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Overview

This master thesis presents the development of a genetic algorithm for optimizing multi-
planetary gravity assist trajectories. The algorithm was designed to address the chal-
lenges of finding the most efficient trajectory for a spacecraft traveling into deep space
using multiple planets while performing gravity-assist maneuvers. Given a model for the
interplanetary trajectory, the algorithm is able to find a feasible optimal solution. The pro-
posed approach was tested on a set of real missions and was shown to produce solutions
more optimal than the real ones given our trajectory model. The results demonstrate the
effectiveness of evolutionary algorithms, in concrete genetic algorithms, in finding optimal
multi-planetary gravity assist trajectories, making it a valuable tool for mission planning in
space exploration.
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Resumen

Esta tesis de máster presenta el desarrollo de un algoritmo genético para optimizar tra-
yectorias multiplanetarias con assitencia gravitatoria. El algoritmo ha sido diseñado con el
objetivo de encontrar la trayectoria más eficiente para missions entre múltiples planetas
en las cuales se realizan maniobras de asistencia gravitatoria. Dado un modelo para cal-
cular la trayectoria interplanetaria, el algoritmo es capaz de encontrar una solución óptima
y factible. El enfoque propuesto se ha probado en un conjunto de misiones reales y se
he demostrado que produce soluciones más óptimas que las reales dado nuestro modelo
de la trayectoria. Los resultados demuestran la eficacia de los algoritmos evolutivos, en
concreto de los algoritmos genéticos, para encontrar trayectorias óptimas de asistencia
gravitatoria multiplanetaria, lo que los convierte en una valiosa herramienta para la plani-
ficación de misiones de exploración espacial.
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CHAPTER 1. INTRODUCTION

While the golden age of space exploration with pioneering missions such as the Mariners[6],
the Voyagers[7], Galileo[8], and many others has ended, space exploration is certainly not
something from the past. Space exploration is still nowadays at the forefront of the space
and aerospace industry, with many missions such as BepiColombo[9], New Horizons[10],
Juno[11], etc. While these kinds of missions are extremely complex and come up with
many new problems, one of the most common and notable among all of them, is how to
get the spacecraft to its destination. While it is something that has been solved from the
early days, it is unique for every mission, and there are several ways one can tackle and
solve the problem. However, the most common way of solving it, i.e. reaching another
body of the solar system, is through the use of gravity assist maneuvers. This maneuvers
are used to optimize the delta-v required for the trajectory, which results in less mass and
fuel consumption. Some missions, will not even be possible without these maneuvers.

Gravity assist or flyby is a maneuver through which the traveling spacecraft does a close
approach to the planet or body within the travel trajectory to increase the spacecraft’s
speed. In other words, this technique can add or subtract (depending on the relative di-
rection) momentum to the spacecraft in question (relative to the sun). A more in-depth
analysis of gravity assist maneuvers will be performed in the second section.
Usually, spacecraft use this technique to propel themselves to faraway bodies, where the
required delta-v to reach them is too high. However, it can also be used to slow down a
spacecraft before a rendezvous or an injection orbit in the target body or a close one. This
technique was even required for the Voyager-I mission to reach its destination (Saturn),
due to the launch vehicle (Titan III-E/Centaur D-IT [12]) only being able to provide enough
delta-v to reach Jupiter. To exemplify how powerful this technique is, Voyager-I has nowa-
days reached “interstellar space”, hence escaping the solar system [13].

While the process of a gravity assist maneuver is relatively well understood, the com-
plexity from a mission design perspective is how to find the most ideal trajectory to reach
the desired destination, using multiple gravity assists (MGA) maneuvers. Finding a viable
interplanetary trajectory, while not trivial, can be done with a bit of effort. The problem
comes when trying to find the most optimum trajectory; understanding as the most opti-
mum one, the one with less overall required delta-v. Other factors can be considered when
determining the optimally of a trajectory, for instance, the travel time. However, the most
determining factor in the design of a mission’s trajectory is the required delta-v. The cost of
launching a mission is notably tight to the amount of delta-v required to be provided to the
spacecraft. Usually, the higher the delta-v required, the bigger the launcher needed, and
thus the cost. In addition, the most delta-v required during the flight phase, the more mass
and complex the spacecraft will be, indirectly affecting the other spacecraft’s subsystems.
Furthermore, the amount of delta-v that can be provided to the spacecraft is limited by
the launcher itself, e.g. the Titan/Centaur for Voyager-I. For this reason, trajectory design
optimizers, mainly drive down the delta-v required, and other factor are set as secondary
objectives.

Optimizing a trajectory can be defined as an NP-Hard problem. While the search space is
extremely big; available bodies for flybys and time of flybys, some constraints are added to
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reduce the complexity of the optimization problem. In many cases, the problem is divided
into two sub-problems. The first part determines the best sequence of planets in which to
do a flyby, while the other part optimizes the dates of each flyby. Both optimizations are
different, but not independent. The first one is used as the setup for the second. After the
sequences of planets have been decided, the second part of the algorithm optimizes the
trajectory for the given sequence. This process is repeated until there is a convergence for
the best sequence and trajectory [14][15]. This kind of approach complicates the problem.
To reduce the complexity, some simplifications are made in the form of constraints. Bounds
are added to the problem to reduce the search space, for instance, the number of planets
in which to do a flyby, as well as the possible arrangement of those. Other constraints in
the form of bounds are added to the duration of the legs in the trajectory. These kinds of
constraints are dangerous as they can prune out the optimal trajectory. For this reason, the
pruning phase has to be done carefully, and constraints have to be large and permissive
enough to reduce to possibility of pruning the optimal solution.

Together with the MGA trajectory model, there is a sub-variant denoted MGA-DSM (Deep
Space Maneuvers) that contemplates the use of deep space delta-v maneuvers to increase
the spacecraft speed, whereas the MGA only allows a delta-v impulse at the perigee of the
flyby trajectory. This sub-variant is more open, but more complex. Many of the optimizers
that allow these maneuvers are limited to one DSM impulse per leg. Using this impulse
can improve the trajectory, as it can allow to better setup the spacecraft for a flyby (gain
more speed) or reduce the overall duration of the trip. However, these maneuvers can
require the use of more delta-v during flight. The Cassini mission [16] used this kind of
approach to reach Saturn. It performed 2 deep space maneuvers, in the legs Earth-Venus
and Jupiter-Saturn.
In this thesis, we will only consider the MGA model, therefore, delta-v impulses will only be
allowed at perigee passage during the flybys.

From now on forward, we will consider only the optimization regarding the second prob-
lem, i.e. finding the trajectory from the leg intervals. Therefore, the sequence of planets
in the trajectory will be known beforehand, and will be added as an input to the problem.
Because the sequence determination is not related to the time intervals, another algorithm
could be added in the future to work in conjunction with the present one.
As we have mentioned, this is a global optimization problem, with variables and constraints.
Such a problem can be defined as follows, where the variables to be optimized are ti

X⃗ = [t1, t2, . . . , tn]. (1.1)

ti are the time events of the trajectory. The X⃗ vector contains all the mission’s time intervals,
where t1 would be the departure date. Every ti,∀i > 1 is the date on which a flyby is
performed. The last tn would be the arrival date. With this vector, the trajectory can be
inferred by computing the different transfers between the planets at the corresponding
times.
The objective function can then be expressed as

C = f (X⃗)+g(X⃗), (1.2)

where g(X⃗) is a penalty function. The only hard constraints are in the form of bounds to
the variables optimized

tmin < ti < tmax. (1.3)
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Soft constraints are added to the penalty function.

This optimization problem can be solved by utilizing heuristic global optimization algo-
rithms. Those algorithms are combined with deterministic search space pruning algo-
rithms to reduce the complexity and improve performance [17]. However, these kinds of
algorithms are not simple and required complex optimization techniques to solve them.
While these kinds of algorithms were the only ones feasible to be used in the back in the
day, in the present, thanks to the advance in computational power, new kinds of algorithms
can be used to optimize the trajectory. Evolutionary algorithms are such a kind. The ap-
proach used by these types of algorithms has been shown to work since the late 90s [18].
Evolutionary algorithms are a kind of optimization algorithms that work by modeling the
principle of natural selection and evolution. While there are many variants, e.g. genetic
algorithms, differential algorithms, particle swarm optimization, Gaussian adaptation, etc,
they all rely on the same principles. They essentially simulate the natural process of evo-
lution and selection of the fittest individuals to converge a certain population to the optimal
solution.
This sort of approach requires a greater computational power when compared to deter-
ministic optimization algorithms, which on the other hand are more complex to model and
define. Deterministic optimization algorithms require more variables, constraints, and ac-
curate modeling of the problems (functions, gradients, etc) which are hard to determine for
nonlinear problems. On the other hand, evolutionary algorithms are much simpler, as they
only need “solutions” to the problem.

In this thesis, we develop from the ground up a complete trajectory optimizer using a ge-
netic optimization algorithm. The algorithm is developed in C++, with some parts in Python
for visualization and other tools. We will analyze all the steps required to model an MGA
interplanetary trajectory, from the computation of the ephemeris for the planets (position
and velocity at a certain instant in time) to the computation of the transfer orbits (Lambert
transfer) and the computation of the flybys. These values are then used in conjunction
with a genetic algorithm. As well, we study and discuss the implementation of all the pa-
rameters and operations associated with a genetic algorithm, and how those affect the
convergence of it. Later, we showcase how genetic algorithms can be used to find near-
optimal MGA interplanetary trajectories at the expense of a bigger computational power,
traded for a less complex algorithm when compared to deterministic optimizers. We com-
plete the analysis by testing the algorithm with real cases missions such as the Voyagers
and the Galileo.





CHAPTER 2. INTERPLANETARY TRAJECTORY

We consider an interplanetary trajectory as the path that the spacecraft follows as it travels
between different planets or other celestial bodies. As we have mentioned earlier, this
trajectory must be designed properly to optimize the delta-v required by the spacecraft.

2.1. Transfer orbits

We consider transfer orbit as the trajectory between two given celestial bodies. The orbit
can be arbitrarily defined, although there exist some standard ones such as Hohmann
transfers, Bi-elliptic Hohmann transfers, and low-energy transfer orbits. Each one has its
own characteristics that make them ideal in different scenarios.

2.1.1. Hohmann transfer

This kind of transfer is generally the most efficient one. It is the type transfer that requires
less energy (delta-v) in the majority of cases [19]. It is a two-impulse maneuver for transfers
between orbits that share the same focus point, i.e. orbit the same body. The transfer is
conducted between the lower and higher points of the two orbits. The transfer is initiated
with a burn at the perigee of the departure orbit (lower energy point) and it is finalized with
a burn at the apogee of the target orbit. In figure 2.1 can observe the departure point as
the perigee of the initial orbit in the inner circle. The transfer orbit ends at the apogee of
the target orbit (the outer circle). The two burns are required to boost the spacecraft into
the transfer orbit, which has more energy due to the increased semi-major axis. The same
is needed to slow down to a lower energy target orbit. Otherwise, the spacecraft would
come back to the departure orbit [1] Sect 6.2.

Figure 2.1: Hohmann transfer orbit (from [1] Chap. 6, Figure 6.2)

The delta-v required for a Hohmann transfer departing from a point D, in a planet with

5



6 Genetic algorithm for multi-gravity assist interplanetary trajectory optimisation

circular orbital speed V1 is given by [1] Eq. (8.3).

∆VD =V (v)
D −V1 =

√
µSUN

r1

(√
2r2

r1 + r2
−1

)
. (2.1)

And the delta-v required at arrival is given by [1] Eq. (8.4).

∆VA =V2 −V (v)
A =

√
µSUN

r2

(
1−
√

2r1

r1 + r2

)
, (2.2)

where µ is the standard gravitational parameter of a celestial body, in this case µSUN is the
one from the Sun (1.327×1020 [m3s−2]).

2.1.2. Bi-elliptic Hohmann transfer

The Bi-elliptic Hohmann transfer uses the same principle as the Hohmann although with a
small change. The pure Hohmann transfer has an ellipse form between two circular orbits.
The Bi-elliptic orbit, on the other hand, is formed by two coaxial semi-ellipses that extend
beyond the outer target orbit 2.2. In some cases, this approach can be more efficient than
a simple Hohmann transfer. The Hohmann and Bi-elliptic Hohmann delta-v compare as
follows [1] Eq. (6.4a) and (6.4b)

∆vHohmann =

[
1√
α
−

√
2(1−α))√
α(1+α)

−1

]√
µ
rA

∆vBi−elliptic =

[√
2(α+β)

αβ
− 1+

√
α√

α
−

√
2

β(1+β)
(1−β)

]√
µ
rA

(2.3)

(2.4)

where,
α =

rC

rA
, β =

rB

rA
. (2.5)

Using both equations, it can be shown that the Bi-elliptic Hohmann transfer orbit is more
efficient than the standard Hohmann transfer when the radius of the outer circular orbit rC
is at least 15 times bigger than the inner radius rA. For a radius smaller than 11.9 times,
the standard Hohmann transfer is effectively more efficient. While between these two radii,
it depends on the apogee radius [1] Sect. 6.4.

2.2. Patched conic

When dealing with interplanetary trajectories, it is important to understand the behavior
and forces acting upon the spacecraft traveling between different celestial bodies. The
patched conic approximation is a method used to simplify these trajectories, and the inter-
action between the spacecraft and the N-bodies around it [1] Sect 8.5.

The patched conic method assumes that when a spacecraft is outside the sphere of in-
fluence rSOI of a planet [1] Sect. 8.4, the spacecraft is only affected by the Sun’s gravity,
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Figure 2.2: Bi-elliptic Hohmann transfer orbit (from [1] Chap. 6, Figure 6.9)

i.e. it follows an unperturbed Keplerian orbit around the Sun. Whereas when the space-
craft enters the sphere of influence, the spacecraft follows an unperturbed Keplerian orbit
around the planet.
The sphere of influence is a region around a celestial body, usually, a planet, in which
the gravitational force from the body on any object inside it is higher than the gravitational
force of the Sun (bold circle in 2.3). For instance, on the surface of the Earth, the highest
gravitational force, is the one exercised by the Earth, while in interplanetary space, the
highest gravitational force is the one exercised by the Sun. The sphere of influence of a
planet is defined as

rSOI = R

(
mp

ms

) 2
5

. (2.6)

This method can be used to simplify an N-body problem to a 2-body problem. While this
kind of simplification is accurate enough in most cases (i.e. interplanetary trajectories), in
reality, trajectories are affected by more than one body, and for cases where two bodies
are relatively close to one another, this simplification cannot be made. As an example, in
the Sun-Earth-Moon system, the 3-body problem must be considered, as so, Earth-Moon
trajectories are much more complex [20].

In our case, the patched conic approximation is accurate enough as we will consider only
interplanetary transfers (no interaction with other bodies as satellites), and the spacecraft
will spend most of the time in a heliocentric orbit. The trajectory is broken down into 3 steps
from a mission design perspective. If we consider the transfer between two planets, the
heliocentric speeds are defined relative to the planets inside their sphere of influence (ve-
locities at infinity), and relative to the Sun outside the spheres. The three relative speeds
(departure, transfer, and arrival) are then determined and patched together.



8 Genetic algorithm for multi-gravity assist interplanetary trajectory optimisation

Figure 2.3: Planetary departure under the sphere of influence of a planet (from [1] Chap.
8, Figure 8.8)

2.3. Planetary gravity assist flyby

2.3.1. Departure

We consider an interplanetary trajectory that starts on a departure planet. In order for
the spacecraft to begin its journey, it must escape the gravitational pull of the planet, i.e.
have a hyperbolic speed relative to the planet higher than 0. In other words, the departure
speed must be higher than the escape velocity of the planet.
To place the spacecraft in the desired transfer orbit, its heliocentric velocity must be parallel
to the asymptote of the departure hyperbola at the sphere of influence crossing 2.3. The
velocity at that point should match the desired hyperbolic velocity outside the sphere of
influence.
In 2.3 we consider a departure from a parking orbit into a Hohmann transfer to an outer
planet, i.e. further from the sun than the departure planet. In that case, the total amount
of required delta-v to put the spacecraft into a hyperbolic departure trajectory is ([1] Eq.
(8.42))

∆v = vp − vc = vc

(√
2+
(

v∞

vc

)2

−1

)
, (2.7)

where vp and vc are the speed at perigee and the circular speed respectively ([1] Eq.
(8.40) and (8.42))

vp =
h
rp

=

√
v2

∞ +
2µ1

rp
, vc =

√
µ1

rp
. (2.8)
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2.3.2. Flyby maneuver

Once the spacecraft is in interplanetary space, the next steps are the flybys around other
celestial bodies, normally, planets. During this maneuver, the spacecraft enters the sphere
of influence of a planet and it exists with a new hyperbolic velocity. This change in ve-
locity comes together with a deflection. The deflection is defined by a turning and δ at
the perigee P of the hyperbolic orbit. This change happens under the assumption that
the perigee of the orbit is not smaller than the planet’s radius, i.e. it does not impact the
planet. In a similar manner, if the speed of the spacecraft is not sufficiently high, it may be
captured by the planet’s gravity. This case is usually desirable at the end of the trajectory
when the spacecraft is aimed at orbiting the target planet.

From a planet’s perspective, a spacecraft with a sufficiently large velocity (higher than
the planet’s vesc) and perigee radius rp, enters and exits the sphere of influence with the
same velocity. In other words, there is no velocity gain. From a planet’s perspective,
considering that the spacecraft enters from the trailing-side, the speed of the craft will in-
crease due to the planet’s attraction and will decrease at the same rate after the perigee
passage (at the planet’s leading-side), essentially with a zero gain in velocity (ignoring
possible atmospheric losses). The only change is a deflection on the hyperbolic trajectory
2.4. However, this situation from the Sun’s perspective is different. When the spacecraft
exists the sphere of influence, there is an excess of speed provided by the own planet’s
kinetic motion. Therefore, the heliocentric speed of the spacecraft is changed. Essentially,
the spacecraft borrows speed from the body in which the flyby is performed. [1].

Figure 2.4: Trailing-side flyby (from [1] Chap. 8, Figure 8.19)

Using 2.4 where V⃗1 and V⃗2 are the heliocentric velocities at the inbound and outbound
crossing points respectively, and v⃗∞ the heliocentric excess speeds, the gain in delta-v is
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expressed as

∆V⃗ (v) = V⃗ (v)
2 −V⃗ (v)

1 = (⃗V + v⃗∞2)− (⃗V + v⃗∞1) (2.9)

∆V⃗ (v) = v⃗∞2 − v⃗∞1 = ∆⃗v (2.10)

Mind that the delta-v can be positive or negative. If the flyby maneuver is done by entering
through the leading-side of the planet’s rotation, the speed will be decreased ((2.10) will
be negative), as the spacecraft travels in the opposite direction. While if both go in the
same direction, i.e. the spacecraft enters the trailing-side, the delta-v (2.10) will be pos-
itive. Consequently, the maneuver can be used to increase or decrease the spacecraft’s
velocity. In the solar system, planets orbit the Sun in a counterclockwise motion. Hence,
the spacecraft’s orbit should be in the same direction to gain speed. This is the most com-
mon case.

Mathematically, the flyby maneuver can be described with the following equations [1] Sect.
8.9. Let us consider an unpowered flyby. The relative hyperbolic excess velocities are
computed as

v⃗∞1 = V⃗ (v)
1 −V⃗p (2.11)

v⃗∞2 = V⃗ (v)
2 −V⃗p (2.12)

where V⃗p is the planet’s velocity and V⃗ (v)
1 and V⃗2

(v)
the incoming and outgoing heliocentric

velocities of the spacecraft. Using the scalar component form for v⃗∞1 , its magnitude is
defined as ([1] Eq. 8.82)

v∞ =
√

v⃗∞1 · v⃗∞1 =

√[
V (v)

1

]2
+V 2 −2V (1)

1 cosα1. (2.13)

Then, we compute the eccentricity of the flyby parabola and the angular momentum as ([1]
Eq. 8.83)

e = 1+
rpv2

∞

µ
h = rp

√
v2

∞ +
2µ
rp

. (2.14)

Finally, using the eccentricity from (2.14), the turning angle can be computed as

δ = 2sin−1
(

1
e

)
. (2.15)

It must be noted that in this case, we are considering an unpowered flyby. In our case, the
flyby will be powered, with a delta-v maneuver allowed at the perigee. This maneuver is
done to match the incoming velocity to the outgoing velocity. In section 4.1.3. we describe
how these velocities are matched and the delta-v required computed. Essentially, we solve
the delta-v requirements, turning angle, and perigee radius to patch the desired outgoing
velocity to the incoming velocity.

2.4. Historical uses of MGA

Numerous exploration missions have used gravity-assist maneuvers to reach their desti-
nation. For missions adventuring beyond Mars or Venus, there is a notable potential on
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using flybys to increase their velocity, reduce the delta-v required and potentially reduce
the travel time. Almost every mission traveling farther than those planets have employed
gravity-assist maneuvers. This section will briefly present some of the most notable mis-
sions.

2.4.1. Voyager I and II

The first mission that properly performed a gravity assist maneuver was the Mariner 10,
however, the two Voyagers missions followed it soon after. Voyager I and II were aimed
at studying Saturn and Jupiter, and Uranus and Neptune respectively. Voyager II was the
first one to launch on the 20th of august 1977 on board a Titan III-E/Centaur D-IT. Voyager
I was launched two weeks after on the 5th of September 1977, on board the same rocket.
Both missions followed the same interplanetary trajectory until Saturn; they performed a
flyby at Jupiter and Saturn. Voyager II continued further with a flyby at Uranus and Neptune
2.5. While Voyager I went into an interstellar trajectory after its encounter with Saturn.

Figure 2.5: Voyager I and II interplanetary trajectories (from [2] Figure 1-4)

The values from those maneuvers are described in tables 2.1 and 2.2, from [21]. The
perigee is with respect to the center of the planet.

Time Perigee (km)
Launch 5 Sept. 1977 -

Jupiter Flyby 5 Mar. 1979 348890
Saturn Flyby 12 Nov. 1980 184300

Table 2.1: Timeline of Voyager I events.

Thanks to the velocity gains obtained during the flybys performed by each probe, they
have managed to escape the Solar system and entered interstellar space. Figure 2.6
showcases the evolution of the heliocentric speed of Voyager II.[7]
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Time Perigee (km)
Launch 20 Aug. 1977 -

Jupiter Flyby 9 Jul. 1979 721670
Saturn Flyby 26 Aug. 1981 161000
Uranus Flyby 24 Aug. 1986 107000

Neptune Flyby 25 Aug. 1989 29240

Table 2.2: Timeline of Voyager II events.

Figure 2.6: Voyager II velocity evolution (from [2] Figure 11-6)

2.4.2. Galileo

NASA’s Galileo mission launched on the 18th of October 1989 onboard the Space Shuttle.
It was aimed at studying Jupiter. In particular, this mission instead of launching to an outer
planet, like Mars, it was targeted first at Venus (to an inner planet). The probe performed
a first flyby at Venus, followed by two more at Earth before aiming toward Jupiter. While
the Voyagers departed directly in the direction of the target planet, Galileo built up speed
before departing towards Jupiter. In figure 2.7 we can see the trajectory followed by the
spacecraft.[8]

Figure 2.7: Galileo mission interplanetary trajectory (from [3])
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The values of the flybys are obtained from [22] and presented in table 2.3.

Time Perigee (km)
Launch 18 Oct. 1989 -

Venus Flyby 10 Feb. 1990 22051
Earth Flyby 8 Dec. 1990 7331
Earth Flyby 8 Dec. 1992 6674

Jupiter Arrival 7 Dec. 1995 -

Table 2.3: Timeline of Galileo events.

The mission ended on the 21st of September 2003 when the spacecraft entered Jupiter’s
atmosphere and disintegrated, after successfully studying the planet and its moons.

2.4.3. BepiColombo

BepiColombo is one of the more recent exploration missions that performed several gravity
assist maneuvers during its interplanetary trajectory. It’s a joint mission from the ESA and
JAXA, which was launched on the 20th of October 2018 onboard an Ariane 5. The mission
is aimed at studying Mercury. Like Galileo, it performed a double flyby, this time around
Venus after the first one at Earth. Figure 2.8 contains the spacecraft trajectory. [9]

Figure 2.8: BepiColombo mission interplanetary trajectory (from [4])

The spacecraft is currently about the perform the 4th flyby of Mercury in 2023, before the
expected end of the mission in 2025.





CHAPTER 3. EVOLUTIONARY ALGORITHMS

Evolutionary algorithms (EA) are heuristic optimization methods that operate by mimicking
the processes of nature. These algorithms simulate natural selection, cross-over, repro-
duction, and other natural processes to optimize a problem. This process allows individuals
(solutions) in an environment (problem) to better adapt to it, and evolve over time, optimiz-
ing, in the process, the solutions to the problem. Although these kinds of algorithms are not
deterministic, they can still provide the most optimal solution or at least a near-optimal one.

Evolutionary algorithms were already studied in the 1950s and 1960s by computer sci-
entists [23]. The concept was introduced by Rechenberg [24] and further developed by
Schwefel [25]. These algorithms have evolved since their inception, from only mimicking
mutation as a means of randomizing possible solutions to a given problem and finding the
most optimal, to modeling several natural evolution processes like selection, reproduction,
herd movements, ensemble learning, etc. The use of these algorithms has also resulted in
the inception of fields such as evolutionary programming, and evolutionary computation.
While evolutionary algorithms are considered artificial intelligence/machine learning (AI/ML)
algorithms, they broadly differ in the principal used and their applications when compared
with the more traditional AI/ML techniques such as neural networks. These EA rely on a
known model of the problem, rather than the use of solutions (data) to model the problem
and solve it for new solutions. As a consequence, this kind of methods require previous
knowledge of the problem to optimize. However, because the algorithms are agnostic of
the problem (the world), but rather the “performance” of a solution to it, they can be easily
used for different problems without major changes. This is not the case for neural net-
works, where new data is required.

EA can be used the optimize problems with high complexity, as long as a solution can
be mathematically computed. They are better suited for extensive problems where the
search space is really large, and it is impractical for traditional methods to exhaustively
search throughout all of it for the optimal solution. EA provide a higher level of abstraction
to the problem, simplifying it. However, this comes at the cost of higher computational
costs and the convergence to the optimal solution not being guaranteed.

The problem that concerns us fits well within the usage of an EA. The problem has an
extremely large search space, and it is hard to model and obtain all the functions required
like gradients and mathematical constraints to solve it using deterministic algorithms. The
fact that the solution will be optimal or near-optimal is assumed. As we will see in section
5, results from different inputs will output nearly the same solution. While it implies an
increase in computational power, a benefit of this kind of algorithm is that some steps of
the process can also be parallelized, thus reducing the execution time.

3.1. Genetic algorithms

Genetic algorithms (GA) are the most commonly used type of evolutionary algorithms.
They were developed in the 1970s by John Holland at the University of Michigan [26]. The
research aimed at abstracting the process of natural selection/evolution and employing
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these in artificial systems [27]. While GA are simple at their core, meaning, they allow
survival of the fittest solution from an original set of random values, they are ameliorated
with the introduction of other evolutive processes in the algorithm. This increases perfor-
mance, robustness, and convergence. This approach is robust in complex search spaces,
and even for problems with ill-defined possibilities.

Genetic algorithms are based on the idea of survival of the fittest individual. Each indi-
vidual is a solution to the problem, from a nature point of view, survivability to the envi-
ronment. The fittest individual is the one that maximizes a user-defined objective function.
The objective function is used as means of evaluating how good a solution is. While from a
pure single-objective optimization problem scenario, the fittest one will be the solution that
maximizes or minimizes the problem (depending on the objective) from the set of current
solutions, other objectives can be defined. As so, GA can also be used to optimize multiple
objective problems [28]. For instance, a routing optimization problem, where we want to
minimize both the time and the fuel consumption.
In our case, we have a single-objective problem: the minimization of the delta-v required
along the interplanetary trajectory (from departure to arrival). Although, the objective func-
tion could be made more complex to add more objectives to it. However, this may result
in hard-to-judge optimal solutions and can impact negatively the performance of the algo-
rithm. The trajectory’s time duration can still be added as a factor in a penalty function.

Individuals are essentially coded as strings of bits denoted “chromosomes”. The bits are
usually grouped into different portions which make up a “gene”. As in nature, the chro-
mosomes are a complete set of genes, where each gene influences a certain part of the
individual, hence, the solution. While this representation is a simplification of nature, the
main processes can be attained with such representation. Individuals are added as inputs
to the problem, which are then evaluated on an objective function basis.

i : 001011001010 7−→ x
y = f (x),

where y is the fitness and f the objective function.

The individuals are initialized as random values within the search space. This process
although simple is crucial to have diversity in the search space. If this process is not
correctly done, and diversity is lost, the algorithm will stagnate and will converge to local
minima or maxima.
After the initialization process, each individual performance is assessed, i.e. its fitness.
The next process involves the use of some genetic operators 3.1.1., to generate new
individuals. Several processes of nature are simulated, through which genetic material
can be transmitted to new individuals, to allow a convergence/evolution of the population.
This process is run several times (each evolution is a generation) until a certain number
of generations is reached. A convergence criteria could also be used to end the algo-
rithm, however, the evolution is not bounded to the progression between consecutive runs
(convergence) but rather the appearance of random values that increase the fitness of
individuals, and as a consequence, the fitness of the future generations.
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3.1.1. Genetic operators

Genetic operators are the heart of GA, and what makes them differ from purely based
random search space algorithms. Genetic operators are used to intelligently select and
transmit good genetic information between generations and evolve the population to the
optimal solution to the problem.
Let us consider a minimization problem. We have a population, i.e. a group of individuals,
represented by chromosomes made up of genes (string of bits). The individuals have
already been evaluated and have a fitness score based on their performance.

3.1.1.1. Selection

The first genetic operator used in a genetic algorithm is selection. As the name suggests,
it is used to select the best genetic material to be transmitted to the next generation. In
this step, the chromosomes are chosen for reproduction and crossover. The more fit an
individual is the more probability of being chosen for reproduction. This operator essentially
represents the survival of the fittest individuals and ensures that “good” genetic material is
transmitted to the next generations, and not lost.
The two main methods through which this operator is implemented are roulette selection
and tournament selection.

1. Roulette selection: For this selection method, individuals are singularly chosen
based on their fitness. The fitness value rather than maintained as raw is normal-
ized taking into account the whole population. As a consequence, individuals with
outstanding performance compared to the rest of the population will be much more
likely to be chosen for reproduction. The individuals are sorted based on their nor-
malized fitness, then a random number r between 0 and 1 is generated. The individ-
ual selected will be the one that makes the summation of normalized values greater
than r.

Figure 3.1: Illustration of roulette selection.

Figure 3.1 illustrates the procedure. Individuals are sorted by normalized fitness.
The sum of all the normalized fitness is 1. The individual chosen is the one that
makes the summation of fitness values including him greater than the random value
(the first individual in this example). The better the fitness of an individual, the more
“space” it will take in the roulette, and thus, the more probable it is to be chosen.

2. Tournament selection: This procedure has an initial selection phase in which sev-
eral individuals are chosen. In the second phase (the tournament), all the individuals
selected are compared and the fittest one is chosen. The selection of the individuals
can be done using the roulette selection. In table 3.1, 4 individuals were selected
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Individual Fitness
01011 0.12
10110 0.04
10001 0.23
10101 0.013

Table 3.1: Tournament selection method illustration.

using a roulette selection. In the tournament phase, the third individual is the one
selected as he has the best fitness.

This operator has the benefit of converging faster the algorithm because more fit
individuals are chosen more times. However, it is a greedy operator, it may cause
a loss of diversity in the population for the same reason. Hence, leading to a fast
convergence, but not necessarily to the optimal value.

3.1.1.2. Elitism

Elitism is not usually considered part of the genetic operators as it does not affect the
creation/evolution of the populations. However, this method is used in cases where the
search space is really big. It is used to maintain untouched the best individuals. Those are
automatically added to the next generation. Therefore, although these “elite” belonging
individuals are considered in the selection and reproduction, they are also added to the
next generation with their chromosomes untouched. This is used to prevent the possible
loss of the best genetic material due to reproduction, or the individuals not being selected
in the selection part.
Similarly to the selection operator, it represents the survival and prevalence of the top-tier
individuals. As a consequence, the convergence evolution will always be decreasing or
constant in the worst case.

3.1.1.3. Reproduction and Crossover

Reproduction and crossover operators determine how the genetic material chosen by the
selection operator is transmitted to the new generation. It represents the transmission
and recombination of good genetic material into new individuals (chromosomes). These
operators take two selected individuals and create two offspring (children in nature) out of
both chromosomes. The selected parents evolve into two new offspring.
Reproduction is the simplest of the two. It directly takes both parents and forwards them
into the next generation, i.e. their chromosomes are left untouched. Crossover on the other
hand is the main operator, used to modify the chromosomes of both parents to produce
new ones with the genetic material of both. In this case, the parents are crossed, which
means that shared genes will remain the same in the offspring, and different genes will be
chosen randomly from one of the parents.
There are four main ways in which crossover can be conducted.

• Uniform crossover: This first type is the simplest one, yet it performs quite well. It
uses the principle of randomly choosing a single bit either from the first or second
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parent. If both parents have the same bit, this process is not necessary as the result
will be the same. The random selection is done through a coin flip.

Parent 1: 10 110 0111 −→ Child 1: 11 010 0110
Parent 2: 11 011 0110 −→ Child 2: 10 111 0111

In this case, there are 4 differences. To obtain the two offspring, we use a coin flip
to obtain head or tail, where one means to switch the bits, and the other maintains
them. In the example above, we consider heads a switch and tails to maintain the
values. The resulting coin flips that we have used are hhth.

• Single gene uniform crossover: This next method is the same as the previous
one, however, the operation is performed on a single gene rather than the whole
chromosome. Let us use the same example and consider only the gene in the
middle (bit 3 to 5). The head, tails sequence is th (note that in this gene, there are
two differences).

Parent 1: 10 110 0111 −→ Child 1: 10 111 0111
Parent 2: 11 011 0110 −→ Child 2: 11 010 0110

• Single point crossover: This method is extremely simple. A random point in the
chromosomes is chosen, and the bits between parents are exchanged. Let us con-
sider the random point selected as 3.

Parent 1: 10 110 0111 −→ Child 1: 10 111 0110
Parent 2: 11 011 0110 −→ Child 2: 11 010 0111

• Double point crossover: This last method is the same as the previous one, how-
ever, instead of choosing a single point on the chromosomes, two points are se-
lected. Bits are exchanged between those two points. Let us take 3 as the first point
and 7 as the second one.

Parent 1: 10 110 0111 −→ Child 1: 10 111 0111
Parent 2: 11 011 0110 −→ Child 2: 11 010 0110

The operation that two parents undergo (reproduction or crossover) is determined ran-
domly via the use of a random number between 0 and 1. Crossover must have a greater
probability of being chosen as it is the operation that creates new genetic material. If sin-
gle reproduction happens too often, the convergence speed of the algorithm is notably
reduced. The majority of genetic algorithms do not consider using reproduction, or repro-
duction is directly considered as the crossover operation.

Crossover between fit individuals is the main driver of evolution/convergence to the op-
timal solution. It allows for shared genes of fit individuals to be transmitted to new individ-
uals, and the creation of new ones out of gene differences. This means that “good” genes
(as they are present in many fit individuals) prevail in the population, and will eventually
become dominant. To exemplify this, let us take a 5-bit chromosome which represents a
departure date as a binary number. If all the more fit individuals have the first bit as 1,
i.e. the decoded departure date is above 32 (25), it means that de optimal date is quite
likely to be above this number. Therefore, this bit/gene will tend to be dominant, and the
population will all have it. The crossover operation allows the transmission of this gene
and the determination of the other ones in the same manner.
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3.1.1.4. Mutation

The mutation is the last genetic operator of the evolution process. Although its effects on
a single generation are not usually noticeable, in the long run, it has a big effect on the
solution. This operator is used to ensure the diversity of the population.
After the reproduction and crossover are done, some random individuals undergo a muta-
tion, i.e. a modification of a part of their genetic material (chromosome). As the population
evolves, it tends to lose its diversity and homogenize, decelerating further evolution. This
is a consequence of the selection operator, as the fittest individuals are the ones more
likely to be selected and their genetic material remains in the population. This genetic ma-
terial then will extend throughout the population and remain there, because crossing two
individuals with the same genetic material, produces the same offspring (no evolution is
done). By adding new mutations/changes on the chromosomes, new genetic material can
be created, providing more diversity to the population. This operator is also useful when a
population becomes stagnated in local maxima or minima.
There are four main types of mutation methods.

• Flip Bit mutation: This first method is the simplest. A bit is randomly selected and
flipped.

11 011 0110 Bit 3−−−→ 11 111 0110

• Boundary mutation: In this method a sequence of n-bits, i.e a single gene is se-
lected and randomly (using a coin flip) flipped completely to 0 or 1.

11 011 0110 Gene 3 to 5−−−−−−→ 11 000 0110

• Uniform mutation: A single gene is selected and the values of the bits that com-
pose it, are each determined by doing a coin flip. It is the same procedure as for
the uniform crossover method, however, each coin flips determines the bit value in-
stead of the whole gene. The whole sequence of the gene is new and generated by
random numbers (coin flips).

11 011 0110 Gene 3 to 5−−−−−−→ 11 101 0110

• Inversion mutation: For this last method, a gene is selected and inverted.

11 011 0110 Gene 3 to 5−−−−−−→ 11 110 0110



CHAPTER 4. ALGORITHM FORMULATION

4.0.1. Overview

In the following section, we will present the algorithm that we have developed to optimize
the interplanetary trajectory of a spacecraft in the solar system. The complete code will be
made public in this repository1 once the thesis has been presented.
The code/algorithm has been developed from zero without the use of external libraries.
It has been mainly coded in C++ and some parts (unrelated to the algorithm’s core) for
visual purposes in Python. We chose this language as it is one of the most optimal and
efficient ones, yet offering the benefits of a standard library. Recall that a genetic algorithm
is computationally expensive. Other benefits of using C++ instead of Python or Matlab is
that it is compiled, hence faster, and supports multithreading.

The core of the algorithm is divided into two independent parts. The first part is the prob-
lem itself, i.e. the design and computation of the interplanetary trajectory. The second part
is the genetic algorithm used to optimize the trajectory. While both parts are incorporated
into the algorithm, they can be disjointed and used separately, getting back to the fact that
a genetic algorithm can be reused independently from the problem to optimize.

Figure 4.1: Code diagram

Figure 4.1 illustrates the algorithm diagram. The genetic algorithm solves for each individ-
ual the trajectory and evaluates the cost of delta-v of the solution obtained. This value is
used to evolve the algorithm until a certain number of generations is reached. The global
problem is defined at the beginning, together with parameters from the genetic operators

1https://github.com/IkerDC/geneticMGA
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to modify their behavior, i.e. tweak the algorithm performance. We will see both parts in
the following sections.

4.1. Trajectory design

The first step in any genetic algorithm is to model the problem. In the context of the GA,
the problem represents the world, and the population are the solutions to it. To model it, we
need to compute the interplanetary trajectory, provided an input containing the sequence
of planets and the times at which each flyby is performed, and obtain a solution, i.e. the
required delta-v for that full trajectory.
The simplest way of computing the interplanetary trajectory is by using the patched conic
approximation 2.2.. To obtain the trajectory, the problem is broken down into 3 parts. The
first part is the computation of the ephemeris of each planet, i.e. at a given time, which is
the position and velocity of the planet. Secondly the transfer orbits, between each planet
in the sequence, given a departure and arrival date. With this, we compute the two incom-
ing and outgoing hyperbolic velocities to perform such transfers. Finally, the last step is
to patch those two hyperbolic velocities using a delta-v maneuver at the perigee of each
flyby. In summary, we compute the velocities along all the planned legs of the trajectory,
then, patch those velocities together. The action of patching then comes with a delta-v
cost. This cost is added to the departure delta-v. The sum is the total delta-v cost of the
trajectory.

While this patched conic approach essentially simplifies the problem by approximating
it, the solutions obtained are accurate enough to provide a good estimation of the optimal
dates and the delta-v cost associated with that trajectory.

4.1.1. Ephemeris

The ephemeris of a planet are two state vectors R⃗ and V⃗ representing the position and
velocity in a heliocentric ecliptic frame of a planet at a given time [1] Sect. 8.10. Those
vectors are used to determine the location of the planet at the desired time in the trajec-
tory, as well as its velocity. The heliocentric velocity of the planet is required to compute
the flyby maneuver (patched conic).
While the ephemeris are critical, they are computed using analytical data and observation.
They were initially based on analytical “theories”, observational data (measurements), and
gravitational physics of the solar system [5]. Nowadays, there exist some more complex
models, however, they still rely on observation data. This data is obtained using the orbital
parameters of the planets and their rate of change. Through them, the state vectors can
be computed. This data is only accurate for a certain period, eventually, it needs to be
computed again with new observations.
In our case, we will use the table 4.1 of orbital elements from 1850 to 2050, as it pro-
vides sufficiently accurate values. For further dates, other tables must be used with less
accuracy.
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a [au, au/Cy] e [rad, rad/Cy] i [deg, deg/Cy] L [deg, deg/Cy] w [deg, deg/Cy] Ω [deg, deg/Cy]

Mercury
0.38709927 0.20563593 7.00497902 252.25032350 77.45779628 48.33076593
0.00000037 0.00001906 -0.00594749 149472.67411175 0.16047689 -0.12534081

Venus
0.72333566 0.00677672 3.39467605 181.97909950 131.60246718 76.67984255
0.00000390 -0.00004107 -0.00078890 58517.81538729 0.00268329 -0.27769418

Earth
1.00000261 0.01671123 -0.00001531 100.46457166 102.93768193 0.0
0.00000562 -0.00004392 -0.01294668 35999.37244981 0.32327364 0.0

Mars
1.52371034 0.09339410 1.84969142 -4.55343205 -23.94362959 49.55953891
0.00001847 0.00007882 -0.00813131 19140.30268499 0.44441088 -0.29257343

Jupiter
5.20288700 0.04838624 1.30439695 34.39644051 14.72847983 100.47390909
-0.00011607 -0.00013253 -0.00183714 3034.74612775 0.21252668 0.20469106

Saturn
9.53667594 0.05386179 2.48599187 49.95424423 92.59887831 113.66242448
-0.00125060 -0.00050991 0.00193609 1222.49362201 -0.41897216 -0.28867794

Uranus
19.18916464 0.04725744 0.77263783 313.23810451 170.95427630 74.01692503
-0.00196176 -0.00004397 -0.00242939 428.48202785 0.40805281 0.04240589

Neptune
30.06992276 0.00859048 1.77004347 -55.12002969 44.96476227 131.78422574
0.00026291 0.00005105 0.00035372 218.45945325 -0.32241464 -0.00508664

Table 4.1: Keplerian elements and rates (valid from 1800 - 2500). Table from [5]

In [29] tables for other period ranges can be found.

The six elements in 4.1 are the Keplerian orbital elements of each planet.

• a: semi-major axis [au].

• e: eccentricity.

• i: inclination to elliptic plane [degrees].

• L: mean longitude [degrees].

• w: longitude of perihelion [degrees].

• Ω: longitude of the ascending node [degrees].

The elements with a dot (ȧ, ė,...) are the rate of change of each element per Julian century.

Figure 4.2 illustrates how those values are used to represent an orbit.

In order to obtain the state vectors R⃗ and V⃗ , the following algorithm is used [29]. Dates are
expressed in Julian format JD. Let us consider a Julian ephemeris date Teph.

1. Covert Teph to JD2000, i.e. centuries from the year 2000. As

T = (Teph −2451545.0)/36525. (4.1)

Now compute each orbital element at that moment, for instance a = a0+ ȧT , where
a0 is the semi-major axis keplerian element (first value) and ȧ its rate (second value)
on table 4.1.

2. Compute the argument of the perihelion w and the mean anomaly M:

w = w̄−Ω (4.2)

M = L− w̄. (4.3)



24 Genetic algorithm for multi-gravity assist interplanetary trajectory optimisation

Figure 4.2: Planetary orbit in heliocentric frame reference (from [1] Fig. 8.25)

3. Then, we can numerically solve the Kepler equation (4.4) using the Newton’s method.

M = E − esinE. (4.4)

We use an iterative schema with

Ei+1 = Ei − f (Ei)/ f ′(Ei) (4.5)

f ′(E) = 1− ecosE (4.6)

In algorithmic form, it can be expressed as follows
M = E
while |dE|< 1e−6 do

dE = (E − esinE −M)/(1− ecosE)
E−= dE

end while

4. Then we compute the planet’s heliocentric coordinates in its orbital plane, where the
P-axis points towards the periapsis.

P = a(cosE − e) (4.7)

Q = a
√

1− e2 sinE. (4.8)

5. Finally, the coordinates are rotated to a 3D system as follows

xecl = (coswcosΩ− sinwsinΩcos I)P+(−sinwcosΩ− coswsinΩcos I)Q
(4.9)

yecl = (coswsinΩ+ sinwcosΩcos I)P+(−sinwsinΩ+ coswcosΩcos I)Q
(4.10)

zecl = (sinwsin I)P+(coswsin I)Q (4.11)
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With this we obtain R⃗. Now, in order to compute V⃗ we can redefine P and Q for the velocity
and use the same procedure from that point. We define

vP =−(asinE · L̇)/(1− ecosE) (4.12)

vQ = (a · cosE
√

1− e2 · L̇)/(1− ecosE) (4.13)

Then, we rotate the vector like in the last point of the algorithm using vP and vQ in (4.9) to
(4.11) instead of P and Q.

4.1.2. Lambert solver

Once the position R⃗ and heliocentric velocity V⃗ of the planets are determined, we need to
solve the transfer orbits. To do it, we must solve Lambert’s problem.
Lambert’s problem was posed by J. H. Lambert in the 18th century. The theorem states
that: The transfer time of a body moving between two points on a conic trajectory is a
function only of the sum, of the distances of the two points from the origin of force, the
linear distances between the points and the semi-major axis of the conic [30]. The problem
can be stated in functional form as [30] Eq. (3):

E =
1
2

V 2 − µ
r
, (4.14)

where E is the energy/mass of the body, r is the distance from the origin of the gravitational
force (Sun) to the center of the body, and V is the velocity of the body at r. Therefore, if the
time of flight T between two points P1 and P2 is determined, then Lambert’s problem is to
determine the trajectory between both points. The trajectory is determined after finding the
departure velocity from point P1 because the position and velocity of any point in the orbit
are determined by r1 and v1[1] Sect 5.3. In other words, the next point in the trajectory can
be inferred from the previous one. This a consequence of the following equations

r⃗ = f r⃗0 +gv⃗0 (4.15)

v⃗ = ḟ r⃗0 + ġv⃗0. (4.16)

These equations (2.125 and 2.126 from [1]) describe the concept of obtaining the position
and velocity at a moment in time only using the initial values. In (4.15) and (4.16) f and g
are the Lagrange coefficients.
Using (4.14) and considering that

E < 0 −→ Elliptical conic

E > 0 −→ Hyperbolic conic

E = 0 −→ Parabolic conic

For a hyperbolic transfer orbit between P1 and P2 we can establish a departure speed
condition

V1 >

√
2µ
r1

. (4.17)

This equation is familiar, as it actually is the escape velocity vesc.
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To solve Lambert’s problem, we have used a state-of-the-art open-source solver [31]. The
solver has not been implemented as it is quite complex. The solver we have used has
been developed in ESA by Dario Izzo and Gooding and it is part of the Pykep2 project, a
scientific library providing basic tools for astrodynamics research.
Given an input of two initial points r1 and r2 and a time of flight T , the solver will output the
required hyperbolic velocities v1 and v2 to link r1 and r2 in T time. The approach used by
this kind of solver is described in more depth in [31], however, it essentially consists of

• The choice of a variable to iterate upon and thus invert the time of flight curve.

• The iteration method.

• The starting guess to use with the iteration method.

• The reconstruction methodology to compute v1 and v2 from the value returned by
the iterations.

The code of the solver is available at the Pykep2 repository and together with our genetic
algorithm code.

4.1.3. Patched conic

Up to now, we have two out of the three steps required to fully define the interplanetary
trajectory. We have the position and velocities of every planet and the trajectory between
them. However, they are not joined, each leg is separated. For instance, we may have a
trajectory Earth-Mars-Jupiter. Right now, given the ephemeris for a certain date at each
planet, we would have the Earth-Mars and Mars-Jupiter legs defined by the departure ve-
locities at Earth and Mars.
To join/complete the trajectory, we must match the arrival velocities from the transfer orbits
to the departure velocities (solutions of the Lambert solver). Reusing the previous exam-
ple, we have to match the arrival velocity at Mars from the Earth transfer to the required
velocity departure from Mars to transfer to Jupiter.

To do this operation, we will consider the patched conic approximation. Under the sphere
of influence of the correspondent planet, the spacecraft follows a hyperbolic planetocentric
trajectory [32]. The result of this matching will be a delta-v difference between both ve-
locities, which would be the necessary delta-v impulse. Recall that this delta-v maneuver
will be only allowed at the perigee passage, as at this point is where the impulse would
be more efficient (recall the Hohmann transfer). This also allows us to match the incoming
and outgoing velocities at the bound of the sphere of influence. Within the sphere, the
velocities are set relative to the planet, and thus, only the delta-v and planet velocity rela-
tion are considered. The outgoing velocity results from the incoming velocity, plus the flyby
delta-v impulse and the velocity provided by the kinetic energy of the planet.

As we have mentioned earlier, we have to match the incoming and outgoing heliocen-
tric velocities provided by the Lambert problem. To match the velocities, we have to find

2https://github.com/esa/pykep/

https://github.com/esa/pykep/
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the required turning angle and perigee radius. The difference in velocity will be the delta-v
impulse required. We begin by converting the velocities relative to the planet as in [33]

v⃗∞−in = V⃗in −V⃗p (4.18)

v⃗∞−out = V⃗out −V⃗p, (4.19)

where v⃗∞ are the relative velocities, V⃗ the heliocentric velocities (from Lambert solution)
and V⃗p the planet’s velocity. Then, we must find the perigee radius of the hyperbolic tra-
jectory to match the two velocities. We start by determining the semi-major axis of both
trajectories (at pre and post-perigee passage).

ain =−
µp

v2
∞−in

(4.20)

aout =−
µp

v2
∞−out

(4.21)

where µp is the gravitational parameter of the planet. The turning angle δ between the
asymptote of both trajectories at the bounds of the sphere of influence (Figure 2.4) is
computed as

δ =

(
v⃗∞−in · v⃗∞−out

v∞−in · v∞−out

)
. (4.22)

The perigee radius rp of both parts of the trajectory is the same. It can be expressed as

rp = ain(1− ein) = aout(1− eout), (4.23)

where ein and eout are the eccentricities of the incoming and outgoing hyperbolic trajecto-
ries.
The turning angle can be rewritten in terms of the incoming and outgoing eccentricities as

δ = sin−1
(

1
ein

)
+ sin−1

(
1

eout

)
. (4.24)

Then, we can use (4.23) to obtain a function only depending on eout . Afterward, we could
solve the function for eout using an iterative method like Newton-Raphson as in [33]. How-
ever, this approach is unnecessary, if we assume that the trajectory will be correctly joined
with the necessary delta-v maneuver at the perigee. We can model the full trajectory as an
un-powered flyby from the perigee passage, therefore, we can express the turning angle
as in [1] example 8.6

δ = 2sin−1
(

1
e

)
(4.25)

We can isolate the eccentricity from (4.25),

e = sin−1
(

δ

2

)
. (4.26)

Then using (4.21) and (4.25) we can solve (4.23).
Finally, the required delta-v applied at perigee is

∆V =

∣∣∣∣∣
√

v2
∞−in +

2µp

rp
−

√
v2

∞−out +
2µp

rp

∣∣∣∣∣. (4.27)
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With these computations, we can essentially patch the two trajectories as long as the
delta-v impulse is applied. The perigee radius and the turning angle are determined for
the trajectory. We must note that both values are unconstrained, meaning, the only way
of patching the two trajectories may involve having an impossible perigee radius or turn-
ing angle. For instance, in some cases, the perigee radius may go through the interior of
the planet. These cases are considered and avoided later in the algorithm with a penalty
function.

At this point, we have all the necessary values to feed the genetic algorithms. For ev-
ery set of dates defining events in the trajectory, we can compute the full trajectory and
obtain a value of how much delta-v that trajectory requires (sum of departure delta-v plus
every flyby).

4.2. Genetic algorithm

In this section, we will explain in more detail the genetic part of the code 4.1. With the
trajectory computation, we can classify solutions with a given fitness based on their delta-
v cost and other parameters. Then, evolve the population to converge the solution to the
most optimal one.

4.2.1. Objective function and constraints

As with every optimization algorithm, we have an objective function. The objective function
describes the optimization problem. In our case, the problem and therefore the objective
is to minimize the use of delta-v for an interplanetary trajectory with multiple gravity assist
maneuvers. While for classical optimization algorithms, the objective function and con-
straints are separated, meaning, there exist a set of constraints to the problem, but the
objective is dissociated from them. In genetic algorithms, constraints cannot be added
separately, and are included as part of the objective function through a penalty function as
in (1.2)

C = f (X⃗)+g(X⃗), (4.28)

where f is the objective (i.e. the delta-v cost) to minimize, and g is a penalty function to
incorporate constraints to the solution. C is the objective function that we aim to minimize,
which in the genetic algorithm becomes the fitness function for every individual. As we
improve the fitness values, we minimize the objective function of the overall problem.

We consider the vector X⃗ = [t0, t1, . . . , tn] as the vector of time events in the trajectory;
t0 is the departure date, t1 the date of the first flyby, tn the date of the nth flyby. The
function f (X⃗) is the sum of the departure and flybys delta-v.

f (X⃗) = ∆departure(t0)+∆ f b(t1)+ · · ·+∆ f b(tn). (4.29)

The penalty function g(X⃗) contains two constraints to limit unreal scenarios that can hap-
pen during the trajectory computation. Those being a perigee radius that passes through
the interior of the planet during a gravity assist maneuver. The second one is to avoid
low-velocity flybys between the same planet, i.e. a leg starts and ends on the same planet.



Algorithm formulation 29

This can result in a solution where the velocity is too low, and the spacecraft gets captured
by the planet.
To model the first constraint we initially used [34], where the following function is defined

gi(xi) =−2log10
(

rp,i

1.1rrpl,i

)
, (4.30)

where rp,i is the perigee radius at planet i and rpl,i the radius of the planet. We see that
the formula will be positive for values of rp smaller than 1.1 times rpl . Therefore, if the
perigee radius is not at least 1.1 times the radius of the planet, this penalty function will
be positive and thus increase the cost. In other words, it will decrease the fitness of that
solution.
However, this approach has not worked in practice as the function is not penalizing enough
in most cases. If we solve (4.30) for a perigee radius rp of 0.9 times rpl (inside the planet),
then g(x) = 0.17. This value is not enough to affect sufficiently the objective function.
Certainly, such a solution has a greater delta-v reduction, thus cost reduction, than the
cost penalty added by such a function. Therefore, to increase the penalty, we decided to
use a piece-wise function, where if rp > 1.1rpl , the penalty cost g(x) is a large constant
value

g(x) =

{
0 rp ≥ 1.1rpl

1e10 rp < 1.1rpl.

This function is penalizing enough, as the delta-v maneuver usually is in the order of 0
to 10 m/s for the optimal values. Any solution with a perigee radius smaller than k-times
(usually k = 1.1) rpl will be virtually discarded by the genetic algorithms. The k factor is
added to prevent the spacecraft from passing too close to the ground and deep within any
planetary atmosphere. This would affect the velocity due to the drag, aside from other
phenomena that are not modeled in the algorithm.

The second penalty function we have used is from [34].

E =
v2

∞−in

2
−

Gmpl

rSOI
, (4.31)

where

rSOI ≈
(

mpl

msun

) 2
5

rpl,sun. (4.32)

The penalty function is

g(x) =

{
0 E ≥ 0

1
v∞−in

E < 0.

This penalty is added to prevent low-velocity flybys, to avoid the spacecraft being captured
by the planet’s gravity. While we depart with hyperbolic velocity, when we perform a flyby
at a planet i followed by another flyby at the same planet after, the velocity required may
be close or below to the escape velocity. This is logical, as if the velocity is below the es-
cape velocity of the planet, we would come back to the planet, hence, satisfy the desired
trajectory, as we are aiming at a second flyby at this planet. With this penalty function, we
make sure this will not happen, and the velocity will always be sufficiently large to avoid
the spacecraft being captured.
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If any individual in the population has a trajectory where one of these two cases occurs,
thanks to the penalty function, its cost will be noticeably high, and it will have a bad fit-
ness value. Therefore, getting virtually discarded from the population, and the possibility
of passing their genetic material because there will be an extremely low probability of them
being selected by the selection operator for reproduction and crossover.

Other penalty functions could be added. For instance, a time penalty function to priori-
tize a solution where the trajectory takes less time. However, this will be better added as
part of the objective and the genetic algorithm converted to multi-objective optimization.
This is mainly because the penalty function should be used for constraints rather than ob-
jectives. Hard time constraints are already present as part of the search space limitations,
as each time event in (4.29) is constrained to a minimum and maximum time to limit the
search space.

tn,min ≤ tn ≤ tn,max. (4.33)

Hence, the duration of the complete trajectory can already be limited. If any soft time
constraint is to be added to the penalty function, it would highly affect the optimally of the
solution depending on how the penalty is implemented and affects the cost. Therefore,
rather than globally aiming at the best solution in terms of delta-v and time, it would aim at
the best delta-v solution where time is not penalizing.

4.2.2. Genetic evolution structure

Figure 4.3 presents a diagram of how the genetic algorithm is structured.

Figure 4.3: Diagram of the genetic algorithm

The genetic algorithm is defined by the size of the population, the number of generations,
the method used by each operator, and other probabilities and values used to determine
some behaviors of the operators. These values are shared between the algorithm and can
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be changed to tweak/modify its behavior. For instance, changing the size and number of
generations will have a big impact on the output.
The algorithm begins with the instancing of the population. Each individual is represented
by a list of times

X⃗ = [t0, t1, . . . , tn]. (4.34)

where each time has a certain minimum and maximum bound. t0 represents the departure
date. The value for each date is cumulative. For instance, t0 is bounded between the fol-
lowing dates: [2440587.5 ≤ t0 ≤ 2441317.5], hence, t0 being cumulative can be between
0 and 730 (2441317.5−2440587.5 = 730). Recall, that the dates are expressed in Julian
format. In this last example, those dates correspond to the 1th of January 1970 and 1972
respectively. This approach is done to increase the resolution of the input. The same op-
erations are performed for the following dates. Using (4.33) for each tn, the real dates are
computed as

tn = t0,min +
n

∑
i=0

ti. (4.35)

The input vector (4.34) is generated randomly. For each date, a random value between
the predefined bounds (4.33) is generated.

After this step is performed, we begin the evolution loop. Within the loop, the first step
consists of evaluating the performance of the populations. For every individual, the trajec-
tory coded by their dates is evaluated. A fitness value is then derived from their objective
function. The next step is to normalize the fitness of the whole population. To do so, we
have to consider that we have a minimization problem, therefore, individuals with a lower
objective value are considered the more fit individuals. The normalization of the population
is done as follows. We begin by computing the adjusted fitness a(i) as

a(i) =
1

1+ s(i)
, (4.36)

where i is and individual with a raw fitness s(i). The fitness will now lay between 0 and 1,
then, we normalize this fitness for the whole population as

n(i) =
a(i)

∑
n
j a( j)

. (4.37)

After this step, each individual i will have normalized fitness value n(i), and the sum of all
fitness values is 1. The fittest individuals will now have larger normalized fitness values.
Ahead of the next step: the operators, the population must be sorted in decreasing normal-
ized fitness order. To do so, we have overloaded a comparison operator in C++ and used
the function in the standard library std::sort(v.begin, v.end) [35]. This function is optimized
to work with large vectors, hence, it is more efficient than using our own implementation.
With the population sorted, we start to apply the genetic operators. Elitism is used first.
The first N different individuals of the populations are copied and inserted into a new pop-
ulation vector which will become the next generation. N is one of the parameters that
characterize the genetic algorithm, and are defined by the user at the start. Then, we pro-
ceed to the selection. We have implemented the two methods presented in 3.1.1.1.. The
method to be utilized is part of the input parameters of the GA. The selected individuals
are then copied and inserted into the new population vector. Individuals are selected until
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the new population vector is full (the size of the vector is the size of the population). Next,
the reproduction and crossover operation is performed. This operator acts directly on the
new population vector. Two pair consecutive individuals are taken and crossed using one
of the methods defined by the user 3.1.1.3.. The two offspring are automatically updated
on their parent’s positions.
Finally, the last operator, i.e. the mutation is applied. Following the same procedures as
before, by using one of the methods 3.1.1.4. selected by the user in the GA parameters,
each individual (except the elitism ones) is subjected to a possible mutation. The new
population vector then becomes the current population and the cycle is repeated until the
maximum number of generations is reached.

While the individuals are coded by a vector of dates, it must be converted to a chromo-
some, i.e. a string of bits for the reproduction/crossover and mutation operators. Each
date tn in the vector is a gene. The number is converted to binary. The number will take up
to 11 bits (2048) for the integral part, and 3 bits for the decimal part. Hence, the possible
maximum value of date tn is 2048.875 days, i.e around 5.60 years. We have considered
this value to be large enough for the diverse scenarios and missions with trajectories we
want to optimize. The complete chromosome will have a size of (n+1)∗ (11+3) bits. In
C++ this chromosome is a string containing ones and zeros.

4.2.3. Multithreading

To improve the execution time of the algorithm we have added multithreading. This pro-
cedure allows us to separate independent operations that take a long time to execute into
different threads and execute them in parallel at the same time. This procedure can be
used in CPUs that allow multithreading, and in programming languages that allow it too;
C++ being one of those. On the other hand, for instance, Python does not allow this.
The way we have implemented multithreading is by computing several trajectories (of in-
dividuals) in parallel instead of one after the other. While without this improvement, we
took each individual and computed their fitness (the trajectory) one by one, now, we have
divided the list of individuals into 10 groups, and we solve them at the same time. This
is especially useful for large populations. For instance, if we have 25000 individuals, we
divided those into groups of 2500 (computed one by one) but solve the 10 groups at the
same time.

As we have mentioned, this operation is feasible during the fitness computation because it
only depends on the individual parameters. It is an independent operation. During the rest
of the genetic algorithm, for instance, the crossing operation, which is relatively expensive
and time-consuming, this approach is not possible because the crossing involves depen-
dence between all the individuals. Although, there are other places where multithreading
could be added too, such as the mutation operation. Because this operation acts upon
single individuals alone, it is also independent and could be done using multithreading.
However, we have not considered it because it already is a fast and “cheap” operation,
and the performance improvement would be minimal. In addition, there is an increase in
code complexity when using multithreading.

This approach is not noticeable for short trajectories where the size of the population is
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not so large. For instance, for the Voyager I mission, there is not a meaningful difference
in execution time. However, for missions such as Galileo or Voyager II where we have 5
planets in the trajectory (4 legs, 3 flybys), and which involve a larger number of individuals
and generations due to the increased search space, multithreading has allowed us to cut
the execution time in half. Using a single thread, the execution time for both operations
was 7 to 8 minutes, and with multithreading, it is around 4 minutes. As we have mentioned,
the time is mostly bounded to the number of individuals and generations, but for such long
missions, the sizes of both must be really big to obtain a consistent convergence to an
optimum value.





CHAPTER 5. TEST CASES AND RESULTS

The complete algorithm has been validated in different steps. The trajectory computation
has been divided into its three main parts, the ephemeris, Lambert solver, and patched
conic computations. The ephemeris and Lambert solver results have been compared and
validated against the Pykep1 library. The algorithms presented here are standard and thus
easily verifiable that solution match. The patched conic was compared with data from [33].
In this case, it is harder to validate whether all the parameters computed are the same in
both cases. Although the solutions for each part are coherent with the results expected,
the computation of the whole trajectory is subjected to the Lambert solver used and the
technique used to compute the flybys. For this reason, we must disclaim that whereas the
solutions we obtain are the optimal ones for our algorithm, they may differ from the ones
obtained by other heuristic or deterministic trajectory optimizers. For instance, the Lam-
bert solver finds a solution to the problem, however, there exist many solutions, and those
obtained may differ between different solvers. Therefore, the overall solution will depend
on the solver used and the flyby computation technique (in our case we use the patched
conic approximation).

Our algorithms have been tested with three of the most relevant missions that followed
a MGA trajectory: Voyager-I, Voyager-II, and Galileo. To compare the solutions obtained
against the real mission profile, we will use some of the available data of the missions, i.e.
the departure and flyby dates, and additionally the perigee radius (available in 2.1, 2.2 and
2.3). This data is quite reduced, and thus hardly representative of the real mission values.
To properly compare the results, we will compute the supposed real trajectory values us-
ing our model, hence, obtaining the total delta-v, turning angles, etc, of the real missions.
Therefore, we will compare two trajectories using the same model, however, for the real
design of these missions, a different model was certainly used.

5.1. Real missions

5.1.1. Voyager-I mission

Let us begin with the Voyager mission. This mission is the one with the simplest trajectory.
It departed from Earth in 1977 and performed a single flyby at Jupiter to reach later on
Saturn.

In the left table of 5.1 we have the description and input parameters for the genetic algo-
rithm. The population size is quite large, 15000 individuals. This value is high to assure the
convergence to the global minima. For this population size, 50 generations are sufficient.
These values are quite conservative and could be reduced to decrease the execution time.
Of the 15000 individuals, 10 are considered elite, and the rest are selected and reproduced
using the tournament and double point techniques respectively. The probability for two in-
dividuals to undergo crossover instead of reproduction is 0.9. Later on, with a probability
of 0.2, each individual will suffer a mutation using the flip-bit approach.
In terms of the trajectory, we have set large windows to have a sufficiently open search

1https://github.com/esa/pykep/
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GA parameters
Population 15000

Generations 50
Elitism 10

Selection Tournament
Crossover Double Point (P = 0.9)
Mutation Flip Bit (P = 0.2)

Trajectory parameters

T0,min
01-01-1977

2443145
T0 (Earth) [0, 1095]
T1 (Jupiter) [50, 2000]
T2 (Saturn) [50, 2000]

Trajectory Result
Real Result

Earth Departure

Date T0

05-09-1977 04-09-1977
2443392.5 2443391

Departure ∆v [m/s] 10330.2 9413.34

Jupiter Flyby

Date T1

05-03-1979 17-10-1979
2443937.5 2444163.5

v∞−in [km/s] 10964.4 6558.52
v∞−out [km/s] 10960.7 6559.38

δ [deg] 98.4863 93.0884
rp [m] 3.376×108 1.1118×109

∆v [m/s] 1.1371 0.34356

Saturn Arrival

Date T2

12-11-1980 24-04-1982
2444555.5 2445084.125

Arrival Vin [m/s] 20115.7 12704.8

Result
Total cost [∆v] 10331.5 9414.05

Table 5.1: Trajectory optimization for Voyager-I; inputs and solution.

space. The departure window starts the 1th of January of 1977 and closes three years
later (1095 days). The flyby and arrival windows at Jupiter and Saturn have large windows
of 5.33 years each. These windows should be set accordingly to the possible time duration
for realistic speeds. In other words, the maximum window time should be higher for greater
distances between planets. Otherwise, the speed required to reach the planets in time will
be notably high (probably unrealistic). In this case, we may obtain values of T1 and T2 of
50 (which is within the window). In that case, the amount of delta-v needed to transfer in
a such small amount of time will be enormous, thus, those trajectories will certainly have
really low fitness (really high cost).

The results of the algorithm are described in the right table of 5.1. The mission profile
compared with the real one can be observed in figure 5.1. We can see that the optimal
trajectory departures at almost the same time (one day of difference). From there on, it
takes a slower, more optimal approach. The flyby at Jupiter is conducted 2 years later, in
the same year as in the real mission, but 7 months after. The maneuver is done at a higher
perigee radius, with a less abrupt turning angle, and a required delta-v impulse of 0.34m/s.
The arrival date is April of 1982, compared to the real mission in November of 1980. The
total delta-v of the optimal solution is 9.41 km/s, while for the real mission, it is 10.33 km/s.

The difference between both solutions is mainly a cause of the departure delta-v. They
both perform a really low delta-v impulse during the flyby, however, an earlier flyby date on
the real mission means that the departure speed must be higher to reach Jupiter in time.
This implies an extra cost of 0.91 km/s during departure in the actual mission. However,
the flyby it performs provides it with more speed, as it reaches Saturn with 20.11 km/s
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Figure 5.1: Optimal trajectory vs trajectory of Voyager-I.

instead of 12.7 km/s in the optimal trajectory. This is caused by a lower perigee radius,
which provides it more speed.
An important observation in Figure 5.1, is that the orbital trajectory is more similar to a
Hohmann transfer, which we know is usually the most optimal transfer orbit. In Figure 5.2
we plot the speed evolution of the spacecraft during the trajectory. The sudden spike in
speed is the Jupiter flyby.
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Figure 5.2: Voyager-I optimal trajectory speed evolution.

The net speed gain is around +10 km/s for a maneuver that requires only an injection of
0.00034 km/s from the spacecraft. This gravity-assist maneuver is almost unpowered. The
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reason why the algorithm is not providing a solution with a delta-v impulse of 0.0 km/s (un-
powered) and only the departure delta-v, is a consequence of the resolution we are using.
Times have a maximum precision of 3 hours. We have used 3 bits to define the decimal
part of the JD dates, hence, the resolution is 24h

23 = 3h. To obtain an unpowered flyby, the
time should be more exact.

Thanks to the large population number, the optimal solution is found in early generations.
In figure 5.3 we plot the convergence of the algorithms. Around the 10th generation, the
optimal trajectory is found. This does not mean that evolution stagnates from that point.
This means that one of the 15000 individuals in the population has the optimal trajectory
coded, however, the population is still quite diversified at this point. Only in later genera-
tions, the whole population will tend to this optimal value. Although this evolution strongly
depends on how performant the optimal solution is against the rest of the population. The
bigger the difference, the earlier its genes will become dominant all around the populations,
as more times the individual will be selected.
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Figure 5.3: Fittest individual evolution for Voyager-I mission.

We must note that in figure 5.3 we plot the fittest individual for every generation. Recall that
thanks to the elitism operator, this fittest individual will be preserved in the next generations.
Hence, the plot is representative of the fitness of the best individuals, not the fitness and
convergence of the whole solution.

5.1.2. Voyager-II mission

Voyager-II is the sister mission. It represents an extension of Voyager-I. Instead of stopping
at Saturn and being redirected towards deep space, Voyager-II extended its trajectory
towards Uranus and Neptune. Due to the mission’s larger extension, thus larger search
space, the space of solutions is much bigger. This fact must be accounted for in the genetic
algorithm.

Table 5.2 presents the parameter we have used in the genetic algorithm. Due to the larger
search space, the population size and the number of generations have been increased to
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GA parameters
Population 50000

Generations 500
Elitism 10

Selection Tournament
Crossover Double Point (P = 0.9)
Mutation Flip Bit (P = 0.2)

Trajectory parameters

T0,min
2443145

01-01-1977
T0 (Earth) [0, 1095]
T1 (Jupiter) [50, 2000]
T2 (Saturn) [50, 2000]
T3 (Uranus) [500, 2500]

T4 (Neptune) [250, 2500]

Trajectory Result
Real Result

Earth Departure

Date T0

20-08-1977 04-09-1977
2443375.5 2443391

Departure ∆v [m/s] 10230.7 9413.34

Jupiter Flyby

Date T1

09-07-1979 17-10-1979
2444063.5 2444163.5

v∞−in [km/s] 7901.55 6563.52
v∞−out [km/s] 7757.95 6559.38

δ [deg] 96.9863 93.0884
rp [m] 7.058×108 1.1118×109

∆v [m/s] 57.844 0.34356

Saturn Flyby

Date T2

26-08-1981 24-04-1982
2444842.5 2445084.125

v∞−in [km/s] 10790.6 8254.31
v∞−out [km/s] 9052.45 8255.15

δ [deg] 85.656 83.3468
rp [m] 2.18×108 2.805×108

∆v [m/s] 815.66 0.378272

Uranus Flyby

Date T3

24-08-1986 26-05-1987
2446666.5 2446942.125

v∞−in [km/s] 12877.1 11900.2
v∞−out [km/s] 17661.6 11900.2

δ [deg] 22.164 18.1143
rp [m] 9.21×107 2.583×108

∆v [m/s] 3728.92 0.025

Neptune Arrival

Date T4

25-08-1989 15-09-1991
2447763.5 2448484.125

Arrival Vin [m/s] 21551.0 15349.0

Result
Total cost [∆v] 14830.12 9414.075

Table 5.2: Trajectory optimization for Voyager-II; inputs and solution.
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50000 and 500 respectively. A bigger population and generation number imply a larger
execution time. However, this is applied in order to assure the convergence to the optimal
value and to homogeneously tend to the same value between different runs. The rest of
the GA parameters are the same as for Voyager-I. We have maintained the same values
as they provide good performance. Different values do not offer a significant change,
mostly because the population is sufficiently large that there is always a convergence to
the optimal value. The right table in 5.2 presents the results from the genetic algorithm. In
figure 5.4 we compare the obtained trajectory and the real one.
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Figure 5.4: Optimal trajectory vs trajectory of Voyager-II.

One notable fact is that the mission until Saturn follows the exact same trajectory and flyby
dates as for Voyager-I. For that trajectory, the time sequence is the ideal and the optimal
one. For the rest of the trajectory, the algorithm finds the best location of the planets
to have flybys as close to unpowered as possible. Hence, obtaining a trajectory where
planets in the sequence are carefully located in the ideal locations to gain speed at an
extremely low cost.
The Saturn flyby has a delta-v cost of 0.00037 km/s for the optimal solution, compared
to 0.815 km/s for the real one, although the speed gained is similar as the perigee radius
is similar. During the Uranus flyby, both enter at a similar speed the sphere of influence,
however, the real mission flies closer and gains more speed. Although at a higher cost of
a 3.782 km/s delta-v impulse. In comparison, the ideal solution has a cost of 0.000025
km/s (almost unpowered). In the end, the real trajectory has a delta-v cost of 14.830 km/s
against the 9.14 km/s of the ideal trajectory. Compared with Voyager-I, it only implies a cost
of +0.003925 km/s to extend the mission to Uranus and Neptune (with an ideal trajectory).
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In terms of mission duration, similar to its sister mission, our solution takes more time; 2
years more. In reality, both missions should depart at the exact same time if their optimal
trajectories were to be used.
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Figure 5.5: Voyager-II optimal trajectory speed evolution.

In figure 5.5 we plot the speed along the complete trajectory of the mission. The speed
evolution is quite interesting. The farther the spacecraft is from the Sun, the smaller the
speed drop, as the Sun’s gravity becomes weaker. Without each gravity assist performed
during the mission, not only the spacecraft would have not been able to reach its destina-
tion, but neither to have at that point a sufficiently large speed to escape the solar system
attraction.

Voyager-I and Voyager-II share a particularity that made them relatively “easy” trajectories.
The moment in which they were designed made the trajectory simple because the planets
in the sequence were quite aligned. This alignment is measured in time and with respect
to the expectable speed of the spacecraft. Although this is not the always the case, the
planets were in near-ideal locations at that time to perform gravity-assist maneuvers in a
trajectory between them.

5.1.3. Galileo mission

The last mission we tested is Galileo. It was launched in 1989, in a more complex trajectory
when compared to the Voyagers. It launched from Earth towards Venus (inner planet
trajectory) before returning to Earth to do two consecutive flybys, before finally reaching its
destination: Jupiter. The parameters of GA are the same as for Voyager-II as the search
space has a similar size, they are available at 5.3.

The complete trajectory is showcased in figure 5.6. In this case, the trajectory is harder
to interpret. As a consequence, let us use the complete results in the right table of 5.3
to analyze the trajectory. The optimal solution departures 6 months earlier than the real
one. It does a similar flyby at Venus with a cost of 0.0071 km/s, before the two consecutive
flybys at Earth separated by 1 year and 3 months. Those flybys have an accumulated cost
of 0.0352 km/s. We must note, that for the real mission, we have not been able to compute
the values for the exact date of the second flyby at Earth. Hence, the +2 days in the 5.3.
We have computed the real trajectory to days later for that flyby because the Lambert
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GA parameters
Population 50000

Generations 500
Elitism 10

Selection Tournament
Crossover Double Point (P = 0.9)
Mutation Flip Bit (P = 0.2)

Trajectory parameters

T0,min
2447161.5
01-01-1988

T0 (Earth) [0, 750]
T1 (Venus) [50, 750]
T2 (Earth) [50, 750]
T3 (Earth) [250, 1500]
T4 (Jupiter) [250, 1500]

Trajectory Result
Real Result

Earth Departure

Date T0

18-10-1989 10-04-1989
2447817.5 2447627.25

Departure ∆v [m/s] 3956.08 7329.11

Venus Flyby

Date T1

10-02-1990 12-12-1989
2447932.5 2447872.5

v∞−in [km/s] 6211.31 6165.29
v∞−out [km/s] 6222.16 6178.85

δ [deg] 32.0243 68.328
rp [m] 2.202×107 6.643×106

∆v [m/s] 8.166 7.182

Earth Flyby

Date T2

8-12-1990 07-02-1990
2448233.5 2447930.125

v∞−in [km/s] 8960.85 9576.54
v∞−out [km/s] 5012.07 9534.7

δ [deg] 100.89 43.95
rp [m] 4.712×106 7.332×106

∆v [m/s] 1855.68 28.26

Earth Flyby

Date T3

8-12-1992 +2 20-12-1992
2448964.5 +2 2448958.505

v∞−in [km/s] 5012.93 9533.31
v∞−out [km/s] 8904.16 9541.97

δ [deg] 11.83 23.9571
rp [m] 4.37×107 1.671×107

∆v [m/s] 3290.23 7.0155

Jupiter Arrival

Date T4

07-12-1995 27-03-1996
2450058.5 2450170

Arrival Vin [m/s] 7330.42 7610.06

Result
Total cost [∆v] 9110.45 7371.56

Table 5.3: Trajectory optimization for Galileo; inputs and solution.
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Figure 5.6: Optimal trajectory vs trajectory of Galileo.

solver we used otherwise returned an unrealistic transfer orbit. This is a consequence of
the dates being exactly 2 years apart on the same planet. This “unrealistic” solution can
be visualized with our code or using the Pykep library for the real dates.
Finally, the total cost of the optimal solution is 7.37 km/s against the 9.11 km/s of the real
trajectory. The delta-v required is much lower when compared to the Voyagers because
we launch first into an inner planet, instead of an outer one directly. This fact can be
illustrated in the speed evolution plot in figure 5.7. The speed increases when the probe
is approaching the Sun, and decreases elsewhere, except during the flybys, which are the
sudden spikes in the speed.
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Figure 5.7: Galileo optimal trajectory speed evolution.
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5.2. Genetic algorithm parameters

5.2.1. Population and generations

We have already mentioned that the size of the population should be set depending on the
search space size. The larger the space, the bigger the population should be. Along the
same line, more generations should be run to allow a proper evolution of the population. In
figure 5.8 we take advantage of the fact that the Voyager-I solution are three values (dates)
to showcase the deviation (convergence) between 10 different solutions of the algorithm
for two different population sizes.
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Figure 5.8: Compassion of 10 run solutions: 25 generations with 1500 individuals in the
left and 15000 in the right.

We can see that for a sufficiently large population, every run converges to the same min-
ima at the dates specified in 5.1. While if the population size is not large enough, the
convergence to the global minima is not assured. In that case, three solutions converged
to a local minimum. In that case, those solutions arose in an early generation, and their
genes became predominant due to their good fitness when compared to the rest of the
population. In that case, the mutation and number of generations were not large enough
to still allow for diversity to create a new individual near the actual global minima, and
redirect the population towards it.

The population size and generation number have also an impact on the algorithm’s perfor-
mance speed. In Figure 5.9 we plot the convergence of the Voyager-I mission for different
sizes of the population.

In this case, we plot the evolution of the best-fit individual for every generation. Recall that
this value is not reflective of the convergence of the whole population, but rather of the
single best individual of each generation. As the elitism operator is used, the functions
are decreasing. We observe that the smaller the population is, the more time it takes the
algorithm to converge. Fewer individuals imply a lower probability of finding the optimal
value. While for 15000 to 10000 individuals, the optimal values are found around the 10th

generation, for a population of 500 individuals, the population converges to similar values
around the 30th generation. Hence, the bigger the population is, the fewer generations are
needed to converge the solution.
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Figure 5.9: Convergence of Voyager-I’s mission for different population sizes.

Depending on the problem, one could increase the population size of the generations.
Both values have a similar execution time cost. However, increasing the population size
should be more effective as there is usually a quicker convergence in early generations.

5.2.2. Genetic operators

For the three missions we have used the same genetic operators as they all perform simi-
larly. Because we have used a large population, there is not any apparent effect of chang-
ing between different methods of applying each operator.

5.2.2.1. Elitism

Elitism is an optional parameter that has been set to 10 for every mission. This number
corresponds to the number of individuals that are being passed into the next generations
directly. The value has low to no effect on such large populations. While a certain quantity
of individuals should form part of the elite to avoid losing the best solutions to mutation, the
impact on the overall performance is minimum. The operator has a more notable impact on
smaller populations in large search spaces, where finding a near-optimal solution is harder.
In that scenario, this operator acts as a protection against losing the fittest solution, if it is
found.

5.2.2.2. Selection

Selection operators behave as explained in 3.1.1.1.. The tournament selection is a “greedy”
operator. It makes the population converge faster as the fittest individuals are more prone
to be selected, but it must be used with more caution. In this case, this method can be
used without hesitation because of the large populations. Even if it is a “greedy” method,
diversity is not reduced as the number of individuals is really big.
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Figure 5.10: Comparison of selection methods for Voyager-I.

Figure 5.10 showcases the difference between both methods for Voyager-I. On it, we con-
sider the mean fitness of the whole population. The tournament operator causes a bigger
proliferation of the fittest individual’s genes in the population, thus the mean fitness is better
(lower trajectory cost).

5.2.2.3. Reproduction/Crossover

For the reproduction methods, a similar behavior is observed. Below we listed how the
algorithm performs for Voyager-I depending method used (same parameters as in 5.1
except the reproduction/crossover).

• Uniform: Convergence to optimal value around the 12th-15th generation. Execution
time 4.9s.

• Single gene: Convergence to optimal value around the 10th generation. Execution
time 3.3s.

• Single point: Convergence to optimal value around the 10th generation. Execution
time 4.4s.

• Double point: Convergence to optimal value around the 10th generation. Execution
time 4.3s.

Each method converges to the same solutions. The execution time is the fastest for the
single gene crossover methods. This method is faster as the operation to perform it is
much quicker. The other operations involve converting the chromosomes to a bit-string
and operating upon it. On the other hand, single gene crossover only involves exchanging
two numbers. For the convergence speed, the uniform method is slightly slower.

In general, the methods used to implement the genetic operator do not have a big impact
on this optimization problem. However, the population size and number of generations
are more critical and will affect the outcome. In order to have a proper and coherent
convergence to the optimal values, both values should be big, although at the cost of a
longer execution time.



CHAPTER 6. CONCLUSION

In this thesis, we aimed to investigate and develop a non-traditional approach to solve the
optimization problem of multi-gravity assist (MGA) interplanetary trajectories. It’s not long
ago, that computer technology only allowed us to solve this kind of problem by properly
defining and modeling the problem. These highly complex modeling of functions, gradi-
ents, and singularities, could be used with traditional optimization methods. Nowadays, the
current technology has allowed the use of new kinds of algorithms to solve such optimiza-
tion problems. In this thesis, we have demonstrated the use of evolutionary algorithms,
especially, genetic algorithms to optimize interplanetary trajectories. A genetic algorithm
has been coded from the ground up together with the different computations required to
model the full trajectory. These trajectories have been modeled using a Lambert solver
and the patched conic approximation.

Through the validation and testing of the algorithm against real missions such as Voy-
ager I and II, and Galileo (which followed an MGA trajectory), we have demonstrated that
this approach can find near-optimal solutions. The algorithm’s convergence to the optimal
value can reliably be obtained by correctly selecting the different parameters of the genetic
algorithm. One notable finding in that regard is that the implementation of the genetic oper-
ators does not have a meaningful impact on the performance of the algorithm. While these
genetic operators are the heart of the genetic algorithm, the different methods used on
them will only slightly affect the convergence speed and execution time of the algorithm.
The final solution is less dependent on the method used. On the other hand, we have
shown that the size of the population and the number of generations will highly impact the
outcome of the algorithms. The sizes of both should be large enough to accommodate the
search space. The greater the search space is, the larger these values have to be. Oth-
erwise, the algorithm may not converge to the optimal value (global minimum) and instead
converge to a local minimum. As well, the solutions obtained in different runs may differ to
a greater extent, as this convergence cannot be assured.

Genetic algorithms are simplistic, meaning, they only require an objective function. In
an optimization context, this objective function is the function to optimize. In our case, it
has been the delta-v cost of the trajectory, as this value is more representative of how
optimal an interplanetary trajectory is. With this objective function and some constraints,
the problem can be modeled. The simplicity aspect has a trade-off in terms of computa-
tional power and execution time which are larger than in traditional methods. However,
as discussed earlier, current technology is able to handle these requirements. In addition,
the code performance can be improved using techniques like multithreading as we have
showcased for the trajectories computations.

In a summary, genetic algorithms have been shown as a viable alternative to traditional
methods to find near-optimal MGA interplanetary trajectories. They are much more sim-
ple and easier to implement in exchange for more computational power. The solutions
provided by the algorithm match the expected results and convergence criteria, although
these solutions are highly dependent on the model used to model the trajectory.

47
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6.1. Future work

The are two main lines that can be followed as future work to the thesis. The first one is
along the lines of improving the cost of the genetic algorithm. As we have discussed in
the thesis and has been showcased during the execution of the GA, this kind of method
is computationally expensive and time-consuming. For instance, in a modern CPU, to be
exact a Intel Core™ i7-10510U with 8 GB of RAM, running Linux, it took in the range of
4-5 seconds to execute the code for Voyager-I. Recall that this mission has a relatively
small number of individuals and generations (15000 and 50). For Voyager-II and Galileo,
the execution took around 7-8 minutes (without multithreading).
As an extension to the current work, the GA could be improved to reduce the exception
time. Some optimizations could be added during the compilation (-03 g++ flag1), which
may drastically reduce the execution time at the cost of floating precision. This is not ideal
as these optimizations come with a precision loss. For the problem that concerns us, large
values are used, thus precision is key to obtaining a correct result. Another option that
has been used in the code, and could be developed further, is to use multithreading. By
computing consecutive and independent operations in parallel, the time can be notably
reduced. In our case, multithreading has been implemented partially to compute the tra-
jectory of every individual in groups of 10 in parallel during run-time. However, there are
other parts in the code where this technique can be used, for instance, the selection of
individuals and mutation. The number of threads utilized could be optimized to improve
the time performance of the algorithm.
In the same line, another option studied in [33] will be to use the GPU to increase the
computational power available. As the GPU is devoted to graphical operations, which are
usually more complex and expensive than classical operations handled by the CPU, it has
greater computational power. The algorithm could be implemented using the CUDA2 or
OpenCL3 APIs to use the GPU processing unit. It must be noted that such APIs are com-
plex and low-level. They are normally implemented as part of graphical engines. These
engines provide the user with a high-level implementation, while in the interior they use
these lower-level APIs. For our genetic algorithm, this would not be the case. However,
using the GPU can improve notably the execution time.
This line of research could allow us to optimize much larger and more complex MGA tra-
jectories in less time. It would as well open the door to using more complex models to
compute/model the trajectory, instead of approximations as the patched conic. Hence,
obtaining a more precise solution.

The second line of research lies in increasing the capabilities of the algorithm. In our case,
the algorithm is constrained to the MGA model, instead of the MGA-DSM model. This last
one allows for single or multiple delta-v impulses during any leg of the trajectory. It is not
constrained to the impulse being performed at the perigee of a flyby. Implementing this
model would make the algorithm more versatile and allow the optimization of missions that
use these deep-space maneuvers. For instance, the Cassini mission [16] used this kind of
trajectory.
The algorithm could also be more flexible by implementing a parallel optimization to com-

1https://gcc.gnu.org/onlinedocs/gcc-8.1.0/gcc/Optimize-Options.html#
Optimize-Options

2https://developer.nvidia.com/gpu-accelerated-libraries
3https://www.khronos.org/opencl/

https://gcc.gnu.org/onlinedocs/gcc-8.1.0/gcc/Optimize-Options.html#Optimize-Options
https://gcc.gnu.org/onlinedocs/gcc-8.1.0/gcc/Optimize-Options.html#Optimize-Options
https://developer.nvidia.com/gpu-accelerated-libraries
https://www.khronos.org/opencl/
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pute the ideal planet sequence as in [34]. Through this, the planet sequence could be
unspecified by the user, and instead, optimized by the algorithm in conjunction with the
complete trajectory. This approach would work for missions defined by a departure and
final destination planet. This approach would avoid potentially pruning out the optimal tra-
jectory due to planet sequence being prefixed.
In general, this line would increase the flexibility of the algorithm when it comes to opti-
mizing different types of trajectories. In addition, it would allow it to solve more complex
missions, and provide more complex (and optimal) trajectories.
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