns may appear and be relevant 

for the classification. 

That would probably also imply the use of different machine learning tools, but that could also be 

hugely beneficial. Applying machine learning with a very in-depth control of the inner workings of the 

models, if in big part not done here mainly due to scope limitations, could be a rewarding path 

forward to avoid the specific issues arisen in this initial approach. Deep learning in particular could be 

promising if used with clear understanding of its inner workings, as positive results have been shown 

in cited works and neural networks could potentially be useful to avoid focusing on patient-specific 

patterns for classification. 

Perhaps the biggest concern going forward, however, is the number of available patients, and the 

quantity and quality of the data. As mentioned previously, similar studies place an optimal number of 

patients for machine learning tasks, such as this one, in the higher hundreds at least and with . Also, 

crucially, have used ECG recordings obtained in similar conditions and very controlled environments, 

despite the consequent decrease in the amount of data of each single patient. 

That is, of course, the hardest aspect to change in this project, but it’s still worth pointing out. On one 

side, as there are inherent limitations to the machine learning capabilities that can be developed 

from each set of data. But also because an aspect that can be more easily changed is the approach to 

those data. Evidence seems to point towards high quality, noiseless and controlled recordings being a 

priority over their quantity of data for each individual patient. That can be achieved on the recording 

stage, but can also be strived towards on the processing of the data. 

A final aspect to point towards in regards to future development is the reexamination of the core 

premise, at least in its consequent application in programming and machine learning. The 

‘symptomatic’ label was attributed in this project to every patient having suffered one or more of 

three different conditions, and classification was attempted to directly tell them apart, as a group, 

from patients who had not showed any of those symptoms at all. 

However, it might be more effective, and results have been obtained using this approach in other 

studies, to focus machine learning algorithms on finding patterns from specific pathologies. That 

could require a longer developing time, and it would mean an additional shrinking of the available 

data for each symptomatic pattern explored, but it is worth considering nevertheless, and a 

successful development of models that can classify each symptom in particular would allow achieving 

the proposed goal as well. 
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Economic analysis 

Labor 

In total, 4 different workers participated in this project: 3 biomedical engineers and 1 cardiologist. 

The author, for simplification, will be assumed to be a fully-fledged engineer, with an according title, 

but without any previous experience. 

The estimate of the hours of work has been estimated with input from the parts workers themselves, 

including preparing files, meetings, text and code revisions, etc.  

Their hour salaries were estimated from their role in the project and the information extracted from 

[]. It must be noted that this calculation assumes average salaries for the according positions on the 

project, which would likely not be the case, as the presence of a cardiologist in an engineering project 

like this one would likely happen only as a consultancy, with a much higher pay per hour. That won’t 

be taken into account, but that means this will be a low estimate for the labor budget. 

 Profession Hours (h) Salary (€/h) TOTAL (€) 

Author Biomedical Engineer 600 13.20 7 920 

Supervisor Biomedical Engineer 80 19.20 1 536 

Co-Supervisor Biomedical Engineer 40 14.60 584 

Co-Supervisor Cardiologist 40 32.10 1 284 

TOTAL - 760  4 688€ 

 

Equipment 

Next, the equipment costs are estimated. This is a strongly rounded up estimate as, for 

example, the laptop would never be used exclusively for this project, and a less expensive 

model would have been roughly as effective for this project in particular. 
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Item Model/Details Price (€) 

Laptop HP Pavilion Laptop 15-cs1xxx 780 

Portable Solid Disk Samsung Portable SSD T5 140 

Matlab license Matlab annual comercial license 860 

TOTAL - 1 780 € 

The cost of the energy used would be around 10€, so it is considered negligible. 

  

Total 

Adding those two results, we obtain: 
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Annex A. Signal processing 

Matlab code used to convert, segment and average the ECG recordings. 

A1. ‘m01_Process_ISHNE_ecg_kit_Holter2segment_3min.m’ 

% Process the ISHNE files with the holter ECG registers, saving them  

% in 3 minute segments as .mat files 

% The free software ecg-kit is used: 

% http://marianux.github.io/ecg-kit/ 

% Install and execute: InstallECGkit.m 

% Most recent master version in: https://github.com/marianux/ecg-kit 

  

% Author P.Gomis and L.Tortosa(2022) 

  

% The file (patient, etc.) names should be modified to fit each case 

  

for pat=[1,10] %adapt to needs 

     

cd(sprintf('D:\\Pat_BH%d',pat)) 

     

ECG = 

ECGwrapper('recording_name',sprintf('D:\\BrugadaSignals\\BH000%d',pat)); 

  

% Total samples of the recording 

Nsamp=ECG.ECG_header.nsamp; 

fs = ECG.ECG_header.freq; % Sampling frequency 

  

% Number of 3 minute segments 

Nsegm = round(Nsamp/(fs*60*3)); 

% The first segment will begin after 60 seconds 

ini = 60001; 

  

for i = 0:Nsegm-2 

    segm = i+1; 

    fin = ini+3*60*fs-1; 

    signal = ECG.read_signal(ini,fin);  % signals in  

    % Output in ADC units and int16 format 

    signal = double(signal);   % signals in int16 --> float 

    % Convert to Physical units (by default nV) 

    gain = ECG.ECG_header.gain; % gain=4e-4 -> 1/2500 (Resolution = 2500 

nV) 

    baseline = ECG.ECG_header.adczero; 

    [N,leads]=size(signal); 

     

    for ii=1:leads 

        signal(:,ii) = (signal(:,ii)-baseline(ii))/gain(ii); 

    end 

     

    % Units in nV (nanoVolts) --> mV (*1e-6) 

    signal = signal.*1e-6;   % units in mV 

    signal = detrend(signal);  % remove offset and working with all leads 

    header = ECG.ECG_header; 
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    header.nsamp = N; 

    eval(['save ECG_' num2str(pat) '_' num2str(segm) ' signal header']) 

end 

  

end 

 

A2. ‘m02_Process_Signal_Average_beats.m’ 

%%% Additional processing and signal averaging  

%%% of each segment of each patient 

 

% Author P.Gomis and L.Tortosa(2022) 

 

  

N = 1000;  %Number of samples of the resulting files 

  

patients = [1:8,10:39,42:46]; %Patient numbers, required because of the 

file names used 

  

for Npat = 1:length(patients) 

     

    pat = patients(Npat); 

     

    cd(sprintf('D:\\Pat_BH%d',pat)) 

     

for i = 1:479 

     

    numE=num2str(i); 

    ecgName = sprintf('ECG_%d_%d.mat',pat,i); 

    ECG = ECGwrapper('recording_name',ecgName); 

     

    header = ECG.ECG_header; %complete header saved 

     

    % Save the file FileName_QRS_detection.mat 

    fs = ECG.ECG_header.freq; 

    s = ECG.read_signal(1,ECG.ECG_header.nsamp); 

    leads = {'I','II','III','aVR','aVL','aVF', 'V1', 'V2', 'V3', 

'V4','V5','V6'}; 

     

    % Parts without information are removed 

     

    s2 = s(:,2); 

    sV1 = s(:,7); 

    sV2 = s(:,8); 

     

    M2 = max(s2); 

    m2 = min(s2); 

    MV1 = max(sV1); 

    mV1 = min(sV1); 

    MV2 = max(sV2); 

    mV2 = min(sV2); 

     

    dif2 = abs(M2-m2); 

    difV1 = abs(MV1-mV1); 

    difV2 = abs(MV2-mV2); 

     

    if dif2 > 0.5 || difV1 > 0.5 || difV2 > 0.5 
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    % Detect QRS: R wave peak 

    ECG.ECGtaskHandle = 'QRS_detection';   

    ECG.ECGtaskHandle.detectors = {'wavedet', 'pantom'}; % R peak 

detection methods  

    ECG.Run; 

     

    ecgNameDect = sprintf('D:\\ECG_%d_%d_QRS_detection.mat',pat,i);  

     

    load(ecgNameDect) 

    Nb = zeros(1,3); 

    Nb2 = zeros(1,3); %additional signal using pantomkins, finally unused 

    signal = zeros(fs,3); 

    signal2 = zeros(fs,3); 

     

    for ii = 1:3 

        lst = [2,7,8]; 

        k = lst(ii); 

        eval(['tw = wavedet_' leads{k} '.time;']) 

        eval(['tp = pantom_' leads{k} '.time;']) 

        Nb(ii)=length(tw); 

        Nb2(ii)=length(tp); 

        nint = fs;    % A window of 1 second is chosen, even if that 

includes part of the following beat 

        ECGens=zeros(Nb(ii)-1,nint); 

        ECGens2=zeros(Nb2(ii)-1,nint); 

         

        %Signal averaging itself 

         

        for n=5:Nb(ii)-5 

            ECGens(n,:)=s(tw(n)-399:tw(n)+nint-400,k); 

        end 

         

        for n=5:Nb2(ii)-5 

            ECGens2(n,:)=s(tp(n)-399:tp(n)+nint-400,k); 

        end 

        signal(:,ii) = mean(ECGens); 

        signal2(:,ii) = mean(ECGens2); 

    end 

     

    header.nsamp=N; 

    header.nsig=3; 

    header.desc=['II';'V1';'V2']; 

    ecgNameOUT = sprintf('ECG_%d_%d_beat',pat,i); 

    save(ecgNameOUT, 'signal', 'signal2', 'header', 'Nb','Nb2') 

    delete(ecgNameDect) 

     

    else 

     

    end 

end 

  

end 
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Annex B. Biomarker Calculation 

Matlab code used, directly or indirectly, to calculate the biomarkers. 

B.1 ‘m03_Calc_BeatsData.m’ 

% Number of beats for each patient, position and 

% total beats are calculated, 

% necessary for the rest of the code. 

  

% Author L.Tortosa (2022) 

 

patients = [1:8,10:39,42:46,48,50]; %adapt to needs 

  

m=1; 

Nbeats = zeros(length(patients),1); 

Pbeats = zeros(length(patients),1); 

Tbeats = 0; 

  

for Npat = 1:length(patients)    

        

    pat = patients(Npat); 

     

    cd(sprintf('D:\\Pat_BH%d',pat)) 

  

    while (isfile(sprintf('ECG_%d_%d_beat.mat',pat,m))) == 1 

  

    m = m+1;     

    Tbeats = Tbeats+1; 

     

    end 

     

    Tbeats = Tbeats-1; 

    Nbeats(Npat) = m-2; 

         

    if Npat>1 

     

    Pbeats(Npat) = Tbeats-Nbeats(Npat); 

     

    else 

     

    Pbeats(Npat) = 1; 

         

    end 

     

    m = 1;         

end 

  

cd('D:\\') 

  

save BeatsData Nbeats Pbeats Tbeats 
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B.2 ‘m04_Calc_RRmean’ 

%%% Biomarker necessary to calculate the corrected QT 

 

% Author L.Tortosa (2022) 

 

  

patients = [1:8,10:39,42:46,48,50]; %adapt to needs 

  

leads = {'II', 'V1', 'V2'}; 

  

cd('D:') 

  

load('D:\\BeatsData.mat') 

  

RRmean = zeros(max(Nbeats),length(patients)); 

  

  

for Npat = 1:length(patients) 

     

    for i = 1:Nbeats(Npat) 

     

    pat = patients(Npat); 

  

    cd(sprintf('D:\\Pat_BH%d',pat)) 

     

    ecgName = sprintf('ECG_%d_%d.mat',pat,i); 

    load(ecgName) 

  

    ECG = ECGwrapper('recording_name',ecgName); 

     

    ecgDet = sprintf('D:\\ECG_%d_%d_QRS_detection.mat',pat,i); 

    ecgDet2 = 

sprintf('D:\\Detections\\ECG_%d_%d_QRS_detection.mat',pat,i); 

     

    if isfile(ecgDet) == 1 

         

        load(ecgDet) 

         

    elseif isfile(ecgDet2) == 1 

         

        load(ecgDet2) 

         

    else 

         

        ECG.ECGtaskHandle = 'QRS_detection'; 

        ECG.ECGtaskHandle.detectors = {'wavedet'}; 

        ECG.Run; 

         

        load(ecgDet) 

        movefile(ecgDet,'D:\\Detections'); 

     

    end 

     

    tw = wavedet_II.time; 

    fs = ECG.ECG_header.freq; 

     

    RR = diff(tw); 

    RR = RR/fs; 
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    RRmean(i,Npat) = mean(RR); 

     

    end 

end 

  

  

% This part of the code removes the two last values of the RRmean table, 

% which usually means one with a NaN value (as the algorithm finds 

nothing  

% and stops) and one with unreliable data before that, as a fraction of 

it  

% will be an empty signal 

  

  

  

RRmean((max(Nbeats)+3),:) = 0; 

  

 for Npat = 1:length(patients) 

      

     for beat = 3:(Nbeats(Npat)+3) 

      

     if RRmean(beat,Npat) == 0   

          

         RRmean(beat-1,Npat) = 0; 

         RRmean(beat-2,Npat) = 0; 

      

     else 

     end 

     end 

 end 

  

 RRmean = RRmean(1:max(Nbeats),:); 

 

B.3 ‘m05_Calc_Biomark.m’ 

%%% Code for calculating the biomarkers. Loading the files resulting from 

%%% Calc_BeatsData and Calc_RRmean is required 

 

% Author L.Tortosa (2022) 

 

  

patients = [1:8,10:39,42:46,48,50]; 

  

leads = {'II', 'V1', 'V2'}; 

  

load('D:\\BeatsData.mat') 

  

load('D:\\RRmean.mat') 

  

if isfile('D:\\Excels\\Allbeats_nleads_wPatnum.mat') == 1 || H < TBeats 

     

    load('D:\\Excels\\Allbeats_nleads_wPatnum.mat') 

    Allbeats_nleads_wPatnum(Tbeats,:) = 0; 

     

elseif isfile('D:\\Excels\\Allbeats_nleads_wPatnum.mat') == 0 
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    Allbeats_nleads_wPatnum = zeros(Tbeats,1+(7*3)); 

     

else 

    load('D:\\Excels\\Allbeats_nleads_wPatnum.mat') 

     

end 

  

for Npat = 1:length(patients) 

     

    pat = patients(Npat); 

    Nbeat = Nbeats(Npat); 

     

  for i = 1:Nbeat 

     

    nrow = Pbeats(Npat,1);   

       

    if Allbeats_nleads_wPatnum(nrow+i,1) == 0 

         

    ecgName = sprintf('ECG_%d_%d_beat.mat',pat,i); 

    cd(sprintf('D:\\Pat_BH%d',pat)) 

    load(ecgName) 

     

    % Add 1000 previous samples of the initial value 

    % Necessary as the delineation function starts after second 1 

     

    s1 = signal(1,:); %Only the signal averaged using the wavelet method 

is used 

    signal = [s1.*ones(1000,3);signal]; 

    header.nsamp = 2000; 

     

    %New file with the 2s signal 

    ecgName2 = sprintf('ECG_%d_%d_beat2.mat',pat,i);  

    save(ecgName2, 'signal', 'header') 

    ECG = ECGwrapper('recording_name',ecgName2); 

    fs = ECG.ECG_header.freq; 

    s = ECG.read_signal(1,ECG.ECG_header.nsamp); %E? 

     

    % Delineation process: calculation of beginning and end of waves and 

    % peaks 

     

    if 

isfile(sprintf('D:\\Delineations\\ECG_%d_%d_beat2_ECG_delineation.mat',pa

t,i)) == 1 

         

        

load(sprintf('D:\\Delineations\\ECG_%d_%d_beat2_ECG_delineation.mat',pat,

i)) 

         

    else 

     

    ECG.ECGtaskHandle = 'ECG_delineation'; 

    ECG.Run; 

         

    ecgNameD = sprintf('D:\\ECG_%d_%d_beat2_ECG_delineation.mat',pat,i); 

    %ecgNameD = sprintf('ECG_%d_%d_beat_ECG_delineation.mat',nP,i); 

     

    load(ecgNameD) 
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movefile(sprintf('D:\\ECG_%d_%d_beat2_ECG_delineation.mat',pat,i),'D:\\De

lineations') 

     

    end 

     

    w = wavedet; 

     

    % Calculation of the biomarkers 

     

    for k = 1:length(leads) 

        if ~isempty(eval(['w.' leads{k} '.QRSon'])) 

            eval(['QRSon = w.' leads{k} '.QRSon(end);'])  % Beginning QRS 

        else 

            QRSon = NaN; 

        end         

        if ~isempty(eval(['w.' leads{k} '.QRSoff'])) 

            eval(['QRSoff = w.' leads{k} '.QRSoff(end);'])  % End QRS 

        else 

            QRSoff = NaN; 

        end 

         

         if ~isempty(eval(['w.' leads{k} '.T'])) 

            eval(['T = w.' leads{k} '.T(end);'])  % Beginning T 

        else 

            T = NaN; 

        end 

        if ~isempty(eval(['w.' leads{k} '.Toff'])) 

            eval(['Toff = w.' leads{k} '.Toff(end);'])  % End T 

        else 

            Toff = NaN; 

        end 

         

        %%%QRS [Pavg, AreaQRSabs] 

        if ~isnan(QRSon) && ~isnan(QRSoff) 

            qrs = signal(QRSon:QRSoff,k);  % qrs signal values are 

separated 

            QRSl = length(qrs);    % QRS length 

             

            Pavg = 1/QRSl*sum(qrs.^2); %  Average potency of QRS (mV^2) 

            AreaQRSabs = 1/fs*sum(abs(qrs))*1000; % Absolute QRS 

area(uV·s) 

  

        else 

            QRSl = NaN; 

            Pavg = NaN; 

            AreaQRSabs = NaN; 

        end 

         

         

        Allbeats_nleads_wPatnum(nrow+i,1) = pat; 

             

        if k == 1 

            Allbeats_nleads_wPatnum(nrow+i,2) = Pavg; 

            Allbeats_nleads_wPatnum(nrow+i,5) = AreaQRSabs; 

         

        elseif k == 2 

            Allbeats_nleads_wPatnum(nrow+i,3) = Pavg; 

            Allbeats_nleads_wPatnum(nrow+i,6) = AreaQRSabs; 
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        else 

            Allbeats_nleads_wPatnum(nrow+i,4) = Pavg; 

            Allbeats_nleads_wPatnum(nrow+i,7) = AreaQRSabs; 

         

        end 

         

        %%% QT [QT, QTc] 

        % QT: goes from QRSon until Toff 

        qt = Toff - QRSon +1; 

        eval(['QT.' leads{k} '(Npat,3*i-2)  = Toff - QRSon +1;']) % QT in 

ms 

         

        % Calculation of the baseline 

         

        if ~isnan(QRSon) && ~isnan(QRSoff) 

            segPR = median(signal(QRSon-30:QRSon, k)); 

            signal(:,k) = signal(:,k) - segPR;  % se pone la linea 

IsoElect en 0 

        else 

        end 

         

        qt = qt/fs;  % QT in seconds 

         

        % The particular RR value is selected for each beat 

        RRi = RRmean(i,Npat); 

         

        if ~isnan(qt) 

            QTc = qt/RRi.^(1/2);  % QTc_Barzett vector 

            QTc = QTc*fs;     % Turned to miliseconds (ms) 

        else 

            QTc = NaN; 

        end 

  

        if k == 1 

            Allbeats_nleads_wPatnum(nrow+i,8) = qt; 

            Allbeats_nleads_wPatnum(nrow+i,11) = QTc; 

         

        elseif k == 2 

            Allbeats_nleads_wPatnum(nrow+i,9) = qt; 

            Allbeats_nleads_wPatnum(nrow+i,12) = QTc; 

         

        else 

            Allbeats_nleads_wPatnum(nrow+i,10) = qt; 

            Allbeats_nleads_wPatnum(nrow+i,13) = QTc; 

         

        end 

         

     

        %%% ST = [ST_0, ST_60, ST_slope] 

        % ST_0: ST level at 0 ms (J point) 

        if  ~isnan(QRSoff) 

            ST_0 = median(signal(QRSoff+(-2:2),k));  

            ST_60 = median(signal(QRSoff+60+(-2:2),k)); 

            ST_slope = 1000*(ST_60 - ST_0)/60; % uV/ms  

        else 

            ST_0 = NaN; 

            ST_60 = NaN; 

            ST_slope = NaN; 
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        end 

  

        if k == 1 

            Allbeats_nleads_wPatnum(nrow+i,14) = ST_0; 

            Allbeats_nleads_wPatnum(nrow+i,17) = ST_60; 

            Allbeats_nleads_wPatnum(nrow+i,20) = ST_slope; 

             

        elseif k == 2 

            Allbeats_nleads_wPatnum(nrow+i,15) = ST_0; 

            Allbeats_nleads_wPatnum(nrow+i,18) = ST_60; 

            Allbeats_nleads_wPatnum(nrow+i,21) = ST_slope; 

             

        else 

            Allbeats_nleads_wPatnum(nrow+i,16) = ST_0; 

            Allbeats_nleads_wPatnum(nrow+i,19) = ST_60; 

            Allbeats_nleads_wPatnum(nrow+i,22) = ST_slope; 

             

        end       

    end 

     

     

  

    else 

    end 

     

  end 

   

  

end 

  

cd('D:\\') 

  

save Biomarkers_Raw Allbeats_nleads_wPatnum 

  

cd('D:\\Excels') 

  

save Biomarkers_Raw Allbeats_nleads_wPatnum 

  

F = num2cell(Allbeats_nleads_wPatnum); 

  

F(1,:) = {'PatNum','Pavg_II','Pavg_V1','Pavg_V2',... 

    'AreaQRSabs_II','AreaQRSabs_V1','AreaQRSabs_V2',... 

    'qt_II','qt_V1','qt_V2','QTc_II','QTc_V1','QTc_V2',... 

    'ST_0_II','ST_0_V1','ST_0_V2','ST_60_II','ST_60_V1',... 

    'ST_60_V2','ST_slope_II','ST_slope_V1','ST_slope_V2'}; 

     

writecell(F, 'Biomarkers_Raw.xlsx') 
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Annex C. Data selection and distribution 

C.1 ‘m06_Optional_Trim_data.m’ 

%%%Necessary to run before 'Add_clinical_data.m' 

 

% Author L.Tortosa (2022) 

 

  

T = readtable('D:\\Excels\\Biomarkers_Raw.xlsx'); %adapt name/directory 

  

H = height(T); 

W = width(T); 

  

pcs1_1 = prctile(T.Pavg_II,[1,50,99]);      

pcs1_2 = prctile(T.Pavg_V1,[1,50,99]);  

pcs1_3 = prctile(T.Pavg_V2,[1,50,99]); 

  

pcs2_1 = prctile(T.AreaQRSabs_II,[1,50,99]); 

pcs2_2 = prctile(T.AreaQRSabs_V1,[1,50,99]); 

pcs2_3 = prctile(T.AreaQRSabs_V2,[1,50,99]); 

  

pcs3_1 = prctile(T.qt_II,[1,50,99]); 

pcs3_2 = prctile(T.qt_V1,[1,50,99]); 

pcs3_3 = prctile(T.qt_V2,[1,50,99]); 

  

pcs4_1 = prctile(T.QTc_II,[1,50,99]); 

pcs4_2 = prctile(T.QTc_V1,[1,50,99]); 

pcs4_3 = prctile(T.QTc_V2,[1,50,99]); 

  

pcs5_1 = prctile(T.ST_0_II,[1,50,99]); 

pcs5_2 = prctile(T.ST_0_V1,[1,50,99]); 

pcs5_3 = prctile(T.ST_0_V2,[1,50,99]); 

  

pcs6_1 = prctile(T.ST_60_II,[1,50,99]); 

pcs6_2 = prctile(T.ST_60_V1,[1,50,99]); 

pcs6_3 = prctile(T.ST_60_V2,[1,50,99]); 

  

pcs7_1 = prctile(T.ST_slope_II,[1,50,99]); 

pcs7_2 = prctile(T.ST_slope_V1,[1,50,99]); 

pcs7_3 = prctile(T.ST_slope_V2,[1,50,99]); 

  

TPr = zeros(round(0.5*H),W); 

Ta = table2array(T); 

  

for i = 1:H 

     

    count = 0; 

     

    for j = 1:7 

         

        for lead = 1:3 

             

            count = count+1; 
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            eval(sprintf('mini = pcs%d_%d(1);',j,lead)); 

            eval(sprintf('maxi = pcs%d_%d(3);',j,lead)); 

             

            if mini < T{i,count+1} && T{i,count+1} < maxi 

  

            else 

                T{i,count+1} = 999; 

                Ta(i,:) = 999; 

            end 

     

        end 

    end 

     

end 

  

TPc = 1; 

  

for ii = 1:H 

     

    if Ta(ii,1) == 999 

  

    else 

        TPr(TPc,:) = T{ii,:}; 

        TPc = TPc+1; 

    end 

     

end 

  

Addinglables = zeros(TPc,width(TPr)); 

Addinglables(2:TPc,:) = TPr; 

  

Biomarkers_Pr = num2cell(Addinglables); 

  

Biomarkers_Pr(1,:) = {'PatNum','Pavg_II','Pavg_V1','Pavg_V2',... 

    'AreaQRSabs_II','AreaQRSabs_V1','AreaQRSabs_V2',... 

    'qt_II','qt_V1','qt_V2','QTc_II','QTc_V1','QTc_V2',... 

    'ST_0_II','ST_0_V1','ST_0_V2','ST_60_II','ST_60_V1',... 

    'ST_60_V2','ST_slope_II','ST_slope_V1','ST_slope_V2'}; 

  

cd('D:\\') 

  

writecell(Biomarkers_Pr, 'Biomarkers_Pr.xlsx'); 

  

save Biomarkers_Pr Biomarkers_Pr 

  

length_Bio_Pr = TPc; 

save length_Bio_Pr length_Bio_Pr 

 

C.2 ‘m07_Add_clinical_data.m’ 

% Author L.Tortosa (2022) 

 

% Additional clinical data from the excel can be selected 

% by uncommenting specific commands 

 

% Only the ones finally used in the project are uncommented 
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patients = [1:8,10:39,42:46,48,50]; 

  

T = readtable('D:\\Biomarkers_Pr.xlsx'); 

CData = readtable('D:\\Clinical_data_final.xlsx'); %adapt to new formats 

  

L = height(CData); 

  

H = height(T); 

  

T.Symp = NaN(H,1); 

T.Sex = NaN(H,1); 

T.Dia_age = NaN(H,1); 

% T.Proband = NaN(H,1); 

% T.FH_SCD = NaN(H,1); 

% T.FH_SCD_bef55 = NaN(H,1); 

% T.Sy_b_Dg_wo_vagal_wo_oth = NaN(H,1); 

% T.Sync_bef_Dg = NaN(H,1); 

% T.SD_bef_Dg = NaN(H,1); 

% T.Symp_bef_Dg_DIC_wo_vagal = NaN(H,1); 

% T.sponECGtype1_all = NaN(H,1); 

% T.sponECG_fixedtype1_all = NaN(H,1); 

% T.EPS_inducib_dic = NaN(H,1); 

% T.EPS_HV = NaN(H,1); 

% T.Genotype_SCN5A = NaN(H,1); 

  

for beat = 1:H 

     

    PatNum = T.PatNum(beat); 

     

    for j = 1:L 

     

    CDPatNum = CData.Pat_Num(j);     

         

    if PatNum == CDPatNum 

     

    T.Symp(beat) = CData.Symp(j); 

    T.Sex(beat) = CData.Sex(j); 

    T.Dia_age(beat) = CData.Diagnosis_age(j); 

%     T.Proband(beat) = CData.Proband(j); 

%     T.FH_SCD(beat) = CData.FH_SCD(j); 

%     T.FH_SCD_bef55(beat) = CData.FH_SCD_bef_55(j); 

%     T.Sy_b_Dg_wo_vagal_wo_oth(beat) = 

CData.Symptoms_bef_Dg_wo_vagal_wo_other(j); 

%     T.Sync_bef_Dg(beat) = CData.Syncope_bef_Dg(j); 

%     T.SD_bef_Dg(beat) = CData.SD_bef_Dg(j); 

%     T.Symp_bef_Dg_DIC_wo_vagal(beat) = 

CData.Symptoms_bef_Dg_DIC_wo_vagal(j); 

%     T.sponECGtype1_all(beat) = CData.sponECGtype1_all(j); 

%     T.sponECG_fixedtype1_all(beat) = CData.sponECG_fixedtype1_all(j); 

%     T.EPS_inducib_dic(beat) = CData.EPS_inducib_dic(j); 

%     T.EPS_HV(beat) = CData.EPS_HV(j); 

%     T.Genotype_SCN5A(beat) = CData.Genotype_SCN5A(j); 

     

    else 

  

    end 

    end  
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end 

  

% T = movevars(T,"Genotype_SCN5A",'After',"PatNum"); 

% T = movevars(T,"EPS_HV",'After',"PatNum"); 

% T = movevars(T,"EPS_inducib_dic",'After',"PatNum"); 

% T = movevars(T,"sponECG_fixedtype1_all",'After',"PatNum"); 

% T = movevars(T,"sponECGtype1_all",'After',"PatNum"); 

% T = movevars(T,"Symp_bef_Dg_DIC_wo_vagal",'After',"PatNum"); 

% T = movevars(T,"SD_bef_Dg",'After',"PatNum"); 

% T = movevars(T,"Sync_bef_Dg",'After',"PatNum"); 

% T = movevars(T,"Sy_b_Dg_wo_vagal_wo_oth",'After',"PatNum"); 

% T = movevars(T,"FH_SCD_bef55",'After',"PatNum"); 

% T = movevars(T,"FH_SCD",'After',"PatNum"); 

% T = movevars(T,"Proband",'After',"PatNum"); 

T = movevars(T,"Dia_age",'After',"PatNum"); 

T = movevars(T,"Sex",'After',"PatNum"); 

T = movevars(T,"Symp",'After',"PatNum"); 

  

save Tv4 T 

writetable(T, 'Tv4.xlsx') 

 

C.3 ‘m08_Select_test_data.m’ 

% Author L.Tortosa (2022) 

  

cd('D:\\') 

T = readtable('Tv3.xlsx'); %revise name/directory 

Ta = table2array(T); 

  

load('D:\\BeatsData.mat') 

  

patients = [1:8,10:39,42:46,48,50]; 

  

H = height(T); 

W = width(T); 

  

TestData = zeros((length(patients)*8)+1,W); 

TrainData = zeros(H-(height(TestData)+1),W); 

TrainData(2,:) = Ta(1,:); 

PTestD = zeros(height(TestData),1); 

  

Testc = 2; 

  

for pat = 1:length(patients) 

     

    Pos = Pbeats(pat)+25; 

    TestData(Testc,:) = Ta(Pos,:); 

    PTestD(Testc-1) = Pos; 

    Testc = Testc+1; 

     

    Pos = Pbeats(pat)+50; 

    TestData(Testc,:) = Ta(Pos,:); 

    PTestD(Testc-1) = Pos; 

    Testc = Testc+1; 
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    Pos = Pbeats(pat)+75; 

    TestData(Testc,:) = Ta(Pos,:); 

    PTestD(Testc-1) = Pos; 

    Testc = Testc+1; 

     

    Pos = Pbeats(pat)+100; 

    TestData(Testc,:) = Ta(Pos,:); 

    PTestD(Testc-1) = Pos; 

    Testc = Testc+1; 

     

    Pos = Pbeats(pat)+125; 

    TestData(Testc,:) = Ta(Pos,:); 

    PTestD(Testc-1) = Pos; 

    Testc = Testc+1; 

     

    Pos = Pbeats(pat)+150; 

    TestData(Testc,:) = Ta(Pos,:); 

    PTestD(Testc-1) = Pos; 

    Testc = Testc+1; 

     

    Pos = Pbeats(pat)+175; 

    TestData(Testc,:) = Ta(Pos,:); 

    PTestD(Testc-1) = Pos; 

    Testc = Testc+1; 

     

    Pos = Pbeats(pat)+200; 

    TestData(Testc,:) = Ta(Pos,:); 

    PTestD(Testc-1) = Pos; 

    Testc = Testc+1; 

     

end 

  

Trainc = 2; 

Pcount = 1; 

  

for i = 1:H 

     

   if i == PTestD(Pcount) 

       Pcount = Pcount + 1; 

        

   else 

       TrainData(Trainc,:) = Ta(i,:); 

       Trainc = Trainc+1; 

        

   end 

end 

  

FTe = num2cell(TestData); 

FTr = num2cell(TrainData); 

  

FTe(1,:) = T.Properties.VariableNames; 

FTr(1,:) = T.Properties.VariableNames; 

  

writecell(FTe, 'TestData.xlsx'); 

writecell(FTr, 'TrainData.xlsx'); 

  

save TestData FTe 

save TrainData FTr 
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C.4 ‘m09_Select_test_data_2.m’ 

% Author L.Tortosa (2022) 

  

cd('D:\\') 

T = readtable('Tv3.xlsx'); %revise name/directory 

Ta = table2array(T); 

  

load('D:\\BeatsData.mat') 

  

patients = [1:8,10:39,42:46,48,50]; 

  

H = height(T); 

W = width(T); 

  

%Numbers are adapted to account for the missing patient 9 

%This part requires having performed Calc_BeatsData on the dataset 

before, 

%but it can be removed with ease in order to not need it (see m10) 

  

TestData2 = zeros((Nbeats(2)+Nbeats(9)+Nbeats(22)+Nbeats(32)),W); 

  

TestData_Pat2 = zeros(Nbeats(2),W); 

TestData_Pat10 = zeros(Nbeats(9),W); 

TestData_Pat23 = zeros(Nbeats(22),W); 

TestData_Pat33 = zeros(Nbeats(32),W); 

  

TrainData2 = zeros(H-(height(TestData2)+1),W); 

  

Testc = 2; 

Pat2c = 2; 

Pat10c = 2; 

Pat23c = 2; 

Pat33c = 2; 

Trainc = 2; 

  

for beat = 1:H 

     

   if T.PatNum(beat) == 2  

        

       TestData2(Testc,:) = Ta(beat,:); 

       Testc = Testc + 1; 

        

       TestData_Pat2(Pat2c,:) = Ta(beat,:); 

       Pat2c = Pat2c + 1; 

        

   elseif T.PatNum(beat) == 10 

        

       TestData2(Testc,:) = Ta(beat,:); 

       Testc = Testc + 1; 

        

       TestData_Pat10(Pat10c,:) = Ta(beat,:); 

       Pat10c = Pat10c + 1; 

        

   elseif T.PatNum(beat) == 23 
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       TestData2(Testc,:) = Ta(beat,:); 

       Testc = Testc + 1; 

        

       TestData_Pat23(Pat23c,:) = Ta(beat,:); 

       Pat23c = Pat23c + 1; 

        

   elseif T.PatNum(beat) == 33 

        

       TestData2(Testc,:) = Ta(beat,:); 

       Testc = Testc + 1; 

        

       TestData_Pat33(Pat33c,:) = Ta(beat,:); 

       Pat33c = Pat33c + 1; 

        

   else 

        

       TrainData2(Trainc,:) = Ta(beat,:); 

       Trainc = Trainc + 1; 

        

   end  

end 

  

FTe2 = num2cell(TestData2); 

FTeP2 = num2cell(TestData2); 

FTeP10 = num2cell(TestData2); 

FTeP23 = num2cell(TestData2); 

FTeP33 = num2cell(TestData2); 

FTr2 = num2cell(TrainData2); 

  

FTe2(1,:) = T.Properties.VariableNames; 

FTeP2(1,:) = T.Properties.VariableNames; 

FTeP10(1,:) = T.Properties.VariableNames; 

FTeP23(1,:) = T.Properties.VariableNames; 

FTeP33(1,:) = T.Properties.VariableNames; 

FTr2(1,:) = T.Properties.VariableNames; 

  

writecell(FTe2, 'TestData2.xlsx'); 

writecell(FTeP2, 'TestData2P2.xlsx'); 

writecell(FTeP10, 'TestData2P10.xlsx'); 

writecell(FTeP23, 'TestData2P23.xlsx'); 

writecell(FTeP33, 'TestData2P33.xlsx'); 

writecell(FTr2, 'TrainData2.xlsx'); 

  

save TestData2 FTe2 

save TestData2P2 FTeP2 

save TestData2P10 FTeP10 

save TestData2P23 FTeP23 

save TestData2P33 FTeP33 

save TrainData2 FTr2 
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C.5 ‘m10_Select_test_data_3.m’ 

% Author L.Tortosa (2022) 

  

cd('D:\\') 

T = readtable('Tv4.xlsx'); %revise name/directory 

Ta = table2array(T); 

  

patients = [1:8,10:39,42:46,48,50]; 

  

H = height(T); 

W = width(T); 

  

  

TestData3_Pat2 = zeros(10,W); 

TestData3_Pat10 = zeros(10,W); 

TestData3_Pat23 = zeros(10,W); 

TestData3_Pat33 = zeros(10,W); 

  

TestData3 = zeros(50,W); 

TrainData3 = zeros(100,W); 

  

Testc = 2; 

Pat2c = 2; 

Pat10c = 2; 

Pat23c = 2; 

Pat33c = 2; 

Trainc = 2; 

  

for beat = 1:H 

     

   if T.PatNum(beat) == 2  

        

       TestData3(Testc,:) = Ta(beat,:); 

       Testc = Testc + 1; 

        

       TestData3_Pat2(Pat2c,:) = Ta(beat,:); 

       Pat2c = Pat2c + 1; 

        

   elseif T.PatNum(beat) == 10 

        

       TestData3(Testc,:) = Ta(beat,:); 

       Testc = Testc + 1; 

        

       TestData3_Pat10(Pat10c,:) = Ta(beat,:); 

       Pat10c = Pat10c + 1; 

        

   elseif T.PatNum(beat) == 23 

        

       TestData3(Testc,:) = Ta(beat,:); 

       Testc = Testc + 1; 

        

       TestData3_Pat23(Pat23c,:) = Ta(beat,:); 

       Pat23c = Pat23c + 1; 

        

   elseif T.PatNum(beat) == 33 

        

       TestData3(Testc,:) = Ta(beat,:); 

       Testc = Testc + 1; 
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       TestData3_Pat33(Pat33c,:) = Ta(beat,:); 

       Pat33c = Pat33c + 1; 

        

   else 

        

       TrainData3(Trainc,:) = Ta(beat,:); 

       Trainc = Trainc + 1; 

        

   end  

end 

  

FTe3 = num2cell(TestData3); 

FTe3P2 = num2cell(TestData3); 

FTe3P10 = num2cell(TestData3); 

FTe3P23 = num2cell(TestData3); 

FTe3P33 = num2cell(TestData3); 

FTr3 = num2cell(TrainData3); 

  

FTe3(1,:) = T.Properties.VariableNames; 

FTe3P2(1,:) = T.Properties.VariableNames; 

FTe3P10(1,:) = T.Properties.VariableNames; 

FTe3P23(1,:) = T.Properties.VariableNames; 

FTe3P33(1,:) = T.Properties.VariableNames; 

FTr3(1,:) = T.Properties.VariableNames; 

  

writecell(FTe3, 'TestData3.xlsx'); 

writecell(FTe3P2, 'TestData3P2.xlsx'); 

writecell(FTe3P10, 'TestData3P10.xlsx'); 

writecell(FTe3P23, 'TestData3P23.xlsx'); 

writecell(FTe3P33, 'TestData3P33.xlsx'); 

writecell(FTr3, 'TrainData3.xlsx'); 

  

save TestData3 FTe3 

save TestData3P2 FTe3P2 

save TestData3P10 FTe3P10 

save TestData3P23 FTe3P23 

save TestData3P33 FTe3P33 

save TrainData3 FTr3 

 

 

C.6 ‘m11_Select_test_data_4.m’ 

% Author L.Tortosa (2022) 

  

cd('D:\\') 

T = readtable('Tv4.xlsx'); %revise name/directory 

Ta = table2array(T); 

  

patients = [1:8,10:39,42:46,48,50]; 

  

H = height(T); 

W = width(T); 
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TestData5_Pat3 = zeros(10,W); 

TestData5_Pat5 = zeros(10,W); 

  

TestData5 = zeros(50,W); 

TrainData5 = zeros(100,W); 

  

Testc = 2; 

Pat3c = 2; 

Pat5c = 2; 

Trainc = 2; 

  

for beat = 1:H 

     

   if T.PatNum(beat) == 3  

        

       TestData5(Testc,:) = Ta(beat,:); 

       Testc = Testc + 1; 

        

       TestData5_Pat3(Pat3c,:) = Ta(beat,:); 

       Pat3c = Pat3c + 1; 

        

   elseif T.PatNum(beat) == 5 

        

       TestData5(Testc,:) = Ta(beat,:); 

       Testc = Testc + 1; 

        

       TestData5_Pat5(Pat5c,:) = Ta(beat,:); 

       Pat5c = Pat5c + 1; 

        

   else 

        

       TrainData5(Trainc,:) = Ta(beat,:); 

       Trainc = Trainc + 1; 

        

   end  

end 

  

FTe5 = num2cell(TestData5); 

FTe5P3 = num2cell(TestData5); 

FTe5P5 = num2cell(TestData5); 

FTr5 = num2cell(TrainData5); 

  

FTe5(1,:) = T.Properties.VariableNames; 

FTe5P3(1,:) = T.Properties.VariableNames; 

FTe5P5(1,:) = T.Properties.VariableNames; 

FTr5(1,:) = T.Properties.VariableNames; 

  

writecell(FTe5, 'TestData5.xlsx'); 

writecell(FTe5P3, 'TestData5P3.xlsx'); 

writecell(FTe5P5, 'TestData5P5.xlsx'); 

writecell(FTr5, 'TrainData5.xlsx'); 

  

save TestData5 FTe5 

save TestData5P2 FTe5P3 

save TestData5P10 FTe5P5 

save TrainData5 FTr5 
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C.7 ‘m12_Select_test_data_5.m’ 

% Author L.Tortosa (2022) 

  

cd('D:\\') 

T = readtable('Tv3.xlsx'); %revise name/directory 

Ta = table2array(T); 

  

patients = [1:8,10:39,42:46,48,50]; 

  

H = height(T); 

W = width(T); 

  

TestData6_s = zeros(500,W); 

TestData6_l = zeros(2500,W); 

TrainData6 = zeros(800,W); 

  

Testc_s = 2; 

Testc_l = 2; 

Trainc = 2; 

  

for beat = 1:H 

     

   if T.PatNum(beat) == 3 || T.PatNum(beat) == 6 

        

       TestData6_s(Testc_s,:) = Ta(beat,:); 

       Testc_s = Testc_s + 1; 

        

       TestData6_l(Testc_l,:) = Ta(beat,:); 

       Testc_l = Testc_l + 1; 

        

   elseif T.PatNum(beat) == 1 || T.PatNum(beat) == 5 || T.PatNum(beat) == 

14 || T.PatNum(beat) == 18 ... 

       || T.PatNum(beat) ==29 || T.PatNum(beat) == 32 || T.PatNum(beat) 

== 35 || T.PatNum(beat) == 36 ... 

       || T.PatNum(beat) == 37 || T.PatNum(beat) == 42 

        

       TestData6_l(Testc_l,:) = Ta(beat,:); 

       Testc_l = Testc_l + 1; 

        

   elseif T.PatNum(beat) == 2 

        

       TrainData6(Trainc,:) = Ta(beat,:); 

       Trainc = Trainc + 1; 

        

   elseif T.PatNum(beat) == 10 

        

       TrainData6(Trainc,:) = Ta(beat,:); 

       Trainc = Trainc + 1; 

        

   elseif T.PatNum(beat) == 23 

        

       TrainData6(Trainc,:) = Ta(beat,:); 

       Trainc = Trainc + 1; 

        

   elseif T.PatNum(beat) == 33 

        

       TrainData6(Trainc,:) = Ta(beat,:); 

       Trainc = Trainc + 1; 
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   else 

       

   end  

end 

  

FTe6s = num2cell(TestData6_s); 

FTe6l = num2cell(TestData6_l); 

FTr6 = num2cell(TrainData6); 

  

FTe6s(1,:) = T.Properties.VariableNames; 

FTe6l(1,:) = T.Properties.VariableNames; 

FTr6(1,:) = T.Properties.VariableNames; 

  

writecell(FTe6s, 'TestData6s.xlsx'); 

writecell(FTe6l, 'TestData6l.xlsx'); 

writecell(FTr6, 'TrainData6.xlsx'); 

  

save TestData6s FTe6s 

save TestData6l FTe6l 

save TrainData6 FTr6 
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Annex D. ‘view_signal.m’ 

% Author P.Gomis and L.Tortosa (2022) 

 

%%% For 1 second signals, beats 

  

figure(1) 

t=(1:1000); 

plot(t,signal(:,1)+1.2,t,signal(:,2),t,signal(:,3)-1.2),  

grid, xlabel('t (s)'), ylabel('mV') 

grid minor 

legend('II','V1','V2') 

title('Patient 15 - Leads II, V1, V2') 

  

%%% For 3 minute signals, direct segments extracted from the ECG Holter 

%%% recording 

  

figure(2) 

t=(1:180000); 

plot(t,signal(:,2)+1.2,t,signal(:,7),t,signal(:,8)-1.2),  

grid, xlabel('t (s)'), ylabel('mV') 

grid minor 

legend('II','V1','V2') 

title('Patient 2 - Leads II, V1, V2') 
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Annex E. Information for the patient and informed consent 

HOJA DE INFORMACIÓN AL PACIENTE Y CONSENTIMIENTO INFORMADO 

Estudio ANVERSO: Análisis de Variables Electrocardiográficas en relación al Riesgo de muerte 
Súbita en pacientes con síndrOme de Brugada  

Version 1.0 – Fecha 10/03/2016 

Nos dirigimos a usted para informarle sobre un estudio de investigación en el que se le invita a 

participar. El estudio ha sido aprobado por el Comité Ético de Investigación Clínica correspondiente y 

la Agencia Española del Medicamento y Productos Sanitarios, de acuerdo a la legislación vigente, y la 

Ley 14/2007, de 3 de julio, de Investigación biomédica. 

Nuestra intención es tan solo que usted reciba la información correcta y suficiente para que pueda 

evaluar y juzgar si quiere o no participar en este estudio. Para ello lea esta hoja informativa con 

atención y nosotros le aclararemos las dudas que le puedan surgir después de la explicación. Además, 

puede consultar con las personas que considere oportuno. 

 

PARTICIPACIÓN VOLUNTARIA 

Debe saber que su participación en este estudio es voluntaria y que puede decidir no participar o 

cambiar su decisión y retirar el consentimiento en cualquier momento, sin que por ello se altere la 

relación con su médico ni se produzca perjuicio alguno en su tratamiento. 

 

DESCRIPCIÓN GENERAL DEL ESTUDIO 

Estamos realizando un estudio en la Unidad de Arritmias del Hospital Clínic de Barcelona en 

colaboración con la Universitat Politécnica de Catalunya (UPC) que pretende evaluar si existe una 

relación entre las características electrocardiográficas y el riesgo de sufrir muerte súbita en pacientes 

con síndrome de Brugada. Para llevarlo a cabo, precisamos de su participación. 

El síndrome de Brugada es una enfermedad hereditaria caracterizada por signos 

electrocardiográficos típicos en precordiales derechas, que predispone a la muerte súbita secundaria 

a taquicardia ventricular polimórfica y/o fibrilación ventricular en ausencia de cardiopatía estructural. 

Las alteraciones electrocardiográficas pueden ser dinámicas y ocasionalmente encontrarse ocultas, 

pudiéndose presentar mediante dos patrones electrocardiográficos diferenciados. En el estudio 
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intentaremos analizar aquellas variables electrocardiográficas que permitan predecir, de forma no 

invasiva, el riesgo a sufrir arritmias ventriculares malignas (y consiguientemente muerte súbita). Si se 

confirmase el valor pronóstico de esta prueba, el hallazgo permitiría lograr una prevención más 

efectiva de la muerte súbita y arritmias ventriculares malignas en pacientes con síndrome de 

Brugada, mediante técnicas de monitorización automáticas y no invasivas. Para confirmar o rechazar 

esta hipótesis, hemos diseñado un estudio en pacientes que padecen esta enfermedad, entre los que 

usted se encuentra, a los que se analizarán electrocardiogramas de 24 a 48 horas de duración. 

Objetivos del estudio 

Este estudio pretende evaluar si existe una relación entre la estratificación del riesgo de sufrir 

eventos de muerte súbita en pacientes con síndrome de Brugada con ciertas variables 

electrocardiográficas analizadas en un registro Holter de 24 horas.  

 

¿En qué consiste? 

Individuos diagnosticados de síndrome de Brugada (tipo 1 fijo, alternante o tras la administración de 

fármacos bloqueantes de los canales de sodio) de cualquier edad, así como de ambos sexos. 

Nuestro estudio consiste en la obtención de un registro electrocardiográfico (Holter). Si acepta 

participar, deberá llevar un Holter durante 24 a 48 horas consecutivas. Para ello, se le colocarán en el 

pecho 10 electrodos (pequeños parches conductores) que se conectarán a un pequeño monitor que 

registrará un electrocardiograma completo durante 24 a 48 horas. Deberá cargar con el monitor 

Holter en un bolsillo o en una bolsa pequeña que se puede llevar puesta alrededor del cuello o de la 

cintura. Si desea bañarse o tomar una ducha deberá hacerlo antes de comenzar el examen, ya que no 

podrá hacerlo mientras se esté usando el monitor Holter. Una vez finalizado el periodo de registro 

deberá volver al hospital para que le sean retirados los electrodos y su información de registro sea 

almacenada. 

 

BENEFICIOS Y RIESGOS DERIVADOS DE SU PARTICIPACIÓN EN EL ESTUDIO 

Beneficios esperados para los participantes en el estudio 

La participación en este registro no prevé ningún tipo de compensación. El estudio, debido a su 

característica de ser observacional, y por lo tanto limitado al registro de cómo se maneja y trata su 

enfermedad, no prevé, de acuerdo a la normativa, ningún tipo de seguro. Su participación en el 

estudio no le supondrá ningún gasto.  Como posible beneficio, se le realizará una evaluación continua 
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de su ritmo cardíaco durante 24-48 horas. Los datos le serán remitidos de forma codificada a su 

domicilio y, en caso de hallazgos relevantes serán valorados por su médico de referencia. 

Beneficios esperados para la comunidad  

Los resultados derivados del análisis de los datos podrían mejorar la gestión futura de los pacientes 

con síndrome de Brugada.  

Alternativa a la participación 

Usted es libre de no participar en el estudio. En este caso usted recibirá, sin embargo, todas las 

terapias estándar previstas para su condición, sin penalización alguna, y los médicos continuarán 

siguiéndole con la debida atención médica, incluso si no hubiese otras terapias disponibles. 

 

CONFIDENCIALIDAD 

El tratamiento, la comunicación y la cesión de los datos de carácter personal de todos los sujetos 

participantes se ajustará a lo dispuesto en la Ley Orgánica 15/1999, de 13 de diciembre de protección 

de datos de carácter personal. Los datos se recogerán en un fichero de investigación de centro y se 

tratarán única y exclusivamente en el marco de su participación en este estudio. 

De acuerdo a lo que establece la legislación de protección de datos, usted puede ejercer los derechos 

de acceso, modificación, oposición y cancelación de datos, para lo cual deberá dirigirse a su médico 

del estudio.  

Los datos recogidos para el estudio estarán identificados mediante un código y solo su médico del 

estudio/colaboradores podrá relacionar dichos datos con usted y con su historia clínica. Por lo tanto, 

su identidad no será revelada a persona alguna salvo en caso de urgencia médica o requerimiento 

legal. 

El acceso a su información personal quedará restringido al médico del estudio/colaboradores, 

autoridades sanitarias (Agencia Española del Medicamento y Productos Sanitarios), al Comité Ético 

de Investigación Clínica y personal autorizado por el promotor, cuando lo precisen para comprobar 

los datos y procedimientos del estudio, pero siempre manteniendo la confidencialidad de los mismos 

de acuerdo a la legislación vigente. 

 

OTRA INFORMACIÓN RELEVANTE 
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Si usted decide retirar el consentimiento para participar en este estudio, ningún dato nuevo será 

añadido a la base de datos y, puede exigir la destrucción de todas las muestras identificables 

previamente retenidas para evitar la realización de nuevos análisis. 

También debe saber que puede ser excluido del estudio si el promotor o los investigadores del 

estudio lo consideran oportuno, ya sea por motivos de seguridad, por cualquier acontecimiento 

adverso que se produzca por la medicación en estudio o porque consideren que no está cumpliendo 

con los procedimientos establecidos. En cualquiera de los casos, usted recibirá una explicación 

adecuada del motivo que ha ocasionado su retirada del estudio 

Al firmar la hoja de consentimiento adjunta, se compromete a cumplir con los procedimientos del 

estudio que se le han expuesto. 

Cuando acabe su participación recibirá el mejor tratamiento disponible y que su médico considere el 

más adecuado para su enfermedad, pero es posible que no se le pueda seguir administrando la 

medicación del estudio. Por lo tanto, ni el investigador ni el promotor adquieren compromiso alguno 

de mantener dicho tratamiento fuera de este estudio. 

 

IDENTIFICACIÓN DE LOS INVESTIGADORES 

Si tiene preguntas sobre el estudio, póngase en contacto con la Dra. Elena Arbelo Lainez (Unidad de 

Arritmias, Servicio de Cardiología, Instituto Cardiovascular, Hospital Clínic de Barcelona. Teléfono: 93 

227 5551). 
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HOJA DE CONSENTIMIENTO DE PARTICIPANTE 

PROYECTO ANVERSO (Version 1.0 – Fecha 10/03/2016) 

Yo, (nombre y apellidos del participante)  .................................................................................................  

- He leído la hoja de información que se me ha entregado sobre el estudio. 

- He podido hacer preguntas sobre el estudio. 

- He recibido suficiente información sobre el estudio. 

- He hablado con: (nombre del investigador)  ..................................................................................................  

- Comprendo que mi participación es voluntaria. 

- Comprendo que puedo retirarme del estudio: 

- Cuando quiera. 

- Sin tener que dar explicaciones. 

- Sin que esto repercuta en mis cuidados médicos. 

De conformidad con lo que establece la Ley Orgánica 15/1999, de 13 de Diciembre de Protección 
de Datos de Carácter Personal (artículo 3, punto 6 del Real Decreto 223/2004), declaro haber sido 
informado de la existencia de un fichero o tratamiento de datos de carácter personal, de la 
finalidad de la recogida de éstos y de los destinatarios de la información. 

Presto libremente mi conformidad para participar en el estudio. 

 

Firma del participante     Firma del investigador 

Fecha: ____/____/____     Fecha: ____/____/____ 

 

Deseo que me comuniquen la información derivada de la investigación que pueda ser relevante para 

mí salud:    SI           NO                              

 

Firma del participante     Firma del investigador 

Fecha: ____/____/____     Fecha: ____/____/____ 
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Annex F. Statistics drawn from sub-datasets 3 and 4 

Comparison of means between Symptomatic and Asymptomatic groups were performed using 

unpaired t-test. A p-value <0.05 was considered statistically significant. All analysis were performed 

using Statistics and Machine Learning Toolbox, Matlab. 

Statistics are drawn from the shared data of sub-datasets 3 and 4, where beats with biomarkers 

whose values belonged in the upper and lower 1% of their specific type of biomarker were removed 

(above percentile 99 and below percentile 1). 

Number of patients = 45, total beats: 11244, where Symptomatic = 8 (1807 beats) and Asymptomatic 

= 37 (9437). 

 

Figure F.1. Boxplot of QRS average power in Asymptomatic vs. Symptomatic group, measured in lead 

II. 
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Figure F.2. Boxplot of QRS average power in Asymptomatic vs. Symptomatic group, measured in lead 

V1. 

. 
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Figure F.3. Boxplot of QRS average power in Asymptomatic vs. Symptomatic group, measured in lead 

V2. 

  

 

 

Figure F.4. Boxplot of the absolute value of QRS area in Asymptomatic vs. Symptomatic group, 

measured in lead II. 
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Figure F.5. Boxplot of the absolute value of QRS area in Asymptomatic vs. Symptomatic group, 

measured in lead V1. 
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Figure F.6. Boxplot of the absolute value of QRS area in Asymptomatic vs. Symptomatic group, 

measured in lead V2. 
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Figure F.7. Boxplot of the ST segment deviation at J-point in Asymptomatic vs. Symptomatic group, 

measured in lead V1. 

 

Figure F.8. Boxplot of the ST segment deviation at J-point in Asymptomatic vs. Symptomatic group, 

measured in lead V2. 
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Figure F.9. Boxplot of the ST segment deviation at J-point + 60 ms in Asymptomatic vs. Symptomatic 

group, measured in lead V1. 
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Figure F.10. Boxplot of the ST segment deviation at J-point + 60 ms in Asymptomatic vs. Symptomatic 

group, measured in lead V2. 

 

Figure F.11. Boxplot of the ST segment slope from J-point to J-point + 60 ms in Asymptomatic vs. 

Symptomatic group, measured in lead II. 

 



Prognosis of symptomatic patients with Brugada Syndrome through electrocardiogram biomarkers and machine learning   

  117 

 

Figure F.12. Boxplot of the ST segment slope from J-point to J-point + 60 ms in Asymptomatic vs. 

Symptomatic group, measured in lead V1. 
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Figure F.13. Boxplot of the ST segment slope from J-point to J-point + 60 ms in Asymptomatic vs. 

Symptomatic group, measured in lead V2. 
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Figure F.13. Boxplot of the corrected QT (QTc) in Asymptomatic vs. Symptomatic group, measured in 

lead II. 

 

 


