
Software maintenance tools selection and implementation
A case study based analysis

Authors:

Klara Jakobsson

Matilda Wiklund

Supervisor:

Jordi Olivella

Research Assignment

Universitat Politècnica de Catalunya

Barcelona, 2022/23

1

Acknowledgements

We would like to thank our supervisor Jordi Ovella for valuable feedback and help with our

research. It has been an inspirational and educational journey that opened up new areas of

interests for us. We would also like to thank all the participants in our case study for sharing

your knowledge and reflections with us.

2

Abstract
This study investigates the reasoning in selection and implementation of software

maintenance methods and tools and identifies potential barriers for successful adoption. This

is done through qualitative interviews with practitioners of software maintenance in industry

and in accordance with the existing literature. One main reason was found why a certain

maintenance tool was chosen, the usability of the tool. However, the popularity of the tool

was also a contributing factor for tool selection. Furthermore, three key issues were identified

for successful implementation and adoption of the tools: limited awareness of the tool's

availability, confusion about its intended usage, and lack of understanding on how to properly

utilize it. It is left to the practitioners and stakeholders to weigh and evaluate the significance

of the individual reasons. The study is based on empirical data collected over the four months

the study lasted and is intended to contribute to the overall knowledge of software

maintenance management, processes, and tools.

Keywords: Software Maintenance, Software Maintenance Tools, Software Evolution,

Software Maintenance Processes, Software Product Management, SonarQube.

3

Wordlist
● Technical debt/Tech debt - A metaphor to describe the effect of immature artifacts on

software maintenance that contributes to short-term benefit to projects in terms of

increased productivity and lower cost, but that might have to be paid off with interest

later (Alves et al., 2016).

● Bad smells - Indicators of bad code in an object-oriented (OO) context. The bad smell

is supposed to help developers decide when software needs refactoring (Mantyla et

al., 2003).

● CI - Continuous Integration, which means frequent merging of several small code

changes into a main branch.

● Cyclomatic Complexity - McCabe’s cyclomatic complexity metric is a measure of the

maximum number of linearly independent circuits in a program control graph. One of

the primary purposes of the metric is to identify software modules that will be

difficult to test, hence, particularly interesting both for researchers and practitioners

concerned by software maintenance (Gill & Kemerer, 1991).

● DevOps - A software engineering methodology used to facilitate collaboration and

shared responsibility between software operations and development by integrating

their work. It aims to provide continuous delivery with high quality and can be a

complement to agile software development.

● Integrated Development Environment (IDE) - A software application that offers

several tools to programmers for software development directly in the environment.

Source code editor, compiler, debugger, and build automation tools are examples of

tools provided by an IDE. The toolbox differs between different IDEs.

● Bugs - Errors, flaws or faults in the design, development or operation of a software

that lead to unexpected and unwanted results or behaviors.

● Refactoring - Improving and restructuring code without changing the external

behavior.

● Regression Testing - A method within software testing that aims to test the system

when new functionality is developed. The regression tests run after every change to

deal with the emergence of old bugs when new code is introduced.

● Software Maintenance - Working with and developing a software without adding new

functionality to increase its quality.

4

Table of Content
1. Introduction 5

2. Concepts 6
2.1 Software Evolution 6

2.1.1 Architecture-Driven Modernization 6
2.2 Software Maintenance 7

2.2.1 Maintenance Tools 9
2.2.2 SonarQube 10

3. Literature 12

4. Objectives 15
4.1 Research Questions 15
4.2 Delimitation 15

5. Methodology 17
5.1 Literature Review 17
5.2 Case Study 17

5.2.1 Practical Maintenance Work 17
5.2.2 Interviews 18

6. Fieldwork findings 20
6.1 Company overview 20

6.1.1 Description of the company 20
6.1.2 Organizational structure and roles related to software maintenance 21
6.1.3 The company's software maintenance processes and practices 21

6.2 Practical Maintenance Work 21
6.3 Interviews 22

6.3.1 Interviewee 1 22
6.3.2 Interviewee 2 23
6.3.3 Interviewee 3 23
6.3.4 Compilation of interview findings 23

7. Discussion 32

8. Conclusions 37
9.1 Recommendations for the company 38
9.2 Future Research 40
9.3 Threats to Validity 40

References 42

5

1. Introduction

Software systems need to evolve to stay up to date with current requirements and not lose

market share to competitors (Lehman et al., 1997). Faulty software systems cost a lot

monetary wise, are time-consuming, and can be a source of security vulnerabilities. Besides

this, customer needs are changing over time, the code base gets larger, and technology

evolves. Thereby, released software needs to evolve over time and be maintained.

Maintaining large systems is difficult, complicated, and time consuming. Adding new

features and fixing defects become more complicated as time goes by and as the software

system grows (Godfrey & Tu, 2000). A lot of software development resources are put on

maintenance, where maintenance tools are helpful for effective maintenance processes.

However, the gap between software research proposals and industry practices has been found

to be large. Research does not know how industry works with maintenance and the industry

does not follow what is suggested by research (Ferreira et al., 2021).

Several tools have been developed to make the maintenance work more effective. These tools

are more or less automated and can improve the software quality if a suitable tool is chosen

and successfully adopted. The question is why a certain tool is chosen and what barriers there

are for successful implementation and adoption? By answering this, many software systems

would live longer.

6

2. Concepts

This section provides the theoretical background of the study. Firstly, the concepts of

software evolution and software quality are defined followed by a presentation of the most

commonly used software evaluation and maintenance tools of today. Lastly, the software tool

mainly focused on in this study, SonarQube, is introduced.

2.1 Software Evolution

Software systems are constantly evolving as the evolution of user requirements can not be

predicted. Delivered systems are never complete and will change and grow with time to not

get obsolete. Software evolution aims to ensure functional relevance, reliability, and

flexibility of a system. Every time a change is made, or a new piece of code is added, the

software evolves. The software evolution process can be fully manual or partially to fully

automated, depending on how much of the activities are made by human developers or

autonomous tools. Lehman (1980) linked the behavior of real-world systems strongly to the

environment in which they run, where these systems need to adapt to non-constant

requirements and circumstances in their specific environment. The eight observations are

referred to as Lehman’s Laws and predict that the need for functional change is inevitable.

Changing a software system is not a consequence of insufficient requirements analysis or

inadequate programming, but fully natural. However, a growing code base also increases in

complexity if no refactorization is made (Lehman, 1980).

Lehman’s case studies of large software systems suggest that it gets more difficult to add new

code as the system grows and that reorganizing the system design is a way of coping with this

problem (Lehman et al., 1997). Turski’s statistical analysis of Lehman’s case studies (Lehman

& Beladi, 1985) suggests that software systems grow at a slower pace as it gets more

complex and larger (Turski, 1996).

2.1.1 Architecture-Driven Modernization
Architecture-Driven Modernization (ADM) is a concept presented by a task force within the

international technology standards consortium named the Object Management Group (OMG).

ADM is described as the process of understanding and evolving existing software assets for

the purpose of software improvement, modifications, interoperability, refactoring,

7

restructuring, reuse, porting, migration, translation into another language, enterprise

application integration, service-oriented architecture, and Model Driven Architecture (MDA)

migration. Modernization starts when the current system and processes fail to deliver against

the requirements. The mission of the ADM task force is to develop specifications and work

towards industry consensus on modernization of software in use (Object Management Group

[OMG], 2012).

2.2 Software Maintenance

Software system quality usually degenerates as the system is subjected to changes during the

course of its lifetime, hence maintenance is a necessity. Ideally, maintenance planning should,

according to the international software maintenance standard by IEEE (2022) begin during

planning for software development. Software evolution and maintenance are characterized by

their huge cost and slow speed of implementation but all successful software needs it

(Bennett & Rajlich, 2000). For instance, Mantyla et al. (2003) states that “Microsoft uses

20% of its development effort to re-develop the code base of its products.” It is needed to

correct faults, adapt the software product to a modified environment and improve

performance.

Software maintenance is the collective term for changing, modifying, and updating software

after the system or product has been delivered. The objective of the maintenance process is

mainly to keep up with requirements derived from customers’ needs. Any successful piece of

software needs to be maintained, and over 90 % of the costs of a system typically arises in the

maintenance phase (Brooks, 1975). A system’s or product’s maintainability is a measurement

of how effective and efficient it can be modified. When proposing change to a service or

product, the information and description is called a modification request or a change request.

These requests can be classified as different types of maintenance to enable application of

problem prioritization methods, root cause analyses and failure recurrence prevention

(Swanson, 1980). Swanson (1980) divided software maintenance of a system into three

different types, based on the maintenance intentions:

● Adaptive maintenance, which is to adapt to changes in the data environment or

processing environment, i.e., keeping the software usable after delivery and in pace

with the changing environment.

8

● Corrective maintenance, which is to correct processing, performance, or

implementation failures.

● Perfective maintenance, which is to perfect performance, processing efficiency, or

maintainability, as well as providing enhancements for users.

More recently, ISO/IEC/IEEE (2022) have extended this division further, by first splitting up

modifications into either a Correction or an Enhancement, to then split each classification

into subtypes of maintenance, where Adaptive maintenance can belong to both parent types.

● Correction, which is to make changes that make the software meeting defined

operational requirements.

○ Corrective maintenance, which is defined by Swanson above.

○ Preventive maintenance, which is to correct latent faults in the software after

delivery before they occur in the live system.

○ Adaptive maintenance, which is defined by Swanson above.

● Enhancement, which is to make changes that make the software meeting new

requirements.

○ Additive maintenance, which is to add functionality or features to enhance the

usage of the software after delivery.

○ Perfective maintenance, which is defined by Swanson above.

○ Adaptive maintenance, which is defined by Swanson above.

However, ISO/IEC/IEEE (2022) highlights that the practices differ between different

organizations. For example, adaptive is not considered an enhancement in some

organizations. Each type can also be divided into “scheduled”, “unscheduled” and

“emergency”. Another alternative is to classify them as “reactive” or “proactive”

maintenance, where corrective and adaptive types fall under reactive, while preventive,

perfective, and additive count as proactive. (ISO/IEC/IEEE, 2022) In general, the software

maintenance procedures followed in practice lack clear definitions. Reports show that few

organizations adopt a separate maintenance process since they struggle with distinguishing

software maintenance from software development. (Khan et al., 2001)

The three key elements of software maintenance are the people involved, the supporting

tasks, and the knowledge about the software product. These three are interrelated and

interdependent and vary in importance between different projects. The supporting tasks

9

should be well defined and each task requires one or more components. A task performs a

function and supports activities of other tasks which all aim to achieve the predefined

objectives. Each task is implemented by certain methods, and the methods are supported by

human interactions and automatic tools (Khan et al., 2001). The tools will be further

described in the following section, 2.2.1 Maintenance Tools.

2.2.1 Maintenance Tools

A lot of different tools can be used for software maintenance even though all are not

specifically aimed for the maintenance process (Khan et al., 2001). Automated toolsets and

manual procedures can be used separately or combined to support the tasks but many

environments in software engineering lack functionality for successful integration and

coordination of the tools within a project (Sharon et al., 1997). This integration and

coordination of tool environments with software projects has been raised as an important

challenge by research (Khan et al., 2001).

The applicability of the tools is another critical aspect, since they must be easily adapted to

many types of projects if the maintenance process should be kept operative for a long time.

Another important aspect is that the maintenance tools must fit into the maintainers’ culture

and support the techniques and methods used by the programmer. Otherwise, the acceptance

for and the adoption of the tools can be difficult (Khan et al., 2001).

There are many different types of activities that fall under the definition of software

maintenance. Ferreira et al. (2021) mentions a few: change impact analysis, log of

modification requests, modification of code and other artifacts, program comprehension,

reverse engineering, measurement, migration, tests, training, and daily support. The

high-level software maintenance process shown in Table 2 focuses on how various tasks are

performed in the maintenance-related chain. Table 2 is a two-dimensional matrix where the

first column shows all components required for a given task. Each of the remaining columns

maps to individual tasks and their required components.

10

Table 2: Applied version of tasks of Software Maintenance Process Infrastructure, Khan et al., 2001

Software Maintenance Tasks

Components
of the tasks

Maintenance
Requirements
analysis

Determination Program
comprehension

Localisation
and impact
analysis

Generating test
cases

Objectives Trigger of the
process
enactment

Examines the
technical
feasibility

Understanding
semantics and
architecture of
the software

Identifying
program
location and
ripple effects

Tests cases
defined for
proposed
changes

Sources of
input

Program
execution at the
operational
suite Real users
of the system

Requirements
specification,
knowledge on
software and its
nature and
characteristics,
organizational
policy, status of
tools and staff
ability

Source code,
Information
from original
designer and
programmers
readable from
program
documents

Requirements
specification,
source code,
class hierarchy,
function call
sequences, data
structures, data
file format

Req.spec.
sources code
function names,
variables used

Output Refined
maintenance
requirement
specification

Requesting to
filter req. spec.
termination
message,
filtered
requirements,
primary
knowledge
about the
software

Recovered
system design
artifacts,
Program
domain

Function
names,
variables
declarations

Test data,
program path
spec.

Methods Interviews,
Prototyping

Verify
requirements

Program walk
through,
Program
slicing,
Execution of
program

Program walk
through,
program
slicing,
execution of
program

Regression
testing, quality
control

Tools Not specific Cost estimation
software

Reverse
engineering,
Design
recovery,
Debugging,
Static analyser

Code analyser,
Design
recovery,
Reverse
engineering
tools

Test tools

2.2.2 SonarQube
SonarQube is the most frequently used software maintenance tool in industry with more than

85.000 organizations using it (Lenarduzzi, 2020). It is an automatic static analysis tool, which

is useful for improving internal quality attributes as code violations are revealed in a cost

efficient way since there is no need to run the program.

11

Automatic static analysis tools like SonarQube can be used to automatically highlight

performance bottlenecks, identify refactoring opportunities, detect security vulnerabilities,

and bad programming practices like code smells (Marcilio et al., 2019). SonarQube analyzes

code compliance according to defined rules. If some code violates any of these rules, an

estimation of the time needed for refactoring that code is added to the technical debt. Some of

the rules are identified as “bugs”, which means that they are wrong in some way that soon

will be seen as a fault (Lenarduzzi, 2020). SonarQube claims that no false positive bugs are

expected at all and is a tool that can analyze more than 30 programming languages and be

integrated to the continuous integration (CI) pipeline and DevOps platform (SonarQube,

2023).

Static analysis is included in one of the important principles of CI called continuous

inspection. The static analysis should, together with other assessments, be done every time

the software changes. There are many benefits with using automatic static analysis tools, but

also some challenges. One challenge is the often large amount of false positive code

violations, which Johnson et al. (2013) reported to be thousands of. Another challenge is to

find the defects considered worth fixing, since developers often ignore violations as a praxis

(Wang et al., 2018).

12

3. Literature

In this literature review section of the report, we will provide an overview of the most

relevant and similar works that have been conducted on the topic at hand. The main objective

of this section is to present a comprehensive analysis of the existing literature in order to

identify the key findings and limitations that have been previously reported. This review will

provide a detailed examination of the methods, results and conclusions of the most similar

works, and has been used to form the objectives and design of this study.

Software evolution and software maintenance are broad areas of research that have been

studied for more than 30 years. Lehman et al. (1980, 1985, 1987) have built the most

extensive and widespread body of research on software evolution for large, long-lived

software systems. By several case studies of large software systems, Lehman (1997) could

present his laws of software evolution, suggesting that as systems grow, the difficulty of

adding new code increases unless the overall design is reorganized. Bennett and Rajlich

(2000) made a roadmap for software maintenance and evolution by investigating how

software can be designed to easily evolve. Their work contributed to better conceptualization

of “maintainability” and how it should be measured. This allows for more effective methods

and tools for program comprehension for both code and data. They also discuss that research

makes progress regarding self-modifying systems, self-testing systems, and highly adaptive

architectures, which calls for a large scope of research in this area.

Previous work has also been done on automatic static analysis tools and how they are used in

industry. Based on research suggestions that these tools are underused, Johnson et al. (2013)

investigated why developers do not use them and how these tools could be improved.

Through interviews with 20 developers, they found that all participants thought the tools were

beneficial to use, but that the main barriers were the false positive issues and the way the

warnings were presented.

As SonarQube is the most frequently used maintenance tool, some studies have been focused

on this specific tool. Lenarduzzi et al. (2020) got in contact with some companies that were

dubious about the usefulness of the rules SonarQube proposed and investigated the

fault-proneness of these rules. They conducted an empirical study on 21 open-source projects

and applied a machine learning algorithm to label the fault-inducing commits. Based on their

13

results, they suggest that the fault-prediction power of SonarQube’s own model is extremely

low and thereby suggest that companies should carefully consider which rules to apply.

According to Ferreira et al. (2021), there is a lack of understanding among researchers about

how practitioners actually perform maintenance tasks. Consequently, practitioners become

disconnected with new relevant research and researchers miss important industry

information. And ultimately, this results in collaboration difficulties due to differences

between different cultures and time perspectives. Hence, Ferreira et al. (2021) investigated

the growing gap between software maintenance theory and the practitioners performing the

maintenance tasks in practice. The results imply that more effort is needed to develop proper

tools and methods for software maintenance, particularly in change impact analysis and

software measurement.

Ferreira et al. (2021) employed survey questionnaires as a methodology to gather data from

112 software practitioners from 92 companies and 12 countries. While this approach allowed

for a broad range of information to be obtained, it did not permit a detailed examination of

the subjects. The use of quantitative methods such as survey questionnaires can lead to

limitations in data interpretation, as the respondents may interpret the questions in ways not

intended by the researcher. In contrast, the utilization of qualitative methods, such as

interviews, would permit a deeper understanding of the subjectively experienced or perceived

factors that influence the behavior, motivations, attitudes and priorities of the participants,

which may not be captured by quantitative surveys.

This research builds upon Ferreira et al. (2021) examination of the utilization of software

maintenance tools by practitioners, and how it compares to the literature. However, in this

study, the approach employed will be qualitative interviews, as opposed to the use of

questionnaires in the prior research. Similar to Ferreira et al. (2021), this study focuses on the

gap between theory and practice in software maintenance, however, this research is further

narrowed down by comparing the theory with the most frequently used maintenance tool in

practice, namely SonarQube. The comparison generates an overview of what literature

suggests regarding maintenance and what the actual practitioner is able to conduct using the

SonarQube tool. Furthermore, finding out more about the underlying reasons for choosing a

specific maintenance tool together with barriers for successful implementation and adoption

of it.

14

To summarize, the most relevant and similar work will be applied in this report by:

● Comparing Johnson et al. (2013) interview findings about why automatic static

analysis tools like SonarQube are not being used. This is done by identifying barriers

for successful implementation and adoption for software maintenance tools through

qualitative interviews.

● Analyzing if Lenarduzzi et al. (2020) investigation on the fault-proneness of

SonarQube also applies in the software company studied in this case. Through

interviews the satisfaction rate of SonarQube is examined in addition to the reasoning

why or why not the tool is being used.

● Further research the gap between software maintenance theory and the maintenance

tasks in practice examined by Ferreira et al. (2021) by conducting qualitative

interviews with practitioners. As software maintenance is such a costly and critical

affair, it can be of interest for practitioners to minimize the gap to be able to develop

the optimal software product.

The limitations of the previous literature stated are synthesized into the objectives of this

report and are presented in the following section.

15

4. Objectives

This research studies the selection and implementation of software maintenance techniques

and methods by investigating how developers within a certain software company approach it.

The purpose is to find underlying reasons why specific maintenance tools and methods are

chosen and identify potential barriers regarding its implementation and adoption.

Furthermore, finding out if there are any power balances within the studied organization that

affects these processes. This study can contribute to a deeper understanding of how

practitioners select and use software maintenance tools in industry today and how it aligns

with the software maintenance research.

Through qualitative interviews with people working with software maintenance, this study

aims to find key factors associated with successful implementation of methods proposed by

maintenance theory. This case study will therefore contribute to a greater understanding of

software maintenance tools used in practice and reasons why they are prioritized or not.

4.1 Research Questions

To achieve the purpose of the study, the following research questions were investigated:

Q1: What are the underlying reasons why a software maintenance tool is chosen?

Q2: What are the barriers for successful implementation and adoption of a software

maintenance tool?

Q3: How does the software maintenance process in industry compare with the process

described in literature when utilizing maintenance tools?

4.2 Delimitation

In this case study, the delimitation were as follows:

● The focus was on the selection and implementation of software maintenance tools in a

single software company. The findings of this study may not be generalizable to other

organizations or industries.

● The study only considered tools specifically designed for software maintenance,

rather than broader project management or development tools.

● The study did not examine the maintenance processes or strategies of the company,

only the tools used to support those processes.

16

● The study did not consider the training of the tools by the company's employees, only

the selection and implementation process.

● The case study did not consider the financial cost or return on investment of the

selected tools.

17

5. Methodology

This section describes how the study was conducted. The study was built upon a literature

review followed by a case study of how maintenance tools are selected, implemented, and

used in a software company. Thereby, the method can be described as consisting of two parts

that are interconnected and discussed to reach a conclusion.

5.1 Literature Review

The literature review allowed us to identify gaps in the existing literature and to establish the

context for our study. By comparing our results with those of similar works, we will be able

to assess the consistency of our findings and to identify any discrepancies that may need

further exploration. Ultimately, this literature review serves as a foundation for this study, and

helps to ensure that the research is well-informed and relevant to the existing body of

knowledge.

The literature was found through the search engines Scopus and Google Scholar by using the

following keywords: software maintenance, software maintenance tools, sonarqube, software

evolution, software maintenance process and software quality tools. Additional literature was

found by using literature that the literature from our search hits referred to.

5.2 Case Study

The second part is the case study that was conducted in a software company where the

external software quality evaluation tool SonarQube was used, which is the tool this study

focuses on. The case study consists of two parts, one is practical maintenance work, guided

by one of the software developers within the company, and the other part is qualitative

interviews with two employed software developers. Another interview was made with a

software maintenance researcher who also has industry experience. This respondent

contributed with an external perspective and additional insights of the subject.

5.2.1 Practical Maintenance Work

To understand how the studied organization works with software maintenance in practice and

how the automatic tools are used, one of the employed software developers showed us how it

18

usually is done in their organization. The practical work with the code was performed by

focusing on one code component at the time and investigating its quality state with

SonarQube. Based on the tool’s analysis, the code components that were graded as of lower

quality could be detected and refactored. These parts contained code smells, bugs, high levels

of complexity, unused lines of code, or parts that were not covered by any test case. When

code like this was detected, we made a refactoring attempt or a general suggestion for how to

improve the code quality. Then, the software developer chose what to change and implement

or not. We only got a read license to ensure that we would not make any changes that could

harm any internal principles or practices.

After the refactorizations, the quality score provided by SonarQube was revisited, to ensure

that improvements were made. Insights into the maintenance techniques used in practice and

the subjects covered by the tools could then be used for comparison with the framework

based on research findings. The discrepancies formed a basis for the discussion and

conclusion.

This second part of the method can at first sight be interpreted as action research since we

performed practical work with the source code. However, the setting is natural and

unobtrusive since we do not control or change any variable that is studied. In this research,

the variables are the subjects covered by the maintenance tools and techniques used by the

software company, and not the actual code that we work with. Thereby, the method can be

classified as a case study that falls in the “field study” concept described by Stol and

Fitzgerald (2018). This study will consequently be realistic and aimed for contributing to a

greater understanding of software maintenance tools used in practice and on the gap between

research suggestions and industry practices. However, the results will not have any precise

measurement qualities and the findings will not be generalizable due to the inherent

limitations of this research method.

5.2.2 Interviews

Three qualitative, semi-structured interviews were conducted where some open-ended

questions were prepared beforehand, and other questions were asked based on previous

answers. The interviews opened up for these follow up questions and discussions to allow the

interviewee to share their views and to allow for a deeper understanding of the subject. The

19

participants were asked beforehand to give their consent to record the interviews. All

participants gave their approval, which enabled the transcription presented in the results. The

interviewees were hand-picked based on their working or research area. Another four persons

were invited for interviews but either denied our request or did not respond.

In order to get a well-rounded understanding of the subject of software maintenance, it was

important to include a diverse range of perspectives. That is why the interviews were

conducted with three individuals who research and work with software maintenance in

different ways and at different levels. To see an overview of the respondents occupational

profession, see table 1.

The first interviewee is a researcher and teacher in software maintenance. Their academic

background and experience in teaching others about the subject provided valuable insights

into the theoretical and educational aspects of software maintenance. The second interviewee

is a team leader who manages a group of developers responsible for maintaining a complex

system. They brought a strategic perspective to the discussion, explaining how they prioritize

and plan for maintenance tasks within their organization. The third interviewee is a junior

developer who works on the front-line of software maintenance, fixing bugs and

implementing new features on a daily basis. Their hands-on experience provided valuable

insights into the day-to-day challenges and solutions of software maintenance.

Overall, the diverse perspectives of these three interviewees gave a comprehensive

understanding of the various aspects of software maintenance, and their insights were

valuable in the study.

Table 1: Interview respondents.

Respondents Professional role

Interviewee 1 Software researcher

Interviewee 2 Software developer

Interviewee 3 Software developer

20

6. Fieldwork findings

This section describes the results from the case study that was made in a mid sized software

company to find out more about software maintenance work in practice and how tools are

used and viewed upon by software developers within such an organization. The results are

divided into three parts, the first part is an overview of the company examined, the second

constitutes practical maintenance work and the third part is the result generated from the

qualitative interviews.

6.1 Company overview

The following section provides an in-depth look at the anonymous software company that is

the focus of this study. The section begins by providing a general description of the company,

including its size, industry, and products or services offered. Next, the company's

organizational structure and the roles and responsibilities related to software maintenance

within the organization are explored. Finally, the company's software maintenance processes

and practices, including the tools and methods used to maintain its software, are examined.

6.1.1 Description of the company
The anonymous technology company that is the focus of this study is a medium-sized,

fast-growing company that specializes in providing delivery solutions for retail and

distribution companies. The company connects, empowers and makes delivery networks

available and smarter for its clients, which include some of the most well-known and

respected brands and market leaders in the industry. The company is based in Sweden but has

expanded to several other countries, with more than 500 employees.

The company places a strong emphasis on creating a human-centric and award-winning

culture, and believes that businesses have a key role to play in striving towards a sustainable

future. The company's culture is focused on self-leadership, trust, and empowerment. The

company's success is explained to be driven by the people who work there, and the

organization encourages everyone to lead and make a difference. The company's

communicated mission is to be part of the solution for better commerce and a better world.

21

6.1.2 Organizational structure and roles related to software maintenance
The organization is flat and consists of self-leading agile teams. All teams consist of software

developers and more application and customer consultancy related together with project

management roles. Most of the teams work with delivering software solutions for customers’

supply chains, but there are also teams working with R&D and development of new services

and maintenance of existing systems. All the delivering teams work with development of

customized solutions for their customers, but do not have any dedicated software

maintenance role.

6.1.3 The company's software maintenance processes and practices
Software evolution and maintenance projects are conducted within the company, for example

software modernization in terms of migration to new architectures, protocols, and

performance optimizations. The organization has licences for the software maintenance tool

SonarQube and has ongoing processes with considering new tools to buy. Besides this, there

is a mantra for the software developers throughout the organization about leaving the code

nicer than you found it, which is commonly known as “the boy scout rule”. No explicit

specification of their maintenance process was found.

6.2 Practical Maintenance Work

The organization uses the maintenance tool SonarQube, which is the tool described in 3.4.1

SonarQube. A software developer within the studied organization taught us how to use the

tool according to how they use it. The way we got taught was by using a local instance of

SonarQube and start by looking at an overview of the different code components and their

quality grades. From here, we filtered out the ones with a lower quality grade. Out of the

components with lowest quality, we looked into one at the time.

At this stage, the tool displayed the issues found in the code together with an estimation of

the time effort it would take to fix it. The estimated time was shorter than the time it actually

took, but that was expected since we do not work with code on a daily basis. SonarQube

divided the issues into bugs, vulnerabilities and code smells. An explanation why the pointed

out code part was problematic was also provided by SonarQube, sometimes together with a

suggestion for how to fix it.

22

After finding an issue to fix, we reached the component through the IDE and came up with a

fix locally. The software developer taught us that they normally make the code change on

their branch and push it to merge into the main development branch that is shared between all

the developers within the organization. From there, the code change is pushed to the test and

finally to the production environment, but there are stages of inspection in between. We did

not get into details about this process, but worth noting is that the practical work we did

included the extra step of writing a change suggestion in isolation, and then sending it to the

software developer who decided whether to implement it by fixing it in the real code project

or not.

The bugs SonarQube found were corrected, and the parts that were analyzed as too complex,

were refactored based on the theoretical principles of software quality, i.e., by unnestling

loops and methods, and reducing the coupling between classes. Furthermore, the code smells

were investigated and most of them were fixed. However, when SonarQube found code

smells that were considered as false, by being in line with the company’s principles, no action

was taken.

We found the interface to be user friendly and easy to learn. The tool started helping us

immediately and it was easy to find what we were looking for. Valuable information was easy

to find thanks to the interface.

6.3 Interviews

The following section outlines the result of the conducted qualitative interviews by first

presenting each respondent and then by summarizing the most relevant data collected from

the interviews.

6.3.1 Interviewee 1

The first interviewee, the researcher, has been working with maintenance tools and regression

testing and for the past 11-12 years. As a researcher, the main focus has been on analysis and

creation of tools rather than using them as a developer. The researchers’ main area within

software maintenance is quality testing and automated regression testing. Part of their role as

researcher is to investigate software tools that developers are using to improve their test

processes, making the testing more efficient and effective. The goal is to create tests that

23

make the users better by learning from the tools and becoming more creative developers. This

is done by providing useful information and data from the tests to improve development

skills.

6.3.2 Interviewee 2

The second interviewee has a broad developer role within the software company and has

worked in the field for more than ten years. Interviewee 2 work with, among other things,

coding, software infrastructure and currently in a maintenance project. Interviewee 2 has

experience of maintenance in their current position in terms of fixing bugs, making the

software components easier to understand and other general improvements. The software

Interviewee 2 works with is an application that has been maintained for 7 years, where

Interviewee 2 has been involved in the whole lifecycle of the application and experienced the

importance of it when seeing how everything changes both inside the system and outside in

the world. A lot of work has been made to adapt to the real world and to make the application

fit to the new circumstances and requirements alongside with software development in terms

of introducing new functionality.

6.3.3 Interviewee 3

The third interviewee is employed as a software developer within the software company and

has worked full-time with development for less than a year. Interviewee 3 does not actively

work with maintenance and describes an insecurity in how to do it and what it means.

Interviewee 3 works mainly with software development in terms of developing new

functionality and fixing code that does not work as intended. Besides this, interviewee 3

creates test cases for the code and recycles methods provided by an internal library in the

company. Interviewee 3 describes that no education within software maintenance is taught in

the organization and that they have not learned any processes for maintaining the code base

or assessing the code quality. The general view from the perspective of interviewee 3 is that

the code is good as long as it works, but that interviewee 3 is curious about learning more

about software maintenance.

6.3.4 Compilation of interview findings
The following tables provide summaries of the findings generated from the three interviews

conducted in the case study. Table 3 presents the answers of questions related to the selection

24

of tools, while table 4 provides the answers of questions related to the implementation and

adoption of tools. The tables are two-dimensional matrices where the first column shows all

questions asked to the corresponding research area. Each of the remaining columns maps out

the individual responses to each question.
Table 3: Interview results from selection of tools related questions

Question Interviewee 1 Interviewee 2 Interviewee 3

How does the
company organize
their software
maintenance? Who
is responsible for
it?

I don’t work in a
software company.

All software
developers in the
company are
responsible for
maintenance.
Developers work
actively by acting upon
the logs provided by
the tool SonarQube for
instance.

We have a distributed
model of maintenance.

Maintenance is not
dedicated to a single
person, team or area -
we work according to
the boys scout rule
“leave things prettier
than you found them”.

From what I know, I
don’t think the
company works
particularly with
software maintenance.

I ignore the logs, I
don’t know how to
interpret them and
since the code is
working, I don’t see
the problem.

Which maintenance
tools are the
interviewee using?

Mainly two, SonarQube
and PITest.

We use both automated
and manual tools. For
automated tools we use
Dependabot and
SonarQube.

Eslint and ReSharper.

Who in the
organization is
responsible for
selection of
maintenance tools?

I think it depends on the
organization and on the
tema. Typically the most
senior employee or the
developer will be the
one proposing tools.

I think the ultimate
decision comes from the
manager, but the people
who will shape the value

It is a different story
for each tool. As far as
I know we don’t have
any specific person or
team that decides
which tools to use. We
have an open attitude
to how to do things. It
really comes down to
you and your team if
you want to use

The tool was required
in the project, so I
guess it is the Project
Manager who was
responsible for
selecting the tool.

25

of the tool through the
development cycle will
be the developers.

If the managers are not
involved in the code
artifact, then I would be
surprised if they care at
all what maintenance
tool is being used, but
they might care about
which tools that
developers are happy
with.

something.

Based on our
organizational structure
we are very trusted by
the management to
know if a tool is cost
saving in the end/worth
it.

Has the interviewee
been involved in
the selection
process of a
maintenance tool in
a company?

Yes, and no. Yes, in the
way that I have
consulted about
maintenance tools for
companies, but that was
mainly in the role of a
researcher, not as a
developer - I was never
part of the development
team in a company and
made final decisions.

Yes, I was involved
when we changed a
tool. We changed from
Dependabot to another.
I don’t remember what
the other tool is called,
but it is another tool
that does the exact
same thing but more
effectively.

Follow-up question:
“Were there any
switching costs
involved?”
No, not more than the
time it took for the
person to change it,
which probably took
about one hour.

No.

Reasons for using
the specific
maintenance tool

SonarQube: Because it's
popular. It has a nice
interface. Works with
different languages.
Comprehensive
documentation. No
demanding installation.
Shallow learning curve.

SonarQube: Makes me
a better developer.
Easier to know what to
do. Helps me to avoid
making mistakes.
Saves time because you
don't have to do it
manually. More bug
knowledge than me.

Eslint and ReSharper:
It was required to use
the tool in the project,
so I have not thought
about the reason why
it was choses. Much
happens
automatically. It saves
time, but sometimes
gets wrong when it
guesses.

26

The most important
criterias when
selecting tool

When I give advice, I
always try to first listen
to their needs and then
try to do an investigation
on which tool is best
suitable for their needs.

So, it always depends on
their particular need
when choosing which
tool to use.

Tools should always be
chosen from the
specific need. Not just
use industry standards
out of habit. I think that
is the most important
thing.

There are so many
different tools, some of
them might not be right
for the thing you are
doing.

I don’t know, I have
never selected a tool
by myself.

Table 4: Interview results from the adoption and implementation of tools related questions

Question Interviewee 1 Interviewee 2 Interviewee 3

Reasons for
successful adoption
of tools

The tool needs to be
compatible with the
processes and tools
that the developer
already uses.

I see more and more
that a tool can show a
lot of efficiency and
effectiveness, meaning
that it can be the best
tool to make
maintenance cheaper,
but if people are
struggling with using
and adopting it, if the
usability,
understandability,
compatibility and
comprehensiveness is
low, then engineers
will not trust it, and
then they will not use
it, so then it's not
adopted. A lot of
people overlook the
human factor of
adopting tools.

Getting people to
actually use and learn
the tool. Tools are often
a big help, but if you
don’t know how to use
them then it might stop
you more than it helps
you. Therefore, I think
if a tool has good
usability, the odds of
adopting the tool
successfully increases.

I don’t know, I don’t
use many maintenance
tools.

27

Is usability important
in a maintenance
tool?

It is very important.
As I said earlier, the
barrier to start using it
has to be low to make
developers actually
start using it. For
example if you have to
do a lot of installing,
the effort may not be
worth it. I want to be
able to use it straight
away.

Usability is really
important. If a tool is
hard to use, they are
kind of useless. We
hire a lot of newly
graduates and they
don’t know anything
about maintenance
tools because they
don’t learn them in
school, so tools need a
shallow learning curve,
otherwise they will not
be used.

That’s why SonarQube
and Dependabot is
great because they are
integrated into the
platform we already
use, and I think that is
really important.

It is important. We
have not learned about
these tools in school
so they have to be
easy to learn.

What usability
aspects are most
important?

Shallow learning
curve and compatible
with current systems.

Easy to get started I
think, if you can get
value from the tool
from the strat without
knowing much about
the tool, that’s a good
starting point for a tool.

I don’t know.

What is the common
attitude towards
working with
maintenance?

I don’t think there is a
particular common
view on it, I think it
depends. Most likely
managers are
interested in seeing the
outcome whereas
developers are
interested in seeing the
suggestion and
learning.

Moreover, software
maintenance does not
have a clear definition.
I think that people in

I think the view of
maintenance work
differs a lot. I think
business people, people
that are further away
from the hardware and
software usually tend
to ignore it with an
attitude: “it already
works so why should
we fix it?”. But that
sometimes leads to
these types of
problems.

Personally, I think it’s

I don’t know, I have
not heard much about
it but it would be
interesting to learn
more.

28

the industry have
different views on
what it is. To me,
unless you are doing a
new software from
scratch, you are going
to be maintaining the
software.

fun, but it is not a word
I think other people
connect to
maintenance. Often it
is kind of neglected as
something wasteful,
like that you put work
into something that
already works.

But for me,
maintenance is buying
us time for the future.
Take a car for example,
if you buy a car and
never service it, the
probability of the car
breaking will be higher,
and it will be a costly
affair to fix it then.
That is the point of
maintenance. I have
seen it happen in the
industry so many
times.

Personal view on
software maintenance

My view is that
maintenance is very
important because it is
more common to
evolve existing code
than creating new ones
from scratch.

Software has a life
cycle, and I think,
today especially,
successful and modern
software development
focuses much more on
creating longer lived
software. The longer
the software lives, the
less time we need to
put into creating new
software systems.

For me, maintenance is
a priority, it is very
important. If you don’t
maintain code, you can
end up with code that
you can not fix due to
lack of maintenance,
and the code becomes
useless.

It is profoundly stupid
not to do maintenance.
You have the tools to
help you which saves a
lot of time. If you
neglect it, the damage
will be huge later on
and will cost a lot of
time and resources to
fix it.

I have not worked
with it a lot, but it
would be interesting to
learn more about it.

29

How well does the
tool help with the
maintenance work?

I don’t do
maintenance work
myself, I only research
and develop them.

The tools are always
just an assist, it is
something that is
supposed to help you,
hold your hand, but we
always have people
that do a second
review of the code.
That is the real value of
the maintenance tool,
for me at least, that we
have more than two
eyes on a piece of code.

I think for SonarQube
and Dependabot and
those kinds of tools,
those are about not
introducing problems
in the future - you are
stopping yourself in the
very beginning - it is
very proactive. And
that the tools do well I
think.

Have not used enough
tools to say.

Satisfaction with the
current tools used

As I don’t use them in
practice personally, I
can’t say. But I think
SonarQube has pretty
good usability.

Yes, I think most of the
tools I use are really
good. SonarQube has
helped a lot and you
actually learn a lot
from it as well. You get
a lot of comments and
information about
problems that you can
learn from. Moreover,
after solving that
problem in SonarQube
you tend to avoid
making the same
mistake again. Overall
I think it makes you a
better developer.

Have not used enough
tools to say.

Is maintenance I would say that they As said earlier, Not that I know of, we

30

prioritized in the
company

usually don’t
prioritize, managers
do prioritize to have
new features and
expand the product, so
I think to me, that is
maintenance, but I can
see why they might
not see it like
maintenance.

maintenance is not
dedicated to a person,
team or an area - it is
up to each of us
developers to make
sure that it happens, we
do not have any special
requirements from top
management about
how and when it
should happen.

have no requirement
to do it as far as I
know.

If a code works then I
don’t do anything to
change it, since it
works fine I don’t see
why we have to
change it.

Challenges in the
implementation and
adoption of
maintenance tools

For researchers, one
difficulty is not being
able to witness the
adaptation of tools in
companies' software
teams. It would
generate great usage
information about the
tool. We do control
experiments, but it is
difficult to see the
long term effect of the
tool, how it is adopted.

The challenge in the
industry is a layer of
politics. Since the tool
it's part of a bigger
organization, you can’t
just develop a tool and
not tell anyone about
it, you need to have
agreements, and it
needs to be approved,
there needs to be some
consensus in the
development team.

The challenge that I
face with tools like
SonarQube is that it is
a static analyzer, which
basically means that it
read all the code as
texts and analyzes that
based on a set of rules,
this means that some
things might not work
exactly according to
SonarQube rules, and
therefore it suggest the
wrong things.

So the biggest
challenge is that
SonarQube does not
always give good
suggestions and
therefore you start
mis-trusting it and stop
using it. I don’t know
how many times I have
ignored what
SonarQube says - it can
break things if you
accept everything that
the tool suggests.

I don’t know.

Barriers for
successful adoption
of a maintenance tool

If people are
struggling with
starting to use the tool,
due to low

Poorly performing
tools. If a tool would
fail when doing the
analysis of the code, or

I don't know.

31

understandability and
steep learning curve,
then developers will
not use it and won't
adopt it. A lot of
people overlook the
human factor of
adopting tools.

updated wrong version,
that would be a big
problem. If that
happened more than
one time, I would
never use the tool
again, I would not trust
it anymore.

Cost is another barrier.
If it is a really
expensive tool then you
really have to motivate
the value it provides
for the company. I
think both SonarQube
and Dependabot are
worth it because it
saves so much time,
and the biggest cost of
a company is the cost
of an employee.

32

7. Discussion

Some discrepancies between the views on software maintenance within the organization were

found in the interviews. Interviewee 2 stated that all developers within the company worked

actively with maintenance by acting upon the logs provided by SonarQube, while Interviewee

3 said that they ignored the logs since they do not know how to interpret them and why they

would need to take action on them. The logs are provided by SonarQube directly in the IDE,

which is a part of the process that we did not assess in the practical maintenance work.

Thereby, this indicates that the three different software developers work with maintenance in

three different ways.

Furthermore, Interviewee 2 stressed the importance of maintenance efforts, in line with what

Interviewee 1 said, while Interviewee 3 had almost no knowledge of the subject and put no

maintenance efforts in the daily work. Based on this lack of knowledge, together with an

expressed curiosity of the subject, one suggestion would be to share the maintenance visions

and knowledge better within the organization, and create a mandatory internal course for

educating all developers. This could increase the knowledge level and make the maintenance

work easier when sharing the efforts put on maintenance work more evenly. As stressed by

literature, maintenance is important for assuring long-lived software systems and should be

prioritized. If all developers worked with maintenance in parallel with development, for

example during the times when not having any development task to do, the software quality

would increase and the application would be better maintained without needing additional

personnel. Also, the time needed for ensuring good code quality would be lowered, if all

developers actually read the logs and took action on the presented issues right away. If the

logs are ignored and later on checked by another developer, that person first needs to get

familiar with the code component to make sure they understand it. Eliminating this step

would save time.

As stated by Interviewee 1, and also found in theory, the usability is crucial for both the

choice of the tool and the adoption of it. The tool must be easy to use and quickly show that it

helps you as a developer and get trusted enough to become a part of the developers daily

development and maintenance process. Hence, the main reason for a maintenance tool to be

chosen seems to be if the tool proves a high degree of usability since it helps users to realize

the value of the tool more quickly. Related to usability, Interviewee 1 mentions that one

33

reason for selecting SonarQube was due to the tool having a good interface. A software

maintenance tool with a good interface is easy and intuitive to use, allowing users to quickly

and easily perform maintenance tasks without requiring extensive training or documentation.

A good interface will also provide clear and concise feedback to the user, informing them of

the status of their tasks and any errors or issues that may have occurred. Overall, a good

interface for a software maintenance tool should enable users to effectively and efficiently

perform their tasks, without getting in the way or requiring a steep learning curve. Hence, a

good interface improves the usability of a maintenance tool and most likely raises the odds

for it to be selected.

Furthermore, both Interviewee 1 and 2 emphasized the advantageous attribute that

SonarQube was compatible with their existing software systems. The tool was completely

integrated in their current platforms. When a software maintenance tool is compatible with an

existing software system, it means that the tool is able to access and modify the necessary

files and components of the system in order to perform the maintenance tasks. In order for a

maintenance tool to be compatible with a software system, it must be designed to work with

that specific system, or at least with a similar system that uses the same or similar

technologies. This implies that high compatibility with a wide range of different software

systems might also be a crucial factor for a tool to be chosen.

The fact that tools are selected due to being an industry standard and popular among

developers was also discussed during the interviews. Interviewee 1 mentions that this was

indeed one of the reasons why they started using SonarQube in the first place, due to its

popularity. In contrast, Interviewee 2 emphases that a tool should never be chosen because it

happens to be the industry standard, it should be because it fulfills a certain need. Hence, the

selection of tools should be based on what kind of maintenance tasks the user is in need of,

and not what others are using. This was mentioned later by Interviewee 1 as well. When

consulting firms on tool selection, Interviewee 1 always recommends tools based on the need

of the company after doing an investigation. However, it is noteworthy that in selecting

SonarQube, Interviewee 1 personally started using the tool due to its popularity as mentioned

earlier. This contradicts the researcher's own recommendation to others. Hence, this might be

proof that a widespread usage of a tool might be an underlying reason why it is selected.

34

The barriers for successful implementation and adoption identified in the empirical data are

as follows: low usability, steep learning curve, high price of the tool, and lastly, poorly

performing tools in terms of too many bad recommendations and failings.

Bad recommendations may harm its trustworthiness and in turn lead to not being used. This

was particularly stressed by Interviewee 2 who stated that SonarQube sometimes makes

recommendations that are so bad it could even destroy code if one would accept it.

Interviewee 2 emphasized the importance of considering the tool as an aid for the developer,

providing an additional perspective on the code, but ultimately the final decision regarding

actions to be taken rests with the developer. Additionally, the tool can also be helpful in the

sense of making maintenance prioritized by reminding developers of fixing issues and bugs

when automatically generating logs during the development process.

Interviewee 1 mentions that an important discovery in their research is the neglection of the

human factor. The research showed that even though a tool could show more efficiency and

effectiveness than other tools, meaning it could ultimately decrease maintenance costs, it was

still no guarantee for successful adoption of the tool. If developers were struggling with using

the tool due to poor usability and understandability, then the software engineers would not

trust it. This leads to the maintenance tool not being used and therefore, not adopted.

Interviewee 1 emphasized that the human factor is often overlooked.

The learning curve of maintenance tools is another aspect discussed by the respondents. A

shallow learning curve is generally more user-friendly and easier for people to pick up and

use without a lot of training or experience. On the other hand, a product with a steep learning

curve may require more time and effort to master, but may also offer more advanced features

and functionality. According to Interviewee 2 and 3, software maintenance tools are not

typically taught in educational settings. This means that newly graduates employed by

software companies lack the basic knowledge of maintenance tools which may lead to

difficulties in adopting tools that are not user-friendly. By reviewing the literature and the

empirical data of this study, successful implementation and adoption of a maintenance tool is

more likely to occur when the learning curve of the tool is shallow.

As found by previous research, there is a gap between research suggestions and industry

practices regarding maintenance efforts. What is found in this study is a knowledge gap and a

35

usage of tools gap between two software developers within the same company. On the one

hand, this seems natural and inevitable, as knowledge sharing never can or should reach 100

percent within an organization since different people should have expertise within different

areas depending on their function and interests. On the other hand, this seems troublesome, as

Interviewee 2 describes that everyone works with maintenance in the way they describe,

which differs from how the practical work was taught, and how Interviewee 3 describes their

work. The practical maintenance work was taught by another developer in a different way,

while still using the same tool, SonarQube. Interviewee 3 showed a close to total lack of

knowledge within maintenance, and did not know any way they worked with it in their day to

day work, which contradicts the way of working with maintenance described by Interviewee

2.

As literature mentions, the applicability of tools is critical in terms of its adoption.

Maintenance tools must be easy to use in different types of projects and correlate with the

user's working culture, supporting the techniques and methods already used by the developer.

This view of the applicability stressed by literature does align to some extent with the view of

the practitioners interviewed. Interview 1 mentions that SonarQube is easy to use since it

works with multiple different program languages, has comprehensive documentation and

interface without any demanding installation process. This implies that SonarQube is quite

applicable to the way they are already working with maintenance. Moreover, Interviewee 2

emphasizes that the ability to integrate SonarQube to their platform was particularly

important for its adoption. Hence, integration facilitates the applicability of a maintenance

tool.

A main concern is however that organizations seldom adopt a separate maintenance process

because they struggle with distinguishing software maintenance from software development.

We have seen several initiatives from research and software standards organizations towards

better defined maintenance processes. One suggestion to software developing organizations is

thereby to imitate, and work with defining separate maintenance processes to ensure that all

developers contribute to the maintenance work and that the software systems are maintained

in the way the management wants. As research testifies that the maintenance practices differ

between different organizations and that different parts become more or less important in

different projects, it is difficult to define a single, ultimate process for maintenance. The work

36

to be done is rather to clearly define the objectives and the building blocks to allow for

customization but avoid absence of maintenance work and tools.

37

8. Conclusions

This study aimed to answer the research questions presented in 4.1 Research Questions.

Based on the discussion of the findings, this section presents the conclusions for each

research question.

Q1: What are the underlying reasons why a software maintenance tool is chosen?

One of the underlying reasons why a specific tool was chosen were found to be the usability

of the tool. It was found to be important for the developers to quickly see how the tool helps

and that the tool was easy to start working with. Another underlying reason seems to be the

popularity of the tool. If a tool is well known and used by many, it is more likely to be

chosen. However, this is not a valid reason according to research and developers in industry,

since it should rather be chosen based on the needs.

Q2: What are the barriers for successful implementation and adoption of a software

maintenance tool?

According to our findings, one barrier for successful implementation and adoption of a tool is

lack of knowledge about the awareness of the tool, that it should be used, and how it should

be used. The tools an organization wishes to implement need to be carefully communicated

and teached to all developers to enable proper adoption. As stressed by previous research, it

is important to distinguish between software development and software maintenance and

define separate processes for software maintenance work. Since different parts of

maintenance are important for different software, this must be customized and defined for

each software project. These processes should also include a specification of which tools to

use and how to use them to assure a proper adoption.

Q3: How does the software maintenance process in industry compare with the process

described in literature when utilizing maintenance tools?

As previously stated in literature, there is a gap between research suggestions and industry

practice for software maintenance in general. In this study, three different ways of practicing

maintenance work were found from instructions or interviews with three software developers

within the same company. Thereby, all studied developers worked with maintenance in

different ways and we assume that even more different approaches would be found if more

developers would be studied. One of the interviewees expressed that they did not work with

38

maintenance at all, and did not know much about the subject. This contradicts the research

suggestions about making maintenance work a top priority to reduce the complexity of the

systems, enable continuous growth, and sustainable evolvement of long-lived systems.

9.1 Recommendations for the company

Based on the findings from the interviews and literature insights, implications for the

company of this case study are generated in this subsection.

Everyone in the organization working with code is responsible for performing maintenance

tasks on the software. However, the view of the maintenance process differed depending on

who we talked to in the organization. One viewed maintenance as an absolute necessity to

avoid unusable code in the future, leading to huge time and monetary expenses. Another in

the company nearly never performed maintenance tasks, and rarely used the maintenance

tools when doing them. This discrepancy was identified as one of the main barriers for

successfully adopting maintenance tools as stated in the previous section.

Reasons for lack of knowledge about maintenance processes might be due to than in the flat

organization structure, everyone is free to work in a way that best fits them, without any

specific commands for how to work with maintenance. Hence, the first recommendation is to

highlight the importance and value of performing maintenance tasks throughout the company.

This can be done by providing regular training sessions on the benefits and best practices of

maintenance, setting clear guidelines and expectations for maintenance within the company,

and recognizing and rewarding individuals or teams who consistently perform maintenance

tasks effectively. Additionally, incorporating maintenance metrics into performance

evaluations and setting up a dedicated maintenance team or assigning specific maintenance

responsibilities to certain team members can also help to ensure that maintenance is being

performed consistently and effectively across the organization. Another way of working

towards a more consistent maintenance process is by using an incentive inducing tool, such

as the gamification platform Quboo (Quboo Docs, 2021). This tool aims to make software

tasks fun by turning them into a game. The user gets scores when performing tasks such as

fixing SonarQube issues and improving the software quality. One idea could thereby be to

investigate whether this tool would be a successful addition in this organization.

39

In the selection process of software maintenance tools, the usability of the tools was

identified as the primary criterion for selection. Therefore, it is recommended that the

company continue to rely on developers as the primary selectors of tools. As developers are

the primary users of these tools in their daily work, they are best equipped to evaluate the

usability of the tools and make informed decisions. However, as there is a risk of developers

selecting tools based on industry standards and popularity rather than their specific needs, it

is important to implement a robust evaluation process that includes a thorough examination

of the tools’ functionalities and a review of their alignment with the organization’s and

projects’ specific requirements. This can be achieved by involving a cross-functional team of

developers, project managers, and IT professionals in the selection process and conducting a

thorough evaluation of the tools based on predefined criteria such as cost-effectiveness,

scalability, and flexibility. Furthermore, it is important to periodically review the tools to

assess their continued relevance and effectiveness, as technology and requirements change

over time.

The company frequently hires newly graduated developers, and as reported by the

interviewees, these individuals often possess limited experience in software maintenance.

This has resulted in a lack of utilization of maintenance tools among these employees. To

address this issue, the implementation of workshops for newly hired employees to familiarize

themselves with software maintenance tools may be an effective method of increasing the

adoption of these tools within the organization. By providing hands-on training and

experience with the tools, newly hired employees will be better equipped to utilize them in

their daily work, leading to a reduction in maintenance costs in the long term. This is of

paramount importance given that software maintenance is a costly but necessary aspect of

software development and the software lifecycle. The utilization of maintenance tools can

significantly reduce the time and resources required for maintenance activities.

Lastly, it would be interesting to analyze whether it would be beneficial to have dedicated

software maintenance professionals within the delivery teams to ensure that the software is

successfully maintained. Another interesting discussion would be to formalize the

developers’ responsibility to include some percentage of maintenance activities. For example,

all developers should aim for 50 % of their time being spent on quality assurance and

software maintenance work. Worth noting is that the company does not have any troubles

with growing and evolving their code base today, which indicates that their maintenance

40

processes work fine. However, the risk with vaguely defined maintenance processes is that

the effects are shown in the future, when it is too late to do any efforts due to the built-in

complexity. That captures the whole concept of maintenance, as the approach of “as long as

the functionality works, the code is fine '', is dangerous. If the technical debt continously

increases, the code eventually is forced to be eliminated or modernized through complex and

costly projects, when the situation could have been avoided by continous refactoring. The

boy scout rule seems to be known and adopted by all developers within the company, which

indicates that all software developers actually work with maintenance to some degree.

Interviewee 3 might in fact spend more time on maintenance efforts than they actually

believe. What so ever, it would not hurt to be better educated in what maintenance really is

and why it is important. Furthermore, to make use of the tools they pay for and gain the

profits yielded of using them. There is a reason why licensed tools are bought, but it will be a

costly and unprofitable affair if they are paid for but not used.

9.2 Future Research
This research only studied a few software developers within the same company. Future

research could be conducted on a larger scope in terms of more developers and/or more

companies to get a better understanding and allow for more statistically significant results.

This study has too few data points to allow for any discussion of statistical significance, but

rather contributes with a sample that opens up for future work. Besides future research on

software maintenance tools selection and implementation, more research is needed in how to

develop successful maintenance processes, where the maintenance tools play a natural part.

Action research on this topic could be suitable to be able to try out and evaluate process

development models in industry. By doing it in a real world context, it could contribute to

bridge the gap between software research and practices in industry.

9.3 Threats to Validity

There are several threats to the validity of the study. One threat is that we only had a limited

amount of time to conduct the research and therefore may not have been able to go as broad

as we would have liked. This could mean that we may not have been able to interview a

representative sample of people, which could lead to a biased view of the topic.

41

Another threat to the validity of the study is that we only interviewed a few people. While it

is not necessarily a problem to interview a small number of people, it could mean that our

findings may not be generalizable to the wider population of software developers and

maintenance professionals. Additionally, the fact that we only interviewed people from one

software company could also limit the generalizability of our findings. However, since this is

a case study, it is to be expected.

Finally, the fact that we only interviewed one software maintenance researcher and two

software developers could also be a threat to the validity of our study. While these individuals

may have valuable insights and experiences, they may not be representative of the wider

software maintenance community.

It is important to consider these threats to the validity of the study and to try to address them

as much as possible in our analysis and conclusion. This can help to ensure that the study is

as accurate and reliable as possible.

42

References

Bennett, K. H., & Rajlich, V. T. (2000). Software maintenance and evolution: a roadmap.
Proceedings of the Conference on the Future of Software Engineering, 73-87.

Brooks, F. (1975). The Mythical Man-Month. Addison-Wesley. ISBN 0-201-00650-2.

Ferreira, M., Bigonha, M., & Ferreira, K. A. M. (2021). On The Gap Between Software
Maintenance Theory and Practitioners’ Approaches. 2021 IEEE/ACM 8th International
Workshop on Software Engineering Research and Industrial Practice (SER&IP), 41-48. doi:
10.1109/SER-IP52554.2021.00015.

Godfrey & Qiang Tu. (2000). Evolution in open source software: a case study. Proceedings
2000 International Conference on Software Maintenance, 131-142, doi:
10.1109/ICSM.2000.883030.

ISO/IEC/IEEE. (2022). ISO/IEC/IEEE International Standard - Software engineering -
Software life cycle processes - Maintenance. ISO/IEC/IEEE 14764:2022(E), 1-46. doi:
10.1109/IEEESTD.2022.9690131.

Johnson, B., Song, Y., Murphy-Hill, E., & Bowdidge, R. (2013). Why don’t
software developers use static analysis tools to find bugs?. Proceedings of the 2013
International Conference on Software Engineering. IEEE Press, 672–681.

Khan, K., Lo, B., Lo, B., Skramstad, T., & Skramstad, T. (2001). Tasks and Methods for
Software Maintenance: a process oriented framework. Australasian Journal of Information
Systems, 9(1). https://doi.org/10.3127/ajis.v9i1.227.

Lehman, M. M. (1980). "On Understanding Laws, Evolution, and Conservation in the
Large-Program Life Cycle". Journal of Systems and Software. 1: 213–221.
doi:10.1016/0164-1212(79)90022-0.

Lehman, M. M., & Belady, L. A. (1985). Program evolution: processes of software change.
Academic Press Professional, Inc..

Lehman, M. M., Ramil, J. E., Wemick, P. D., Perry, D. E., & Turski, W. M. (1997). Metrics
and laws of software evolution - the nineties view. Proc. of the Fourth Intl. Software Metrics
Symposium (Metrics’97).

Lenarduzzi, V., Lomio, F., Huttunen, H., & Taibi, D. (2020). Are SonarQube Rules Inducing
Bugs?. 2020 IEEE 27th International Conference on Software Analysis, Evolution and
Reengineering (SANER), 501-511. doi: 10.1109/SANER48275.2020.9054821.

43

https://doi.org/10.3127/ajis.v9i1.227
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1016%2F0164-1212%2879%2990022-0

Lientz, B. P., & Swanson, E. B. (1980). Software Maintenance Management. Addison-Wesley
Publishing Co.: Reading MA. doi: 0.1049/ip-e.1980.0056.

Mantyla, M., Vanhanen, J., & Lassenius, C. (2003). A taxonomy and an initial empirical
study of bad smells in code. International Conference on Software Maintenance. ICSM 2003.
Proceedings, 381-384. doi: 10.1109/ICSM.2003.1235447.

Marcilio, D., Bonifácio, R., Monteiro, E., Canedo, E., Luz, W., & Pinto, G. (2019). Are Static
Analysis Violations Really Fixed? A Closer Look at Realistic Usage of SonarQube. 2019
IEEE/ACM 27th International Conference on Program Comprehension (ICPC), 209-219.
doi: 10.1109/ICPC.2019.00040.

Object Management Group. (2012, 11 May). Architecture-Driven Modernisation Task Force.
https://www.omgwiki.org/admtf/doku.php.

Quboo Docs, Quboo Team. (2021). https://docs.quboo.io/docs/plugin/.

SonarQube Documentation, SonarSource SA. (2023). https://docs.sonarqube.org/latest/.

Stol, K-J., & Fitzgerald, B. (2018). The ABC of Software Engineering Research. ACM Trans.
Softw. Eng. Methodol. 27, 3. https://doi.org/10.1145/3241743.

Turski, W. M. (1996). Reference model for smooth growth of software systems. IEEE Trans.
on Software Engineering, 22(8).

Wang, J., Wang, S., & Wang, Q. (2018). Is there a “golden” feature set for static warning
identification?. Proceedings of the 12th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement - ESEM’18. ACM Press.
https://doi.org/10.1145/3239235.3239523.

44

https://doi.org/10.1049/ip-e.1980.0056
https://www.omgwiki.org/admtf/doku.php
https://docs.quboo.io/docs/plugin/
https://docs.sonarqube.org/latest/
https://doi.org/10.1145/3241743

