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Regular Article

LYMPHOID NEOPLASIA
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KEY PO INTS

�Whole-genome CRISPR
library screening
identified therapeutic
targets including CDK6
in ATLL.

� CDK6 inhibitor
palbociclib alone and in
combination with an
mTORC1 inhibitor may
be an effective strategy
to treat ATLL.

Adult T-cell leukemia/lymphoma (ATLL) is an aggressive T-cell malignancy with a poor
prognosis with current therapy. Here we report genome-wide CRISPR-Cas9 screening of
ATLL models, which identified CDK6, CCND2, BATF3, JUNB, STAT3, and IL10RB as genes
that are essential for the proliferation and/or survival of ATLL cells. As a single agent, the
CDK6 inhibitor palbociclib induced cell cycle arrest and apoptosis in ATLL models with
wild-type TP53. ATLL models that had inactivated TP53 genetically were relatively resis-
tant to palbociclib owing to compensatory CDK2 activity, and this resistance could be
reversed by APR-246, a small molecule activator of mutant TP53. The CRISPR-Cas9 screen
further highlighted the dependence of ATLL cells on mTORC1 signaling. Treatment of
ATLL cells with palbociclib in combination with mTORC1 inhibitors was synergistically toxic
irrespective of the TP53 status. This work defines CDK6 as a novel therapeutic target for
ATLL and supports the clinical evaluation of palbociclib in combination with mTORC1 inhib-
itors in this recalcitrant malignancy.

Introduction
Adult T-cell leukemia/lymphoma (ATLL) is an aggressive hemato-
logical malignancy associated with infection by the retrovirus
human T-cell lymphotropic virus type I (HTLV-I).1 Clinical out-
comes using currently available chemotherapies are generally
inferior, with a long-term survival rate of less than 20%.2 There-
fore, there is an urgent need to identify new therapeutic
approaches to target essential pathways in ATLL that regulate
the proliferation and survival of these cancer cells. Previous stud-
ies have used next-generation sequencing technology to iden-
tify mutated genes that may be pivotal in the pathogenesis of
ATLL.3,4 Substantial progress in understanding the considerable
genetic and epigenetic heterogeneity of ATLL has been made
in recent years.3-5 This heterogeneity presents a formidable chal-
lenge to the development of therapeutic regimens that are
broadly effective in ATLL.

Functional genomic screening enables the identification of
molecular dependencies in cancer, including pathways that main-
tain cancer cell proliferation and viability.6-12 We previously per-
formed short hairpin RNA (shRNA) library-mediated functional

genomic screens in ATLL models and identified BATF3 and IRF4
as genes essential for proliferation and survival.5 BATF3 serves
as a master regulatory transcription factor that, together with
IRF4, coordinates super-enhancer function throughout the ATLL
genome. Importantly, this regulatory module is augmented by
the HTLV-1 HBZ protein, which is also essential for ATLL cell
viability.5

This shRNA screening effort used a subgenomic library tar-
geting 1051 genes, raising the possibility that other essential
genes in ATLL remain to be discovered. The clustered regu-
larly interspaced short palindromic repeats (CRISPR)-associ-
ated endonuclease 9 (Cas9) system is a genome editing
technology by which targeted genes can be inactivated effi-
ciently and specifically, thereby enabling genome-wide func-
tional genomic screening.8-12 In recent studies, CRISPR-Cas9
screens have successfully identified essential genes involved
in cancer cell viability.8,9 In this study, we performed unbi-
ased genome-wide CRISPR-Cas9 screens in multiple ATLL
models with the goal of identifying new therapeutic strate-
gies for this aggressive malignancy.
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Materials and methods
See supplemental Experimental procedures for details, available
on the Blood Web site.

Cell lines and cell culture
All lines were cultured with RPMI media containing 10% fetal
calf serum, penicillin, and streptomycin and were maintained in
a humidified, 5% CO2 incubator at 37�C.

Whole-genome CRISPR-Cas9 screen analysis
Single-guide RNA (sgRNA) library screening was performed as
previously described.5 Cell lines were transduced in duplicate
with the Brunello CRISPR knockout pooled library (gift of David
Root and John Doench; Addgene 73178). Cells were cultured
for 4 weeks, and starting/endpoint cell aliquots were harvested
for genomic DNA extraction. sgRNA sequences were amplified
and sequenced using NEXTSeq500 (Illumina). The sgRNA read
count and log2 fold change (day 28/day 0) were analyzed by
MAGeCK algorithm.13

Human ATLL samples
Written informed consent was obtained in accordance with the
Declaration of Helsinki and was approved by the Institutional
Review Board of the National Cancer Institute and of Hokkaido
University Faculty of Medicine. Peripheral blood (PB) mononu-
clear cells were isolated from ATLL patients by Ficoll-Hypaque.

Mice
All animal experiments were approved by the National Cancer
Institute Animal Care and Use Committee (NCI ACUC) and were
performed in accordance with NCI ACUC guidelines. Female
NOD/SCID g mice were subcutaneously injected with 1 3 107

of ATL43Tb(-) cells in the flanks. When the average tumor vol-
ume reaches 50 mm3, drugs were administrated intraperitone-
ally 3 days per week (12.5mg/kg for palbociclib and 2.5mg/kg
for everolimus). The tumor growth was calculated from caliper
measurements.

Results
Genome-wide loss-of-function CRISPR screening
identified 9 essential genes in ATLL cell lines
We conducted a genome-wide loss-of-function CRISPR screen
targeting 19 114 genes in 3 ATLL cell lines (KK1, ST1, and
Su9T01) engineered to express a Cas9 gene (Figure 1A). The
“Brunello” lentiviral sgRNA expression library that we used
included 4 different sgRNAs per gene. ATLL cell lines were
transduced with this library in duplicate, and cells were then cul-
tured for 4 weeks. Gene essentiality was evaluated by compar-
ing the abundance of each sgRNA in the cell populations at 4
weeks with that of the starting cell pool. Control nontargeting
sgRNAs were not toxic, whereas sgRNAs targeting core fitness
genes, which are essential in most human cell lines,10-12 were
essential in all ATLL lines tested (Figure 1B).
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Figure 1. Genome-wide loss-of-function CRISPR screening identifies 9 essential genes in ATLL cell lines. (A) Outline of the workflow of the genome-wide loss-of-function
CRISPR screening in this study. (B) Violin plot indicating the distribution of log2 fold change values for core fitness gene targeting sgRNAs colored in red or for
nontarget control sgRNA colored in blue. Black horizontal lines indicate median values. (C) Essential gene selection flowchart. (D) Log2 fold change values for 9 essential
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We identified 1278 essential genes whose knockout was toxic,
as indicated by a decrease in average abundance of gene-
targeting sgRNAs of at least 0.5 log2 fold in at least 2 sgRNAs
per gene in all 3 ATLL lines tested (Figure 1C; supplemental
Table 1). To identify potential therapeutic targets that are selec-
tively essential in ATLL cells, we excluded 964 core fitness genes
from this gene set from further consideration (Figure 1C). We
also excluded the 305 essential genes identified in CRISPR-Cas9
screens of 2 mantle cell lymphoma (MCL) cell lines (Jeko1 and
UPN1) (305 genes; Figure 1C; supplemental Table 2). After
these filters, 9 essential genes were identified as potential
molecular targets with specificity for ATLL (Figure 1C-D). These
genes implicated diverse regulatory pathways in the pathobiol-
ogy in ATLL, including genes encoding AP-1-family transcription
factors (BATF3 and JUNB), regulators of the G1-S phase cell
cycle phase transition (CDK6 and CCND2), components of the

JAK/STAT pathway (STAT3 and IL10RB), RNA binding proteins
(SYNCRIP and ZFP36L2), and a protein prenyltransferase subunit
(PTAR1).

BATF3 and JUNB are essential AP-1 factors in
ATLL cells
We previously demonstrated that BATF3 and IRF4 cooperatively
direct gene expression in ATLL cells by binding to composite
AP-1/IRF4 DNA motifs.5 As expected, both factors were essential
in ATLL as judged by the CRISPR-Cas9 screens, but IRF4 was
removed from our ATLL-specific essential gene set due to its
essentiality in MCL lines. In follow-up experiments, sgRNAs tar-
geting BATF3 or IRF4 (sgBATF3 or sgIRF4) were specifically
toxic for all 5 ATLL cell lines tested (Figure 2A; supplemental
Figure 1A).
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Figure 2. BATF3 and JUNB are essential AP-1 factors in ATLL cells. (A) The indicated cell lines were infected with a lentivirus expressing sgBATF3_1 and sgIRF4_1
together with GFP. Shown is the fraction of GFP-positive cells over time relative to the GFP-positive fraction on day 3. (B) Immunoblot analysis of JUNB protein in sgJUNB-
transduced ST1. (C) Toxicity assay using sgJUNB_1 was done as in Figure 2A. (D) Immunoblot analysis of JUNB, c-JUN, and JUND proteins in ATLL and MCL cell lines. (E)
Immunoblot analysis of JUNB, c-JUN, and JUND proteins in ST1 ATLL cells transduced with indicated cDNA-expressing vectors. (F) ST1 cells were transduced with retroviruses
expressing an sgRNA-resistant JUNB, JUN, JUND together with puromycin-resistance gene or with an empty vector expressing puromycin-resistance gene. After puromycin
selection of transduced cells, cells were subsequently transduced with lentiviruses coexpressing GFP and either sgJUNB_1 or sgJUNB_2. sgAAVS1 and sgRPL6 were used as a
negative and positive control sgRNA, respectively. The GFP-positive cell fraction was monitored as in Figure 2A. (G) Coimmunoprecipitation assay was performed by using
anti-BATF3 antibody or anti-JUNB antibody. Immunoprecipitates were analyzed by immunoblot with anti-HBZ, anti-BATF3, anti-JUNB, or anti-IRF4 antibodies. Error bars
represent the SEM of replicates (A,C,F).
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The BATF3 BZIP transcription factor binds to AP-1 motifs by
forming heterodimers with other BZIP family members, but the
relevant BATF3-interacting subunit in ATLL is unknown. We
noted that 3 sgRNAs targeting the BZIP protein JUNB were
highly toxic for ATLL cell lines in the CRISPR-Cas9 screens while

MCL cell lines were unaffected (Figure 1D). The immunohisto-
chemical analysis of primary biopsy samples revealed that JUNB
protein was expressed in all ATLL cases (supplemental Figure
1B-C), suggesting a role for JUNB in ATLL pathogenesis. In con-
firmatory experiments, transduction of ATLL cells with sgRNAs
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targeting JUNB resulted in the near-total reduction in protein
levels (Figure 2B), and 2 JUNB sgRNAs were strongly toxic for
all ATLL lines tested but not for MCL lines (Figure 2C; supple-
mental Figure 1A). Although all 3 JUN family members (JUN [c-
JUN], JUNB, and JUND) were expressed in ATLL cells by immu-
noblot analysis (Figure 2D), JUN and JUND were not essential
genes in the ATLL CRISPR-Cas9 screens, demonstrating that
JUNB performs a nonredundant, essential function in ATLL cells.
Accordingly, the ectopic expression of JUN or JUND coding
regions failed to rescue ATLL cells from sgJUNB-mediated toxic-
ity while expression of JUNB was effective (Figure 2E-F; supple-
mental Figure 1D).

In normal T cells, JUNB forms heterodimers with BATF3 and
acts as an AP-1 transcription factor that cooperatively binds with
IRF4 to composite AP-1/IRF DNA motifs.14,15 JUNB can also het-
erodimerize with the HTLV-I-encoded transcription factor HBZ,15

an indispensable molecule in ATLL pathobiology.1,5 An antibody
against JUNB efficiently immunoprecipitated both BATF3 and
HBZ in ATLL cell lines (Figure 2G). Together, these findings sug-
gest that JUNB, BATF3, HBZ, and IRF4 control an essential reg-
ulatory network in ATLL, and as such, are worthy, while
challenging, candidates for therapeutic targeting.

Essential genes in the JAK/STAT pathway
As indicated by the CRISPR-Cas9 screens (Figure 1D), knockout
of STAT3 by 2 sgRNAs (sgSTAT3) was toxic for all ATLL lines
tested but not for the MCL lines (Figure 3A-B). In KK1 ATLL
cells, the toxicity of STAT3 knockout was reversed by the

ectopic expression of a wild-type (WT) STAT3 coding region
that was engineered to be resistant to the STAT3 sgRNA (Figure
3C). This was not the case in ST1 ATLL cells, which harbored a
STAT3D556N mutation, which is a hotspot somatic mutation in
the DNA binding domain, which has been observed previously
in ATLL,3 extranodal NK-T-cell lymphoma,16 peripheral T-cell
lymphoma not otherwise specified (PTCL-NOS),17 and diffuse
large B-cell lymphoma18-21 (Figure 3D). Given that STAT3 muta-
tions are present in 21.4% of primary ATLL tumors, many of
which have been shown to be gain-of-function,3 we suspected
that this may also be true of STAT3D556N. The ectopic expres-
sion of an sgSTAT3-resistant STAT3 coding region bearing the
D556N mutation almost completely rescued ST1 cells from
sgSTAT3-mediated toxicity (Figure 3D). In contrast, the ectopic
expression of sgSTAT3-resistant cDNAs encoding STAT3Y640F or
STAT3D661Y, 2 highly recurrent gain-of-function STAT3 mutations
in SH2 domain,22 only partially rescued ST1 cells from STAT3
knockout (Figure 3D), indicating that these cells had acquired a
strong and selective dependence on STAT3D556N. Immunoblot
analysis revealed that STAT3 was phosphorylated in 75% of
ATLL lines tested, with roughly equivalent levels in KK1 cells,
which are STAT3 WT, and ST1 cells, which express STAT3D556N

(Figure 3E). Interestingly, ectopic expression of STAT3Y640F or
STAT3D661Y in ST1 cells strongly increased STAT3 phosphoryla-
tion while STAT3D556N had a more subtle effect, emphasizing
the functional diversity of STAT3 mutations in ATLL (Figure 3F).
More generally, these data validate STAT3 as a potential thera-
peutic target in ATLL that awaits the development of a clinically
available and effective STAT3 inhibitor.
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Given the essential role of STAT3 and IL10RB in ATLL models,
we interrogated our CRISPR screen data for other essential
genes in the JAK/STAT signaling pathway (supplemental Figure
2A). KK1, which is IL-2-dependent, displayed the expected
dependency on components of the IL2 signaling machinery
(IL2RA, IL2RB, IL2RG, JAK1, JAK3, and STAT5B). In addition,
KK1 depended on the IL-10 receptor subunits IL10RA and
IL10RB, as well as STAT3. Since this ATLL line also expressed
high levels of IL10 mRNA (supplemental Figure 2B, left panel),
these results suggest that this line depends on autocrine IL-10
signaling. By contrast, the IL-2-independent lines ST1 and
Su9T01 depended on the IL-22 receptor subunits IL22RA1 and
IL10RB, as well as STAT3. Notably, ST1 and Su9T01 are the only
ATLL cell lines tested that expressed high mRNA levels of IL22,
suggesting that these lines acquired a dependence on autocrine
IL-22 signaling (supplemental Figure 2B, right panel).

The IL-22 receptor activates STAT3 through JAK1 and TYK2 in
normal T cells.23 In the CRISPR-Cas9 screen, KK1 and Su9T01
cells were strongly dependent on both of these kinases, whereas
ST1 cells had only a moderate dependence on JAK1. Although
the JAK1/2 inhibitor ruxolitinib was able to kill IL-2-dependent
ATLL lines, which depend on JAK1, this agent had little if any
effect in IL2-independent ATLL lines, including Su9T01 and ST1
(supplemental Figure 2C). In Su9T01 cells, this could be due to
compensatory TYK2 activity, whereas in ST1 cells, the gain-of-
function STAT3D556N mutation may have blunted the effect of
the drug.

CDK6 and CCND2 are essential for the G1/S cell
cycle transition in ATLL cells
Four sgRNAs targeting CDK6 were highly toxic for ATLL cell
lines in the CRISPR-Cas9 screens, as were 2 CCND2 sgRNAs
(Figure 1D). CCND1, CCND2, and CCND3 are G1/S-phase-spe-
cific cyclins that interact with CDK4 or CDK6 to form an active
kinase, which promotes the G1-S phase cell cycle transition
by phosphorylating and inactivating the retinoblastoma (Rb)
protein.24,25 In confirmatory experiments, ATLL cells were trans-
duced with a CDK6-targeting sgRNA (sgCDK6), thereby reduc-
ing levels of CDK6 and phosphorylated Rb by immunoblot
analysis (Figure 4A). sgCDK6 caused time-dependent toxicity in
all 5 ATLL cell lines but did not affect control MCL lines (Figure
4B; supplemental Figure 3A). By contrast, 4 of these ATLL lines
were unaffected by an sgRNA targeting CDK4 (sgCDK4),
whereas MCL lines were CDK4-dependent (supplemental Figure
3A). ATLL cells were rescued from the toxicity of sgCDK6 by
ectopic expression of a CDK6 coding region that was engi-
neered to be sgCDK6-resistant, whereas expression of CDK4
only rescued partially (Figure 4C; supplemental Figure 3B-C). As
expected, knockout of CDK6 in ATLL cells caused a pronounced
G1-phase arrest (Figure 4D; supplemental Figure 3D).

Surprisingly, CDK6 knockout also induced apoptosis in a time-
dependent manner (Figure 4E-F; supplemental Figure 3E-F),
which may account for the strong cytotoxicity of sgCDK6 in
ATLL cell lines. The immunohistochemical analysis of primary
biopsy samples revealed that 93% of ATLL cases expressed
CDK6 protein (supplemental Figure 3G-H), further indicating a
pathogenic role for CDK6 in ATLL.

Knockout of CCND2 in ATLL lines phenocopied CDK6
knockout, inducing both cell cycle arrest and apoptosis
(Figure 4B,D-F; supplemental Figure 3A,D-F,I). By contrast, ATLL
cell lines were unaffected by sgRNAs targeting CCND1 or
CCND3 (supplemental Figure 3A). These findings are consistent
with the fact that ATLL cell lines had considerably higher levels
of CCND2 protein than CCND1 or CCND3 (Figure 4H). Further,
CCND2 mRNA levels were higher in biopsy samples from
patients with ATLL than in ALK-positive anaplastic large-cell lym-
phoma (ALK1ALCL) biopsies and roughly equivalent to those in
PTCL-NOS biopsies (Figure 4I). By contrast, CCND1 and
CCND3 mRNA levels were lower in ATLL than in ALK1ALCL
and PTCL-NOS. The toxicity of CCND2 knockout was efficiently
reversed by ectopic expression of an sgRNA-resistant CCND2
coding region, but also by the CCND1 and CCND3 coding
regions (Figure 4G; supplemental Figure 3J-K), indicating that 3
D-type cyclins have similar functions in these cells. Of note in this
regard, knockout of CCND2 in ST1 cells led to an upregulation
of CCND3, likely blunting the toxic effect of sgCCND2 in this
cell line (supplemental Figure 3I).

The CDK4/6 inhibitor palbociclib inhibits ATLL
proliferation and survival
Given that CDK6/CCND2 controls cell cycle progression in ATLL
and that CDK6 knockout induced apoptosis in ATLL cells, we
explored the potential of CDK6 as a therapeutic target in ATLL.
For this, we evaluated palbociclib, an inhibitor of CDK4 and
CDK6 that has been FDA-approved for advanced breast cancer
and has shown preliminary clinical activity in MCL.26 Treatment
of 11 ATLL cell lines with palbociclib for 4 days substantially
reduced the numbers of viable cells, with an average IC50 (1.776
mM) that was comparable to that observed in MCL cell lines
(1.770 mM) (Figure 5A). Palbociclib treatment of ATLL lines
induced a dose-dependent decrease in the phosphorylation of
Rb (Figure 5B), a G1-phase cell cycle arrest, and a time-
dependent increase of apoptosis (Figure 5C-E; supplemental
Figure 4A-C).

The sensitivity of ATLL cell lines to palbociclib varied over a
wide IC50 range (9 to 6500 nM), with some lines relatively insen-
sitive to this drug. A previous study reported that TP53 mutation
is associated with relative insensitivity to another CDK4/CDK6
inhibitor (abemaciclib) in various cancer types.27 Given that

Figure 5 (continued) analyzed in the GFP-positive fraction (blue, the cells have sgRNA) and GFP-negative cell fraction (red, the cells don’t have sgRNA). (J-K) Cells
were infected with a lentivirus that expresses sgTP53 or control sgAAVS1 together with puromycin-resistant gene. After puromycin selection of the transduced cells,
cells were grown in the culture media without puromycin for several days to recover the cell condition well. Then the cells were treated with 1 mM of palbociclib, and
apoptotic cells were detected by analyzing Annexin V and propidium iodide (PI) on flowcytometry over time (J). Representative density plot illustrating the apoptotic cells
on day 6 after palbociclib treatment (K). (L) Immunoblot analysis of p21 and p27 proteins in sgCDK6-transduced ST1. (M) Immunoblot analysis of p21 and p27 proteins in
palbociclib-treated ATLL cell lines. TP53 status for each line is shown below the cell line name. (N) KK1 cells were infected with a lentivirus that expresses sgCDK2 or control
sgAAVS1 together with GFP, followed by treatment with palbociclib (0.25 mM). Shown is the fraction of GFP-positive cells over time relative to the GFP-positive fraction on
day 0. (O) ST1 cells were infected with a lentivirus expressing sgTP53 or control sgAAVS1 together with puromycin-resistance gene. After puromycin selection, cells were
infected with a lentivirus expressing sgCDK2 or control sgAAVS1 together with GFP, followed by treatment with palbociclib (0.25 mM). Shown is the fraction of GFP-positive
cells over time relative to the GFP-positive fraction on day 0. Error bars represent the SEM of replicates (A,E-H,J,N-O). **P , .01.
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Figure 6. MTOR is a targetable vulnerability in ATLL, and the combination of palbociclib with mTORC1 inhibitors is synergistically toxic for ATLL cells. (A)
Heatmap of gene essentialities identified in genome-wide CRISPR library screening. The genes were manually selected among genes in T-cell lymphoma-related molecular
pathway. (B) Immunoblot analysis of MTOR proteins in sgMTOR-transduced ST1 cells. (C) The indicated cell lines were infected with a lentivirus expressing sgMTOR or control
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somatic mutation and genomic deletion in TP53 are frequent
events in ATLL,3,28 we sequenced the TP53 exonic regions in 11
ATLL cell lines, revealing TP53 mutations in 4 lines [MT1, KK1,
TL-Om1, and ATL43Tb(-)], WT TP53 in 4 lines [ED41214C(-),
S1T, ST1, and KOB], and a TP53-null phenotype based on the
lack of a detectable RT-PCR product [ED40515(-), ATL-55T(1),
and Su9T01] (supplemental Table 3). ATLL cell lines with geneti-
cally altered TP53 (mutated and null phenotype) tended to be
insensitive to palbociclib compared with cell lines harboring
intact TP53 (P 5 .058) (Figure 5F).

To functionally evaluate whether TP53 inactivation alters the sen-
sitivity to palbociclib, ATLL cell lines carrying mutated TP53
were treated with APR-246 (PRIMA-1MET), a small molecule that
can restore transcriptional activation by mutant TP53 isoforms.29

Indeed, APR-246 treatment rendered TP53-mutated ATLL cells
sensitive to palbociclib but had no effect in TP53-null cells (Fig-
ure 5G). To directly link TP53 status to palbociclib sensitivity, we
transduced ST1 ATLL cells, which are TP53 WT, with a lentivirus
coexpressing an sgRNA targeting TP53 (sgTP53) and a GFP
reporter gene, resulting in a cell pool in which roughly half of
the transduced cells were GFP1. Over an 8-day treatment
course with palbociclib, the GFP1/TP53–knockout population
outgrew the GFP– population in a time- and dose-dependent
manner (Figure 5H; supplemental Figure 4D). This TP53
knockout-mediated resistance to palbociclib was also evident in
assays of cell proliferation, cell cycle progression, and apoptosis
(Figure 5I-K). Taken together, these results indicate that loss-of-
function TP53 genetic alterations confer insensitivity to palboci-
clib in ATLL.

TP53 prevents the G1/S cell cycle transition by inducing expres-
sion of p21 (CDKN1A), which binds and inhibits the activity of
CDK2/Cyclin E.30,31 Notably, inactivation of CDK6 or palbociclib
treatment of ST1 ATLL cells increased expression of p21 as well
as another CDK2 inhibitor, p27, but this was not observed in
ATLL lines with genetic inactivation of TP53 (Figure 5L-M), sug-
gesting that the suppression of CDK2 might be necessary for an
optimal response of ATLL cells to palbociclib. To test this
hypothesis, we transduced TP53-mutated KK1 and TP53-null

Su9T01 ATLL cells with a lentivirus coexpressing an sgRNA tar-
geting CDK2 (sgCDK2) with a GFP reporter gene and monitored
the ratio of the GFP1/sgCDK21 cell population to the GFP–non-
transduced population. The CDK2-knockout population
decreased in abundance during palbociclib treatment in a time-
dependent manner, but this was not the case in cells transduced
with a control sgRNA (sgAAVS1) (Figure 5N; supplemental Fig-
ure 4E-F). In another test of this hypothesis, we stably inacti-
vated TP53 in ST1 cells using a TP53 sgRNA or transduced the
cells with a control sgRNA (sgAAVS1). After transduction of the
TP53 knockout ST1 cells with the sgCDK2/GFP expression vec-
tor, we exposed the cells to palbociclib and observed a time-
dependent decrease in the GFP1/sgCDK21 population, an
effect that did not occur in the control ST1 cells (Figure 5O).
Taken together, these data demonstrate that optimal sensitivity
to palbociclib in ATLL requires TP53 to inhibit CDK2 function,
suggesting that monotherapy with this drug is likely to work
preferentially against ATLL tumors with WT TP53.

mTORC1 is a targetable vulnerability in ATLL
To identify additional therapeutic targets in ATLL, we interro-
gated our whole-genome CRISPR screen data for dependencies
of ATLL cells on signaling and regulatory pathways that have
been associated with T-cell malignancy.3,17,32,33 We noted a
dependency on MTOR and other components of the mTORC1
pathway (Figure 6A), which we validated by sgRNA-mediated
knockout of MTOR in multiple ATLL lines (Figure 6B-C; supple-
mental Figure 5A). mTORC1 directly phosphorylates 4EBP1 and
S6 kinase, which in turn phosphorylates ribosomal protein S6,
thereby stimulating mRNA translation and mitochondrial activity/
biogenesis.34 By immunoblot analysis, both 4EBP1 and S6 were
phosphorylated in ST1 ATLL cells (Figure 6D).

As the combinatorial benefit of CDK and mTORC inhibitors was
previously reported in several cancer types,35 we hypothesized
that partial pharmacological inhibition of the mTORC1 pathway
might synergize with palbociclib in killing ATLL cells irrespective
of TP53 status. We treated TP53 WT (ST1) and TP53 mutant
(KK1) ATLL cells with a fixed concentration of the mTORC1
inhibitor (2.5 mM) or DMSO along with a range of concentrations
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of palbociclib. At all palbociclib concentrations, concurrent inhibi-
tion of mTORC1 with everolimus significantly reduced viable cell
numbers compared with treatment with palbociclib alone (Figure
6E; supplemental Figure 5B). Of note, the 2 drugs synergized in
both TP53 WT and TP53 mutant ATLL lines, as indicated by a
combination index below 1 (see “Materials and methods”; Figure
6E; supplemental Figure 5B). As mentioned above, knockout of
TP53 in ST1 cells rendered the cells relatively resistant to palboci-
clib alone, but combined treatment with everolimus resulted in
synergistic toxicity (Figure 6F). These synergistic effects were also
evident in experiments combining palbociclib and AZD8055, a
dual mTORC1 and mTORC2 inhibitor (supplemental Figure 5C).
Combined palbociclib/everolimus treatment decreased phos-
phorylation of Rb to a greater degree than observed with either
agent alone (Figure 6G), as was also true for the combination of
palbociclib and AZD8055 (supplemental Figure 5D). Phosphory-
lation of S6 and 4EBP1 was fully suppressed by everolimus or
AZD8055, alone or in combination with palbociclib, as expected
(Figure 6H; supplemental Figure 5E).

We next investigated the effect of inhibiting CDK6 and/or
mTORC1 in primary ATLL patient samples. All patients had intact
TP53 except for the presence of a common single-nucleotide

polymorphism (P72R). Consistent with ATLL cell line data, palboci-
clib treatment inhibited the proliferation of primary ATLL cells in a
dose-dependent manner (Figure 7A-B). Moreover, the combina-
tion of palbociclib with everolimus or AZD8055 inhibited cell pro-
liferation to a greater degree in treatment with either agent alone
in primary ATLL cells from 5 patients (Figure 7A-B). Notably, these
treatments did not suppress the proliferation of normal bystander
CD4 T cells, CD8 T cells, and monocytes except for mTORC1
inhibitor-treated B cells in PBMNC from ATLL patients (supple-
mental Figure 6A). Furthermore, cell proliferation of healthy
donor-derived T cells was also not affected (supplemental Figure
6B-C). To explore the efficacy and tolerability of this combination
in vivo, we used a mouse xenograft model created using the
ATL43Tb(-) ATLL cell line. Treatment of xenograftedmicewith pal-
bociclib or everolimus monotherapy inhibited tumor growth com-
pared with vehicle control. Combined treatment with both drugs
markedly inhibited tumor growth to a greater degree than either
drug alone (Figure 7C-E). Of note, there was no significant differ-
ence in systemic toxicity among the 4 groups of mice during drug
treatment, as judged by body weight (Figure 7F). These
results were also confirmed by another xenograft model created
using the Su9T01 ATLL cell line (Figure 7G-H; supplemental
Figure 6D).
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Discussion
To discover essential genes and potential new therapeutic tar-
gets in ATLL, we performed unbiased genome-wide CRISPR/
Cas9 library screening. The resulting dataset provides a blue-
print of ATLL biology, including some known dependencies as
well as additional essential pathways that can be attacked using
targeted agents that are clinically available. Our in-depth analy-
sis of CDK6 as a molecular target in ATLL led us to discover a
therapeutic synergy between the CDK6 inhibitor palbociclib and
mTORC1 inhibitors, a combination that can now be tested in
clinical trials.

Previous work identified BATF3 and IRF4 as essential transcrip-
tion factors in ATLL,5 but the present work revealed that ATLL
cells depend equally on the B-ZIP factor JUNB, which heterodi-
merizes with BATF3 to form an AP-1 DNA binding transcription
factor. Importantly, JUNB also coimmunoprecipitated with HBZ,
an essential HTLV1-encoded B-ZIP factor that drives expression
of BATF3 and its extensive transcriptional network in ATLL,5 sug-
gesting that JUNB is a key component of a feed-forward regula-
tory loop that sustains ATLL viability.5 Although transcription
factors have been traditionally challenging as therapeutic tar-
gets, they are increasingly accessible as targets using PROTAC
technology to target them for proteolytic degradation.36

The importance of the JAK/STAT signaling pathway in ATLL first
became evident with the discovery of recurrent gain-of-function
STAT3 mutations in 21.4% of ATLL cases.3 Unexpectedly, our
CRISPR screens revealed that autocrine signaling by IL-22 or
IL-10 may provide additional mechanisms by which STAT3 can
be activated in ATLL. Recently, it was reported that transgenic
expression of HBZ in a mouse model promotes autocrine IL-10
signaling in normal mouse T cells, which may be potentiated by
the interaction of HBZ with STAT3.37 Thus, the essential tran-
scription factor network in ATLL may intersect with JAK/STAT
signaling, perhaps explaining the frequent acquisition of STAT3
mutations in ATLL. Therapeutic strategies to target the JAK/
STAT pathway in ATLL will have to contend with the mechanistic
diversity by which this pathway is engaged in ATLL. For instance,
successful therapeutic strategies to attack JAK/STAT signaling in
ATLL will need to consider which JAK family kinases are
engaged in a particular ATLL tumor as well as the presence of
gain-of-function STAT3 mutations, which likely render ATLL cells
independent of upstream signals from JAK family kinases. In par-
ticular, ATLL lines with autocrine IL-22 signaling can activate
both JAK1 and TYK2, potentially explaining why the JAK1/JAK2
inhibitor ruxolitinib was ineffective against these lines. These
observations may also explain why clinical efficacy of ruxolitinib
has been limited to the IL-2-dependent phase of ATLL.38,39

Our study revealed CDK6 as an attractive molecular target in
ATLL. Loss of the endogenous CDK4/6 inhibitor CDKN2A (p16)
is common in ATLL (24% to 26%),3,40 suggesting that deregula-
tion of the G1/S cell cycle transition is deeply implicated in ATLL
pathobiology. Pharmacological inhibition of CDK6 by palbociclib
suppressed ATLL cell proliferation and survival, although the tox-
icity was suboptimal in some ATLL cells. We discovered that the
resistance to palbociclib was at least in part due to the loss of

TP53 function in a subset of ATLL lines. Somatic mutation in
TP53 and genomic deletion of chromosome 17p13.1, harboring
the TP53 locus, are frequent genetic events in ATLL, occurring
in 17.8% and 26% of patients, respectively.3,28 Given the above,
the TP53 status of ATLL tumors should be considered as a
potential biomarker of response in future clinical trials of palboci-
clib in ATLL.

To overcome the insensitivity to palbociclib of ATLL lines
with inactive TP53, we developed a rational combination of
palbociclib with mTORC1 inhibitors. These agents were syn-
ergistically toxic in multiple ATLL models owing, in part, to
concerted suppression of Rb phosphorylation. Importantly,
this therapeutic combination not only induced cell cycle
arrest but also triggered apoptosis in ATLL cells, irrespective
of TP53 status. Treatment of mice bearing ATLL xenografts
with palbociclib plus everolimus reduced tumor growth sig-
nificantly and was apparently well tolerated, with no change
in body weight. These findings lay a strong mechanistic
foundation for clinical investigations of this combinatorial
strategy for the treatment of ATLL.
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