
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, (VOLUME: 10, ISSUE: 2, 01 APRIL-JUNE 2022) 1

A Real-Time Error Detection (RTD)
Architecture and its use for Reliability and

Post-Silicon Validation for F/F based Memory
Arrays

Yiannakis Sazeides, Arkady Bramnik, Ron Gabor and Ramon Canal

Abstract—This work proposes in-situ Real-Time Error Detection (RTD): embedding hardware in a memory array for detecting a
fault in the array when it occurs, rather than when it is read. RTD breaks the serialization between data access and error
detection and, thus, it can speed-up the access-time of arrays that use in-line error-detection and correction. The approach can
also reduce the time needed to root-cause array related bugs during post-silicon validation and product testing. The paper
presents how to build RTD into a memory array with flip-flops to track in real-time the column-parity and introduces a two-
dimensional Error-Correction scheme based on RTD. As compared to SECDED, the evaluated scheme has comparable error
detection and correction strength and, depending on the array dimensions, the access time is reduced by 8% to 24% at an area
and power overhead between 12% to 53% and 21% to 42% respectively.

Index Terms— Reliability, Testing, and Fault-Tolerance, Memory design, Error-checking

—————————— ——————————

1 INTRODUCTION
rror detection and error detection and correction codes
[1] are widely used to protect the data in memory ar-

rays of electronic devices from errors. Typically, a coding
technique adds one or more parity bits to each word in an
array to encode redundant information about the stored
data. When a codeword (data plus parity) is read from the
array, the value of the parity is calculated from the data
and an error is detected if the calculated parity does not
match the parity read from the array and if the code
strength permits it, the error is corrected.

Coding schemes are used to protect the data in arrays
from various errors in-the-field, e.g., soft-errors (SER) [2].
Naturally, the error protection of an array is also useful
during manufacturing tests [3] to expedite the detection of
defects in the array, as well as during post-silicon valida-
tion for the identification of bugs that manifest as corrup-
tion in codewords read from the array.

In this paper, we propose in-situ real-time error detec-
tion (RTD), an error protection approach that can detect a
fault in a memory array when it happens, rather than when
the faulty value is read. At a high level, what RTD does is
to calculate in real-time what the parity of all codewords in

an array are, and check them all the time against the parity
of the codewords produced when the codewords were
written in the array. Essentially, RTD can detect a fault in-
stantaneously after it occurs, whereas other coding-based
protection techniques, collectively referred to as non-Real-
Time Error Detection (nRTD), detect the fault only after the
stored data is read.

RTD has practical uses in reliability and post-silicon val-
idation. For reliability [4], RTD can be used to speed-up ar-
ray accesses for arrays required to provide in-line error-de-
tection and correction. For post-silicon validation [5], RTD
can be very effective in reducing the time needed to root-
cause bugs that manifest as array-content corruptions for
both test and production chips.

The paper explains the RTD’s functionality and shows
how to integrate RTD in an array built with flip-flops (F/F)
to track in real-time its column-parity. We also present a
two-dimensional (2D) ECC scheme based on RTD. A com-
parison of the 2D ECC RTD design against traditional
(nRTD) SECDED reveals that adding RTD to an array pro-
vides a significant access time reduction albeit with an area
and power overhead.

In the remaining of the paper, we discuss the RTD Ar-
chitecture (Section II), a RTD 2D ECC scheme (Section III),
an implementation of RTD for a F/F array (Section IV), an
evaluation of RTD overheads (Section V) and its code
strength (Section VI), RTD use for post-silicon validation
(Section VII), related work (Section VIII), and conclusions
(Section IX).

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

————————————————
• This work extends the “2D Error Correction for F/F based Arrays using In-

Situ Real-Time Error Detection (RTD)” in IEEE International Symposium
on Defect and Fault Tolerance in VLSI and Nanotechnology Systems, Oc-
tober 2020 [24].

• Y. Sazeides is with the Department of Computer Science, University of Cy-
prus, 1 Panepistimiou Avenue, 2109 Aglantzia, Nicosia, Cyprus. E-mail:
yanos@cs.ucy.ac.cy

• A. Bramnik is with the Intel Israel Development Center, M.T.M. Scientific
Industries Center, Haifa 31015, Israel. E-mail: arkady.bramnik@intel.com

• R. Gabor is with the, Israel. E-mail: ron.gabor@gmail.com
• R. Canal is with the Departament d'Arquitectura de Computadors, Uni-

versitat Politècnica de Catalunya, c/ Jordi Girona 1-3, 08034 Barcelona,
Spain, E-mail: rcanal@upc.edu

E

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. DOI 10.1109/TETC.2022.3141486

2 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING (VOLUME: 10, ISSUE: 2, 01 APRIL-JUNE 2022)

2 RTD ARCHITECTURE
In this section, we illustrate the high-level functionality

of a memory array protected with RTD. In Section XYZ we
will discuss an implementation of RTD that shows how to
actually embed RTD inside an array.

 Fig. 1.a shows a baseline array without error protection
that contains R rows, C columns, a read port to output
(OUT) the value at the read-address, and one write port to
store the input (IN) at the write-address. Fig 1.b presents
how to extend the baseline design with traditional nRTD
protection by adding parity bits per row. The parity is gen-
erated (using a parity Generator denoted by G in Fig. 1.b)
on a write cycle according to the code used and the value
that is getting stored. The generated codeword (data+par-
ity) is then written in the array. On a read cycle, a code-
word is read from a row and an error is detected with the
help of a codeword checker (C).

Fig. 1.c introduces the extra array interfaces and func-
tionality needed by RTD to detect in real-time whether the
array contains a fault. Specifically, RTD requires having in-
situ (i.e. built in the array) a port to track the real-time-col-
umn parity (RTCP) of all cell values per array column. This
port does not need an address decoder, to select a specific
row, since it produces the xor of the values in all cells per
column. Additionally, RTD requires a SCP (stored-col-
umn-parity) register with C bits (as many as the array col-
umns). This register maintains the parity for each column
and it is updated on every array write cycle with the
biwise-xor of the current value in SCP, the previous data
(PD) in the row that is written and the new value to be
stored (IN). An error signal vector (EV), C bits wide, is pro-
duced using the bitwise-xor of the SCP and RTCP. Any-
time there is a mismatch at the same bit position between
SCP and RTCP, the corresponding bit in the EV is asserted
to flag the presence of a fault in the corresponding column
(or in the corresponding SCP position).

The key property of RTD is that it can detect a fault as
soon as it occurs (without first reading the entry that con-
tains the fault). Put it another way, the RTD in-situ hard-
ware helps break the dependence between data access and
error detection. This RTD characteristic opens a new venue
for enhancing reliability and post-silicon validation tech-
niques. These include among other speeding-up the access
for arrays that require in-line error detection and correc-
tion and reducing the time to root-cause bugs. We discuss
these and other optimizations enabled by RTD in the re-
maining paper.

2.1 RTD Attributes
The RTD architecture presented in Fig. 1.c is for an array
without any other protection besides RTCP and is capable
of only of error detection. As we show next (Section III),
RTD can be combined with other protection, for example
traditional row parity, and enable fast error correction.

RTD protection requires to maintain correctly the SCP.
For arrays that are updated at boot time (e.g., patch arrays
[6]) and are read-only thereafter, the SCP requires no addi-
tional maintenance after it is written at boot time with the
bitwise xor of the column values that the array is initialized
with. For RTD arrays that are read-write, i.e., their content

can be modified during run-time, maintaining correctly
the SCP requires to read the previous data (PD) from the
address to be overwritten on a write cycle. If the array is
rarely written, one can use the regular array read port to
read the PD before each write. However, if a read before a
write is detrimental to performance, one can introduce an
additional read port dedicated to read the PD in the row to
be overwritten. The design of various RTD variations as
well as their speed vs area trade-off compared to nRTD are
explored in Sections IV and V.

The error detection strength of RTD in Fig. 1.c is an odd
number of faults in each column, i.e. RTD can detect which
columns contain an odd number of faults. If it is desirable
to detect a burst of vertical errors in a column, vertical log-
ical-interleaving can be used [8][9]. For instance, to detect
any burst of two consecutive vertical errors we need to use
RTCP with 2-way vertical interleaving that tracks sepa-
rately the RTCP for even and odd rows. Additionally, two
separate SCP registers, each with C bits, need to maintain
separately the parity of even rows and odd rows. On a
write and read cycles, additional logic (not shown in Fig.
1.c due to space constraints) will control which RTCP to
use and SCP to update depending on whether an even or
odd row is accessed. Section VI investigates the SER relia-
bility benefits of using RTCP with vertical logical-inter-
leaving.

Even though the focus of this work is in using RTD to
provide the column real-time parity, the approach can be
used to track the real-time parity of rows, of both rows and
columns or even some other cell combination. In Section
XYZ we present a design that provides error detection and
correction using RTD for both rows and columns.

One other requirement for arrays protected by RTD is
to set the SCP after initialization according to the array in-
itial content. For read only arrays this is straightforward as
the initial contant is written in the array at boot and, there-
fore, it is known and can be used to determine the value to
intialize the SCP with. For general read-write arrays, with
unkown content after initialization, one can employ a spe-
cial flow to initialize the array and SCP to a deterministc
state or simply write after initialization the RTCP output
into the SCP.

3 RTD USE CASE 1: 2D ECC
In this section, we present a 2D in-line ECC scheme based
on RTD. In-line ECC checks/corrects the data before for-
warded for use, i.e. the ECC lies in the read critical-path.
Unless stated otherwise, to simplify the discussion, we as-
sume that at any given time any faults are present only in
one array row. We consider in detail the implications of
faults in multiple rows in Section VI.

The scheme shown in Fig. 2 combines RTD and nRTD
in a 2D fashion to provide error-correction. The RTD is
used to track the array’s column parity (as presented in
Section II) and produce in real-time the EV that indicates
the array columns that contain a fault. A conventional
(nRTD) parity is used to detect faults in the data of a row
after it is read. The row parity is generated (by a generator
denoted by G in Fig. 2) and stored in a row together with

Y. SAZEIDES ET AL. A REAL-TIME ERROR DETECTION (RTD) ARCHITECTURE AND ITS USE FOR RELIABILITY AND POST-SILICON VALIDATION FOR
F/F BASED MEMORY ARRAYS 3

the data in a write cycle. On a read cycle, a checker (C1) is
used to check if the parity of the accessed data and the cor-
responding row parity match.

If during a read cycle the row parity status is no-error
(NE) then the read data is forwarded to the output (OUT)
as is (bitwise-xored with a zero correction vector (CV for
data@raddress)). Otherwise, there is a row parity mis-
match and, since this is the only row with faults (assump-
tion that a single row can have faults), the CV is set equal
to the EV and used to flip and repair the data bits in the
column positions with errors (i.e., a correctable error (CE)).

For read-write arrays to maintain the SCP correctly, we
need to handle carefully the case when an entry with a
fault is overwritten. Specifically, in the bit positions that
the entry has errors we need to flip them before using the
data to compute the new SCP. This is accomplished with
an extra checker (C2) that during a write cycle it checks if
there is an error in the PD (the data to be overwritten) and
produces a CV (CV for data@waddress) to calculate the
SCP. Recall (see Section 2) that SCP does not need main-
tainance for read-only arrays.

A single bit row-parity is unable to detect an even num-
ber of errors in a row. If an entry with even number of
faults is read, the row-parity will not detect an error and it
will forward the data with faulty bits. To prevent such si-
lent-data-corruption (SDC), the decoder (D in Fig. 2) can
monitor the EV and trigger a DUE (detected-unrecovera-
ble-error) when an even (non-zero) number of bits are set
in the EV.

Based on the above, the behavior of the decoder (D) of
our scheme can be defined in terms of the row parity status
(1 indicating an error, 0 no-error and X don’t care) and the
number of 1’s in the EV (0 for zero, o for odd and e for even
but non-zero) as follows:

The first four columns define the behavior during a read
cycle. The 0-0 occurs when there is neither a row-parity
mismatch nor an error detected by RTD in any column.
The 0-o happens when the row contains no error but there
is an odd number of columns with errors in another array
row. For both of these cases there is no error in the data
that is read. The 1-0 means that the row-parity indicates an
error, in the data, but the RTD does not flag any error in
any column. This can occur when an even number of faults
occur across rows in a column and should raise a DUE.
Such event cannot occur when faults are limited in at most
one array row. The 1-o scenario happens when the row-
parity indicates an error and the number of columns with
faults is odd. In this case, the error is corrected according
to EV. Finally, anytime we detect an even number of col-
umns with error we trigger a DUE. This avoids the SDC
when a row with even number of faults is read since the
row-parity is unable to detect an even number of errors in
the row.

A. RTD with Horizontal Interleaving

The DUEs caused by a burst of even errors in a row can
be turned to a CE by employing horizontal logical-inter-
leaving with degree equal to the burst length [9]. For in-
stance, for a two-bit error burst horizontal logical interleav-
ing will employ two parity bits per row one for the bits in
even positions and the other for bits in odd positions. On a
read access, two checkers will produce separate parity sta-
tus for the even and odd bit positions. Two separate count
of 1’s in the EV are used, one for the even positions and
another for the odd. The Decoder functionality for such
scheme is defined in terms of the even and odd parity sta-
tus and the number of 1’s in the odd and even EV bit posi-
tions as follows (o indicates odd number of 1s, e even but
not zero, and y 0 or odd and X don’t care):

The behavior is similar to the one without interleaving.
DUE is triggered when either or both the number of even
or odd columns with error is even and when a partition has
an error but its corresponding EV count is 0. Otherwise,
any error is correctable, even when there is an error in both
the even and odd partitions. More detail implications of
using logical-interleaving (both vertical and horizontal)
are discussed in Section VI.

4 RTD USE CASE 2: REDUCE DUE
RTD can be used to avoid DUEs for the cases that error re-
covery is not viable when an array corruption is detected.
This is the case for arrays that in-line error correction is not
feasible (e.g., due to tight timing constraints) and error re-
covery undesirable (e.g., due to complex clean up process).
One may opt in such situation to protect the array with
RTD and upon error detection pro-actively either i) halt-
exeuction and try to repair the array using demand-scrub-
bing [7] or ii) transfer execution to a different core (if the
error is within the boundaries of a core and the transfer
process does not entail the use of the corrupted state).

A demand-scrubbing upon error detection is possible
when array uses RTD that tracks parity per column, and a
nRTD EDC code per row, is suitable for a correction proce-
dure inspired by the 2D ECC work [8] and CPPC [10] .
More specifically, when RTD detects an error, the array is
scrubbed by reading each of its rows and checking them
for errors. If a row has no error, its content is XORed with
a register as wide as the row, which is initialized to zero
before the scrubbing starts. When all rows are scrubbed,
and only a single row is detected with error (note such
row’s content is not XORed in the register), the row is cor-
rected using the value produced by XORing the register
with the column parity tracked by RTD. If more than one
row has an error, a DUE is raised. A DUE is also raised if

Row Parity Status 0 0 1 1 X
Number of 1s in EV 0 o 0 o e
Decoder Output (D) NE NE DUE CE DUE

TABLE 2
2D ECC+RTD+2-WAY HORIZONTAL INTERLEAVING DECODER

Even Par. Stat. 0 X 0 1 1 1 X X
Odd Par. St. 0 1 1 X 0 1 X X

of 1s in even EV bits y X y 0 o o X e
of 1s in odd EV bits y 0 o X y o e X

Decoder (D) N
E

D
U
E

C
E

D
U
E

C
E

C
E

D
U
E

D
U
E

 TABLE 1
2D ECC+RTD DECODER

4 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING (VOLUME: 10, ISSUE: 2, 01 APRIL-JUNE 2022)

the RTD indicates an error, but scrubbing per row does not
(this can occur when two bits in the same row have
flipped). RTD key difference from CPPC: is that the error
is detected before it is read and error detection is out-of-
band does not lie in the read critical path.

5 RTD APPLICABILITY AND IMPLEMENTATION
RTD is applicable to arrays built with different types of
cells such as SRAM, CAM, latches or F/F. In this paper, we
show how to implement RTD for a F/F based array. Such
arrays are popular in modern CPUs [11]. F/F arrays with
size up to a few thousand bits are known to offer area and
power advantages over equal-size SRAM-based arrays
[12][13]. While F/F cells are larger than SRAM cells, SRAM
arrays have large overheads due to peripheral circuitry,
e.g., sense-amps and pre-chargers. Consequently, F/F
based arrays are attractive candidates for inclusion in
products, and novel techniques for error-protecting and
debugging them, as in this work, are of practical value.

An RTD implementation for a latch-based array is simi-
lar to the one with F/Fs and we do not present it due to
space limitations. RTD is applicable to SRAM and CAM ar-
rays but it requires using modified cells with extra port(s)
to facilitate RTD. Developing and analyzing such SRAM
and CAM cell designs represents an interesting direction
for future work.

5.1 2D ECC RTD Implementation for a F/F based
Array

Our implementation of RTD is based on the F/F array de-
sign proposed in [13]. This design is bit-slice based. Each
bit-slice contains a column of F/Fs and a column with a
multiplexer tree -for faster read latency- that is used to read
one of the cells out according to which bit-slice row is se-
lected. The logic design of a bit-slice with 8 F/Fs with 1
read and 1 write port is presented in Fig. 3. An array will
consist of many bit-slices that share the read and write ad-
dress decoders for selecting which row to read and write.

Before presenting the RTD implementation, we first
show in Fig. 4 (left) a design for a traditional (nRTD) in-
line SECDED build using the bit-slice in Fig. 3. The design
assumes 4-bits of data per row and, therefore, requires four
parity bits to provide SECDED protection [1]. The figure
also shows that the error detection and correction is
realized through a checker and a decoder [14]. The checker
produces a syndrome that is decoded to determine, in the
case the error is correctable, the 1-hot encoding of the bit-
position with the error. This error-vector is bitwise-xored
with the data to correct the error.

The RTD implementation of the 2D ECC in Sec. Error!
Reference source not found. is shown in Fig. 4 (right). It
introduces in-situ, built in the bit-slice a column that deter-
mines the RTCP of the F/Fs in the bit-slice. This is identical
to the mux column in Fig. 3 but using xor gates instead of
muxes. The design in Fig. 4 also includes an extra mux col-
umn to read the PD (the data to be overwritten on a write).
This column is not necessary for read only arrays and ar-
rays where performance is not hurt when performing a
read before a write. In Section XYZ we will evaluate both

RTD designs with and without the extra mux column.
The total number of bit-slices in Fig. 4 are five, four for

the data and one for the row-parity. On a read cycle, the
data from the selected row are checked for error using the
row-parity. In the case of an error, the data are xored with
the EV produced by xoring the SCP and RTCP (as in Fig.
2). Note that Fig. 4, for readability, only shows the design
used during a read cycle.

The example in Fig. 4 helps highlight the trade-offs pre-
sented by RTD. It requires fewer but wider bit-slices and
instead of a SECDED checker and syndrome decoder, it
only needs a parity-tree. To assess the benefits and over-
heads of RTD based 2D ECC, we will compare experimen-
tally its delay, area and power against SECDED ECC as
well as the error correction and detection strength for var-
ious fault patterns in Section XYZ.

5.2 2D ECC RTD Implementation using both Real-
Time Column and Real-Time-Row Parity

In this Section we present an array design that uses RTD
to track both the real-time parity per column and per row
is shown in Fig. 5. This design requires a port to provide
the real-time-parity for each row (RTRP) in addition to the
RTCP. It also needs to maintain a register with the stored
row parity (SRP) in addition to the SCP.

The output, when reading from such array the data in
row i, is the result of the bitwise XOR of the data in the row
(di,0-di,3) and the array’s column-correction-vector (ccv0-
ccv3). The ccv is all zero, and the output is the same as the
data in the row, when the row’s real-time error signal
(ri.err) is zero, i.e. RTD does not detect an error in row i.
When RTD indicates that there is an error in the row that
is read (ri.err=1), the ccv is set equal to the array’s column
real-time-error register (c0.err-c3.err) that identifies in real-
time which columns contain a corruption. When the array
contains a single row with a single data bit corrupted, the
proposed scheme will detect and correct the corruption
when the row is read by inverting the corrupted bit.

 On a write in a row whose corresponding row RTD er-
ror signal indicates it has an error, the array’s column real-
time error register will be reset and the expected column
parity, for the column that contains the error, will be calcu-
lated using the inverse of the value stored in the corrupted
cell (logic is not shown in Fig. 5).

A fault in a cell that contains a row’s expected parity can
be ignored as the row data will be XORed with a column-
correction-vector that does not indicate any data error and,
therefore, all row data will be XORed with a zero. Simi-
larly, we can ignore an error in a cell holding the expected
parity of a column, because it will not set a row error signal
and, consequently, all row data will be XORed with a zero
ccv again. Finally, an error in a cell in the arrays’ column
error register will be inconsequential, since again no row
data error is signaled and no data bit gets inverted.

As mentioned earlier, logical or physical interleaving
can be employed [8][9] to enable this design to detect and
correct multiple errors.

This alternative 2D ECC RTD scheme has clearly higher
overhead as compared to the design in Fig. 4 (extra port for
RTRP and maintain SRP register) but it can be faster than

Y. SAZEIDES ET AL. A REAL-TIME ERROR DETECTION (RTD) ARCHITECTURE AND ITS USE FOR RELIABILITY AND POST-SILICON VALIDATION FOR
F/F BASED MEMORY ARRAYS 5

the design in Fig. 4 as it can detect a row error without
reading it first. Due to limited space we do no analyze fur-
ther this end-to-end RTD design.

6 RTD FOR POST-SILICON VALIDATION TO
SPEEDUP BUG LOCALIZATION

Bug localization during post-silicon validation can be
quite taxing, as it may require months to complete [15], de-
laying the launch of a product and resulting in grave eco-
nomic consequences. What makes bug localization so chal-
lenging is the potentially large time window between a
bug activation and its manifestation to an observable error,
a vast expanse that needs to be covered to root-cause the
bug. For instance, consider the example in Fig. 6 where a
very rarely occurring bug corrupts an array entry (entry 4).
Without any form of protection (No-Protection), the bug
manifestation will be detected after the specific entry is
read and the faulty value causes some abnormal behavior
(e.g., divide by zero, or an illegal address exception), or it
leads to a wrong program output that is detected by com-
paring against a golden reference. If the array employs a
protection scheme that is not real time (nRTD), the error
can be detected when the faulty entry is read. Although
nRTD can reduce the error-detection latency, as compared
to No-Protection, the time gap between the error cause and
the error detection by nRTD can be arbitrarily long, e.g.,
more than a billion cycles. Consequently, even with nRTD,
the root-causing procedure remains exceedingly hard and
time consuming. The use of a RTD protection approach
virtually eliminates the detection latency.

RTD usefulness for post-silicon validation hinges on its
ability to capture difficult-to-detect bugs. The logical func-
tionality of an array is not complex and it is feasible to test
thoroughly during pre-silicon validation. Electrical bugs,
however, that depend on subtle interplay between a
design and its electrical state [5] can manifest after
manufacturing and RTD can be quite effective in
immediately detecting such bugs that cause memory-array
corruption. For instance, such bug can be the result of a
combination, at the same time, of a voltage drop and
writing data over a critical speed-path, which causes the
incorrect update of part of the data and/or parity bits in
the memory array.

RTD can be used for the post-silicon validation of arrays
that do not require protection in-the-field, because they are
either expected to have small in-the-field error contribu-
tion, or are not architecturally vulnerable [16]. In either
case, bits in control registers [17], referred to as chicken bits
[18], can be used to enable the RTD protection in an array
during manufacturing test and post-silicon validation, and
disable them for field operation to avoid RTD’s power
overhead.

7 RTD DELAY, AREA AND POWER EVALUATION
7.1 Methodology

The 2D ECC RTD implementation introduced in Section
5.2 as well as the SECDED ECC are evaluated in terms of
their impact on the salient metrics of delay (timing), area

and power.
The mux-columns in the bit-slices are implemented us-

ing 2-input NAND-NOR trees as in [13]. The evaluated 2D
ECC RTD design uses two-way horizontal logical-inter-
leaving and its RTCP-columns are built using 2-input XOR
trees. The SECDED designs, depending on the number of
data bits, use different Odd-Weight columns generate and
check matrices as in [14]. The checker produces the syn-
drome using 2-input XOR parity trees and each syndrome
output bit is decoded using 2-input NOR+NAND trees.
Numerous designs are evaluated with different number of
rows (4,8,16,32,64,128) and columns (2,4,8,16). To search
the design space fast we use the analytical methodology in
[19] and estimate area, delay and power figures expressed

as equivalent gates in this work as follows:

First-order analytical models are defined for the area,

delay and power for each array design we evaluate (we

present few indicative models in the APPENDIX).
We have validated the models by comparing normal-

ized trends against three RTL implementations of a 64x64
F/F-based array; with no protection, only row-parity pro-
tection and an RTD design as in Fig. 2. The arrays are
implemented in System Verilog. The designs are validated
at the RTL level for functional correctness, synthesized to
a commercial low-power 45nm standard-cell library under
worst-case conditions (0.8V, 125C), and placed-and-routed
with the Cadence digital implementation flow for
minimum delay. The maximum error observed in timing
is 4.5% and in area 5.3%.

7.2 Evaluation
Evaluation with and without PD port

Evaluation with and without vertical interleaving(?)

Fig. 4 reports the area and delay analysis for different array
sizes being the number of rows in the x-axis and the
number of columns in the line colors. The numbers are
normalized to the SECDED performance (i.e.,
Area2DECC+RTD/AreaSECDED; and Delay2DECC+RTD/
DelaySECDED). Clearly, 2DECC+RTD outperforms in terms
of delay SECDED in any configuration with 8% to 24%
improvement. This is the direct benefit of using RTD. On
the other hand, the area overhead of 2D-ECC+RTD is
considerable (12% to 53%), especially for a small number
of rows. In addition, the power overhead is substantial 21%
to 42% (not shown in the graph for clarity). We note that
our findings are specific to the designs evaluated and the
methodology used. The cost and benefits from RTD may
depend on many parameters including port topology and
technology.

TABLE 3
AREA, POWER AND DELAY FIGURES IN TERMS OF EQUIVALENT

GATES

Gate Area,Power Delay
Not 0.1 1
2-input Nand/Nor 0.2 1.5
2-input Xor 0.6 2.5
F/F cell 1 N/A

6 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING (VOLUME: 10, ISSUE: 2, 01 APRIL-JUNE 2022)

Overall, RTD is not free, and a designer will need to
weigh the return-on-investment from RTD’s potential to
shorten access time and facilitate post-silicon validation
(Section Error! Reference source not found.), against the
costs RTD entails (e.g., die-area and power overhead).
Such trade-off is difficult to quantify, as it requires intimate
familiarity with design cycles and manufacturing costs,
and it is beyond the scope of this work. Our main goal is to
introduce the RTD approach as a design option.

8 RTD IMPACT ON SOFT-ERROR RATE (SER)
SBU (Single Bit Upsets) are the most dominant SER fault
type but multi-bit upsets (MBUs) also happen occasionally
-and they are increasing in smaller technology nodes [20].
In [11], authors analyze MBUs in a 14nm FinFET-based
F/F array subject to neutron radiation and they observed
eleven different fault patterns of MBUs. MBUs of up to 4
bits bursts are observed in F/F arrays. In Fig. 8, we analyze
the strength of several variations of 2D ECC + RTD (with
different degrees of horizontal (H) and vertical (V) logical-
interleaving) to detect and correct these patterns and we
will compare this against the strength of a SECDED code.
The outcome for each case is according to the correspond-
ing Decoder behavior (see Section Error! Reference source
not found.). For instance, consider fault pattern p3, a two-
bit horizontal burst. SECDED will detect it but will be un-
able to correct it (i.e., a DUE). The 2D ECC RTD decoder
without interleaving (Table 1) will detect an even number
of 1s in the EV and it will also trigger DUE (column X-e-
DUE). The decoder for the RTD scheme with 2-way hori-
zontal interleaving (Table 2) will flag this as CE (column 1-
1-o-o-C) because the two separate row parity trees per row
detect the fault pattern and the EV corrects it.

The F/F array evaluated in [11] does not include: i) the
logic column for a normal read access of the data; ii) the
column for to read the value to overwrite; and iii) the col-
umn that calculates the real time column parity. These col-
umns may present an “isolation” for a single-event to
cause multiple faults in the horizontal/diagonal direction.
Consequently, in Fig. 8, we present results for the patterns
observed in [11] as well as for the same patterns without
horizontal/diagonal MCU, only vertical MCUs (the four
right-most columns- that capture better the strength of the
proposal in our paper).

From the figure, we can observe that all 2D ECC+RTD
configurations incur no SDCs (except the leftmost RTD col-
umn without any interleaving that is applied to all fault
patterns without isolation) whereas SECDED does for
some patterns. Yet, correction capabilities of 2D ECC+RTD
are limited when no interleaving is used (leftmost RTD col-
umn without any interleaving) unless we consider the iso-
lation introduced by this proposal (rightmost RTD column
without interleaving). As the interleaving degree in-
creases, RTD is able to correct more fault-patterns. When
we consider the isolation presented by our scheme, a ver-
tical 4-way interleaving is able to correct all fault-patterns.

The choice of interleaving depends on the expected
fault patterns and their frequency. It rests with a designer
to decide on the tradeoff between access time speed-up,

hardware overhead and error detection and correction
strength.

9 RELATED WORK
Previous work has proposed using 2D ECC for caches
[8][10]. The main difference of our work is that we do not
require a very expensive (in terms of cycle count) correc-
tion procedure to determine the columns with errors. We
circumvent this by using in-situ in hardware another port
that tracks the RTCP. Two-dimensional codes were also
the focus of [21] where a code for extreme error detection
and correction is proposed (for very big error density).

Several schemes have been proposed to speed up SEC
and SECDED codes. In [22] they propose an ECC scheme
with small (or even without) delay penalty as compared to
an unprotected array by relying on delayed clock for the
array that holds the parity bits. However, this scheme re-
quires separates arrays for data and check bits (which en-
tails extra power, area penalty) and requires a complex sys-
tem-hold capability upon error detection. Another work
[23] proposed SEC and SECDED codes with lower delay
than traditional algorithms. The main idea is to use extra
parity bits to facilitate faster error detection and correction.
In this work we do not require separate use for data and
parity bits and explore the idea of using more combina-
tional logic to simplify error protection.

10 CONCLUSIONS
We propose RTD, a hardware technique for detecting

faults in arrays immediately after they happen, instead of
after they are read. The paper presents the high-level ar-
chitecture of RTD that relies on in-situ array hardware for
tracking in real-time the column-parity. Then it shows how
to use RTD to design a 2D ECC scheme. The work details
how to implement the RTD scheme for an array with F/Fs.
An evaluation, that compares the 2D ECC RTD against a
SECDED design, reveals that RTD presents a trade-off be-
tween reducing access time vs extra area and power. The
code strength of the two schemes is found to be compara-
ble. RTD can also help reduce the time to root-cause bugs
during post-silicon validation.

Future work…

ACKNOWLEDGMENT
Part of this work was performed during a sabbatical of the
first author at the Intel Israel Development Center in Haifa.

Y. SAZEIDES ET AL. A REAL-TIME ERROR DETECTION (RTD) ARCHITECTURE AND ITS USE FOR RELIABILITY AND POST-SILICON VALIDATION FOR
F/F BASED MEMORY ARRAYS 7

REFERENCES
[1] R. W. Hamming, "Error detecting and error correcting codes," in The

Bell System Technical Journal, vol. 29, no. 2, pp. 147-160, April 1950.
[2] R.C. Baumann, “Radiation-induced soft errors in advanced

semiconductor technologies,” IEEE Transactions on Device and
Materials Reliability, Volume 5, Issue 3, 2005, pp. 305 – 316.

[3] P. Ehligand and S. Pezzino, "Error Detection in SRAM," Application
Report SPRACC0, Texas Instruments, Nov. 2017.

[4] Daniel P. Siewiorek and Robert S. Swarz., “Reliable Computer
Systems (3rd Ed.): Design and Evaluation,” A. K. Peters, Ltd, 1988.

[5] S. Mitra, S. A. Seshia and N. Nicolici, "Post-silicon validation
opportunities, challenges and recent advances," Design Automation
Conference, 2010, pp. 12-17.

[6] L. Gwenap, “P6 Microcode can be Patched,” Microprocessor Report,
1997.

[7] S. S. Mukherjee, J. Emer, T. Fossum and S. K. Reinhardt, "Cache
scrubbing in microprocessors: myth or necessity?," 10th IEEE Pacific
Rim International Symposium on Dependable Computing, 2004.[7]

[8] J. Kim, N. Hardavellas, K. Mai, B. Falsafi and J. Hoe, "Multi-bit Error
Tolerant Caches Using Two-Dimensional Error Coding," 40th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO
2007), Chicago, IL, 2007, pp. 197-209

[9] J. Maiz et al., “Characterization of Multi-bit Soft Error events in
advanced SRAMs”, EDM 2003

[10] M. Manoochehri, M. Annavaram, and M. Dubois, “CPPC: correctable
parity protected cache,” In Proceedings of the 38th annual
international symposium on Computer architecture (ISCA), 2011,pp.
223-234.

[11] S. Kumar et al., “Analysis of Neutron-Induced Multi-Bit-Upset (MBU)
Clusters in a 14nm Flip-Flop Array,” IEEEE TNS, vol. 66, no. 6, 2019

[12] P. Meinerzhagen, S. M. Y. Sherazi, A. Burg and J. N. Rodrigues,
"Benchmarking of Standard-Cell Based Memories in the Sub-VT
Domain in 65-nm CMOS Technology," in IEEE Journal on Emerging
and Selected Topics in Circuits and Systems, vol. 1, no. 2, 2011, pp.
173-182.

[13] A. Teman, D. Rossi, P. Meinerzhagen, L. Benini, and A. Burg, “Power,
Area, and Performance Optimization of Standard Cell Memory Arrays
Memory Arrays Through Controlled Placement,” ACM TODAES. 21,
4, 59, May 2016.

[14] M. Y. Hsiao, "A Class of Optimal Minimum Odd-weight-column SEC-
DED Codes," in IBM Journal of Research and Development, vol. 14,
no. 4, pp. 395-401, July 1970.

[15] D. Lin, E. Singh, C. Barrett and S. Mitra, "A structured approach to
post-silicon validation and debug using symbolic quick error
detection," IEEE International Test Conference (ITC), 2015, pp. 1-10.

[16] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin,
"A Systematic Methodology to Compute the Architectural
Vulnerability Factors for a High-Performance Microprocessor,"
International Symposium on Microarchitecture (MICRO), 2003.

[17] J. Geuzebroek and B. Vermeulen, "Integration of Hardware Assertions
in Systems-on-Chip," IEEE International Test Conference (ITC), 2008.

[18] I. Wagner and V. Bertacco, "The Verification Universe" in "Post-
Silicon and Runtime Verification for Modern Processors", Springer,
2011

[19] D. Rossi, N. Timoncini, M. Spica and C. Metra, "Error correcting code
analysis for cache memory high reliability and performance," 2011
Design, Automation & Test in Europe, Grenoble, 2011, pp. 1-6.

[20] G. Hubert, L. Artola and D. Regis, "Impact of scaling on the soft error
sensitivity of bulk, FDSOI and FinFET technologies due to atmospheric
radiation," Integration the VLSI journal, vol. 50, pp. 39-47, 2015.

[21] C. Argyrides, D. K. Pradhan, and T. Kocak, "Matrix Codes for Reliable
and Cost Efficient Memory Chips," in IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 19, no. 3, pp. 420-428, March
2011, doi: 10.1109/TVLSI.2009.2036362

[22] M. Nicolaidis, T. Bonnoit and N. Zergainoh, "Eliminating speed pen-
alty in ECC protected memories," 2011 Design, Automation & Test in
Europe, Grenoble, 2011, pp. 1-6, doi: 10.1109/DATE.2011.5763256

[23] P. Reviriego, S. Pontarelli, J. A. Maestro and M. Ottavi, "A Method to
Construct Low Delay Single Error Correction Codes for Protecting

Data Bits Only," in IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 32, no. 3, pp. 479-483, March
2013, doi: 10.1109/TCAD.2012.2226585

[24] Y. Sazeides et al., "2D Error Correction for F/F based Arrays using In-
Situ Real-Time Error Detection (RTD)," 2020 IEEE International Sym-
posium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFT), pp. 1-4

APPENDIX: 2D ECC RTD MODELS FOR AREA
AND DELAY
Note: Baseline (array without protection) model parameters are listed
in bold

AreaRTD = Array Cells +2 * Read Ports+ RTCP Port +SCP Cells
= (#bitslicesbaseline + #bitslicesrowparity) *
(#rows * (2 * NANDarea + cellarea)
+ 2 * #NANDsNORsperslice* NANDarea

+ #XORsperslice*XORarea + cellarea)

DelayRTD = the sum of the following delays (that include interconnect
delay) define the critical path:

R1. Invert read address (NOT gate)
R2. Read Address Decoder (NAND+NOR tree), depth =

log2(log2(#rows))
R3. Global Read Row Gating, (NAND+NOT gates)
R4. Mask F/F Output, (NAND gate)
R5. Column MUX (NAND+NOR tree), depth=log2(#rows)
R6. 2-way horizontal interleaved row-parity (XOR tree), depth

=log2(#bitslicesbaseline /2+ 1)
R7. Produce Correction Vector (NAND)
R8. Bitwise-XOR (XOR)

Yiannakis Sazeides is with the Department of
Computer Science at the University of Cyprus.
He has worked and contributed towards the de-
velopment and design of high performance pro-
cessors with Compaq and Intel. His research in-
terests lie in the area of Computer Architecture
with particular emphasis in fault-tolerance and
reliability, data-center modelling, memory hierar-
chy and dynamic program behavior. He has re-
ceived four best paper awards (MICRO 1997,

DATE 2016, CAL 2017, DATE 2019) and has been granted five pa-
tents.

Arkady Bramnik is RAS and Functional
Safety Hardware Architect at Intel Corpora-
tion in Haifa, Israel. His professional inter-
ests lie in Fault Tolerant Computer Architec-
ture, permanent and transient error model-
ing, error detection and correction tech-
niques. He is a co-author of 7 granted pa-
tents and 7 papers (including a DATE 2019
Best Paper Award).

Ron Gabor biography appears here.

Ramon Canal biography appears here.

8 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING (VOLUME: 10, ISSUE: 2, 01 APRIL-JUNE 2022)

Fig. 2: 2D ECC RTD Architecture

ECP

DUE
CEDoutput data (OUT)

DATA RP

C1

……

……

RTCP
Checker for data@raddress
Checker for data@waddress

G

input data (IN)

check bits
raddress

READ-enable

waddress
Write-enable

REV for data[raddress]

……

WEV for data[waddress]

C
2

C1

C2

read data (RD)

PD RP

C2

Fig. 1: a) Baseline Array without Protection, b) Array with RTD of Column Faults, c) Array with 2D ECC using RTD of Column Faults + nRTD of Row Faults

RxC bits

input data (IN)

……
output data (OUT)

raddress

READ-enable

waddress

Write-Enable

SCP (C bits)

output data (OUT)

RxC bits

……

Input Data
Output, the data@raddress
Previous, the data@waddress (PD)
RTCP real-time-column-parityraddress

READ-enable

waddress
Write-enable

SCP: stored column parity
EV: Error Vector

EV= RTCP SCP

(update SCP on a write cycle)
SCP(t+1)= IN PD SCP(t)

(Real Time signals of
columns with errors)

RTCP

PD

input data (IN)

(a) (b)

SCP

DUE
CED

output data (OUT)

DATA row parity

C2
C1

……

……

Generate row parity
Checker for data@raddress
Checker for data@waddress
Decoder (error is CE or DUE?)

CV: Correction Vector

G

input data (IN)

check bits
raddress

READ-enable

waddress
Write-enable

CV for data@raddress

……

CV for data@waddress

C

2

C1

C2

(c)

RTCP

PD

C

2

G

D

EV

SCP(t+1)=
IN PD SCP(t) CV

Fig. 3: Bit-slice with a column of F/Fs and a mux tree [11]

c

>

Q(t)

d

c

>

Q(t)

d

c

>

Q(t)

d

c

>

Q(t)

d

1

Flip/flops 8x1MUX

2
1

c

>

Q(t)

d

c

>

Q(t)

d

c

>

Q(t)

d

c

>

Q(t)

d

1
2

1
3

3x8 dec rda[2:0]

rdenable

grg[0]

grg[1]

grg[2]

grg[3]

8x1 MUX Tree

1st level

2nd level

3rd level

grg[4]

grg[5]

grg[6]

grg[7]

din[i]

dout[i]

1
2

3
F/

Fs
M

UX

din[i]

dout[i]

bitslice i

bitslice i

3x
8

de
c

wra[2:0]

gwg[0]

gwg[1]

gwg[2]

gwg[3]

gwg[6]

clock

wrenable

gwg[4]

gwg[5]

gwg[7]

gwg[0]

gwg[1]

gwg[2]

din: data input
dout: data output
rda: read address
grg: global read gate
wra: write address
gwg: global write gate

Y. SAZEIDES ET AL. A REAL-TIME ERROR DETECTION (RTD) ARCHITECTURE AND ITS USE FOR RELIABILITY AND POST-SILICON VALIDATION FOR
F/F BASED MEMORY ARRAYS 9

Fig. 4: Traditional bit-sliced SECDEC organization (left) and 2D ECC bit-sliced column-based RTD organization (right) for an array with 4-data columns.
Green columns are new bit-slice in-situ logic to support RTD.

d0 d1 d2 d3 p0 p1 p2 p3

1 1 1 0 1 0 0 0

1 1 0 1 0 1 0 0

1 0 1 1 0 0 1 0

0 1 1 1 0 0 0 1

s0
s1
s2
s3

s0

d0 d1 d2 p0

EV0

s0 s1 s2 s3’

s1

d0 d1 d3 p1

s2

d0 d2 d3 p2

s0

d1 d2 d3 p3

EV1

s0 s1 s2’ s3

EV2

s0 s1’ s2 s3

EV3

s0’ s1 s2 s3

()

(8,4) SECDED checker (generate syndrome)

(8,4) SECDED syndrome decoder

F/
Fs

M
UX

 (r
ea

d
ou

tp
ut

)
M

UX
 (r

ea
d

w
rit

te
n)

XO
R

(R
ea

l T
im

e
Co

lu
m

n
Pa

rit
y)

Parity Tree
p0

read entry contains
error (Y=1/N=0)

d3:0

d0

scp0

F/
Fs

M
UX

 (r
ea

d
ou

tp
ut

)
M

UX
 (r

ea
d

w
rit

te
n)

XO
R

(R
ea

l T
im

e
Co

lu
m

n
Pa

rit
y)

d1

scp1

F/
Fs

M
UX

 (r
ea

d
ou

tp
ut

)
M

UX
 (r

ea
d

w
rit

te
n)

XO
R

(R
ea

l T
im

e
Co

lu
m

n
Pa

rit
y)

d2

scp2

F/
Fs

M
UX

 (r
ea

d
ou

tp
ut

)
M

UX
 (r

ea
d

w
rit

te
n)

XO
R

(R
ea

l T
im

e
Co

lu
m

n
Pa

rit
y)

d3

scp3

F/
Fs

M
UX

 (r
ea

d
ou

tp
ut

)
M

UX
 (r

ea
d

w
rit

te
n)

XO
R

(R
ea

l T
im

e
Co

lu
m

n
Pa

rit
y)

outp0

scpp

d0
pr

ev
0

rt
cp

0 d1
pr

ev
1

rt
cp

1 d2
pr

ev
2

rt
cp

2 d3
pr

ev
3

rt
cp

3 p0
pr

ev
p0

rt
cp

p0

F/
Fs

M
UX

F/
Fs

M
UX

F/
Fs

M
UX

F/
Fs

M
UX

F/
Fs

M
UX

F/
Fs

M
UX

F/
Fs

M
UX

F/
Fs

M
UX

d0 d1 d2 d3 p0 p1 p2 p3

Checker
Syndrome[3:0]

Decoder
DUE

Error Vector
d0 d1 d2 d3

CE

Fig. 5: Error Correction through Combined Row and Column RTD (figure
does not show the logic that computes the expected parity and the logic that
inverses the corrupted cell when calculating a column’s expected parity)

d0,0 d0,1 d0,2 d0,3
r0.ep

d1,0 d1,1 d1,2 d1,3
r1.ep

d2,0 d2,1 d2,2 d2,3
r2.ep

d3,0 d3,1 d3,2 d3,3
r3.ep

c0.ep c1.ep c2.ep c3.ep

c0.err c1.err c2.err c3.err

rtpc0 rtpc1 rtpc2 rtpc3

rtpr0

rtpr1

rtpr2

rtpr3

r0.err

r1.err

r2.err

r3.err

ri.ep row’s i expected parity
rtpri row’s i real time parity
ri.err row’s i real time error
ci.ep column’s i expected parity
rtpci column’s i real time parity
ci.err column’s i real time error
column real-time error register
ccv column correction vector

di,0 di,1 di,2 di,3

out0 out1 out2 out3 row index

ccv0 ccv1 ccv2 ccv3

Fig. 6: RTD vs nRTD: Bug Detection Latency

RTD !

0 1 1 1

1 0 1 0

2 1 1 0

3 1 1 0

4 0 1 0

5 0 0 0

6 0 0 1

7 0 1 1

read faulty entryfault happens failure

X = MEM[4]

Z = Y / X

No Protection
nRTD !

!

0 1 1 1

1 0 1 0

2 1 1 0

3 1 1 0

4 0 0 0

5 0 0 0

6 0 0 1

7 0 1 1

time

10 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING (VOLUME: 10, ISSUE: 2, 01 APRIL-JUNE 2022)

Fig. 1. Magnetization as a function of applied field. Note that “Fig.” is
abbreviated. There is a period after the figure number, followed by one
space. It is good practice to briefly explain the significance of the figure
in the caption.

Fig. 7: SECDED vs. 2D-ECC RTD area and delay

0,4
0,5
0,6
0,7
0,8
0,9

1
1,1
1,2
1,3
1,4
1,5
1,6

4 8 16 32 64 128

N
or

m
al

ize
d

Ar
ea

, D
el

ay

Number of Rows

Area-2 Area-4 Area-8
Area-16 Delay-2 Delay-4
Delay-8 Delay-16

Fig. 8: Strength of SECDED and different 2D ECC+RTD configurations for different MBU patterns (assuming one error at a time and no error accumulation).

PATTERN SECDED RTD RTD +
2-way H inter.

RTD+
2-way V inter.

RTD+
4-way V inter.

RTD+
2-way H inter.+
2-way V inter.

PATTERN
no horizontal/
diagonal MBU

RTD RTD+
2-way V inter.

RTD+
4-way V inter.

p0 CE CE CE CE CE CE CE CE CE

p1,2 CE DUE DUE CE CE CE DUE CE CE

p3 DUE DUE CE DUE DUE CE CE CE CE

p4,5 CE DUE CE CE CE CE CE CE CE

p6 SDC DUE DUE DUE DUE DUE CE CE CE

p7 CE DUE DUE DUE CE DUE DUE DUE CE

p8 DUE SDC DUE DUE DUE CE DUE CE CE

p9 CE DUE DUE DUE CE DUE DUE DUE CE

p10 SDC DUE DUE DUE DUE DUE CE CE CE

p11 DUE SDC DUE DUE DUE CE DUE CE CE

	1 Introduction
	2 Rtd Architecture
	2.1 RTD Attributes

	3 Rtd Use Case 1: 2D ECC
	4 Rtd Use Case 2: Reduce Due
	5 Rtd Applicability and Implementation
	5.1 2D ECC RTD Implementation for a F/F based Array
	5.2 2D ECC RTD Implementation using both Real-Time Column and Real-Time-Row Parity

	6 RTD for Post-Silicon Validation to SpeedUp Bug Localization
	7 RTD Delay, Area and power Evaluation
	7.1 Methodology
	7.2 Evaluation

	8 Rtd Impact on Soft-Error rate (SER)
	9 Related Work
	10 Conclusions
	Acknowledgment
	References
	APPENDIX: 2D ECC RTD Models for Area and Delay

