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Abstract

We prove that the cyclic and constacyclic codes constructed by Grassl and Rötteler in
[6] are generalised Reed-Solomon codes. This note can be considered as an addendum to
Grassl and Rötteler [6]. It can also be considered as an appendix to Ball and Vilar [4], where
Conjecture 11 of [6], which was stated for Grassl-Rötteler codes, is proven for generalised
Reed-Solomon codes. The content of this note, together with [4], therefore implies that
Conjecture 11 from [6] is true.

1 Introduction

Let Fq denote the finite field with q elements. The weight of an element of Fn
q is the number

of non-zero coordinates that it has. A k-dimensional linear code of length n and minimum
distance d over Fq, denoted as an [n, k, d]q code, is a k-dimensional subspace of Fn

q in which
every non-zero vector has weight at least d.

The Singleton bound for linear codes states that

n > k + d− 1

and a linear code which attains the Singleton bound is called a maximum distance separable
code, or MDS code for short. It is a simple matter to prove the bound

n 6 q + k − 1.

The MDS conjecture, for linear codes, states that if 4 6 k 6 q − 2 then

n 6 q + 1.
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For values of k outside of this range it is not difficult to determine the longest length of a linear
MDS code. The MDS conjecture is known to hold for q prime [1], where it was also proven
that if k 6= (q + 1)/2 and q is prime then a [q + 1, k, q + 2 − k]q MDS code is a generalised
Reed-Solomon code.

Let {a1, . . . , aq} be the set of elements of Fq.

A generalised Reed-Solomon code over Fq is

D = {(θ1f(a1), . . . , θqf(aq), θq+1fk−1) | f ∈ Fq[X], deg f 6 k − 1}, (1)

where fi denotes the coefficient of X i in f(X) and θi ∈ Fq \ {0}.
The Reed-Solomon code is the case in which θj = 1, for all j.

We note that our definition of a (generalised) Reed-Solomon code is what some authors call
the extended or doubly extended Reed-Solomon code. That is, many authors do not include
the final coordinate or the evaluation at zero. However, a more natural definition of the Reed-
Solomon code, which is entirely equivalent to the above, is obtained by evaluating homogeneous
polynomials f ∈ Fq[X1, X2] of degree k − 1, at the points of the projective line,

D = {(θ1f(a1, 1), . . . , θqf(aq, 1), θq+1f(1, 0)) | f ∈ Fq[X1, X2], f homogeneous, deg f = k−1}.
(2)

The Hermitian product code of a linear code C over Fq2 is

H(C) = {uq · v | u, v ∈ C}

where uq = (uq1, . . . , u
q
n) and · is the standard inner-product. The puncture code is the intersection

of H(C)⊥ (the dual code of H(C)) with Fn
q . This note was motivated by Conjecture 11 from

[6] which states that the minimum distance d of the puncture code of the Grassl-Rötteler code
satisfies

d =


2k if 1 6 k 6 q/2
(q + 1)(k − 1

2
(q − 1)) if (q + 1)/2 6 k 6 q − 1, q odd

q(k + 1− q/2) if q/2 6 k 6 q − 1, q even
q2 + 1 if k = q.

The equivalent version of this conjecture for generalised Reed-Solomon codes is proven in [4]
for generalised Reed-Solomon codes. Combined with the content of this note, this implies that
Conjecture 11 from [6] is indeed true.

2 Generalised Reed-Solomon codes

In this section we prove that a generalised Reed-Solomon code can be constructed as an evaluation
code, evaluating at the (q + 1)-th roots of unity of Fq2 . Thus, any generalised Reed-Solomon
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code can be obtained in this way by multiplying the i-th coordinate by a non-zero θi ∈ Fq, as in
definition (1) and (2).

Let {α1, . . . , αq+1} be the set of (q + 1)-th roots of unity of Fq2 .

Lemma 1. If k 6 q is odd then the code

C = {(h(α1) + h(α1)
q, . . . , h(αq+1) + h(αq+1)

q) | h ∈ Fq2 [X], deg h 6 1
2
(k − 1)}

is a [q + 1, k, q + 2− k]q generalised Reed-Solomon code.

Proof. Let σ be the map from the polynomials of Fq2 [X] of degree at most 1
2
(k − 1) to Fq+1

q

defined by
σ(h) = (h(α1) + h(α1)

q, . . . , h(αq+1) + h(αq+1)
q).

Since, for all λ, ν ∈ Fq and g, h ∈ Fq2 [X],

(λh(α1) + λh(α1)
q, . . . , λh(αq+1) + λh(αq+1)

q)

+(νg(α1) + νg(α1)
q, . . . , νg(αq+1) + νg(αq+1)

q)

= ((λh+ νg)(α1) + ((λh+ νg)(α1))
q, . . . , (λh+ νg)(αq+1) + ((λh+ νg)(αq+1))

q),

it follows that σ is an Fq-linear map.

Let

h(X) =

1
2
(k−1)∑
i=0

ciX
i.

For α, a (q + 1)-st root of unity, we have

h(α) + h(α)q = c0 + cq0 +

1
2
(k−1)∑
i=1

ciα
i +

1
2
(k−1)∑
i=1

cqiα
−i.

If ci 6= 0 for some i 6= 0 or c0 + cq0 6= 0 then this implies that at most k − 1 6 q − 1 of the
coordinates of σ(h) are zero. This implies that σ(h) = 0 if and only if ci = 0 for all i 6= 0 and
c0 + cq0 = 0. Therefore, σ is an Fq-linear map which has a one-dimensional kernel. It follows
that the image of the map σ, which is C, has dimension 21

2
(k + 1)− 1 = k. We conclude that C

is a k-dimensional subspace of Fq+1
q .

Suppose that {1, e} is a basis for Fq2 over Fq.

For α, a (q + 1)-th root of unity, let x1, x2 ∈ Fq be such that

α = (x1 + ex2)
q−1.
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Observe that as (x1, x2) vary over the points of the projective line, α will run through the distinct
(q + 1)-th roots of unity.

Then

h(α) + h(α)q =

1
2
(k−1)∑
i=0

ci(x1 + ex2)
i(q−1) + cqi (x1 + ex2)

i(1−q)

=

1
2
(k−1)∑
i=0

ci(x1 + eqx2)
i(x1 + ex2)

−i + cqi (x1 + ex2)
i(x1 + eqx2)

−i

= (x1 + ex2)
− 1

2
(k−1)(q+1)

(∑
i

ci(x1 + ex2)
1
2
(k−1)−i(x1 + eqx2)

1
2
(k−1)+i

+cqi (x1 + ex2)
1
2
(k−1)+i(x1 + eqx2)

1
2
(k−1)−i

)
.

Note that (x1 + ex2)
− 1

2
(k−1)(q+1) ∈ Fq, does not depend on h(X).

Thus, the coefficient of xj1x
k−j−1
2 of

1
2
(k−1)∑
i=0

ci(x1 + ex2)
1
2
(k−1)−i(x1 + eqx2)

1
2
(k−1)+i + cqi (x1 + ex2)

1
2
(k−1)+i(x1 + eqx2)

1
2
(k−1)−i,

is also an element of Fq. Hence, the α coordinate of a codeword of C is the evaluation of a
homogeneous polynomial in Fq[x1, x2] of degree k − 1, multiplied by a non-zero element of Fq.
By definition (2), we conclude that such a code C is a generalised Reed-Solomon code.

The previous lemma only applies to the case when k is odd. The following lemma deals with the
case k is even.

Lemma 2. For αi, a (q + 1)-th root of unity, let ωi be such that αi = ωq−1
i . If k is even then the

code

C = {ωq
1h(α1) +ω1h(α1)

q, . . . , ωq
q+1h(αq+1) +ωq+1h(αq+1)

q) | h ∈ Fq2 [X], deg h 6 1
2
k− 1}

is a [q + 1, k, q + 2− k]q generalised Reed-Solomon code.

Proof. The proof is similar to that of Lemma 1. In this case we have that, ω = x1 + ex2 and so

ωqh(α) + ωh(α)q =

1
2
k−1∑
i=0

ci(x1 + ex2)
i(q−1)+q + cqi (x1 + ex2)

i(1−q)+1

= (x1 + ex2)
−( 1

2
k−1)(q+1)

(∑
i

ci(x1 + ex2)
1
2
k−1−i(x1 + eqx2)

1
2
k+i
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+cqi (x1 + ex2)
1
2
k+i(x1 + eqx2)

1
2
k−1−i

)
.

The coefficient of xj1x
k−j−1
2 of∑

i

ci(x1 + ex2)
1
2
k−1−i(x1 + eqx2)

1
2
k+i + cqi (x1 + ex2)

1
2
k+i(x1 + eqx2)

1
2
k−1−i,

is an element of Fq. Thus, the lemma follows in the same way as Lemma 1.

3 Grassl-Rötteler cyclic and constacyclic MDS codes

A k-dimensional cyclic or constacyclic code 〈g〉 of length n over Fq, with generator polynomial

g(X) =
n−k∑
j=0

cjX
j ∈ Fq[X]

of degree n− k, is a linear code of length n spanned by the k cyclic shifts of the codeword

(c0, . . . , cn−k, 0, . . . , 0).

It is a cyclic code if g divides Xn− 1 and constacyclic code if g divides Xn− η, for some η 6= 1.
See [2] or [8] for the basic results concerning cyclic codes.

In [6], Grassl and Rötteler introduced three [q + 1, k, q + 2− k]q MDS codes, the first two are
constructed as cyclic codes and the third as a constacyclic code. As mentioned in the introduction,
it follows from [1] that when q is prime and k 6= 1

2
(q + 1), these codes are generalised Reed-

Solomon codes. In this section we shall prove that they are generalised Reed-Solomon codes for
all q and k.

Let ω be a primitive element of Fq2 and let α = wq−1, a primitive (q + 1)-th root of unity.

The Grassl-Rötteler codes depend on the parity of q and k.

For q and k both odd, and q and k both even, the Grassl-Rötteler code is 〈g1〉, where

g1(X) =
r∏

i=−r

(X − αi).

For k odd and q even, the Grassl-Rötteler code is the cyclic code 〈g2〉, where

g2(X) =

1
2
q+r+1∏

i= 1
2
q−r

(X − αi).
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And for k even and q odd, the Grassl-Rötteler code is the constacyclic code 〈g3〉, where

g3(X) =
r∏

i=−r+1

(X − ωαi).

It is a simple matter to check that for i ∈ {1, 2, 3}, gi ∈ Fq[X] and for i ∈ {1, 2}, the polynomial
gi divides Xq+1 − 1 and g3 divides Xq+1 − ωq+1.

We now treat each of the four cases, which depends on the parity of k and q, in turn and prove
that they are all generalised Reed-Solomon codes.

Let {e1, . . . , eq+1} be the canonical basis of Fq+1
q .

Let β ∈ Fq2 be such that β + βq = 1.

Theorem 3. If k and q are both odd then the [q + 1, k, q + 2 − k]q code 〈g1〉 is a generalised
Reed-Solomon code.

Proof. Let cj be defined by

g1(X) =
r∏

i=−r

(X − αi) =
2r+1∑
j=0

cjX
j.

Observe that k = q − 2r.

We will prove that, for a ∈ {0, . . . , k − 1},

q+1−k+a∑
s=a

(−1)scs−aes+1 = (0, . . . , 0︸ ︷︷ ︸
a

, (−1)ac0, . . . , (−1)q+1−k+acq+1−k, 0, . . . , 0︸ ︷︷ ︸
k−1−a

)

are the evaluations of certain polynomials,

h(X) + h(X)q

where h ∈ Fq2 [X] is of degree at most 1
2
(k − 1), evaluated at the (q + 1)-th roots of unity.

By Lemma 1 these codes are generalised Reed-Solomon codes, which implies that 〈g1〉 is a
generalised Reed-Solomon code.

For a ∈ {0, . . . , k − 1}, define

ha(X) =

1
2
(q−1)∑
i=1

2r+1∑
j=0

cjα
i(j+a)X(q+1)/2−i +

2r+1∑
j=0

cj(−1)j+aβ +
2r+1∑
j=0

cjβX
1
2
(q+1).
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For all i ∈ {0, . . . , r},
2r+1∑
j=0

cjα
ij = 0,

since g1(αi) = 0. Thus, ha(X) has no terms of degree X
1
2
(q+1)−i for i ∈ {0, . . . , r}. Hence, the

degree of ha is at most 1
2
(q − 1)− r = 1

2
(k − 1).

We have that

ha(α
s) =

1
2
(q−1)∑
i=1

2r+1∑
j=0

cjα
i(j+a−s)(−1)s +

2r+1∑
j=0

cj(−1)j+aβ +
2r+1∑
j=0

cjβ(−1)s.

Since,  1
2
(q−1)∑
i=1

cjα
i(j+a−s)

q

=

q∑
i=(q+3)/2

cjα
i(j+a−s),

and β + βq = 1, it follows that

ha(α
s) + ha(α

s)q = (−1)s
2r+1∑
j=0

q∑
i=0

cjα
i(j+a−s).

Since
∑q

i=0 α
ij = 0 unless j = 0, in which case it is one,

ha(α
s) + ha(α

s)q = (−1)scs−a,

which is precisely what we had to prove.

We next deal with the case k and q are both even, since this is again the code 〈g1〉.

Theorem 4. If k and q are both even then the [q + 1, k, q + 2− k]q code 〈g1〉 is a generalised
Reed-Solomon code.

Proof. We can simply copy the proof of Theorem 3 until we define ha(X). Then we have to
define ha(X) differently, partly because we will apply Lemma 2 in place of Lemma 1.

For a ∈ {0, . . . , k − 1}, define

ha(X) =

1
2
q∑

i=1

2r+1∑
j=0

cjα
i(j+a)X

1
2
q−i +

2r+1∑
j=0

cjβX
1
2
q.

Since g1(αi) = 0, one has that
2r+1∑
j=0

cjα
ij = 0



8

for all i ∈ {0, . . . , r}. Thus, ha(X) has no terms of degree X
1
2
q−i for i ∈ {0, . . . , r}. Hence, the

degree of ha is at most 1
2
q − r − 1 = 1

2
k − 1.

As before, let ω be a fixed primitive element of Fq2 and let α = ωq−1, a primitive (q + 1)-th root
of unity. Then

ha(α
s) =

1
2
q∑

i=1

2r+1∑
j=0

cjα
i(j+a−s)α

1
2
sq +

2r+1∑
j=0

cjβα
1
2
sq.

and so

α−sha(α
s)q =

1
2
q∑

i=1

2r+1∑
j=0

cjα
−i(j+a−s)α−

1
2
sq−s +

2r+1∑
j=0

cjβ
qα−

1
2
sq−s.

Since, β + βq = 1 and α−
1
2
sq−s = α

1
2
sq, it follows that

ha(α
s) + α−sha(α

s)q = α
1
2
sq

2r+1∑
j=0

q∑
i=0

cjα
i(j+a−s).

Since
∑q

i=0 α
ij = 0 unless j = 0, in which case it is one,

ha(α
s) + α−sha(α

s)q = α
1
2
sqcs−a.

Hence,

ωsqha(α
s) + ωsha(α

s)q = ω
1
2
s(q+1)cs−a.

Lemma 2 implies that if we multiply the (s+1)-th coordinate of the codewords in 〈g1〉 by ω
1
2
s(q+1)

then we obtain a generalised Reed-Solomon code, which implies that 〈g1〉 is a generalised Reed-
Solomon code.

The next theorem deals with the case k is odd and q is even. In this case the Grassl-Rötteler code
is 〈g2〉.

Theorem 5. If k is odd and q is even then the [q + 1, k, q + 2− k]q code 〈g2〉 is a generalised
Reed-Solomon code.

Proof. Let cj be defined by

g2(X) =

1
2
q+r+1∏

i=
1
2
q−r

(X − αi) =
2r+2∑
j=0

cjX
j.
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Observe that k = q − 2r − 1.

As in Theorem 3, we look for polynomials ha(X) which allow us to apply Lemma 1.

For a ∈ {0, . . . , k − 1}, let

ha(X) =

1
2
q∑

i=1

2r+2∑
j=0

cjα
(i+ 1

2
q)(j+a)X

1
2
q+1−i +

2r+2∑
j=0

cjβ.

Observe that, for all i ∈ {1
2
q + 1, . . . , 1

2
q + r + 1},

2r+2∑
j=0

cjα
ij = 0,

since g1(αi) = 0. Thus, ha(X) has no terms of degree X
1
2
q+1−i for i ∈ {0, . . . , r + 1}. Hence,

the degree of ha is at most 1
2
q + 1− (r + 2) = 1

2
(k − 1).

We have that

ha(α
s) =

1
2
q∑

i=1

2r+2∑
j=0

cjα
(i+

1
2
q)(j+a−s) +

2r+2∑
j=0

cjβ.

and so

ha(α
s)q =

1
2
q∑

i=1

2r+2∑
j=0

cjα
(−i+1

2
q+1)(j+a−s) +

2r+2∑
j=0

cjβ
q.

Since, β + βq = 1, it follows that

ha(α
s) + ha(α

s)q =
2r+2∑
j=0

q∑
i=0

cjα
i(j+a−s).

Since
∑q

i=0 α
ij = 0 unless j = 0, in which case it is one,

ha(α
s) + ha(α

s)q = cs−a.

Lemma 2 implies that 〈g1〉 is a generalised Reed-Solomon code.

Finally, we deal with the case k is even and q is odd, which is the constacyclic code 〈g3〉.

Theorem 6. If k is even and q is odd then the [q + 1, k, q + 2− k]q code 〈g3〉 is a generalised
Reed-Solomon code.
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Proof. Let cj be defined by

g3(X) =
r∏

i=−r+1

(X − ωαi) =
2r∑
j=0

cjX
j.

Observe that k = q − 2r + 1.

As in Theorem 4, we look for polynomials ha(X) which allow us to apply Lemma 2.

For a ∈ {0, . . . , k − 1}, let

ha(X) =

1
2
(q+1)∑
i=1

2r∑
j=0

ωj+acjα
i(j+a)X

1
2
(q+1)−i.

Observe that, for all i ∈ {0, . . . , r},
2r∑
j=0

cjω
jαij = 0,

since g3(ωαi) = 0. Thus, the degree of ha is at most 1
2
(q + 1)− (r + 1) = 1

2
k − 1.

We have that

ha(α
s) =

1
2
(q+1)∑
i=1

2r∑
j=0

ωj+acjα
i(j+a−s)(−1)s.

and, since ωq = ωα,

α−sha(α
s)q =

1
2
(q+1)∑
i=1

2r∑
j=0

ωj+acjα
−(i−1)(j+a−s)(−1)s.

Hence, it follows that

ha(α
s) + α−sha(α

s)q =

q+1∑
i=1

2r∑
j=0

ωj+acjα
i(j+a−s)(−1)s.

Since
∑q+1

i=1 α
ij = 0 unless j = 0, in which case it is one,

ha(α
s) + α−sha(α

s)q = ωs(−1)scs−a.

Hence,
ωsqha(α

s) + ωsha(α
s)q = ωs(q+1)(−1)scs−a.

Lemma 2 implies that if we multiply the (s + 1)-th coordinate of the codewords in 〈g3〉 by
(−w(q+1))s then we obtain a generalised Reed-Solomon code, which implies that 〈g3〉 is a
generalised Reed-Solomon code.
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4 Conclusions

It may be an interesting and worthwhile exercise to see if the other known [q + 1, k, q + 2− k]q
MDS codes can be easily obtained as evaluation codes, evaluating at the (q+ 1)-th roots of unity.
It may even be that the evaluation is over a more exotic set of elements in some extension of Fq.
For completeness sake, we mention the other known [q + 1, k, q + 2− k]q MDS codes.

For k = 3 and q even, there are many examples known. These can all be extended to a
[q+2, k, q+3−k]q MDS code. The columns of a generator matrix of such a code can be viewed
as a set of points in the projective plane PG(2, q). Such a set of points is known as a hyperoval.
For a complete list of known hyperovals, see [3, Table 1].

There are only two other known examples, up to duality.

The following is due to Segre [7]. The linear code whose columns are the elements of the set

{(1, t, t2e , t2e+1) | t ∈ Fq} ∪ {(0, 0, 0, 1)}

is a [q + 1, 4, q − 2]q linear MDS code, whenever q = 2h and (e, h) = 1.

The other is due to Glynn [5]. Let η be an element of F9 such that η4 = −1. The linear code
whose columns are the elements of the set

{(1, t, t2 + ηt6, t3, t4) | t ∈ F9} ∪ {(0, 0, 0, 0, 1)}.

is a [10, 5, 6]9 linear MDS code.
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Universitat Politècnica de Catalunya,
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