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Summary

This study proposes a controller design method based on block sparse optimization
for dynamical network systems. The objective of the controller is to stabilize dynam-
ical network systems with a given convergence rate. The block sparse optimization
minimizes the number of controlled nodes. This study is unique in that the structure
of the controller is constrained by the network topology of the system. Additionally,
the proposed design problem is separable in terms of the distributed optimization
over networks. The proposed method is applicable to controller design for the pin-
ning control of consensus systems and the optimal vaccine allocation for epidemic
spreading processes.
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1 INTRODUCTION

Dynamical networks are systems whose behaviors are determined by interactions over large-scale complex networks. Several
phenomena, such as gene networks, electrical power networks, epidemic spreading processes, and hit phenomena, can be rep-
resented by dynamical network systems (see, e.g., References1,2,3,4). As the number of nodes in a network increases, substantial
resources are required to design and implement controllers for dynamical network systems. Owing to the large scale of the sys-
tems, substantial computational resources are required to precisely identify a model. After identifying the model, complex and
large computations are required to design the controllers. Although controllers can be designed from large and complex mod-
els, their implementation may necessitate substantial resources owing to the enormous scale of the systems. However, because
these resources are limited, they cannot be utilized for designing the controllers. For instance, the spread of an epidemic can be
controlled by vaccinations. However, it is not feasible for everyone to be vaccinated because the amount of vaccines is limited.

In the past decades, graph theory has been utilized to analyze dynamical systems (see, e.g., References3,5,6,7,8). To represent the
dynamical network system based on graph theory, a structured system representation was proposed in 9. In this representation,
a directed graph depicts a dynamical system, wherein nodes correspond to states, inputs, and outputs of the original state space,
and edges indicate that there exists a non-zero parameter between the endpoints of the corresponding edge in the original state
space.

Because we do not require exact parameters to model structured systems, the computational cost for representing a structured
system is lower than that of the original system. The properties of the graph of the structured system correlate with the generic
conditions of the original system, such as controllability10,11,8 and the number of invariant zeros12. However, little information
is imparted on the conservative conditions of original systems. Specifically, as delineated in 9, stability conditions cannot be
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obtained from structured systems. Because structured systems do not provide the necessary conditions, we cannot analyze
stability based on network structures with a reasonable computational load.

Numerous studies have proposed the stability condition of dynamical network systems based on graph theory13,14,15,16,17. The
stability condition of nonlinear dynamical network systems based on a feedback vertex set was proposed by13,14. The studies13,14

demonstrated that the system is stable if the states corresponding to the feedback vertex set are zero. However, reference15

indicated that the existence of a controller that stabilizes the states corresponding to the feedback vertex set cannot be guaranteed.
Although other references16,17 discuss the stability condition based on graph theory, it is confined to a positive system and a
Boolean network, respectively.

In a prior study by (see Reference18), the authors proposed the stability condition and design methods of a controller and an
observer based on graph theory and linear dynamical network systems. In this study, we utilize a directed graph with weights to
represent a dynamical system based on the graph. For a directed graph with weights, to derive the stability conditions of linear
dynamical systems, weighted degrees are defined. From the stability condition based on the weighted degrees, the parameter
regions of the controller and observer that stabilize the system and error systems are deciphered. As an application, we consider
the equilibrium point analysis of the Lotka-Volterra system. Utilizing this system, we demonstrate a condition based on the
weighted degree for all species to survive. By using the framework based on weighted degrees, we can analyze the stability of
a dynamical network system with a scalable computational load. However, load reduction in the design and implementation for
controllers has been an open problem.

The load reduction during the implementation of controllers has been addressed in prior studies (see, e.g., Refer-
ence19,20,21,22,23). References23,21 indicated that, in distributed controllers, the performance of the closed-loop system was
optimized with limited resources. Because the limited resources were given as the constraints of the controller design problems,
the controlled nodes were not selected by utilizing a framework23,21. References19,20,22 utilized sparse optimization and geomet-
ric programming to reduce the implementation cost of the controllers, where the control performance is given as a specification.
The preceding studies demonstrate potential to reduce the implementation resources for the controller. However, because exact
models and centralized calculations are required, the computational cost for the design of the controller increases as the scale
of the network increases.

Therefore, this study proposes an optimal resource allocation framework based on weight degrees. In the proposed frame-
work, we utilize block sparse optimization as a tool for the design of distributed controllers. Because blocks indicate the number
of controllers that need to be implemented, the proposed method can optimize the resources for the implementation of the con-
trollers. Block sparse optimization is utilized in signal and image processing, such as compressed sensing (see, e.g., Reference24).
The convex relaxation problem of block sparse optimization returns the same solution to the original problem if the condition
based on the block isometry-restricted isometry property holds (see, e.g., References25,26). From this result, we expect that the
convex relaxation of the proposed method provides an approximate solution. In the proposed method, the specifications of the
closed-loop system are given using weighted degrees. Thus, we can solve the optimal resource allocation over the graph using
the alternating direction method of multipliers (ADMM). Because the computational load of each node in the proposed method
depends only on the degree of connection, the load for the design of the controller is also scalable. We present two applications
of the proposed method in this paper. The first application is the design of a pinning controller with minimum controlled nodes.
The second application is the optimal vaccine allocation for epidemic spreading processes. The contributions of this work are
summarized as follows: 1) Our proposed method can optimize the resources for the implementation of the controller by using
block sparse optimization. 2) The computational load for the design of the distributed controller is scalable.

Notation
For 𝐴 ∈ ℝ𝑛×𝑛, 𝜆max(𝐴) represents the maximum real part of the eigenvalues of 𝐴. We utilize [𝐴]𝑖,𝑗 as the (𝑖, 𝑗)-entry of matrix 𝐴.
When 𝑎 is a vector, [𝑎]𝑖 represents the 𝑖th element of 𝑎. For a finite set  , we utilize the cardinality of  as | |. |𝑥| denotes the
absolute value of 𝑥 for a real number 𝑥 ∈ ℝ. For a complex number 𝑠 ∈ ℂ, |𝑠| denotes a norm of 𝑠. For 𝑥 ∶= [𝑥1,… , 𝑥𝑛] ∈ ℝ𝑛,
the 𝑙2 norm of 𝑥 is expressed as

‖𝑥‖2 ∶=
√√√√ 𝑛∑

𝑖=1
𝑥2𝑖 .

For the set  ∶= {𝑖1,… , 𝑖𝑛}, we define row
{
𝑎𝑖 | 𝑖 ∈ }

∶= [𝑎𝑖1 ,… , 𝑎𝑖𝑛].
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2 DISTRIBUTED CONTROLLER DESIGN BASED ON BLOCK SPARSE OPTIMIZATION

2.1 Block Sparse Reconstruction
In this section, we introduce a block sparse reconstruction25,26 as a preliminary segment of this work. The block sparse
reconstruction returns the solution of the underdetermined systems whose 𝑙2∕𝑙0 norm is minimized.

Consider the following linear equation:

𝐴𝑥 = 𝑏, (1)

where 𝐴 ∈ ℝ𝑛×𝑚 and 𝑏 ∈ ℝ𝑚. Vector 𝑥 denotes an unknown vector and is defined as 𝑁 blocks as

𝑥 = [𝑥⊤1 ,… , 𝑥⊤𝑁 ]
⊤, (2)

where 𝑥𝑖 ∈ ℝ𝑛𝑖 and
∑𝑁

𝑖=1 𝑛𝑖 = 𝑁 . Consider the solution of (1) such that the number of non-zero blocks of 𝑥 is minimized.
Previous works25,26 expressed the number of non-zero blocks of 𝑥 by using the 𝑙2∕𝑙0 norm as

‖𝑥‖2,0 ∶= 𝑁∑
𝑖=1

𝐼(𝑥𝑖) , 𝐼(𝑥𝑖) ∶=

{
1 if ‖𝑥𝑖‖2 ≠ 0
0 otherwise.

Then, the block sparse reconstruction of (1) is defined as

minimize ‖𝑥‖2,0
subject to 𝐴𝑥 = 𝑏.

(3)

Note that we require intensive computational resources to solve the optimization problem (3) because 𝑙2∕𝑙0 norm ‖ ⋅ ‖2,0 → ℝ+

is a non-convex function for 𝑥. To reduce the computational load for solving block sparse solutions, prior studies25,26 have also
proposed a convex relaxation problem of (3). In line with prior studies25,26, we define 𝑙2∕𝑙1 of 𝑥 as

‖𝑥‖2,1 ∶= 𝑁∑
𝑖=1

‖𝑥𝑖‖2.
Note that the 𝑙2∕𝑙1 norm ‖ ⋅ ‖2,1 → ℝ+ is a convex function of 𝑥, unlike the 𝑙2∕𝑙0 norm. Thus, the convex optimization problem
is defined as follows:

minimize ‖𝑥‖2,0
subject to 𝐴𝑥 = 𝑏.

(4)

In general, convex relaxation problems do not return the same solution as that of the original problem. However, a remarkable
aspect of the convex relaxation problem (4) is that (4) returns the same solution to (3) if a condition based on the block-restricted
isometry property25,26 (BRIP) holds. Let us define set Σ(𝑠) and BRIP as follows.

Definition 1. Assume that 𝑥 denotes a vector with an 𝑁 block, as in (2). For 𝑠 ∈ {1,… , 𝑁}, we refer to 𝑥 as 𝑠-block sparse if‖𝑥‖2,0 ≤ 𝑠. We define set Σ(𝑠) of a vector whose elements are 𝑠-block sparse as

Σ(𝑠) ∶= {𝑥 ∈ ℝ𝑛 | ‖𝑥‖2,0 ≤ 𝑠}.

Definition 2. Let us consider matrix 𝐴 ∈ ℝ𝑚×𝑛. We deem that 𝐴 satisfies the BRIP with parameter 𝛿(𝑠) if there exists 𝛿(𝑠) ∈
(0, 1) such that

(1 − 𝛿(𝑠))‖𝑥‖22 ≤ ‖𝐴𝑥‖22 ≤ (1 + 𝛿(𝑠))‖𝑥‖22 (5)

holds for any 𝑥 ∈ Σ(𝑠).

Consequently, previous studies25 have presented the following lemma.

Lemma 1. Let a block 𝑠-sparse vector hold 𝐴𝑐0 = 𝑏. If 𝐴 satisfies BRIP (5) with 𝛿(2𝑠) <
√
2 − 1, then 1) there exists a unique

block 𝑠-sparse vector 𝑐 that satisfies 𝐴𝑐 = 𝑏; 2) The optimization problem (4) has a unique solution that is equal to the solution
of (3).
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2.2 Problem Formulation
Let us consider dynamical systems over large and complex networks. A mathematical representation of the network is based on
a graph-theoretic approach. A digraph is defined as a pair of  and  as  ∶= ( , ), where  is a set of nodes and  is a set of
edges. The set of nodes is given as  ∶= {1,… , 𝑁}, and the set of edges is denoted by  ⊆  ×  . The edge (𝑖, 𝑗) indicates
an interaction from the 𝑖th node to the 𝑗th node. The set of neighbors around the 𝑖th node over  is denoted as  in

𝑖 and  out
𝑖 ,

where  in
𝑖 ∶= {𝑗 | (𝑗, 𝑖) ∈ } is a set of in-flow neighbors, and  out

𝑖 ∶= {𝑗 | (𝑖, 𝑗) ∈ } is a set of out-flow neighbors.
A dynamical system in which a state evolves over  is defined as

𝑥̇𝑖 = 𝑎𝑖𝑥𝑖 +
∑

𝑗∈ in
𝑖

𝑤(𝑗,𝑖)𝑥𝑗 + 𝑢𝑖 for all 𝑖 ∈  , (6)

where 𝑥𝑖 ∈ ℝ is the state and 𝑢𝑖 ∈ ℝ is the input of the 𝑖-th node. In (6), the self-loop 𝑎𝑖 determines the autonomous behavior of
the 𝑖-th node. In contrast, weight 𝑤(𝑖,𝑗) determines the interaction on edge (𝑗, 𝑖). As an equivalent representation of (6), we define

𝑥̇ = 𝐴𝑥 + 𝐵𝑢, (7)

where 𝑥 ∶= [𝑥1,… , 𝑥𝑁 ]⊤, 𝑢 ∶= [𝑢1,… , 𝑢𝑁 ]⊤, 𝐵 = 𝐼𝑁 and

[𝐴]𝑖,𝑗 =

⎧⎪⎨⎪⎩
𝑤(𝑗,𝑖) (𝑖, 𝑗) ∈ 
𝑎𝑖 𝑖 = 𝑗
0 otherwise.

Let us consider a distributed controller design for system (6). Suppose that the structure of the distributed controller is given
by

𝑢𝑖 = 𝑘(𝑖,𝑖)𝑥𝑖 +
∑

𝑗∈ in
𝑖

𝑘(𝑗,𝑖)𝑥𝑗 . (8)

The structure of (8) indicates that each node can utilize 𝑥𝑗 for 𝑗 ∈ {𝑖} ∪ in
𝑖 to calculate the control input. The feedback gain

vector 𝑘𝑖 ∈ ℝ𝑁 can be defined as

[𝑘𝑖]𝑗 =

⎧⎪⎨⎪⎩
𝑘(𝑗,𝑖) (𝑗, 𝑖) ∈ 
𝑘(𝑖,𝑖) 𝑖 = 𝑗
0 otherwise.

Accordingly, (8) can be expressed by

𝑢𝑖 = 𝑘⊤𝑖 𝑥, (9)

Therefore, the input for (7) is expressed as 𝑢 = 𝐾𝑥, where 𝐾 = [𝑘1,… , 𝑘𝑁 ]⊤. The closed-loop system (7) with (9) is expressed
as follows:

𝑥̇ = (𝐴 +𝐾)𝑥. (10)

Thereafter, we find 𝐾 by complying with the following conditions.

• Each node can utilize only states of its own and in-flow neighbors for calculating the control input.

• Real parts of eigenvalues of a closed-loop system (10) are smaller than a given upper bound.

• The number of controlled nodes, which implies 𝑘𝑖 ≠ 0, is minimized.

The objective of the distributed controller (9) is to stabilize the system (6). In addition, we consider the upper bound of the
eigenvalues of 𝐴+𝐾 as a specification of the convergence rate. Suppose that a positive value 𝑟 is given for the controller design,
then we find 𝐾 such that 𝜆max(𝐴 +𝐾) ≤ −𝑟.

In compliance with the above condition, let us consider the minimization of controlled nodes. Here, we define controlled
nodes as nodes that require input to achieve the control objective. In contrast, uncontrolled nodes are defined as nodes, such
that 𝑢𝑖 = 0 for any time period. When 𝑢𝑖 = 0 for any time period, feedback gain 𝑘𝑖 satisfies 𝑘𝑖 = 0. Therefore, the number of
non-zero feedback gains should be minimized to minimize the number of controlled nodes.

We formulate the above distributed controller design as the block sparse optimization problem. Let us define the feedback
gain vector that includes all nodes as 𝑘 = [𝑘⊤1 ,… , 𝑘⊤𝑁 ]

⊤. The feedback gain vector 𝑘 has 𝑁 blocks, where the 𝑖-th block of 𝑘
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indicates 𝑘𝑖. The number of non-zero blocks of 𝑘 is expressed by the following 𝑙2∕𝑙0 norm ‖𝑘‖2,0. Because the 𝑙2∕𝑙0 norm of
𝑘 signifies the number of controlled nodes, we can determine the minimum design problem of the controlled nodes from the
following optimization problem:

minimize ‖𝑘‖2,0
subject to 𝜆max(𝐴 +𝐾) ≤ −𝑟.

(11)

Because the 𝑙2∕𝑙0 norm is a non-convex function, we require substantial computational resources to solve (11) as the scale of 
becomes large. Thus, we consider a convex relaxation of (11) for simplicity of calculation. In accordance with prior studies25,26,
we also utilize the 𝑙2∕𝑙1 norm as a convex relaxation of the 𝑙2∕𝑙0 norm. The convex relaxation of (11) can be expressed by

minimize ‖𝑘‖2,1 (12a)
subject to 𝜆max(𝐴 +𝐾) ≤ −𝑟, (12b)

In general, the convex relaxation problem (12) does not return the same solution as that of the original problem (11). However,
in block sparse reconstruction, Lemma 1 indicates that the convex relaxation of the 𝑙2∕𝑙0 norm by the 𝑙2∕𝑙1 norm provides an
optimal solution that is equivalent to that of the original problem with some assumptions. Thus, we expect that the convex
relaxation of (11) by the 𝑙2∕𝑙1 norm also provides an approximate solution.

We designate 𝑟 as the control specification in the controller design because we minimize the number of controlled nodes. It
is assumed that there is a trade-off between the convergence rate of the closed-loop system (10) and the number of controlled
nodes. For example, because 𝐾 = −𝐴− 𝑟𝐼 is a candidate for the optimal solutions of (11) and (12), both optimization problems
are feasible for any 𝑟. However, 𝐾 = −𝐴 − 𝑟𝐼 requires all nodes to be controlled. Thus, we should determine 𝑟 from the worst
convergence rate of the closed-loop system that needs to be realized. In contrast, we can optimize 𝑟 if candidates of controlled
nodes are given, as in previous work21. The framework proposed in this work can be extended to a controller design problem
with limited resources, which will be the focus of our future work.

In this study, we solve the feedback design problem (12) by using a distributed optimization algorithm over a network. Let us
define an undirected graph ̄ ∶= { , ̄} using distributed optimization. Edge list ̄ includes (𝑗, 𝑖) if either (𝑗, 𝑖) ∈  or (𝑖, 𝑗) ∈  .
The distributed optimization algorithm can provide solutions to the optimization problem over networks ̄ without integrated
calculations. The optimization problem over network ̄ is defined as

minimize 𝑓 (𝑧1,… , 𝑧𝑁 ) =
∑
𝑖∈

𝑓𝑖(𝑧𝑖) , 𝑧𝑖 ∶=
[
𝑧(𝑖,𝑖), row

{
𝑧(𝑗,𝑖) | 𝑗 ∈  in

𝑖

}]⊤
(13a)

subject to
[
𝑧⊤𝑖 , row

{
𝑧(𝑖,𝑗) | 𝑗 ∈  out

𝑗

}]⊤
∈ 𝑖 for all 𝑖 ∈  , (13b)

where 𝑓 is a global objective function, 𝑧𝑖 is a decision variable, and 𝑓𝑖 is a local objective function of the 𝑖-th node. The global
objective function 𝑓 is expressed as the sum of a local objective function as (13a). Constraint (13b) indicates that the constraint
of the 𝑖th node is expressed by the decision variables of the own and neighboring nodes. When the optimization problem
is expressed by (13), each node can calculate the optimal solution 𝑧∗𝑖 through the communication among neighborhoods by
using the alternating direction method of multipliers27. Because the distributed ADMM only requires communication among
neighborhoods over the network ̄, we can design feedback gains without the supervisor of the systems.

We cannot directly solve the feedback design problem (12) using a distributed optimization algorithm. The objective function
(12a) can be expressed as the sum of a local objective function, namely

𝑓 (𝑘1,… , 𝑘𝑁 ) =
∑
𝑖∈

𝑓𝑖(𝑘𝑖) , 𝑓𝑖(𝑘𝑖) ∶= ‖𝑘𝑖‖2. (14)

In contrast, constraint (12b) is not formulated as (13b). We need to confirm that (12b) is satisfied from the alternative conditions
that are expressed as (13b). In addition, set 𝑖 for the alternative condition should be characterized by the local parameters of
the system (7). Let us define the local parameters of system (7) for the 𝑖th node over ̄ as

Δ𝑖 ∶=
[
𝑟, 𝑎𝑖, row

{
𝑤(𝑖,𝑗) | 𝑗 ∈  out

𝑖

}
, row

{
𝑤(𝑗,𝑖) | 𝑗 ∈  in

𝑖

}]⊤ . (15)

To clarify that 𝑖 is characterized by Δ𝑖, we denote 𝑖(Δ𝑖). We define the feedback gains that the 𝑖th node can obtain over ̄ as

𝐾𝑖 ∶=
[
𝑘⊤𝑖 , row

{
𝑘(𝑖,𝑗) | 𝑗 ∈  out

𝑖

}]⊤ . (16)

Then, we consider the following problem for obtaining an alternative to (12b):
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Problem 1. Network ̄ and local parameter Δ𝑖 for 𝑖 ∈  are given. Then, we find 𝑖(Δ𝑖) for all 𝑖 ∈  such that (12b) holds if
𝐾𝑖 ∈ 𝑖(Δ𝑖) for all 𝑖 ∈  .

2.3 Main Result
In this subsection, we present a solution of problem 1. Problem 1 explores the conditions that are required to determine the upper
bound of the real part of the eigenvalue of the closed-loop system from the local information over the network ̄. We introduce
the Gershgorin theorem to determine the eigenvalues of the matrix. The Gershgorin theorem states that the stability conditions
of (6) can be denoted by information regarding the neighborhood over ̄, which are summarized in Lemma 2. Lemma 2 shows
that 𝑖 in problem 1 is given by (25), which is summarized in Theorem 2. In the final part of this subsection, we propose a
distributed algorithm to calculate 𝑘𝑖 based on the ADMM.

The Gershgorin theorem indicates the range of the complex plane in which the eigenvalues of a matrix lie. Let us define 𝐶
as an 𝑛 × 𝑛 matrix whose entries are complex numbers. For a given matrix 𝐶 , the Gershgorin disks 𝑅𝑖 and 𝑆𝑖 on the complex
plane are defined as

𝑅𝑖 ∶=

{
𝑠 ∈ ℂ | ||𝑠 − [𝐶]𝑖,𝑖|| ≤ ∑

𝑖≠𝑗
|||[𝐶]𝑖,𝑗

|||
}

,

𝑆𝑖 ∶=

{
𝑠 ∈ ℂ | |𝑠 − [𝐶]𝑖,𝑖| ≤ ∑

𝑖≠𝑗
|[𝐶]𝑗,𝑖|} .

Then, the following theorem holds:

Theorem 1 (Gershgorin theorem). Every eigenvalue of 𝐶 lays the following complex plane( 𝑛⋃
𝑖=1

𝑅𝑖

)
∩

( 𝑛⋃
𝑖=1

𝑆𝑖

)
.

Based on the Gershgorin theorem, we can derive the stability conditions of (6) based on graph . For system (6) over graph, the weighted degree 𝑑 in
𝑖 and outdegree 𝑑out

𝑖 of the 𝑖th node are defined as

𝑑 in
𝑖 =

∑
𝑗∈ in

𝑖

|𝑤(𝑗,𝑖)| , 𝑑out
𝑖 =

∑
𝑗∈ out

𝑖

|𝑤(𝑖,𝑗)|. (17)

The weighted degrees are expressed as the sum of the absolute values of the weights on the edges connected to each node. There-
fore, the weighted degrees represent the relation between the connections among nodes over . The real part of the eigenvalues
of system (7) is restricted based on the weighted degree as follows:

Lemma 2. For system (7), the following equation holds:

𝜆max(𝐴) ≤ min{𝑟in , 𝑟out}, (18)

where

𝑟in = max
𝑖∈

(
𝑎𝑖 + 𝑑 in

𝑖

)
, 𝑟out = max

𝑖∈
(
𝑎𝑖 + 𝑑out

𝑖

)
.

Proof. Gershgorin disks of matrix 𝐴 in (7) are expressed as

𝑅𝑖 ∶=
{
𝑠 ∈ ℂ | ||𝑠 − 𝑎𝑖|| ≤ 𝑑 in

𝑖

}
, 𝑆𝑖 ∶=

{
𝑠 ∈ ℂ | |𝑠 − 𝑎𝑖| ≤ 𝑑out

𝑖

}
. (19)

Let us denote the half-plane on the complex plane as Ξ(𝑑) ∶= {𝑠 ∈ ℂ | Re(𝑠) ≤ 𝑑}. From (19), we find that 𝑅𝑖 and 𝑆𝑖 of 𝐴 in
(7) include Ξ(𝑎𝑖 + 𝑑 in

𝑖 ) and Ξ(𝑎𝑖 + 𝑑out
𝑖 ), respectively. Then, the following inclusion relations are obtained⋃

𝑖∈
𝑅𝑖 ⊂

⋃
𝑖∈

Ξ(𝑎𝑖 + 𝑑 in
𝑖 ) = Ξ

(
𝑟in

)
, (20a)⋃

𝑖∈
𝑆𝑖 ⊂

⋃
𝑖∈

Ξ(𝑎𝑖 + 𝑑out
𝑖 ) = Ξ

(
𝑟out

)
. (20b)

Theorems 1 and (20) indicate that the eigenvalues of system (7) lie on the following complex plane:

Ξ̄ = Ξ
(
𝑟in

)
∩ Ξ

(
𝑟out

)
. (21)
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Because the maximum real parts of Ξ
(
𝑟in

)
and Ξ

(
𝑟out

)
are 𝑟in and 𝑟out , respectively, we can obtain the inclusion relation

Ξ̄ ⊆ Ξ(min{𝑟in , 𝑟out}). Thus, the maximum real parts on Ξ̄ is min{𝑟in , 𝑟out}.

Lemma 2 shows that the upper bound of the real part of the eigenvalues is expressed by the weighted degrees. Because the
weighted degrees are given by(17), 𝑑 in

𝑖 and 𝑑out
𝑖 can be calculated from Δ𝑖. Thus, we can obtain 𝑖(Δ𝑖) in problem 1 by applying

Lemma 2 to (10). The weighted degrees for the closed-loop system (10) can be expressed as

𝑑 in
𝑖 =

∑
𝑗∈ in

𝑖

|𝑤(𝑗,𝑖) + 𝑘(𝑗,𝑖)| , 𝑑out
𝑖 =

∑
𝑗∈ out

𝑖

|𝑤(𝑖,𝑗) + 𝑘(𝑖,𝑗)|. (22)

Equations (22) and Lemma 2 indicate that 𝜆max(𝐴 +𝐾) is bounded by the following equation:

𝜆max(𝐴 +𝐾) ≤ min{𝑟in , 𝑟out}, (23)

where 𝑟in and 𝑟out for 𝐴 +𝐾 are expressed by

𝑟in = max
𝑖∈

⎛⎜⎜⎝𝑎𝑖 + 𝑘(𝑖,𝑖) +
∑

𝑗∈ in
𝑖

|𝑤(𝑗,𝑖) + 𝑘(𝑗,𝑖)|⎞⎟⎟⎠ , 𝑟out = max
𝑖∈

⎛⎜⎜⎝𝑎𝑖 + 𝑘(𝑖,𝑖) +
∑

𝑗∈ out
𝑖

|𝑤(𝑖,𝑗) + 𝑘(𝑖,𝑗)|⎞⎟⎟⎠ . (24)

Thus, we can obtain 𝑖 in problem 1 from the following theorem:

Theorem 2. Define in
𝑖 and out

𝑖 as

in
𝑖 ∶=

⎧⎪⎨⎪⎩𝐾𝑖 | 𝑎𝑖 + 𝑘(𝑖,𝑖) +
∑

𝑗∈ in
𝑖

|𝑤(𝑗,𝑖) + 𝑘(𝑗,𝑖)| ≤ −𝑟

⎫⎪⎬⎪⎭ , out
𝑖 ∶=

⎧⎪⎨⎪⎩𝐾𝑖 | 𝑎𝑖 + 𝑘(𝑖,𝑖) +
∑

𝑗∈ out
𝑖

|𝑤(𝑖,𝑗) + 𝑘(𝑖,𝑗)| ≤ −𝑟

⎫⎪⎬⎪⎭ . (25)

If 𝑖 in problem 1 is given by 𝑖 = in
𝑖 or 𝑖 = out

𝑖 for all 𝑖 ∈  , 𝐴 +𝐾 with 𝐾𝑖 ∈ 𝑖 satisfies (12b).

Proof. When 𝐾𝑖 is included in in
𝑖 given by (25) for all 𝑖 ∈  , 𝑟in given by (24) satisfies 𝑟in ≤ −𝑟. Because min{𝑟in , 𝑟out} is

bounded by −𝑟 and (23) holds, we conclude that 𝜆max(𝐴+𝐾) ≤ −𝑟 if 𝐾𝑖 ∈ in
𝑖 . Similarly, we can show that 𝜆max(𝐴+𝐾) ≤ −𝑟

if 𝐾𝑖 ∈ out
𝑖 .

Theorem 2 indicates that we can confirm that either (12b) is satisfied from the local information over ̄. Based on this result,
we propose distributed algorithms to calculate the controller gain using the ADMM. To apply the ADMM, we transform the
controller design problem into an optimization problem expressed by the augmented Lagrangian function. Then, we present the
updating law based on the ADMM as the proposed method.

Under Theorem 2, we select 𝑖 as out
𝑖 given by (25). We can utilize ADMM if 𝑖 is selected as in

𝑖 in the same manner.
Thus, we only explain 𝑖 = out

𝑖 . We define slack variables as 𝑣(𝑖,𝑗) and 𝑣(𝑖,𝑖), and the indicator function with respect to out
𝑖

as Φ𝑖(⋅). The slack variables express the (𝑖, 𝑗)-entry of 𝐴 + 𝐾 as 𝑣(𝑗,𝑖) = 𝑘(𝑗,𝑖) + 𝑤(𝑗,𝑖) and 𝑣(𝑖,𝑖) = 𝑘(𝑖,𝑖) + 𝑎𝑖. Let us define
𝑣𝑖 ∶=

[
𝑣(𝑖,𝑖), row

{
𝑣(𝑖,𝑗) | 𝑗 ∈  out

𝑖
}]⊤. Using 𝑣𝑖, out

𝑖 can be expressed as

out
𝑖 ∶=

⎧⎪⎨⎪⎩𝑣𝑖 | 𝑣(𝑖,𝑖) +
∑

𝑗∈ out
𝑖

|𝑣(𝑖,𝑗)| ≤ −𝑟

⎫⎪⎬⎪⎭ .

Indicator function Φ𝑖(𝑣𝑖) indicates whether 𝑣𝑖 ∈ out
𝑖 as

Φ𝑖(𝑣𝑖) =

{
0 if 𝑣𝑖 ∈ out

𝑖

∞ otherwise.

Then, we can transform the controller design problem (12) into the following optimization problem:

minimize
∑
𝑖∈

(‖𝑘𝑖‖2 + Φ𝑖(𝑣𝑖)
)

subject to 𝑣(𝑗,𝑖) = 𝑘(𝑗,𝑖) +𝑤(𝑗,𝑖) for all (𝑗, 𝑖) ∈  , 𝑣(𝑖,𝑖) = 𝑘(𝑖,𝑖) + 𝑎𝑖 for all 𝑖 ∈  . (26)
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We define the augmented Lagrangian function for (26) as 𝐿 ∶=
∑

𝑖∈ 𝐿𝑖(𝑘𝑖, 𝑣𝑖, 𝑦𝑖), where the local augmented Lagrangian
function 𝐿𝑖(𝑘𝑖, 𝑣𝑖, 𝑦𝑖) is expressed as

𝐿𝑖(𝑘𝑖, 𝑣𝑖, 𝑦𝑖) ∶= ‖𝑘𝑖‖2 + Φ𝑖(𝑣𝑖)+
∑

𝑗∈ out
𝑖

(
𝑦(𝑖,𝑗)(𝑘(𝑖,𝑗) +𝑤(𝑖,𝑗) − 𝑣(𝑖,𝑗)) +

𝜌
2
‖𝑘(𝑖,𝑗) +𝑤(𝑖,𝑗) − 𝑣(𝑖,𝑗)‖22)

+ 𝑦(𝑖,𝑖)(𝑘(𝑖,𝑖) + 𝑎𝑖 − 𝑣(𝑖,𝑖)) +
𝜌
2
‖𝑘(𝑖,𝑖) + 𝑎𝑖 − 𝑣(𝑖,𝑖)‖22,

𝑦𝑖 ∶=
[
𝑦(𝑖,𝑖), row

{
𝑦(𝑖,𝑗) | 𝑗 ∈  out

𝑖

}]⊤ .
In the local augmented Lagrangian function, 𝑦𝑖 indicates a dual variable, and 𝜌 indicates a penalty parameter.

ADMM is an iterative algorithm for solving the minimization problem of the augmented Lagrangian function. When the
original optimization problem is formulated as (26), each variable is updated from the information in the neighborhood over̄. Let us define a clock of the network as 𝜏. Note that 𝜏 represents a discrete-time system, although system (7) is expressed
as a continuous-time system. Because we consider some physical systems as motivating examples of system (7), we represent
the dynamics by using the continuous-time system. In contrast, the ADMM algorithm is executed in cyberspace. Therefore, we
utilize discrete-time representation to denote the ADMM in this study. The variables that the 𝑖th node can update are 𝑘𝑖, 𝑣𝑖,
and 𝑦𝑖. To update these variables, the 𝑖th node receives message 𝑣𝜏(𝑗,𝑖), 𝑦

𝜏
(𝑗,𝑖), and 𝑘𝜏(𝑖,𝑗) +𝑤(𝑖,𝑗) from the 𝑗th node. When the main

variables are updated in the ADMM, the other variables are fixed. Then, we determine the main variables that minimize the
augmented Lagrangian function as follows:

find 𝑘𝑖
minimize ‖𝑘𝑖‖2 + ∑

𝑗∈ in
𝑖

(
𝑦𝜏(𝑗,𝑖)(𝑘(𝑗,𝑖) +𝑤(𝑗,𝑖) − 𝑣𝜏(𝑗,𝑖)) +

𝜌
2
‖𝑘(𝑗,𝑖) +𝑤(𝑗,𝑖) − 𝑣𝜏(𝑗,𝑖)‖22)

+ 𝑦𝜏(𝑖,𝑖)(𝑘(𝑖,𝑖) + 𝑎𝑖 − 𝑣𝜏(𝑖,𝑖)) +
𝜌
2
‖𝑘(𝑖,𝑖) + 𝑎𝑖 − 𝑣𝜏(𝑖,𝑖)‖22

(27)

Next, we fix the main and dual variables to update the slack variables. Then, we identify the slack variables that minimize the
augmented Lagrangian function as follows:

find 𝑣𝑖
minimize

∑
𝑗∈ out

𝑖

(
𝑦𝜏(𝑖,𝑗)(𝑘

𝜏+1
(𝑖,𝑗) +𝑤(𝑖,𝑗) − 𝑣(𝑖,𝑗)) +

𝜌
2
‖𝑘𝜏+1(𝑖,𝑗) +𝑤(𝑖,𝑗) − 𝑣(𝑖,𝑗)‖22)

+ 𝑦𝜏(𝑖,𝑖)(𝑘
𝜏+1
(𝑖,𝑖) + 𝑎𝑖 − 𝑣(𝑖,𝑖)) +

𝜌
2
‖𝑘𝜏+1(𝑖,𝑖) + 𝑎𝑖 − 𝑣(𝑖,𝑖)‖22

subject to 𝑣𝑖 ∈ out
𝑖

(28)

The update of dual variables is based on a gradient method as follows:

𝑦𝜏+1(𝑖,𝑗) = 𝑦𝜏(𝑖,𝑗) + 𝜌(𝑘𝜏+1(𝑖,𝑗) +𝑤(𝑖,𝑗) − 𝑣𝜏+1(𝑖,𝑗)) , 𝑦
𝜏+1
(𝑖,𝑖) = 𝑦𝜏(𝑖,𝑖) + 𝜌(𝑘𝜏+1(𝑖,𝑖) + 𝑎𝑖 − 𝑣𝜏+1(𝑖,𝑖) ). (29)

In summary, each node executes the following steps to calculate the controller gain 𝑘𝑖.

Step 1 Each node receives 𝑦𝜏(𝑗,𝑖) and 𝑣𝜏(𝑗,𝑖) from neighborhood nodes, and calculates 𝑘𝜏+1𝑖 from (27).

Step 2 Each node receives 𝑘𝜏+1(𝑖,𝑗) +𝑤(𝑖,𝑗) from neighborhood nodes, and calculates 𝑣𝜏+1𝑖 from (28).

Step 3 Each node calculates 𝑦𝜏+1𝑖 from (29).

Theorem 2 stipulates a sufficient condition that states that 𝐴 + 𝐾 is a stable matrix, although we can design feedback gains
in a distributed manner. Theorem 2 stipulates the sufficient condition because the Gerhgorin theorem is a conservative result
for inferring the spectrum of the matrices. We require a more accurate algorithm to estimate the spectrum and mitigate the
conservativeness of this work. Some studies have proposed an estimation method for the spectrum of the matrices by using local
information over the graph. For instance, the algorithm proposed by Chen et al.28 infers the spectrum of adjacency matrices by
using the degrees and count of subgraphs. Because these algorithms can only infer the adjacency matrices, we cannot utilize
them for controller design, as delineated in this study. Extensions of these studies to the design of controllers form the scope of
our future work.
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3 APPLICATION

3.1 Pinning Controller Design Based on Block Sparse Optimization
Let us consider a consensus system with external inputs. The consensus system over directed graph  is expressed as

𝑥̇𝑖 = −
∑
𝑖∈ in

𝑗

(𝑥𝑖 − 𝑥𝑗), (30)

where 𝑥𝑖 ∈ ℝ is a state of the 𝑖th node. Assume that  is a connected graph. Then, system (30) achieves an average consensus as
lim𝑡→∞ 𝑥𝑖 = 𝑥con ∶=

∑
𝑖∈ 𝑥𝑖(0)∕|| for all 𝑖 ∈  . We define pinning nodes as nodes that are applied with an external input as

𝑥̇𝑖 = −
∑
𝑖∈ in

𝑗

(𝑥𝑖 − 𝑥𝑗) + 𝑢𝑖 if 𝑖 ∈  , (31)

where  ⊆  represents a set of pinning nodes. The objective of input 𝑢𝑖 for all 𝑖 ∈  is to change the consensus values from
𝑥con to a given value 𝑥pin.

Let us consider the problem of designing a controller for 𝑢𝑖 and the selection of  in (31). To calculate the input 𝑢𝑖, the pinning
node can utilize 𝑥̄𝑖 ∶=

[
𝑥𝑖, row

{
𝑥𝑗 | 𝑗 ∈  in

𝑖

}]⊤ and a new consensus value 𝑥pin. Thus, a structure of the controller for 𝑢𝑖 is
given by

𝑢𝑖 = 𝑐𝑖(𝑥̄𝑖, 𝑥pin). (32)

The controller 𝑐𝑖(⋅) for all 𝑖 ∈  is designed such that lim𝑡→∞ 𝑥𝑖 = 𝑥pin with speed −𝑟 < 0, implying that‖𝜂‖2 ≤ 𝛽‖𝜂(0)‖2𝑒−𝑟𝑡 , 𝜂⊤ ∶= [𝜂𝑖,… , 𝜂𝑁 ] , 𝜂𝑖 = 𝑥𝑖 − 𝑥pin.

The pinning nodes are selected such that the number of nodes || is minimized. Then, the above design problem is summarized
as

Problem 2. For systems (30) and (31), the structure of the controller (32), consensus value 𝑥pin, and convergence rate −𝑟 are
given. Then, we determine 𝑐𝑖(⋅) and  such that

minimize || (33a)
subject to ‖𝜂‖2 ≤ 𝛽‖𝜂(0)‖2𝑒−𝑟𝑡. (33b)

Let us consider the stabilization of 𝜂̇ based on Theorem 2 to satisfy (33b). Because the dynamics of 𝑥𝑖 are expressed by (30)
or (31), 𝜂̇𝑖 can be expressed as

𝜂̇𝑖 = −| in
𝑖 |𝜂𝑖 + ∑

𝑗∈ in
𝑖

𝜂𝑗 + 𝑢𝑖. (34)

We cannot directly express the dynamics of 𝜂𝑖 as (34) for 𝑖 ∉  because 𝑥̇𝑖 is expressed by (30). However, we can consider that
(30) represents the dynamics of the pinning nodes with external input 𝑢𝑖 = 0 for any time period. Therefore, we also express 𝜂̇𝑖
for all 𝑖 ∉  as a system with 𝑢𝑖 = 0 for any time period. Following the problem formulation in Section 2.2, we consider the
controller whose structure is expressed by (8) as follows:

𝑢𝑖 = 𝑘(𝑖,𝑖)𝜂𝑖 +
∑

𝑗∈ in
𝑖

𝑘(𝑗,𝑖)𝜂𝑗 . (35)

Because 𝑘𝑖 = 0 for all 𝑖 ∉  , the number of pinning nodes can be expressed by ‖𝑘‖2,0. Thus, the convex relation of (33a) can
be expressed as

∑
𝑖∈ ‖𝑘𝑖‖2. Set out

𝑖 as

out
𝑖 ∶=

⎧⎪⎨⎪⎩𝐾𝑖 | − | in
𝑖 | + 𝑘(𝑖,𝑖) +

∑
𝑗∈ out

𝑖

|1 + 𝑘(𝑖,𝑗)| ≤ −𝑟

⎫⎪⎬⎪⎭ . (36)
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Theorem 2 indicates that if 𝐾𝑖 is included in out
𝑖 defined by (36), (33b) holds. Therefore, the following optimization problem

is a convex relaxation of (33):

minimize
∑
𝑖∈

‖𝑘𝑖‖2
subject to 𝐾𝑖 ∈ out

𝑖 defined by (36).
(37)

Then, we can obtain the following theorem:

Theorem 3. Let 𝑘𝑖 be the optimal solution of (37). Then, the following  and 𝑐𝑖(⋅) satisfy the convex relaxation of (33):

 = {𝑖 | 𝑘𝑖 ≠ 0}, (38a)

𝑐𝑖(𝑥̄𝑖, 𝑥pin) = 𝑘(𝑖,𝑖)(𝑥𝑖 − 𝑥pin) +
∑

𝑗∈ in
𝑖

𝑘(𝑗,𝑖)(𝑥𝑗 − 𝑥pin). (38b)

Proof. Based on the above discussion, (37) is the convex relaxation of (33). Because the pinning nodes are given by the node
whose feedback gain in the controller is not zero,  is obtained as (38a). By substituting 𝜂𝑖 = 𝑥𝑖 − 𝑥pin into (35), we obtain

𝑢𝑖 = 𝑘(𝑖,𝑖)(𝑥𝑖 − 𝑥pin) +
∑

𝑗∈ in
𝑖

𝑘(𝑗,𝑖)(𝑥𝑗 − 𝑥pin).

Because 𝑢𝑖 is expressed by (32), (38b) is obtained.

3.2 Optimal Vaccine Allocation Problem for Epidemic Spreading Processes
Let us consider networked susceptible-infected-removed (SIR) models to represent epidemic spreading processes over ,

where we assume that  is an undirected graph. In the networked SIR model, each node can be in one of three states: susceptible,
infected, or removed. Because susceptible nodes have no immunities, they may become infected if they are in contact with
infected nodes. The infected nodes become removed after they gain the immunities. Thus, the epidemic spreading process based
on an SIR model is expressed as

𝑆̇𝑖 = −𝛽𝑖𝑆𝑖

∑
𝑗∈ in

𝑖

𝐼𝑗 (39a)

𝐼̇𝑖 = 𝛽𝑖𝑆𝑖

∑
𝑗∈ in

𝑖

𝐼𝑗 − 𝛾𝑖𝐼𝑖 (39b)

𝑅̇𝑖 = 𝛾𝑖𝐼𝑖, (39c)

where 𝛽𝑖 > 0 and 𝛾𝑖 > 0 denote infection and recovery rates. In (39), 𝑆𝑖, 𝐼𝑖, and 𝑅𝑖 ∈ [0, 1] express probabilities such that node
𝑖 is susceptible, infected, or removed, respectively. Thus, 𝑆𝑖 + 𝐼𝑖 + 𝑅𝑖 = 1 holds.

Let us consider an optimal vaccine allocation problem for stabilizing (39). Note that (39) is a positive system and 𝑅𝑖 ≥ 𝑅𝑖(0)
holds for all 𝑖 ∈  because 𝑆𝑖, 𝐼𝑖, and 𝑅𝑖 ≥ 0 hold for all 𝑖 ∈  . Thus, by (39b) we obtain

𝐼̇𝑖 ≤ −𝛾𝑖𝐼𝑖 + 𝛽𝑖
∑

𝑗∈ in
𝑖

𝐼𝑗 + 𝑢𝑖 (40a)

𝑢𝑖 = −𝛽𝑖𝑅𝑖(0)
∑

𝑗∈ in
𝑖

𝐼𝑗 (40b)

for all 𝑖 ∈  . In general, it is assumed that 𝑅𝑖(0) = 0 for all 𝑖 ∈  because no one gains immunity. However, the nodes can
gain immunity after vaccination, which indicates that we design 𝑅𝑖(0) by using the vaccines. Let us design a feedback controller
(40b), which stabilizes (39b) by selecting 𝑅𝑖(0). Define 𝑘𝑖 and 𝐼 as

𝐼 = [𝐼1,… , 𝐼𝑁 ]⊤ , [𝑘𝑖]𝑗 =

{
−𝛽𝑖𝑅𝑖(0) (𝑖, 𝑗) ∈ 
0 otherwise

, [𝐴]𝑖,𝑗 =

⎧⎪⎨⎪⎩
−𝛾𝑖 𝑖 = 𝑗
𝛽𝑖 (𝑖, 𝑗) ∈ 
0 otherwise.

(41)
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Then, (40b) and (40) can be expressed as 𝑢𝑖 = 𝑘⊤𝑖 𝐼 and

𝐼̇(𝑡) ≤ 𝐴𝐼(𝑡) + 𝐵𝑢(𝑡) , 𝑢(𝑡) = 𝐾𝐼(𝑡).

Hence, we can obtain the following equation from the comparison principle29:

𝐼(𝑡) ≤ exp ((𝐴 +𝐾)𝑡) 𝐼(0). (42)

Thus, we can stabilize (39b) by selecting 𝑅𝑖(0) such that 𝐴 + 𝐾 becomes a stable matrix. We then minimize the vaccinations
for the stabilization of (39b). We can evaluate the amount of vaccination as

𝑁∑
𝑖=1

𝐼(𝑅𝑖(0)). (43)

In summary, the optimal vaccine allocation problem is formulated as follows.
Problem 3. For system (39b), the structure of controller (40b) is given. Then, we determine 𝑅𝑖(0) for all 𝑖 ∈  such that

minimize
𝑁∑
𝑖=1

𝐼(𝑅𝑖(0)) (44a)

subject to 𝜆max(𝐴 +𝐾) ≤ 0
0 ≤ 𝑅𝑖(0) ≤ 1 for all 𝑖 ∈  . (44b)

Let us solve problem 3 by using Theorem 2. According to (16) and (25), 𝐾𝑖 and out
𝑖 for (40) are given by

𝐾𝑖 ∶=
[
𝑘⊤𝑖 , row

{
𝛽𝑗𝑅𝑖(0) | 𝑗 ∈  out

𝑖

}]⊤ .out
𝑖 =

⎧⎪⎨⎪⎩𝐾𝑖| − 𝛾𝑖 +
∑

𝑗∈ in
𝑖

𝛽𝑗(1 − 𝑅𝑗(0)) ≤ 0

⎫⎪⎬⎪⎭ . (45)

Let us consider the following optimization problem

minimize
∑
𝑖∈

‖𝑘𝑖‖2 (46a)

subject to 𝐾𝑖 ∈ out
𝑖 defined by (45)

0 ≤ 𝑅𝑖(0) ≤ 1 for all 𝑖 ∈  . (46b)

Then, we can obtain the following theorem:

Theorem 4. The optimization problem (46) is a convex relaxation of (44), and we can obtain𝑅𝑖(0) that satisfies (44b) by solving
(46).

Proof. Because 𝑘𝑖 is defined by (41), ‖𝑘𝑖‖2 = 𝛽𝑖𝑅𝑖(0)| in
𝑖 | holds, indicating that ‖𝑘𝑖‖2 = 0 if and only if 𝑅𝑖(0) = 0. Thus, the

amount of vaccination can be expressed as
𝑁∑
𝑖=1

𝐼(𝑅𝑖(0)) = ‖𝑘‖2,0.
Hence, (46a) is a convex relaxation of (44a). Theorem 2 indicates that (44b) holds if (46b).

4 NUMERICAL SIMULATION

4.1 Pinning Controller Design
In this section, a numerical simulation is performed to demonstrate that Theorem 3 solves problem 2. The pinning node design
shown in problem 2 is an application of problem 1. We consider pinning control over the network illustrated in Fig. 1. By solving
(37) using distributed ADMM (27)–(29), we can obtain the feedback gains illustrated in Fig. 2). We can confirm that the pinning
node changes the consensus value from Fig. 5).

Let us consider the consensus system and pinning controller expressed by (30) and (32), respectively. The network utilized in
(30) and (32) is a scale-free network, as shown in Fig. 1). We generate the network illustrated in Fig. 1 using the Barabási-Albert
(BA) model30. The new consensus value 𝑥pin and convergence rate 𝑟 are given by 𝑥pin = 1 and 𝑟 = 0.92, respectively.
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FIGURE 1 Scale-free networks generated by BA model. Yellow
cycles denote the pinning node determined by (38a).

FIGURE 2 Network  represents feedback gains in (38b).
The width of each edge is proportional to |𝑘(𝑗,𝑖)|. The yellow
cycles represent the pinning nodes, and the size of each node is
proportional to |𝑘𝑖|.

Based on the above setting, we design a pinning controller using Theorem 3. The optimization problem (37) is solved by using
the distributed ADMM expressed by (27)–(29) with 𝜌 = 0.5. Figure 3 shows the 𝑙2∕𝑙1 norm solved by the distributed ADMM
and the centralized calculation using IBM CPLEX. We can confirm that our proposed algorithm can calculate the optimal 𝑙2∕𝑙1
norm of the feedback gains. Figure 4 shows the 𝑙2 norm of the feedback gains in each node, where the yellow and blue lines
denote the pinning and other nodes, respectively. The optimal solutions plotted in Fig. 4 represent the 𝑙2 norm of the pinning
nodes calculated from the centralized calculation using IBM CPLEX. We can also confirm that the proposed algorithm can
calculate the feedback gains for each node. Based on (38a), we determine the set of pinning nodes from Fig. 4). Fig. 4 indicates
that seven nodes are selected as the pinning nodes because 𝑘𝑖 ≠ 0. The nodes selected as the pinning nodes are plotted as yellow
cycles in Fig. 1). The feedback gains obtained from (37) are illustrated in Fig. 2). Let us define  ∶= ( , 𝑐) as the directed
graph illustrated in Fig. 2, where 𝑐 ∶= {(𝑖, 𝑗) | 𝑘(𝑖,𝑗) ≠ 0, (𝑖, 𝑗) ∈ }. The width of each edge in Fig. 2 is proportional to |𝑘(𝑗,𝑖)|.
The yellow cycles shown in Fig. 2 represent the pinning nodes, and the size of each node is proportional to |𝑘𝑖|.

Set 𝑘(𝑗,𝑖) is calculated from (37) to the gains in (38b). We designate 𝑥𝑖(0) for all 𝑖 ∈  as shown in Fig. 5. Fig. 5 depicts
the simulation result of system 3.1 with controller (38b), where the yellow and blue lines represent the time response of the
pinning and other nodes, respectively. If 𝑢𝑖 = 0, all the states in Fig. 5 converge to 𝑥con. However, we confirm that the pinning
nodes change from 𝑥con to 𝑥in. The maximum eigenvalue of the closed-loop system in this simulation becomes 𝜆max = −0.9082.
𝜆max > 𝑟 = −0.92 because we calculate the feedback gains by using the distributed ADMM. If we directly solve (37) by using
a centralized solver such as IBM CPLEX, we can obtain the exact solution that satisfies (12b).

4.2 Optimal Vaccine Allocation Problem
In this subsection, we present a numerical simulation of the optimal vaccine allocation using (46). Consider a networked SIR
model over a scale-free network with 200 nodes, as illustrated in Fig. 6. We generated the network illustrated in Fig. 6 using the
BA models. We randomly generate the infection rate 𝛽𝑖 and recovery rate 𝛾𝑖. In the numerical simulation without the vaccinations,
we set 𝑅𝑖(0) = 0, 𝐼𝑖(0) = 0, and 𝑆𝑖(0) = 1 for all 𝑖 ∈  ⧵ {1}. We then specify the initial states of node 1 as 𝑅𝑖(0) = 0,
𝐼𝑖(0) = 0.01, and 𝑆𝑖(0) = 0.99. Thus, Fig. 7 indicates a time response of 𝐼(𝑡). From Fig. 7, we can confirm an increase in
infected nodes if there exist no nodes with immunity. To prevent the increase in infected nodes, we consider the optimal vaccine
allocation using (46). Fig. 8 indicates a time response of 𝐼(𝑡), where some nodes take the vaccinations. In contrast to Fig. 7,
we can confirm that the vaccinations prevent an increase in infected nodes from Fig. 8. The initial states of the removed nodes
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FIGURE 3 Time response of objective function value. The
optimal value in this figure indicates the value of the objective
function solved by the centralized calculation.
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FIGURE 5 Time response of consensus system with pinning controller

𝑅𝑖(0) calculated from the optimization problem (46) are shown in Fig. 6, where the size of each node is proportional to 𝑅𝑖(0).
In this simulation, we obtain

∑
𝑖∈ 𝑅𝑖(0) = 94.521 from the vaccine allocation problem (46), which indicates that 47% of the

nodes should receive vaccinations.

5 CONCLUSION

This study applies block sparse optimization to design the controllers of dynamical network systems. Block sparse optimization
can minimize the number of controlled nodes with the given convergence rates. A remarkable feature of this result is that 1) the
structure of the controller is constrained by the network topology of the system, and 2) the proposed design problem is convex
and separable in terms of a distributed optimization over networks. As an application, this study presents a controller design for
the pinning control of consensus systems.
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FIGURE 6 Scale-free networks generated using the BA model. The size of each node is proportional to 𝑅𝑖(0). The yellow cycles
indicate that 0.9 < 𝑅𝑖(0) ≤ 1. The red cycles indicate that 0.5 < 𝑅𝑖(0) ≤ 0.9. The blue cycles indicate that 0.0 < 𝑅𝑖(0) ≤ 0.5.
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FIGURE 7 Time response of 𝐼(𝑡), where 𝑅𝑖(0) = 0 for all
𝑖 ∈  .
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𝑖 ∈  is given as the solution to (46).
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