
Investigating Memory Prefetcher Performance over
Parallel Applications: From Real to Simulated

Valéria S. Girelli∗1, Francis B. Moreira†, Matheus S. Serpa‡, Danilo C. Santos§1, Philippe O. A. Navaux‡
∗Barcelona Supercomputing Center (BSC) - Barcelona, Spain

†Department of Informatics, Federal University of Paraná (UFPR) - Curitiba, Brazil
§Grenoble Informatics Laboratory, University Grenoble-Alpes (UGA) - Grenoble, France

‡Informatics Institute, Federal University of Rio Grande do Sul (UFRGS) - Porto Alegre, Brazil
E-mail: vsoldera@bsc.es, fbmoreira@inf.ufpr.br, danilo.carastan-dos-santos@inria.fr, {msserpa, navaux}@inf.ufrgs.br,

Keywords—Prefetching, memory system, High-performance
computing.

I. EXTENDED ABSTRACT

In recent years, there have been significant advances in
the performance of processors, exemplified by the reduction
of transistor size and the increase in the number of cores in a
processor. Conversely, the memory subsystem did not advance
as significantly as processors, not being able to deliver data at
the required rate, and creating what is known as the memory
wall [1]. An example of a technology used to mitigate the
memory latency is the prefetcher, a technique that identifies
access patterns from each core, creates speculative memory
requests, and fetches data that can be potentially useful to the
cache beforehand.

In High-Performance Computing (HPC) systems, many
other problems arise with parallelism. Since HPC applications
are highly parallel, with many threads communicating with one
another mainly through shared memory, it becomes necessary
to keep data coherence in the several cache levels. Moreover,
the memory interactions among different threads may also
unpredictably change the data path through the memory hi-
erarchy. When considering the memory hierarchy complexity
along with prefetcher action, the behavior of the processor’s
memory subsystem reaches a new level of complexity.

In this work, we seek to shed light on how the prefetcher af-
fects the processing performance of parallel HPC applications,
and how accurately state-of-the-art multicore architecture sim-
ulators are simulating the execution of such applications, with
and without prefetcher. We identify that an L2 cache prefetcher
is more efficient in comparison with an L1 prefetcher, since
avoiding excessive L3 cache accesses better contributes to
performance, when comparing to accessing the L2 cache.
Moreover, we show evidence that the prefetchers’ contribution
to performance is limited by the memory contention that
emerges when the level of parallelism increases.

A. Methodology and Experimental Environment

We developed a careful experimental campaign, executing
the Numerical Aerodynamic Simulation Parallel Benchmark
(NPB) [2] using different levels of parallelism. Hardware
counter information was collected using the command line

1Work done while being at the Informatics Institute, Federal University of
Rio Grande do Sul (UFRGS) - Porto Alegre, Brazil

Fig. 1: IPC results for the real execution of the NPB applica-
tions with input class A.

tool PAPI [3], on an environment composed of an Intel Xeon
Silver 4116 CPU, the Skylake microarchitecture [4]. The state-
of-the-art simulators used were ZSim [5] and Sniper [6],
configured on an approximation of the real machine. The
conducted experiments were based on combinations of all the
available prefetchers on both the real hardware and Sniper.
A reproducible and open methodology was applied in our
investigation, and all the materials are publicly available1.

B. Investigating Current Architecture Prefetchers

Figure 1 shows the instructions per cycle (IPC) for two
NPB applications, MG and EP, running on the real hardware,
considering different numbers of threads and prefetchers, and
with prefetcher disabled as well. The behavior observed for
MG is representative of the general behavior observed for the
remaining applications, with the exception of the EP, which
is known to not make much use of memory [2], therefore
processor stalls due to memory access latency rarely occur
during execution.

In general, we observe that the difference in performance
from the configuration with only the L2 prefetchers to the
configuration with all prefetchers enabled is not much large,
with an average of 3.3% of IPC improvement. On Skylake, the
L2 cache access latency is of 14 cycles, only 10 cycles higher
than the L1 cache, while the L3 latency is measured to be
approximately between 60 and 80 processor cycles, presenting
a much higher overhead and a higher probability of stalling
the processor execution [7]. Therefore, the main performance
gains are obtained by the L2 prefetcher and the associated
access streams it detects, avoiding long latency accesses to the
L3 cache.

1https://gitlab.com/msserpa/prefetcher-ccpe

93

https://gitlab.com/msserpa/prefetcher-ccpe


Fig. 2: IPCs with prefetcher disabled on ZSim and Sniper
simulations and on the real execution.

Fig. 3: Useless prefeteches performed by the simulation and
by the real hardware, in ratio of the total number of prefetches.

The MG example in Figure 1 also shows a decrease in
the IPC when we increase the number of threads. Parallel
applications usually perform inter-thread communication that
naturally increase in function of the total number of threads.
With a large number of threads, the application memory ac-
cesses and the inter-thread communication increase, generating
contention that hinders the prefetcher’s impact over the per-
formance. Therefore, in cases where the number of concurrent
threads executed in a processor is very high, the performance
benefit of memory prefetchers for applications that use intense
memory and inter-thread communications would be negligible.

C. Investigating Prefetchers on Simulation

Figure 2 shows an example of the obtained IPCs when no
prefetcher is used for the simulations and the real execution.
For applications where communication and contention are
more predominant, ZSim simulations can reach a 30% lower
IPC when compared to the real execution, while Sniper can
provide simulations with an IPC 426% lower. As a general
trend, for NPB applications with communication and con-
tention, ZSim tends to underestimate the contention effects,
while Sniper tends to overestimate the contention effects as
the number of threads in the simulation increases.

When comparing Sniper simulation with prefetchers en-
abled to the real execution with prefetchers as well, even
though the number of prefetch requests issued is quite similar,
it does not translate in similar estimations of performance.
This may be due to the fact that the prefetches performed by
Sniper are different in terms of usefullness, as demonstrated in
Figure 3, where we show the mean percentage of prefetches
that were not useful during the executions in the real machine
and in the Sniper simulation.

D. Conclusions

The obscurity and confidentiality around the real imple-
mentation makes accurate prefetching models and algorithms
impossible to be reproduced in simulators. This is exemplified
by Skylake’s non-inclusive L3 cache, which increases the
memory system complexity and hinders the accurate simula-
tion of NPB behavior with the Sniper’s prefetchers.

On the real machine, we could observe that the use of both
L1 and L2 prefetchers does not necessarily warrant significant
performance gains, which is not intuitive. With only the L2
prefetcher, we obtained performance gains similar to when
using both prefetchers, with the advantages of having more
control over the experiments, faster simulation time, and less
energy consumption due to the smaller number of prefetch
requests being performed. Furthermore, as the parallelism and
the inter-thread communication increase, so does the memory
contention, becoming a large constraint to the performance.

II. ACKNOWLEDGMENT

This work has been published in the journal Concurrency
and Computation: Practice and Experience (CCPE), 2021 [8].
The hardware resources applied in this work belong to the
Parallel and Distributed Processing Group2, Brazil.

REFERENCES

[1] W. Wulf and S. McKee, “Hitting the memory wall: Implications of the
obvious,” Computer Architecture News, vol. 23, 01 1996.

[2] H. Jin et al., “The openmp implementation of nas parallel benchmarks
and its performance,” NAS System Division, NASA Ames Research
Center, Tech. Rep., 1999.

[3] D. Terpstra et al., “Collecting performance data with papi-c.” Tools for
High Performance Computing. Springer, 2010, pp. 157–173.

[4] J. Doweck et al., “Inside 6th-generation intel core: New microarchitecture
code-named skylake,” IEEE Micro, vol. 37, no. 2, p. 52–62, Mar. 2017.
[Online]. Available: https://doi.org/10.1109/MM.2017.38

[5] D. Sanchez and C. Kozyrakis, “Zsim: Fast and accurate
microarchitectural simulation of thousand-core systems,” SIGARCH
Comput. Archit. News, vol. 41, no. 3, p. 475–486, Jun. 2013. [Online].
Available: https://doi.org/10.1145/2508148.2485963

[6] T. E. Carlson et al., “An evaluation of high-level mechanistic core
models,” ACM Transactions on Architecture and Code Optimization
(TACO), 2014.

[7] M. A. Z. Alves et al., “Sinuca: A validated micro-architecture simulator,”
in 2015 IEEE 17th International Conference on High Performance
Computing and Communications, M. Qiu, Ed. IEEE, 2015, pp. 605–610.

[8] V. S. Girelli et al., “Investigating memory prefetcher performance
over parallel applications: From real to simulated,” Concurrency and
Computation: Practice and Experience, vol. 33, no. 18, 2021. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.6207

Valéria S. Girelli is a Research Engineer at the
Memory Systems group of the Barcelona Super-
computing Center (BSC), Spain. She received her
BSc degree in Computer Science from the Fed-
eral University of Rio Grande do Sul (UFRGS),
Brazil in 2021. Previously, she was a Computer
Architecure Undergraduate Researcher at UFRGS,
and a Researcher in Natural Language Processing
at Universidade do Vale dos Sinos and Dell Brasil.

2http://gppd-hpc.inf.ufrgs.br/

94

https://doi.org/10.1109/MM.2017.38
https://doi.org/10.1145/2508148.2485963
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.6207
http://gppd-hpc.inf.ufrgs.br/



