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A B S T R A C T   

The implementation of operational climate service prototypes, which encompasses the co-design and delivery of 
real-time actionable products with/to stakeholders, contributes to efficiently leveraging operational climate 
predictions into actionable climate information by providing practical insight on the actual use of climate pre-
dictions. This work showcases a general guideline for implementing an operational climate service based on 
subseasonal predictions. At this timescale, many strategic decisions can benefit from timely predictions of 
climate variables. Still, the use of subseasonal predictions is not fully exploited. Here, we describe the key aspects 
considered to set up an operational climate service from the conception to the production phase. These include 
the choice of the subseasonal systems, the data sources and the methodology employed for post-processing the 
predictions. To illustrate the process with a real case, we present the detailed workflow design of the imple-
mentation of a climate service based on subseasonal predictions and describe the bias adjustment and verifi-
cation methodologies implemented. This work was developed in the H2020 S2S4E project, where industrial and 
research partners co-developed a fully-operational Decision Support Tool (DST) providing 18 months of real-time 
subseasonal and seasonal forecasts tailored to the specific needs of the renewable energy sector. The operational 
workflow can be adapted to serve forecast products to other sectors, as has been proved in the H2020 vitiGEOSS 
project, where the workflow was modified to provide downscaled subseasonal predictions to specific locations. 
We consider this a valuable contribution to future developments of similar service implementations and the 
producers of the climate data.   

Practical implications 

Climate services aim to improve society’s resilience to climate 
change by providing useful information about climate to stakeholders 
and citizens. In recent years, subseasonal climate predictions, covering 
time ranges from one to several weeks into the future, have demon-
strated to have real application capabilities in various strategic sectors 
(energy, agriculture, water management, disaster preparedness) as well 
as substantial skill in anticipating extreme events several weeks in 
advance (such as heatwaves, cold spells, heavy precipitation and cy-
clones), thus having potential use in decision making and in the acti-
vation of emergency measures (White et al., 2021; Domeisen et al., 
2022). However, although the capabilities have been demonstrated in 
various studies, the operational use of such predictions in decision 

making is not fully exploited. To provide a practical and realistic 
demonstration of the usability of the forecast products to users, the co- 
development and implementation of real-time operational prototypes 
is a valuable practice. Carrying out this exercise additionally allows the 
user to routinely test the adequacy of the forecast product in their own 
decision making context. 

This work introduces a general framework for the conceptualisation 
and implementation of an operational service based on subseasonal 
predictions. We describe the main steps, from the forecast product 
definition, the prediction system selection, the available data portals 
gathering subseasonal forecasts, and tools for setting up, monitoring and 
testing an operational workflow. The characteristics of two data plat-
forms which collect subseasonal predictions are discussed, namely the 
World Weather Research Programme (WWRP)/ World Climate Research 
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Programme (WCRP) Subseasonal to Seasonal (S2S) Prediction Project 
database (Robertson et al., 2015) and the Subseasonal Experiment 
(SubX) (Pegion et al., 2019). These platforms are a valuable asset in the 
development of subseasonal climate services. Additionally, a practical 
example of an operational implementation is also presented. This system 
was developed in the H2020 S2S4E project (Soret et al., 2019) and is the 
backbone of the subseasonal forecasts products delivered in the project’s 
Decision Support Tool (DST) (https://s2s4e-dst.bsc.es). The tool was in 
production for 18 months issuing real-time subseasonal and seasonal 
forecasts of essential climate variables and derived products to energy 
users. In terms of Technology Readiness Levels (TRLs), we estimated 
that the presented prototype reached a level of TLR7. For part of this 
period, the system employed forecast data provided by the S2S Real- 
Time Pilot Initiative. The subseasonal service consisted of weekly up-
dates of forecasts for the four following weeks. The development of 
climate services covers several aspects, and it should be noted that this 
work focuses solely on the operational implementation of the real-time 
system for subseasonal forecasts. The process of identifying users’ needs 
is not addressed here, nor is the design of the platform to visualise the 
final products. In this work, we present a framework that describes the 
design of the mechanism to routinely collect, store and post-process the 
data to generate the forecast product and the conceptualisation behind 
the pipeline design. The operational workflow presented as an example 
has been specifically designed to ingest output from the European Center 
for Medium Range Weather forecasts ECMWF-Ext-ENS system (Vitart 
et al., 2008). Additionally, since climate predictions at this timescale 
accumulate substantial systematic errors, we include a bias adjustment 
of the forecasts at the weekly timescale. Moreover, a quality assessment 
of the forecast products is also routinely performed. For these processes, 
hindcast data (forecasts issued in the past) and reanalysis data ERA5 
(Hersbach et al., 2020) (as observational reference) are routinely 
downloaded and stored. The proposed technique for the bias adjustment 
is the variance inflation (Doblas-Reyes et al., 2005) employing a running 
window centred on the forecast day. The forecast quality assessment 
skills scores are computed to be delivered with the forecast product, 
providing the user with a notion of the quality of the data. Although it 
was initially conceived for energy, the proposed framework can be 
adapted to other product definitions, and additional post-processing 
steps (downscaling, impact indicators) can be incorporated due to its 
modularity. The same workflow has been adapted to deliver downscaled 
forecast products to the agricultural sector under the H2020 vitiGEOSS 
project. Similarly, even when the workflow has yet to be tailored to the 
user’s needs, it can serve as a demonstrator to start conversations with 
them, making it easier to understand climate services based on sub-
seasonal predictions, their potential capabilities, and their limitations. 

Transforming the climate output from climate models into tailored 
climate information useful for decision-making requires rigorous sci-
entific knowledge of the underpinning models and predictions, as well 
as a good understanding of the user necessities. The work presented is 
eminently practical and shows the non-trivial efforts behind an opera-
tional prototype that include tasks such as data curation, workflow 
design and quality checks. The implementation of an operational service 
prototype is a valuable exercise that supports the continued develop-
ment of S2S forecasts and related services. The proposed guideline for 
conceptualising and implementing a downstream pipeline for opera-
tional production can be of great utility to climate service providers 
looking to incorporate S2S predictions. The proposed guideline can be 
adapted to different products, post-processing techniques or other pre-
diction systems. Some points to consider when employing prediction 
systems of other characteristics are also discussed. Some direct impli-
cations of the implementation of the operational workflow in H2020 
projects have been to raise awareness of the usability of subseasonal 
predictions in the energy and agricultural sectors. As previously 
mentioned, the framework can be transferred to other sectors that are 
still unaware of the potential use of subseasonal predictions. Addition-
ally, the real-time operational service made available to users serves as a 

test-bed for product validation, thus providing useful feedback to the 
services providers and the modelling centres. 

Subseasonal predictions offer information in a very useful time scale, 
even with limited skill, there is valuable information that can guide 
informed decisions. The implementation of real-time prototypes will 
promote, inform and help improve the service. We, therefore, consider 
this a valuable experience for future developments of similar service 
implementations and for the producers of the climate data involved. 

1. Introduction 

Subseasonal predictions fill the gap between short-range weather 
forecasts and seasonal climate predictions, providing climate informa-
tion from 10 days to approximately 2 months ahead. This time range has 
proved to be very valuable for many sectors such as energy, agriculture, 
water management or retail, since many strategical decisions are taken 
within this time frame (White et al., 2017). However, the use of sub-
seasonal predictions by stakeholders is still limited. Advances in the 
uptake of subseasonal predictions by users will follow from increased 
skill at this time scale through improvements in the prediction systems 
(better representation of the physical processes and teleconnections 
(Merryfield, 2020)), but also from advances in the downstream side of 
the climate services chain (Buontempo et al., 2014; Hewitt and Stone, 
2021). This involves innovation in the design of products, the post- 
processing and a well suited operational workflow in order to effi-
ciently leverage the climate data produced by the models into actionable 
climate information. Furthermore, clear communication to the user is 
key for a good understanding and interpretation of the data to serve as 
support in decision making (Christel et al., 2018). The implementation 
of climate service prototypes which develop the co-design and delivery 
of real-time actionable products with/to stakeholders contributes to the 
advancement of these downstream processes, by providing a practical 
insight on the real use of the data. The contribution serves in both ways 
in the research-to-operations link, as a tool to support the development 
of forecast products but also as a feedback to the producing centers as 
the lessons learnt in these activities can guide the systems design and 
model development. Additionally, by making the predictions available 
to actual stakeholders in real-time, the ground is set for a real user 
assessment. 

In this regard, this article describes the implementation and setting 
up of an operational real-time climate service based on subseasonal 
predictions. It intends to serve as a general guideline for implementing 
subseasonal operational services but also to provide a real example of a 
real-time workflow with its detailed specifics and challenges. This work 
draws from the experience acquired in the execution of the H2020 
Subseasonal to Seasonal Predictions for Energy Project, S2S4E (Soret 
et al., 2019), in which a climate service based on seasonal and sub-
seasonal predictions was co-developed and set up operationally. The 
service was delivered through a Decision Support Tool (DST), which was 
in production for 18 months; a snapshot of the interface is illustrated in 
Fig. 1. In terms of Technology Readiness Levels (TRLs), we estimated 
that the presented prototype reached a level of TRL7. The whole process 
was carried out by an interdisciplinary team. In this work we describe 
the operational implementation of the subseasonal service from a 
product focused perspective; therefore, the initial process of identifying 
the user’s needs and conceptualising the climate service is not described 
here. 

The article is structured as follows. In Section 2, a general recipe 
provides the steps for the operational implementation of a climate ser-
vice based on subseasonal predictions, from the conceptualisation to the 
production phase. Then, to illustrate the process explained in Section 2 
through a real case, the implementation of the subseasonal operational 
service of the S2S4E Project is presented in Section 3. This service 
consisted in the real-time provision of forecasts of weekly aggregated 
essential climate variables based on subseasonal predictions from 
ECMWF-Ext-ENS system (Vitart, 2004). This section also describes the 
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methodologies adopted for the bias adjustment and the skill assessment 
and details the tailored operational workflow. In Section 4, some chal-
lenges regarding the use of other prediction systems are discussed. Some 
future prospects in the development of subseasonal climate services are 
discussed in Section 5, and the most relevant conclusions are gathered in 
Section 6. 

2. Operational service design and conceptualisation 

Implementing a data-driven climate service requires a co-design that 
involves data providers/producers and stakeholders, each with a spe-
cific point of view and a concrete set of requirements that pay special 
attention to various aspects. While the user is interested in actionable 
information, usefulness and user-friendliness, the data producers aim to 
ensure the scientific accuracy of the information provided, as well as the 
overall computing performance. For a balance that satisfies all the 
involved parts, an iterative design method needs to be established, 
validating every step of the design and implementation and re-doing the 
necessary steps if the current version of the service is not compliant. 
Fig. 2 shows a schematic of the different development steps identified; 

below, the main aspects to consider at each stage are detailed. 

2.1. Forecast product definition 

The first step in implementing a service is to define the product to be 
delivered, based on the input provided by the end users. The product has 
to respond to the user’s needs while being under the current scientific 
capabilities, recognising the limitations of the climate predictions. Thus, 
choices like the variables predicted, the spatial and temporal resolution 
(forecast aggregation), or the forecasting horizon are crucial when 
designing a climate service that provides the demanded information to 
the user while being skilful enough to be helpful in a practical scenario. 
The issue date and periodicity of a forecast product has to be designed 
considering both the system’s release frequency of initialisation and the 
users’ decision making context. 

The forecasts are probabilistic, so a sensible way to present a pre-
diction is a probability distribution of the ensemble members for the 
given variable. A common practice to summarise this probabilistic in-
formation is using categories (typically terciles) referred to the past 
model outcomes in the hindcast period (model climatology). This 

Fig. 1. S2S4E’s Decision Support Tool. Screenshot of the S2S4E’s Decision Support Tool showcasing the sub-seasonal temperature forecast issued on the 30th of 
July and targeting the third week. 

Fig. 2. Operational climate service implementation steps. Scheme exemplifying the steps in the design of a climate service operational implementation.  
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approach is increasingly criticised by users of climate services, showing 
the need to co-develop more tailored statistics closely with users. For 
example, a product of interest may be defined by setting a threshold and 
providing the probability of surpassing (or not reaching) this value. This 
threshold should be chosen to fit the user’s need, and it can either be an 
absolute value (e.g. 0 ◦C – probability of freezing) or statistics from the 
model climatology (e.g. 90th percentile - probability of extreme event). 

Hence, at this stage, a product contemplating the users’ needs should 
be defined, considering the available climate information, the prediction 
system’s characteristics and the potential skill until reaching a balance 
that meets the requirements while being technically feasible. 

2.2. Prediction system and observational reference requirements 

As a second stage, the prediction system or systems have to be 
selected to be the source of the climate forecasts. Several centers across 
the globe produce subseasonal predictions, some as an extension of the 
numerical weather prediction integrations and some with coupled sys-
tems employed for seasonal predictions. The choice of the most suitable 
prediction system is made based on many considerations, including the 
service requirements and the final product definition. 

Regarding service requirements, the dates and frequency of initiali-
sation of the system and the forecast horizon are relevant consider-
ations. The initialisation dates of the prediction system are an essential 
factor to take into account when choosing a system, as this will condition 
when and how often the service will be updated. Most subseasonal 
systems are initialised at least once a week, and Thursdays coincide as a 
common start date day across many systems. Therefore this day could be 
convenient to facilitate the implementation of a multi-model system or 
ensure regularity if the prediction system employed has to be changed. 
Other systems follow a periodic schedule independently of the day of the 
week (e.g., every five days), which is not practical since users generally 
demand regularity in a service (same day of the week). Regarding the 
forecast horizon of the service, typically, subseasonal predictions go up 
to 4 or 6 weeks. The different subseasonal systems span from 32 to 60 
days ahead, so it has to be ensured that the output from the chosen 
system covers the desired time range of the product. 

Regarding the product definition, the main points to consider are the 
availability of the variables of interest and their temporal and spatial 
resolution. Not all platforms providing the forecasts have the same 
characteristics for the same predictions systems, as in some cases, the 
output variables have been post-processed to reduce the amount of data 
or to harmonize across systems. The spatial resolution of the subseasonal 
systems is typically of near 1◦. In some prediction systems, these char-
acteristics are not homogeneous over the entire data-set; the temporal or 
spatial resolution may change across variables. Usually, surface and 
pressure level variables have different properties to save resources and 
computing time during model runs. 

Other relevant system characteristics when selecting the prediction 
system are the type of ensemble configuration and the type of hindcast, 
as both will condition the handling of the data. For the ensemble 
configuration there are typically two approaches, ’burst’ mode and 
’lagged’ mode. In the ’burst’ mode, all the ensemble members are ini-
tialised at the same time with slight perturbations in the initial state 
and/or the physics. In the ’lagged’ mode, more frequent initialisations 
with fewer members are launched, which can be merged to form a larger 
ensemble called a ‘lagged’ ensemble. An ensemble obtained from a 
combination of the two approaches is also possible. In case of the 
hindcast generation, the producing centers choose between two ap-
proaches. Some centers run a hindcast for a fixed period, and this 
hindcast is used as reference for all forecast runs, until a new version of 
the system is implemented, when the fixed hindcast should be produced 
again. Other centers update their hindcast ’on-the-fly’, meaning that a 
new hindcast set is generated with every forecast, ensuring that the 
exact system version is employed. This approach implies that also the 
hindcast period is updated (i.e. the 20 years prior to the forecast year). 

The type of hindcast has implications on the final workflow; ’on-the-fly’ 
hindcasts need software capable of downloading and processing this 
data in real-time as well. On the contrary, a fixed hindcast requires a 
single download without the ’real-time’ component. The implications of 
these aspects on the workflow are addressed in Section 4. 

Last but not least, an observational reference is required in order to 
bias adjust and perform a skill assessment of the predictions, typically a 
reanalysis or an observational dataset. Any reference system is subject to 
uncertainty. The selection of the reference dataset will require evalua-
tion according to the specific needs of the users and product. Changes in 
the reference origin or type can lead to critical differences in skill. To 
take into account the uncertainty in the reference system, multiple 
systems could be combined; or some estimate of uncertainty could be 
included (like the provided for ERA5 by the Ensemble Data Assimilation 
system (Hersbach et al., 2020)). However, the use and implementation 
of these methods are not trivial, being a topic of current research. Thus, 
in the context of the operational implementation, we opted for a single 
reference dataset. The usage of the reference dataset depends on the 
system characteristics; in the case of ’on-the-fly’ hindcasts, the rean-
alysis data has to be updated periodically, according to the period 
covered by the new hindcast. 

2.3. Data sources and acquisition 

Commonly, there are different sources from which the forecast 
output of a given prediction system can be retrieved. Although there is a 
wide variety of options, we can classify them into two categories. On one 
side, the research/operational institutions which develop and run the 
models, offer a platform where the output data is available. Whether the 
center is a research or an operational institution will imply that more 
resources are destined for one or the other purpose. With this in mind, 
services provided by operational institutions will be, in general, more 
reliable as they have more resources dedicated to offering continuous 
services with strong time forecasting constraints. On the other side, 
different initiatives are currently emerging, focusing their efforts on 
gathering and homogenising different systems from various sources into 
a centralised database. These platforms that collect multiple systems 
offer some clear advantages. They usually implement a centralised API 
(Application Programming Interface) that provides access to a collection 
of datasets by employing the same tools and methodologies and by only 
changing the request. Besides, files within these platforms commonly 
share the same data and metadata structure across systems, and, in some 
cases, they provide a standardised spatial grid. These features can 
become helpful when expanding the service to different variables or 
systems. A potential limitation of these kinds of platforms may be that 
they usually provide only a subset of the data available on the opera-
tional centers: not all variables are available and those available may be 
at lower spatial and temporal resolutions, which can be an issue for some 
applications. These data portals provide free predictions to promote 
research or operational service prototypes that can feedback into oper-
ational developments. However, the long-term availability or timely 
disposition of the forecasts may not be guaranteed. Additionally, the 
provision of the systems depends on each of the producing centers. 

In the case of subseasonal predictions, there are two of such plat-
forms: the World Weather Research Programme (WWRP)/ World 
Climate Research Programme (WCRP) Subseasonal to Seasonal (S2S) 
Prediction Project (Robertson et al., 2015) and the Subseasonal Exper-
iment (SubX) (Pegion et al., 2019). The S2S Project maintains a valuable 
database of forecasts and hindcasts from 12 prediction systems for 
research purposes (Vitart et al., 2017). The predictions are converted to 
an unified grid of 1.5◦ × 1.5◦ to facilitate their analysis and comparison. 
The predictions available in the S2S database have a 3 weeks delay with 
respect to real-time, due to commercial constraints, thus limiting their 
use to research purposes. However, in the Phase II of the S2S Project the 
importance of offering free forecasts in real-time to research institutions 
was recognised as a path to explore the usability and promote the uptake 

A. Manrique-Suñén et al.                                                                                                                                                                                                                      



Climate Services 30 (2023) 100359

5

of S2S predictions in various sectors. With this aim, the Real-Time Pilot 
initiative was launched in 2019 and invited research groups or projects 
working in climate services for different sectors to participate. On the 
other hand, the SubX experiment brings together forecasts from 7 pre-
diction systems in real-time, including both research and operational 
systems (Pegion et al., 2019). The database is publicly available through 
the International Research Institute for Climate and Society (IRI) Data 
Library (Kirtman et al., 2017). It includes 17 years of hindcasts and 
forecasts from seven systems since 2017. Additionally, computed daily 
climatologies are available. 

Regarding data acquisition, most of the portals mentioned earlier 
rely on the standard HTTP or FTP protocol to allow external access to 
their datasets, which can be retrieved using the commonly used Wget or 
SCP tools. Some institutions are moving to more modern cloud-based 
solutions; for example, the NOAA (National Oceanic and Atmospheric 
Administration) has started to publish some of their climate datasets in 
the cloud through Amazon Web Services under the open data program. 
Cloud services offer unlimited resources, better performance, and 
improved security protocols over traditional servers. The datasets are 
then easily accessed through an API. Last but not least, some institutions 
supply more tailored services, and this is the case of the European Center 
for Medium Range Weather forecasts (ECMWF), which offers access to 
the S2S Project dataset through their data portal. This portal has been 
specifically designed to retrieve climate data, again employing an API, 
where subsets of the data can be specified and additional options are 
available (variables, temporal and spatial domains, file format…). 
Another example is the IRI Data Library which provides, as well as an 
online data repository of S2S and SubX data, a analysis web-service 
allowing subsetting and post-processing prior to download reducing 
the required bandwidth. 

2.4. Workflow design 

After selecting one or several forecasting systems and their sources, 
several actions are taken to extract helpful information from the raw 
data. The transformation applied to the data ranges from simple spatial 
interpolation techniques or the computation of tailored climate indices 
to more complex algorithms looking to improve the characteristics of the 
provided information, such as downscaling and bias adjustment. A 
considerable part of the processing is simple formatting and minor 
computations to accommodate the input data to the service’s spatial and 
temporal scales requirements. In addition, to make the probabilistic 
information more understandable and to evaluate the quality of the 
predictions, a wide variety of statistics are computed, like tercile cate-
gories and skill scores. Finally, the predictions and associated elements 
to be provided as output have to be saved in an appropriate format. In 
this step, it is crucial to consider all the different methods applied to the 
raw data and define a workflow that executes each one of them accu-
rately and efficiently. With this regard, modularity is a valuable property 
for the post-processing steps, as it implies a more easily adaptable 
workflow to future user requirements. 

Hence, once the data sets needed are selected, and the post- 
processing steps are defined, a workflow orchestrating the different 
pieces of the puzzle needs to be designed to routinely retrieve the raw 
data, compute the operations and transfer the output in its desired 
format to the user. This process can be more or less complex depending 
on the volume of the data, the number of sources used to collect it, and 
the constraints imposed by the user; how much time is the user willing to 
wait for each update, for example. With this in mind, the final workflow 
has to contemplate the aspects aforementioned ensuring the quality of 
the output. 

On the technical side, actual implementations of operational services 
need to handle incidences like delays in the publication of the forecast or 
corruption of the data originated in the source or during the transfer. For 
this reason, when designing the system, the software should be able to 
handle these issues by catching the irregularities and generating the 

actions to resolve them in time. With this in mind, workflow managers 
are a great asset, as they can handle fails and retrials and dependencies 
between jobs and different machines. There are several open-source 
workflow managers freely available. For instance, ecFlow (Bahra, 
2011); developed and maintained by the ECMWF and tailored, although 
not limited, to the execution of weather and climate models, Cylc (Oliver 
et al., 2019); a general purpose workflow engine that orchestrates 
cycling workflows very efficiently, or Autosubmit (Manubens-Gil et al., 
2016); a workflow manager developed at the Barcelona Supercomputing 
Center to create, manage and monitor climate experiments by using 
computing clusters, HPC’s and supercomputers remotely via ssh. 

Besides that, constant checks are needed due to the volume of data 
processed, making their integration a good practice at every stage of the 
process, thus ensuring that the resulting data has the expected attributes. 
Therefore, checks on different attributes like the file size, the contained 
variables, dimensions and timesteps, and value ranges, should be 
implemented over every process step. The computing resources needed 
will grow with the number of checks applied over a dataset and its 
volume. For this reason, it is essential to verify the data while processing 
it rather than running a single exhaustive test after-action. 

2.5. Testing and production 

Once the operational service is implemented, due to its complexity, it 
is important to verify, before the production phase, that the system is 
producing the right outcome. For this purpose, a possible strategy is to 
compare the results against a benchmark, that can be an independent 
prior study or calculation. In many cases, the operational service origi-
nates from research work where the methodology was developed and 
tested. This provides a test bed to assess the outputs, however it is 
desirable that the workflow and the tests run in as little common soft-
ware as possible. Additionally, if other services are available producing 
similar information, is it valuable to compare both outcomes and try to 
identify and understand the differences that could be found. 

Once an initial verification is done and the service is moved to a 
production environment, issues and new feedback from the users may 
arise. Thus, it is advantageous to maintain open the validation loop 
between users and developers to enhance the service at the production 
stage. As a consequence, it is advisable to save resources to address 
possible new developments during this period. 

3. Implementation of a climate service based on subseasonal 
predictions: a practical example 

In this section, the steps to implement an operational climate service 
presented in the previous section are exemplified through the descrip-
tion of a real case, the implementation of the climate service of sub-
seasonal predictions developed within the S2S4E Project. As part of this 
project, seasonal and subseasonal predictions of essential climate vari-
ables and energy related indicators were operationally delivered 
through an interactive interface, the ”Decision Support Tool” (DST), to a 
wide range of actors in the energy sector (https://s2s4e-dst.bsc.es). We 
here describe the implementation of this operational service: the selec-
tion of the prediction system, the strategy for calibration and forecast 
skill assessment and the design of the operational workflow orches-
trating all the processes and their timings, which were adjusted to the 
producing center’s data release schedule. Furthermore, we detail prac-
tical aspects related to the treatment of subseasonal predictions and how 
we addressed the scientific and technical challenges encountered in the 
process. 

3.1. Forecast product definition 

The subseasonal climate service consisted in several forecast prod-
ucts of the essential surface climate variables that were deemed most 
relevant for the sector, i.e. 2 m temperature (mean, maximum and 
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minimum), 10 m wind speed, mean sea level pressure, precipitation and 
solar radiation, provided for the forthcoming four weeks. The pre-
dictions were given as probabilities of each tercile category for each grid 
point. The risk of occurrence of extremes was procured as the probability 
of exceeding (or not reaching) the 90th (10th) percentile; this decision 
was taken after several discussions with users. Additionally, some 
tailored indicators for renewable energy generation and electricity de-
mand were calculated and provided. Furthermore, addressing a request 
raised by users during the co-development, a product of country- 
averaged predictions (for European countries) for each variable was 
added. The predictions were updated weekly (on Thursday) and pro-
vided as weekly averages up to 4 weeks ahead, starting on day 5 (week 1 
days 5–11; week 2 days 12–18; week 3 days 19–25; week 4 days 26–32). 
The 7-days aggregation period was selected to match Monday to Sunday 
as this natural week is commonly employed by energy users in their 
analyses. 

3.2. Prediction system requirements and acquisition 

This section addresses the following two steps jointly: “Prediction 
system and observational reference requirements” and “Data sources 
and acquisition”. In the selection of the prediction system and down-
loading platform, several requirements imposed by the nature of the 
service and the constitution of the products were decisive. 

The two main databases S2S Project database (Vitart et al., 2017) and 
SubX (Pegion et al., 2019) were discarded for different reasons. Since the 
climate service was an operational prototype aiming to offer timely 
predictions to the users, the availability of real-time forecasts was 
essential. For this reason, the S2S Project database with 3-week delay in 
the forecasts was not adequate. On the other hand, the SubX platform 
does offer real-time predictions from several subseasonal prediction 
systems, however, the wind forecasts from this database are provided as 
time averages of the wind components (u and v), instead of the instan-
taneous values which are required for the calculation of the wind 
module, necessary to compute a specific wind energy product (wind 
capacity factor). It should be noted that this drawback is a consequence 
of a choice of the SubX database to homogenise and save space and that 
the individual models in their original output may be suitable for our 
product. As a matter of fact, the first subseasonal prediction system 
implemented in the S2S4E climate service was NCEP CFSv2 (Saha et al., 
2014), which is one of the systems included in SubX database, but 
alternatively it was downloaded from NOAA’s NOMADS server directly, 
which provided instantaneous values of the wind components at a 
higher frequency. At a later stage, the launch of the S2S Project Real- 
Time Pilot Initiative provided an excellent setting for the S2S4E Proj-
ect, since this initiative provided access to real-time S2S predictions 
from all prediction systems in S2S Project to collaborating projects. With 
this programme in place, the prediction system integrated for S2S4E DST 
was updated to the ECMWF extended range forecast system ECMWF- 
Ext-ENS (Vitart, 2004; Vitart et al., 2008). This system was chosen for 
several reasons: due to its good skill results (Vitart, 2014), to attain 
coherence with the seasonal predictions (also provided by the S2S4E 
DST and based on ECMWF seasonal system SEAS5 (Johnson et al., 
2019)) and because of the user awareness of ECMWF’s excellent track 
record. The operational implementation that will be described hereafter 
is based on predictions from ECMWF-Ext-ENS. 

The ECMWF-Ext-ENS system (Vitart, 2004; Vitart et al., 2008) is a 
prolongation of the ECMWF Integrated Forecast System (IFS) to cover 
time scales beyond medium-range, producing a forecast up to 46 days 
ahead. This extension entails a coupling with ocean and ice components 
to account for the influence of these slowly varying systems. The 
extended forecasts are run twice a week, every Monday and Thursday. 
Each forecast run consists of 51 ensemble members to represent model 
uncertainty. The original resolution is 16 km up to day 15 and 31 km 
beyond day 15. The predictions provided by S2S are homogenised to a 
common grid of 1.5◦ × 1.5◦. For each real-time forecast, an ’on-the-fly’ 

hindcast is computed by initializing the same prediction system with 11 
ensemble members, on the same date for the previous 20 years. This 
approach ensures that the hindcast set is run with the exact same model 
version as the forecast, thus providing an up-to-date reference to identify 
systematic model biases and correct them in the real-time forecast 
during post-processing. ECMWF-Ext-ENS uses this type of hindcast 
setting due to the frequent cycle upgrades of the IFS, normally every few 
months. ECMWF-Ext-ENS real-time forecast runs are initialised at 00 
UTC on Mondays and Thursdays, and are available a few hours later. The 
hindcast set corresponding to each initialisation is produced and made 
available 2 weeks prior to the real-time forecast as represented in the 
schematic in Fig. 3. 

The observational reference employed for both bias adjustment and 
forecast skill assessment was the ERA5 reanalysis (Hersbach et al., 
2020), as this dataset provides a good representation of surface winds 
suitable for energy applications at the global scale (Ramon et al., 2019). 

3.3. Workflow design 

This section describes the design of the operational workflow, which 
has been adapted to the schedule of production of ECMWF-Ext-ENS 
forecasts and hindcasts depicted in Fig. 3. In particular the timings of 
the downloading and post-processing tasks are tailored to the release of 
new data. Additionally, the methodology employed for the bias- 
adjustment of the predictions and for forecast skill assessment is also 
described. These processes are also conditioned by the ECMWF-Ext-ENS 
schedule, the readiness of the ’on-the-fly’ hindcasts limits the data 
available to be used in the bias adjustment and quality assessment. 

3.3.1. Methodology 
The method employed to adjust the systematic mean bias and the 

spread of the predictions is the variance inflation (Doblas-Reyes et al., 
2005). This technique compares the climatological distribution of the 
prediction system and that of the reference dataset and adjusts the 
predictions to have the same interannual variance as the observations, 
while preserving their interannual correlation. Hereafter, this method 
will be referred to as calibration. It has been successfully tested for 
seasonal predictions of wind speed (Torralba et al., 2017), temperature 
and precipitation (Manzanas et al., 2019). With seasonal predictions, 
calibration is carried out on monthly averages; in the case of subseasonal 
predictions, the method has been adapted to work on weekly averages, 
raising some additional challenges. One of these challenges is the way 
the climatology is computed to correctly characterize the model and 
observed climate distributions. In the calibration of a real-time forecast, 
its associated hindcast is employed to represent the model climatology 
based on past predictions. The model climatology is confronted against 
the reference climatology and some adjusting parameters are deter-
mined to correct the real-time forecast. To account for the model bias 
growth with lead-time, the calibration is performed on each forecast 
week independently. In our operational workflow, both the forecasts 
and the hindcasts are routinely calibrated with ERA5 reanalysis. In the 
case of the forecasts, to adjust the product delivered to the user, and in 
the case of the hindcasts to produce a corrected set of past predictions 
that will be analised to provide a robust quality estimate of the forecast 
product. The skill scores used are fair Ranked Probability Skill Score 
(RPSS) for the tercile categories and fair Brier Skill Score (BSS) for the 
probability of extremes (Ferro, 2014). The hindcasts are calibrated with 
the same methodology as the forecasts but in a leave-one-out cross 
validation, to ensure no observational information of the adjusted year is 
included in the process. Similarly, for all the steps mentioned earlier, the 
whole hindcast period (20 years in the case of the ECMWF-Ext-ENS 
system) was used to ensure that the probabilistic information provided 
was robust enough. 

To conduct these analyses, a robust statistical software is required. In 
this case, the R programming language (R Core Team, 2019) is chosen 
given the number of packages available for environmental sciences 
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analysis. Specifically, to construct the operational workflow the R 
package startR (Manubens et al., 2022) has been used to retrieve the 
data from files, s2dverification (BSC-CNS et al., 2022) to calculate 
anomalies, and easyVerification (MeteoSwiss, 2017) to calculate the 
skill scores. Furthermore, during the S2S4E project, the calibration 
method has been made available in CSTools (Perez-Zanon et al., 2021). 

Although ECMWF-Ext-ENS is initialised every Monday and 
Thursday, our operational service was updated on a weekly basis based 
on Thursday’s forecasts. For the calibration process both Mondays and 
Thursdays hindcasts were considered, in order to benefit from an 
increased sample, as tested in Manrique-Suñén (2020). This work 
showed that the skill scores varied significantly depending on the sam-
ple size used to calculate the climatology. The best approach to compute 
the climatology was to set a running window centered in the start date, 
to increase sample size while ensuring representativeness of the climate 
distribution associated with that start date. The size of the window in 
our operational setting with an ’on-the-fly’ hindcast is limited by the 
readiness of the latests hindcasts. As shown in Fig. 3, in order to calibrate 
today’s forecast F(T0), as well as the hindcast set which was initialised 
on the same date H(T0) and released 2 weeks before, the hindcasts 
initialised on the adjacent startdates are already available and can be 
used in the computation of the climatology. The largest window that can 
be constructed centered on H(T0) is of seven sets of hindcasts ini-
tilialized on the 7 start dates from H(M-1) to H(M2). The use of H(T2) is 
disregarded as including it would allow little time for processing before 
Thursday’s forecast release. The possible windows sizes to compute the 
climate distribution are therefore of three, five or seven start dates 
centered on the forecast date T0. 

To evaluate the effects that the size of the window have in the 
forecast skill, both temperature and wind speed were calibrated based 
on a climatology constructed with: one single set of hindcasts H(T0), and 
with running windows of three, five and seven start dates around the 
initialisation date. The comparison of the resulting values of fair RPSS is 
included in Supplementary Material. This analysis shows that the cali-
bration based on climatology computed from a single start date does not 
yield a robust adjustment since it degrades skill with respect to the raw 
predictions (’cal1’ in Supplementary Figs. 1–4). These results are in 
agreement with Manrique-Suñén (2020) where a simple bias correction 
was employed instead of the calibration method implemented in this 
work. Employing a window of three start dates (’cal3’) improves fair 
RPSS notably with respect to a single start date (’cal1’), whereas a 

further increase to 5 or 7 start dates has no significant effect (Supple-
mentary Figs. 1–4). The larger window of 7 start dates has negative ef-
fects on skill in some cases (parts of Asia in Supplementary Fig. 2). The 
results show that most of the improvement is gained when increasing the 
window to 3 start dates and only marginal gains are achieved for wind 
speed when employing 5 start dates. From a practical point of view, a 
larger window implies a higher computational cost and less margin of 
operation in case of delays or technical disruptions. For these reasons 
and given that skill improvements when using 5 start dates were only 
marginal, the calibration of the real-time forecasts for the operational 
service was applied based on a climatology computed from a sample of 3 
hindcast sets from 3 start dates centered on the initialisation date. This 
three start date window is highlighted in grey in Fig. 3. The model’s 
climate distribution is therefore constructed from a sample of 660 values 
(3 start dates × 11 ensemble members × 20 years) which is compared 
against the ERA5 reference climate computed in an analogous manner, 
in this case from 60 values (3 start dates × 20 years). From the point of 
view of representativeness of the climatology, a 3 start date window 
preserves the seasonal cycle (climatologies span one week). A longer 
window with more start dates and spanning several weeks may filter out 
the seasonal cycle. Nevertheless, for specific products, a longer window 
may be beneficial as the increased sample size provides a better char-
acterisation of the tails of the distribution (i.e. extremes). 

With every real-time prediction issued weekly on a Thursday, a 
probabilistic skill score was also provided, to inform the user of the 
quality of the forecast product. The fair RPSS and fair BSS skill scores 
were routinely computed for each new forecast based on the latest eight 
sets of calibrated hindcast. The use of several start dates increases the 
sample size in order to yield a robust probabilistic estimate of skill. The 
skill is assessed on every lead time and grid point independently. 

In summary, every real-time forecast released on Thursday is cali-
brated employing its hindcast and the one of the previous and following 
Mondays. With this setting, although the forecasts initialised on Mon-
days are not used (the service forecasts were only updated on Thurs-
days), all hindcasts (Mondays and Thursdays) are employed for 
calibration and also for skill assessment, maximising the use of the data 
available. 

3.3.2. Implementation 
The operational workflow to generate our forecast product was 

implemented and controlled via the workflow manager Autosubmit 

Fig. 3. Schematic representing ECMWF-Ext-ENS real-time schedule for the provision of forecasts and associated hindcasts. Mondays and Thursdays are 
indicated with ’M’ and ’T’, while the numbers indicate the corresponding week, being 0 the current week. Positively numerated weeks correspond to the future weeks 
while negatively numerated weeks correspond to the past weeks. The bottom row of boxes represents the forecasts ’F’ which are available every Monday and 
Thursday. The top row of boxes represents each set of 20 hindcasts associated with every forecast, available 2 weeks before the real-time forecast. Assuming the 
current date is Thursday of week 0 (T0), the real-time forecast released today is the grey box F(T0). Its associated hindcasts H(T0) were made available on Thursday 
2 weeks ago (T-2). The boxes outlined in black represent the data that is available to date, the boxes in light grey represent the data that will be available at future 
dates. To calibrate today’s forecast F(T0), the climatology distribution is computed from three hindcast sets defined by a window of three start dates centered on 
hindacst H(T0); H(M0), H(T0) and H(M1) (i.e. hindcasts from the previous and following Mondays with respect to the initialisation date are employed to increase 
the sample). 
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(Manubens-Gil et al., 2016). The schematic in Fig. 4 shows the different 
processes from the data downloading until the product upload to the 
platform, which include formatting, calibration, probabilities compu-
tation and skill assessment. Different actions are performed every 
Monday (M) and Thursday (T), days on which new data is available to 
download. On Thursdays, the real-time forecast is downloaded and the 
forecast products are computed and issued; additionally a hindcast set is 
also downloaded (Thursday’s actions are included in the light blue box 
in Fig. 4). On Mondays, a hindcast set is downloaded, and the skill 
computation takes place (Monday’s processes are included in the light 
brown box in Fig. 4). Note that the hindcast sets are downloaded two 
weeks before their corresponding real-time forecast. 

On Thursday (T0) of the current week, the real-time forecast for the 
next 4 weeks is downloaded (represented as F(T0) in Fig. 4). After 
downloading the files, the first step consists on formatting and pre- 
processing. The original files in GRIB format are converted into 
NetCDF and the weekly averaging is performed (beginning with day 5 of 
forecast). Additionally, some quality checks are applied to the data (i.e. 

check number and size of files). That same Thursday, the hindcast cor-
responding to Tuesday in two weeks time H(T2) is downloaded and pre- 
processed. Formatted files are indicated in orange in Fig. 4. Once the 
forecast data F(T0) is pre-processed, the next step is the calibration, 
which is based on a climatology constructed from hindcast sets from 3 
start dates to construct the climatology (a running window as explained 
in the methodology section). In our example, the forecast F(T0) is cali-
brated employing the three hindcast sets initialised on the same date H 
(T0), the previous Monday of the same week H(M0) and the following 
week’s Monday H(M1). All of these hindcast sets had been previously 
downloaded, formatted and pre-processed at earlier dates. The resulting 
calibrated forecast F(T0) is indicated with a purple box in Fig. 4. Then, 
the forecast probabilities are computed from the forecast ensemble 
members employing as percentile thresholds (p33, p66, p10 and p90) 
which had been previously derived from the corresponding calibrated 
hindcast H(T0) on Monday of the previous week (M-1). Both the terciles 
probabilities and probabilities of extremes (probability of exceeding or 
not reaching p90 and p10) constitute the final forecast products which 

Fig. 4. Operational data workflow based on ECMWF-Ext-ENS prediction system. Every Monday a new hindcast is downloaded and calibrated; the tercile and 
extremes boundaries are computed as well as the skill scores, these are all stored in the system. Every Thursday the real-time forecast is downloaded and calibrated, 
then the tercile and extreme probabilities are computed ready to be delivered. Additionally a new hindcast is also downloaded every Thursday. 
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are uploaded to the platform. Complementing each product, a forecast 
skill is provided, which was previously calculated, as explained below. 

Ten days earlier, on Monday (M-1), both the skill and the necessary 
percentiles had been already computed for Thursday’s forecast product 
F(T0), based on its corresponding hindcast H(T0). On Monday of the 
week before (M-1), the hindcast set for Monday H(M1) was published, it 
was downloaded, formatted and pre-processed. With this hindcast set 
ready, the calibration of H(T0) could be carried out (employing the 3 
sets of hindcasts H(M0), H(T0) and H(M1)). Once the hindcast H(T0) 
was calibrated, the percentiles that define the tercile categories (p33 and 
p66) and the extremes of the distribution (p10 and p90) were computed 
and stored to be used on the current week forecast F(T0) computations. 
Additionally, the skill computation was performed, assessing the last 
eight calibrated hindcasts up to H(T0) to produce a robust score (using 
both Monday’s and Thursday’s hindcasts). The resulting fair RPSS and 
fair BSS were stored to be provided along with F(T0) forecast product. 
Since this computation is done 10 days before the actual forecast is 
published, there is some room for manoeuvre in case of technical issues 
and the results can be checked before the actual forecast day. Addi-
tionally, taking into account that the computation performed over the 
hindcast could be expensive in time and resources, this strategy helps to 
reduce considerably the operations needed on forecast day (Thursday). 

3.4. Testing and production 

Despite the optimised workflow design and the quality checks 
included, multiple issues can occur in an operational service, compro-
mising the final product. During the production phase of the S2S4E 
project, three main types of issues were within the most frequently 
encountered. The first one, was the delay in the publication of the 
forecast by the producing center. Although this is not a common issue, 
there could be delays lasting from hours to days for various reasons. A 
second issue is the planned or unplanned disruption of the computa-
tional resources, leading to failures or delays. A contingency plan needs 
to be arranged to solve or mitigate these potential issues, this can be as 
simple as showing a warning message in the tool and/or sending a 
notification email to the users. Last but not least, on some rare occasions, 
corrupted data, either generated at its source or during the workflow, 
was able to pass undetected through the control checks. This issue can 
affect the correct functioning of the service, implying, on many occa-
sions, a manual inspection of the files and a re-run of the entire 
workflow. 

4. Challenges to extrapolate to other prediction systems 

The operational implementation described is designed for ECMWF- 
Ext-ENS prediction system, therefore the workflow is specifically 
tailored to its operational schedule of forecast and hindcast configura-
tions. Although many aspects described here apply or can be easily 
adapted to other subseasonal systems, we will discuss two characteris-
tics which would require slight changes in the approach or at least some 
attention. These relate to the type of ensemble, (i.e. the use of a lagged 
ensemble as opposed to the burst ensemble found in ECMWF-Ext-ENS) 
and to the type of hindcast, (i.e. the fixed hindcast as opposed to the 
’on-the-fly’ hindcast found in ECMWF-Ext-ENS). These are common 
configurations found in many subseasonal systems therefore it is worth 
discussing their implications for the design of the operational workflow. 

4.1. Lagged ensemble 

Some subseasonal systems have frequent initalisations of a small set 
of ensemble members. In order to create a larger ensemble for a reliable 
prediction, runs from different initialisation times have to be pooled 
together to form a lagged ensemble. This aggregation increases the 
number of ensemble members to better represent the range of possible 
outcomes and thus may improve reliability but at the same time it can 

deteriorate skill by including information from old initialisations. 
Analogously, the hindcasts runs follow a similar configuration with 
typically a reduced number of members or initialisations. The selection 
of an ’optimal’ lagged ensemble has been addressed by some studies 
(Trenary et al., 2017; Vitart and Takaya, 2021). This choice may be 
related to the forecast horizon and other properties of the desired 
product. These type of systems offer more flexibility to create a forecast 
product, as there is not a pre-defined issue date (i.e. Monday and 
Thursday), so the forecast can be issued at any chosen dates to better suit 
the user’s needs. Additionally, the number of members of the ensemble 
can be adapted (more members may characterise better the uncertainty 
at longer lead times), but consequently these systems require an 
exhaustive evaluation in order to make a choice of design. An example of 
a subseasonal system that uses this approach is the NCEP CFSv2 (Saha 
et al., 2014), whose forecasts have initialisations every 6 h (cycle) 
launching 4 ensemble members. In the hindcast only one run is launched 
every cycle 6 h. This configuration can therefore produce 16 ensemble 
members for forecast by taking the predictions of the last 24 h or in-
crease further the ensemble by adding more initilisations. In order to use 
a lagged ensemble in an operational service, an additional step has to be 
added to the workflow which is pooling the different initialisations to 
create the lagged ensemble. The different runs have to be merged 
making sure they verify at the expected forecast time, i.e., in the case of 
NCEP CFSv2 the different lead times need to be adjusted by 6 h. Once the 
lagged ensemble is created, it can be treated like a burst ensemble and 
the other post-processing steps can be applied. In the S2S database, the 
forecast runs are already aggregated daily, thus providing 16 ensemble 
members per day (4 in hindcasts). The ensemble type has to be 
considered before implementing the service, as a lagged ensemble can 
add load to the resources required in terms of design and development of 
our workflow. 

4.2. Fixed hindcast 

Many subseasonal systems have a fixed hindcast instead of a ’on-the- 
fly’ hindcast. This hindcast is computed once for a number of years in the 
past. A fixed hindcast facilitates the workflow described, as the 
computation of many statistics does not have to be redone with every 
new forecast. This implies that the skill scores are calculated only once 
and then when a forecast is launched, the corresponding skill score to 
that time of the year is presented with it. Equally with the model 
climatology from which the tercile categories are calculated, these 
values only need to be computed once and then can be stored as static 
values to be used to compute the tercile probabilities. Only when the 
system is upgraded a new hindcast set will be produced, and the skill 
scores and statistics will need to be re-calculated for the new system. 

5. Future prospects 

From the experience gathered during the S2S4E project, we analyse 
three main future aspects which might contribute to improved opera-
tional climate services. These aspects relate to the integration of pre-
diction time scales in a seamless way, the combination of multiple 
prediction systems into a multi-model product, the use of cloud- 
computing resources and the detection of windows of opportunity. 

With the growing number of prediction time scales available for 
climate services - from numerical weather prediction, subseasonal, 
seasonal, decadal up to decadal predictions and climate projections - 
there is an increased amount of information available to suit different 
decision making contexts. This escalation may imply some overlapping 
across time scales covered by the different prediction systems, which 
may entail incoherences in the information issued, caused either by the 
differences in the prediction systems (Earth components coupling, 
spatial resolution, etc) or simply in the definition of the forecast prod-
ucts (aggregation period, post-processing, reference climatology, etc). A 
first approximation toward combining different time-scales predictions 
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was conducted during the S2S4E project by providing 18 months of real- 
time subseasonal and seasonal forecasts through the fully-operational 
Decision Support Tool (DST). During these first tests, the prediction 
systems used for the subseasonal and seasonal time scales were different, 
and the post-process applied to bias-adjust each of them was indepen-
dent. This methodology led to occasional inconsistencies between pre-
dictions across the two time scales, generating mistrust among users of 
the service. Hence, we identify the need to develop post-processing 
techniques that integrate information from multiple scales into a sin-
gle and coherent prediction. However, the development of these meth-
odologies should be escorted by efforts in the production upstream of the 
climate data involved, such as standardised initialisation procedures and 
data access across prediction systems. 

The second point for future developments is the multi-model 
approach. There are many modelling centers across the world produc-
ing S2S predictions. This model diversity is beneficial because the 
sources of predictability at these timescales come from different mech-
anisms and may depend on location and season. One model might be 
better than others at predicting certain patterns. A known strategy to 
exploit model diversity and produce a joint reliable prediction is to 
combine several forecasts to construct a multi-model product. However, 
in the case of subseasonal predictions, this is a very challenging task, 
again due to heterogeneity of the prediction systems, although some 
attempts have been done in this direction (Vigaud et al., 2017; Specq 
et al., 2020). One of the main caveats is that the initialisation date varies 
with the model, making it non-trivial to aggregate forecasts with 
different lead times. The diversity in the type of ensembles also com-
plicates the design of such multi-system. In this regard, a protocol 
aligning the initialisation dates would help in the design of such a 
system. 

Both of the approaches aforementioned imply managing an 
increasing volume of data, which might come from multiple sources. 
Thus, access to vast computing resources will be crucial in future 
implementations of operational climate services. Under this scenario, 
cloud-computing platforms are a very suitable ally, as they can offer 
unlimited resources on-demand, delivering improved performance and 
reliability against traditional clusters. The correct integration of these 
platforms can lead to better workflows producing more reliable pre-
dictions and presenting increased transparency and traceability on the 
data and methods used, building, as a consequence, more trust in the 
service provided. 

Last but not least, in subseasonal timescales, forecasts may be 
influenced by climate phenomena or conditions such as ENSO, the MJO, 
the land surface or the stratosphere. This impact is spatially heteroge-
neous and intermittent in time, thus providing some strategic periods or 
windows of opportunity when the subseasonal forecasts may be more 
skilful (Mariotti et al., 2020). The knowledge a priori of these periods or 
regions where a subseasonal forecast is more reliable can increase the 
applicability of subseasonal forecasts. However, skill is often computed 
not taking into account these prevailing conditions, as it evaluates the 
average behaviour of the forecast in the past (hindcast). Some studies 
have attempted to evaluate the skill conditional to these climate phe-
nomena (Lledó and Doblas-Reyes, 2020; Mayer and Barnes, 2021).Yet, 
this procedure subsets the dataset reducing the available sample and 
creating less statistically robust estimates of the forecast skill. Thus, 
finding an optimal way of detecting forecast windows opportunity and 
their role in forecast uncertainty gathers the attention of researchers, 
with promising impact in the field of subseasonal predictions. 

6. Conclusions and discussion 

A general guideline to create a subseasonal climate service has been 
presented. It contains the main aspects that need to be taken into 
consideration in order to set up an operational service of climate pre-
dictions. These include the characteristics of the systems, the data 
sources and methodology. Then, a detailed workflow design of a forecast 

product implementation from the S2S4E Project is described to provide 
a real illustration of such process. The service was designed attending to 
scientific criteria, user requirements and technical limitations; it is 
therefore the result of a trade-off to attain a well-founded solution in 
terms of skill, usability and computational resources. The main chal-
lenges, in addition to the technical challenges inherent to any opera-
tional workflow, (automatisation, efficiency, dealing with delays in 
input data) were related to the configuration of the subseasonal pre-
dictions systems. A useful approach was to plan the timings of the tasks 
of the workflow to the release schedule in order to distribute the 
workload and improve efficiency. The scientific challenges relate to the 
small sample size available for calibration and verification and they 
were tackled by employing a running window to increment the number 
of hindcast to construct the climatology, and thus improve its 
robustness. 

This work is the result of the experience gained in the S2S4E Project 
which had as main output a Decision Support Tool providing operational 
climate predictions from subseasonal to seasonal time ranges of climate 
variables and energy related indicators. The engagement with the users 
was key at all stages and guided the development of the service. The 
operationalisation of subseasonal predictions as a functional product 
was one of the main achievements in the project, since the provision of 
subseasonal forecasts for operational use is still at developing stage. The 
presented workflow combines scientific rigour and a practical approach 
to deliver credible and timely information. Additionally, the detailed 
description presented recognizes and visualises the work behind an 
operational implementation. The data download and data management 
are aspects often neglected and their workload is often underestimated. 
Additionally, despite the high degree of automatisation in the processes, 
there is the need of some human supervision and maintenance. This 
work contributes to the development of climate services by sharing the 
lessons learnt about the implementation of an operational workflow 
based on subseasonal predictions. 
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and Nicolau Manubens for technical support. Finally, Isadora J. Christel 
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