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A B S T R A C T   

This paper assesses the forecast quality of five seasonal forecasting strategies applied to different bioclimatic 
indicators tailored to the olive sector. In total, five indicators have been selected considering their importance in 
the management of the olive orchard. As time progresses through the indicator target period, the impact of the 
increasing share of actual observations included in its computation has been evaluated by examining the vari
abilities of correlation coefficients and fair rank probability skill scores for each initialization date. The results 
show that blending either seasonal predictions or climatology with observations enhanced the capability of 
forecasting the tercile category for all the indicators when compared to the use of climatology or seasonal 
predictions alone. In fact, for Spring Maximum Temperature and Growing Season Temperature indicators, the 
combination of observations and SEAS5 predictions could outperform the other methods for most of the start 
months. As for those threshold-defined indicators, namely Spring Heat Days and Summer Heat Stress Days, the 
end-users are highly encouraged to use climatology in the first month and combine it with observations as soon 
as the latter becomes available.   

Practical implication  

Olives, one of the essential staples in many Mediterranean coun
tries, have contributed to society both culturally and ecologically 
for millennia (Besnard et al., 2013). For instance, the Mediterra
nean and Southern Spain accounted for more than half of the total 
areas of olive trees (i.e., five million hectares) in the European 
Union (Rossi et al., 2017) in 2020–2021. However, this area faces 
critical challenges, with climate change projections showing a 
significantly hotter and drier climate towards the end of this 
century (Carvalho et al., 2021; Cook et al., 2020; Giorgi and Lio
nello, 2008; Lee et al., 2021, Cos et al. 2022). Given these complex 
scenarios, the scientific community has suggested that user-driven 
climate services could be an increasingly valuable tool to tackle 
these foreseen risks and impacts (Ranasinghe et al., 2021). 

In this framework, seasonal predictions have already been applied 

to various agricultural sectors with varying degrees of success 
(Ceglar and Toreti, 2021; Iizumi et al., 2021). More specifically, 
the combination of observations and seasonal predictions within 
the calculation of bioclimatic indicators (hereafter blending 
strategy) could enhance the forecast skill of seasonal predictions 
when applying this strategy to the wine sector. Therefore, this 
work aims to study the potential of improving seasonal forecasts in 
the Iberian Peninsula (IP) by using five methods (including the 
blending mentioned above) to five bioclimatic indicators for the 
olive sector. 

The results support the future uptake of observations when pre
dicting sectoral indicators because there would be higher corre
lations and fair Rank Probability Skill Score (fair RPSS) in the 
earlier months of the indicator target period. In fact, the end-users 
are encouraged to combine observations and SEAS5 prediction for 
the Spring Maximum Temperature (SPRTX) and Growing Season 
Temperature (GST) indicators over the IP. Regarding the 
threshold-defined indicators such as Spring Heat Days (SPR32) 
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and Summer Heat Stress Days (SU36 and SU40), the observed 
climatology is preferable in the first month and combined with 
observations as soon as the latter becomes available. 

To conclude with the practical implication, this work could be a 
general guideline for the olive sector end-users when they prepare 
the bioclimatic indicators based on seasonal predictions by mak
ing the most of all the accessible information. 

Data availability 

Data will be made available on request.   

Introduction 

Cultivation of olive trees has been established in the Mediterranean 
region for centuries (Besnard et al., 2018). In addition to being an 
essential staple, the olive became essentially representative in the cul
tural, ecological and economic aspects after its domestication (Besnard 
et al., 2013). In 2020–2021, the European Union (EU) accounted for 68 
% and 32 % of the world’s olive oil and table olives production, 
respectively (IOC, 2018). Furthermore, the EU’s approximately-five 
million hectares of olive trees return 7.000 million euros yearly (Rossi 
et al., 2017). Across the southern European countries, Mediterranean 
Spain is one of the main pillars in the olive industry, holding more than 
half of the total cultivation areas, followed by Portugal, Greece, France, 
Croatia, Italy, etc. 

Like other crops, olive trees are sensitive to changes in the climate. 
For instance, in general, olive production was found to be negatively 
correlated with maximum and minimum temperature, particularly in 
spring and summer. Additionally, the severely arid condition due to the 
increases in evapotranspiration during extremely hot days, was also 
shown to negatively affect the olive tree growth (Zimmermann et al., 
2015; Orlandi et al., 2020). Actually, the long-term CMIP5 and CMIP6 
projections for this region agree that this climatic situation is likely to 
continue or even worsen in the foreseeable future (Guiot and Cramer, 
2016; Cos et al. 2022). Consequently, the uncertainties linked to this 
climate evolution can lead to unavoidable risks for the sector. 

The global and regional climate models under varying IPCC path
ways projected a significantly hotter and drier Mediterranean basin by 
the end of the 21st century (Carvalho et al., 2021; Cook et al, 2020; 
Giorgi and Lionello, 2008, Cos et al., 2022). Specifically, up to 6.5 ◦C of 
summer warming could be observed in the Mediterranean region in 
2070–2099 than in 1971–2000 (Kröner et al., 2017; Brogli et al., 2019). 
A more considerable variability would happen due to one season with 
more hot days. Moreover, the projection of heat waves from regional 
climate models was increased from ten days/year to above 50 in the 
Mediterranean by the end of this century (Molina et al., 2020; Kuglitsch 
et al., 2010). Furthermore, a drier southern Mediterranean was pro
jected in terms of the annual total precipitation by 2050, while up to 25 
% of the increase in the 50-year precipitation extreme was simulta
neously seen (Zittis et al., 2021). The above challenges warn that an 
advanced strategy of adaptation and preparedness is urgently required 
and needs to be tailored to the olive sector by using reliable climate 
information (Ranasinghe et al., 2021). 

Seasonal predictions have served as a readily useful tool of adapta
tion in the field of agriculture (Vajda and Hyvärinen, 2020), namely 
wine grape, wheat (Ceglar and Toreti, 2021), and other crops (Hayashi 
et al., 2018). Through co-developing with the end-users, the seasonal 
forecasts of the Essential Climate Variable (ECV) and the bioclimatic 
indicators tailored to the sector of interest provide promising values in 
their process of decision-making (Giannakopoulos et al., 2020; Marcos- 
Matamoros et al., 2020). For example, the olive-sector agronomists 
argued that the weather information from the forthcoming week to 
months is the most useful when making key decisions (Sanderson et al., 

2019). Specifically, fertilization occurs from March to October; irriga
tion is applied from April to October, and soil labor must be well ar
ranged throughout the year (Sanderson et al., 2019). As such, key 
proxies which were identified by the olive company DCOOP (in the 
MED-GOLD project) could enlighten the aforementioned critical de
cisions (Giannakopoulos et al., 2019). 

Following the finding of the increase in the forecast skill when 
applying the blending strategy to the wine sector, five bioclimatic in
dicators of the olive sector were used to assess its transferability by 
comparing the performance of the predictions from five blending stra
tegies. The structure of this paper is as follows. In the next section, the 
data sets and the spatial domain are first introduced. After that, in sec
tion 3, the definitions of the selected bioclimatic indicators, the five 
blending strategies, and the methods for the subsequent evaluation are 
presented. Next, section 4 exhibits the quality comparison of the fore
casting strategies for each indicator and initialization date (i.e., each 
month of the indicator period). Finally, conclusions and suggestions are 
summarised in section 5. 

Data and spatial domain 

The lead time zero predictions of daily temperature data (including 
maximum, mean and minimum) from the European Center for Medium- 
Range Weather Forecasts (ECMWF) SEAS5 (denoted as S5 hereafter, 
Johnson et al., 2019) were used in this work (downloaded from the C3S- 
CDS, Raoult et al., 2017). The Integrated Forecast System (IFS) Cycle 
43r1 was used in the S5 prediction model (Copernicus version). The 
aforementioned ECVs were provided as forecasts of seven months into 
the future with 25 ensemble members at one-degree spatial resolution 
(Johnson et al., 2019; Gubler et al., 2019; Weisheimer et al., 2020). The 
reference data, used for the blending, bias correction and verification 
was the ECMWF ERA5 reanalysis (Hersbach et al., 2018). As for the 
reference data, we used the ECMWF ERA5 reanalysis with a resolution of 
0.25◦ (Hersbach et al., 2018, Hersbach et al., 2020). The ECVs used were 
the same 3 types of temperature (minimum, maximum and mean) 
covering the 1993–2016 period. 

Regarding the spatial domain, the IP remains the key region because 
more than half of the five million hectares where the olive trees are 
cultivated in the EU are located in its southern part as shown in Fig. 1. 
The geographical location of the IP, in between the North Atlantic Ocean 
and the Mediterranean Sea, determines its unique climatic condition for 
the olive groves. 

Methodology 

Bioclimatic indicators 

Dcoop is one of the leading world producers of olive oil, contributing 
with an average 8 % to the total global production (~0.23 million tonnes 
out of 3 million grand total, according to 2021 data). During the co- 
development process with this end-user, temperature showed to be of 
particular interest because it affects the phenological cycle of olive trees 
from winter to autumn and establishes the magnitude of pests’ impacts 
as well as water requirements. Consequently, five temperature-based 
bioclimatic indicators were selected due to their importance and use
fulness from the olive sector perspective (see Table 1). Additionally, 
Table s1 outlines the functions in the CSIndicators R-package (Pérez- 
Zanón et al., 2021) that were used for the calculation of the indicators in 
this paper. 

The first indicator, Spring Maximum Temperature (SPRTX), is the 
mean maximum temperature from April-May. The mean condition of 
springtime’s highest temperature is important for hydrologic stress (e.g., 
evapotranspiration), flowering, pollination, and pest treatment (Sand
erson et al., 2019). For example, the olive moths (Prays oleae) could 
appear when the temperature in spring is mild and attack the different 
parts of the olive: leaves, flowers, and newly set fruit through some of its 
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three annual generations. Therefore, this indicator can inform the po
tential locations before its emergence. Moreover, reactions to control the 
pest, such as the use of phytosanitary treatments, can be improved in 
advance (MED-GOLD, 2021). 

Another springtime indicator is Spring Heat Days (SPR32). The 
definition is the accumulated number of days with the maximum tem
perature exceeding 32 ◦C from 21st April to 21st June. SPR32 is relevant 
to various decision-making, from plant treatment before flowering 
(Ozdemir, 2016) and irrigation planning to the prediction of crop pro
duction. For example, flowering may occur earlier if a higher tempera
ture (above 30 ◦C) is seen in early spring. As such, the subsequent 
pollination will happen earlier, too (Sanderson et al., 2019). 

The other two indicators for summertime are Summer Heat Stress 
Days (i.e., SU36 and SU40), which represent the accumulated days with 
the daily maximum temperature above 36 and 40 ◦C, respectively, from 
21st June to 21st September. Since there are more olive fruit flies in this 
season, both indicators can not only inform the protection of plants (e.g., 
avoid lowering the quality due to the olive fly pest) but also hint at the 
need for irrigation (e.g., against heat stress or drought, Tognetti et al., 
2004). Advanced reactions are critical from May onwards, throughout 
the summer, and sometimes until October (MED-GOLD, 2021). Besides, 
the variability of olive pollen was significantly reduced for 11 cultivars 
(out of 12) when the temperature of 36 ◦C was maintained in an 
experiment conducted at a relatively high level of wetness (Iovane et al., 

2021). As such, 36 and 40 ◦C could represent extreme weather condi
tions for the locations where pollination occurs in summer. 

Lastly, the Growing Season Temperature (GST) indicator is the 7- 
month average of daily mean temperatures from April to October. 
This indicator is critical because both temperature maximum and min
imum are taken into account, and the operations such as irrigation and 
fertilization are mainly conducted during this period. Besides, this 7- 
month period is associated with the two phases with a higher vegeta
tive growth rate (above 50 %) of the biannual pattern of olive trees 
(Benlloch-Gonzálezet al., 2019). As such, GST is paramount not only due 
to its phenological meaning but also because its longer time slot helps 
better understand the variability of performances with the increasing 
proportion of observations in the indicator. 

Five blending strategies for predicting the indicators 
This section describes the five strategies to predict the bioclimatic 

indicators seasonally. Their descriptions and acronyms are tabulated in 
Table 2. The first two predictions were ERA5 climatology (E5) and bias- 
corrected SEAS5 predictions (S5). In addition, the B-S5 and B-E5 
(standing for Blending-SEAS5 and Blending-ERA5) progressively com
bined the past observations (when available) with, respectively, the 
SEAS5 predictions and the ERA5 climatology. Fig. 2 depicts the data sets 
used in each indicator target month (SPRTX) for both B-S5 and B-E5. The 
detailed steps for generating B-S5 and B-E5 were explained in Section 

Fig. 1. Distribution of olive trees in the Mediterranean Basin (Rodríguez Sousa et al., 2020).  

Table 1 
Description of the associated impacts, relevant decisions and potential value of the seasonal predictions for the bioclimatic indicators analysed in this paper.  

Indicator Period Associated impact Relevant decision Potential value 

Spring Maximum 
Temperature 

April and May Flowering, flower-to-fruit 
conversion, olive moth attack rate 
and pollination efficiency 

Phytosanitary treatment, 
fertilization and production 
forecast. 

End-users could increase the responsible use of phytosanitary 
products, optimize fertilizer application and, based on 
production forecasts, make better market decisions. 

Spring Heat Days From 21st April to 
21st June 

Onset of flowering, pollination 
efficiency and fruit setting. 

Irrigation planning and 
production forecast. 

End-users could optimize the use of water and, based on better 
crop prediction, make better market decisions. 

Summer Heat 
Stress Days 

From 21st June to 
21st September 

Olive fly attack rate and water 
deficits 

Protection of plants and need 
for irrigation 

End-users could increase the responsible use of phytosanitary 
products and optimize the use of water 

Growing Season 
Temperature 

From April to 
October 

Water/nutrient deficit level Irrigation, fertilization and 
production forecast. 

End-users could optimize the use of water and fertilizer 
products and, based on production forecasts, make better 
market decisions.  
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3.2.1. Last but not least, the persistence method (P) was the fifth 
approach included in the comparison (see section 3.2.2 for more 
details). 

The B-S5 and B-E5 strategy 
The construction of B-S5 and B-E5 approaches follow a blending 

strategy. In this procedure, as the time moves forward through the 
indicator-defined period (e.g. GDD, advancing from April to October), 
the most recent prediction ‘blends’ with the observations that have 
progressively become available. Consequently, as time comes by, the 
prediction of the indicator is a combination of observed and forecast 
information. That said, the forecast portions of B-S5 and B-E5 are 
different. In B-E5, the forecast is an ensemble based on the resampling of 
past ERA5 climatology (25 members obtained with bootstrap and cross- 
validation methods), whereas the B-S5 forecast is the 25-member 
ensemble from SEAS5 hindcast. To better visualise these differences, 
Fig. 2 shows a schematic diagram for both B-S5 and B-E5 based on a 
SPRTX use-case.  

1. Load ERA5 daily temperature maximum for April and May over IP 
from 1993 to 2016  

2. To generate the ensemble observations for B-E5, resample the above 
daily ECV with bootstrap and cross-validation methods (25 ensemble 
members). For instance, for the year 1993, one out of the 23 years 
(from 1994 to 2016, excluding the current year) was randomly 
selected 25 times with replacements (i.e., one year could be used 
twice or more). After that, there would be 25 members for the year 

1993. This resampling was repeated throughout the entire period to 
obtain a full observational ensemble (see the green cells in ‘Apr’ 
columns of B-E5 in Fig. 2). This ensemble observation was then 
considered as the ‘predictions’ such as SEAS5 predictions in B-S5 and 
was then combined with the past observations described in step 3.  

3. When the season proceeded, the above B-E5 and B-S5 were combined 
with the past observations: April observations became available in 
May, so the original April data (i.e., the blue and green cells in ‘Apr’ 
columns of B-S5 and B-E5 in Fig. 2) were substituted with the past 
data (i.e., the yellow cells in ‘May’ columns) for all the members. 
After the replacements, the SPRTX indicators for the start month of 
May were computed for B-S5 and B-E5. 

The B-E5 predictions, particularly for those indicators associated 
with a specific threshold, might not share a similar statistical distribu
tion as observed in the ERA5 because of the likely inherent bias seen in 
dynamic prediction models. Therefore, for the threshold-defined in
dicators (including SPR32, SU36 and SU40), the percentile corre
sponding to the absolute threshold used in the observation was 
translated to a new threshold (see the formula in Table s1) before 
computing the indicators. This adjusted threshold not only holds the 
same position as the original threshold in the observed data but also 
avoids the non-surpassing scenario (i.e., the latter was too extreme for 
some seasons/locations). Thus, this adjustment implicitly contains a bias 
correction (Casanueva et al., 2018). It is worth mentioning that the S5 
and B-S5 predictions of the indicators were bias-corrected with the 
calibration method (Von Storch and Zwiers, 2002; Doblas-Reyes et al., 
2005) before computing the skill metrics by using ERA5 as the reference 
dataset. Taking into account the adjusted threshold and the combination 
with observations (blending approach), only one bias-adjustment 
method was applied in this work. Hence, in the near future it may be 
worth investigating other bias correction methods (e.g., quantile map
ping and others being compared in Manzanas et al., 2019). Besides, the 
climate change signal has not been explicitly considered in this study so 
it can also be a topic for future research. 

The persistence strategy 
The assumption of the persistence method is that tomorrow remains 

the same as today. As such, this approach is expected to work well when 
the climate is relatively stable within the timescale of interest. In this 
work, two types of persistence methods were applied according to the 
characteristics of the indicators: an adjusted one for the threshold- 
defined indicators and the original one for the period-average ones. 

Table 2 
Description of the Predictions from the Five Strategies.  

Acronyms Construction of Data Remarks 

E5 ERA5 climatology E5 was used as a benchmark in this 
work (when computing the FRPSS). 

S5 Bias corrected SEAS5 
predictions (the first start 
month only) 

The variance inflation method (Von 
Storch and Zwiers, 2002), assessed in 
Doblas-Reyes et al. (2005), was 
applied for the bias adjustment in 
this work. 

B-S5 SEAS5 predictions blended 
with the past observations 

See Section 3.2.1 for more details and 
Fig. 2 for a schematic plot 

B-E5 Ensemble ERA5 climatology 
blended with the past 
observations 

P Persistent prediction See Section 3.2.2 for details  

Fig. 2. Schematic diagram for the B-S5 and B-E5 blending strategies (taking SPRTX as an example). The yellow, blue and dark blue cells represent, respectively, the 
past observations, SEAS5 predictions and the resampled observations (climatology). There are 25 ensemble members for each of the start months (April and May, 
column-wise) and both B-S5 and B-E5. For the start month of April (the ‘Apr’ columns), the ensemble SEAS5 predictions (the blue cells) and the ensemble obser
vations (the dark blue cells) were used to compute SPRTX for B-S5 and B-E5 without replacements, respectively. When the season progressed to May, the April 
observations became available. The ‘Apr’ cells in the ‘May’ columns were thus replaced with the past observations (i.e., the yellow cells for both cases). (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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1. 1 Original persistence method 

Complying with the aforementioned concept, the key step is to 
decide the month(s) used for each initialization date. To uptake as much 
information from observations as possible, we tried to use all the days of 
the closest month(s) being available. Taking GST as an example, the 
daily data in March (April) was taken to compute the indicator for the 
start month April (May). Thereafter, from the start month June onwards, 
the months from April to the month before the present were used. For 
instance, the start month July took the daily data from April to June and 
the final start month took the past six months. The temperature averaged 
over the selected month(s) represented the prediction of the indicator 
for that initialization date.  

2. Adjusted persistence method 

Since the fixed temperature threshold might not be fair to be used in 
all the months of the defined period for determining the exceedance, the 
percentile corresponding to the threshold taking into account the entire 
period was calculated and used. In other words, a new temperature 
threshold that corresponds to the same percentile would be translated by 
taking the selected months for each start month. Taking SPR32 as an 
example, we first computed the percentile corresponding to 32 ◦C 
considering all the days from 21 April − 21 June. Secondly, for the start 
month April (May), a new threshold matching the percentile could be 
calculated by taking into account the daily data in March (April). After 
that, the indicator would be the accumulated number of days when the 
daily temperature maximum exceeded the revised threshold in March 
(April). The above adjustment avoids generating many zeros because the 
original threshold could be difficult to reach in a cooler month. Besides, 
the modified threshold reasonably represents a crossing point for the 
month(s) selected in each initialization date. 

Evaluation methods 
To evaluate the predictions obtained from the five strategies, both 

deterministic (including bias and correlation coefficient) and probabi
listic (i.e., fair RPSS, Fricker et al. 2013; Ferro 2014) metrics were used. 
Further, these verification metrics were computed for each initialization 
date of the indicator target period to understand the effect of the 
increasing share of the observations within the indicator on the forecast 
quality. 

The fair RPSS was calculated with the leave-one-out strategy and the 
interannual average was presented in the results. Moreover, the baseline 
data used for computing fair RPSS, along with the other four strategies 
(namely S5, B-S5, B-E5 and P), was ECMWF ERA5 climatology. In 
addition, in the cases where the tercile category cannot be determined 
(e.g., both tercile thresholds are zeros), we assign zeros because only the 
highest positive fair RPSS is interesting in the final comparison. 
Regarding the P prediction, it is worth noting that we assigned one (100 
%) to the tercile category in which the prediction belonged due to the 
lack of ensemble members. As such, the annual fair RPSS would be either 
one (perfect prediction) or negative values (prediction without added 
values). 

Results and discussions 

Given the characteristics of the five indicators, the following dis
cussions are categorized into two groups: Section 4.1 for the SPR32, 
SU36 and SU40 indicators involving a threshold and the two indicators 
associated with an average condition (i.e., SPRTX and GST) in Section 
4.2. The observed climatology of the indicators for the entire hindcast 
period was first presented and followed by the comparison of the 
ensemble-mean correlation coefficient and fair RPSS in each initializa
tion date among the different strategies (except for the E5). The differ
ences between indicators, strategies and start months were assessed. The 
remaining bias of each indicator could be found in the supplementary 

material (see Fig. s1 & s2). 

Threshold-defined indicators 

These three indicators represent the locations of the potential heat 
stress in spring and summer, respectively. Even though the temperatures 
of crossing points depended on seasons (32 ◦C for spring; 36 ◦C and 40 ◦C 
for summer), the overall spatial patterns were similar: hotter in the 
southern half and cooler in the northwestern areas as shown in Fig. 3. In 
the Guadalquivir Valley, the SPR32 were above 12 days and the SU36 
(SU40) could be more than 25 (5) days in summer. The second-highest 
hot spots were located in the region northwest to the Guadalquivir 
Valley and the Ebro Valley. 

Fig. 4 shows the correlation coefficients of the S5, B-S5, B-E5 and P 
predictions of the SU36 and SU40 indicators. As expected, the steadily 
increasing correlation was seen when more observations were included 
in the calculation of the indicators along with the progressing season. As 
for SU36, S5 and B-E5 could have up to 0.5 of correlation at SM06 while 
P had a higher correlation over the southeastern areas. After that, when 
the season progressed to July (with the 21st – 30th of June included), B- 
E5 was improved particularly over the southeastern and south-central 
areas. At the same time, B-S5 showed an enhancement to a lesser 
extent basically in the southeastern region while P had fewer improve
ments only in the northeastern parts. Furthermore, there were much 
higher correlations for all three cases (i.e., B-S5, B-E5 and P) over a 
widespread region at SM08 when July was further combined. This 
marked increase in correlation indicates that July could be a decisive 
month for the SU36 indicator (and SU40 too). Although the three pre
dictions attained a correlation above 0.7 almost across the entire 
domain, B-E5 performed slightly better than the other two. 

The variabilities of correlation of the SU40 indicator were similar to 
SU36. However, partially due to its more extreme threshold, B-S5 did 
not have a comparable level of correlation to B-E5 throughout the 
months. At SM07, the correlation of B-E5 could reach around 0.6 in the 
Guadalquivir Valley and its northwestern region while B-S5 had a poorer 
performance (even when compared with P). Moreover, when above 0.8 
of correlation could be seen in the southern peninsula for B-E5 and P at 
SM08, B-S5 showed limited values in a smaller area. Here, the fact that 
the improved performances of B-E5 and P due to the increasing share of 
observation relatively remained unchanged suggests that these two 
methods are less affected by the level of the extremeness of the used 
threshold. Conversely, B-S5 achieved a lower correlation in the latter 
months of the period for the SU40 indicator than SU36. This situation 
was also seen in the SPR32 indicator (see Fig. s3). May is critical for 
SPR32 (see Fig. s4). 

A positive fair RPSS would encourage end-users to use the corre
sponding prediction in their decision-making because of the added value 
when compared to the use of climatology. Overall, the fair RPSS was 
steadily increased with the increasing proportion of observations for 
both indicators and all three strategies (B-S5, B-E5 and P) as shown in 
Fig. 5. As for SU36, B-S5 outperformed B-E5 and P in the first two 
months with a fair RPSS of up to 0.4 mainly over the southern region. 
However, B-E5 surpassed B-S5 at SM08 and SM09 when more obser
vations were included, in particular the decisive July. Nevertheless, the 
fair RPSS of B-S5 at SM08 and SM09 kept increasing to 0.6–0.8 in the 
southern half (particularly in the Guadalquivir Valley and the Ebro 
Valley). Regarding P’s performance, the fair RPSS of above 0.6 was 
widespread in a large area at SM09 while being relatively scattered at 
SM08. 

Less predictability in the SU40 indicator was seen in the first two 
months for all the strategies probably due to the stricter threshold, and 
there were fewer days before summer in which the temperature 
maximum could exceed the threshold. As such, there were barely posi
tive skills throughout the domain, but it is noteworthy that, in this case, 
future use of ‘in-field observations’ could provide a way to ameliorate 
the results of the blending strategy (especially in terms of operative 

C. Chou et al.                                                                                                                                                                                                                                    



Climate Services 30 (2023) 100345

6

application). When the season went into August, B-S5 had the best fair 
RPSS of above 0.4 in the southwestern region and the Ebro Valley and 
continued to increase in September. At last, P showed positive fair RPSS 
over the Guadalquivir Valley and its northwest in the last two months. 
The months and locations being in favor of using seasonal forecasts 
depend on the indicator and location. For example, SU36 over the 
southern IP and the Ebro Valley at SM07 and SM08 and SPR32 over the 
southwest of IP at SM06 (see Fig. s4) could be highlighted according to 
fair RPSS. As such, according to Table 1, the need for irrigation from late 
spring to summer as well as the protection from extremely hot days 
could be improved or prepared in advance by using seasonal forecasts 
(B-S5). 

Period-average indicators 

The SPRTX and GST indicators represent the average temperature 
condition in spring (April-May) and from spring to autumn (April- 
October), respectively. Moreover, the former considers only the 
maximum temperature while the latter takes the mean of maximum and 
minimum temperatures. Fig. 6 manifests the observed climatology of the 
two indicators over IP for the 1993–2016 period. The spatial patterns 
were analogous to the maximums seen in the Guadalquivir Valley 
(above 24 ◦C for SPRTX and 22–24 ◦C for GST) and the minimums 
around the Pyrenees of below 12 ◦C. 

As seen in the threshold-defined indicators, the correlation co
efficients of the period-average indicators also show a consistent in
crease with more observations added in all the cases. Overall, the order 

Fig. 3. ERA5 climatology for the threshold-defined indicators over the Iberian Peninsula from 1993 to 2016: (a) SPR32 (total number of days with daily maximum 
temperature above 32 ◦C from 21st April to 21st June), (b) SU36 and (c) SU40 (total number of days with the daily maximum temperature above 36 ◦C/40 ◦C from 
21st June to 21st September). Darker grey shadings indicate the grid points where the temperatures were consistently below the thresholds in the observation. 

Fig. 4. Pearson’s correlation coefficients (r) of the S5, B-S5, B-E5 and P predictions of the (left) SU36 and (right) SU40 indicators for the start months from June 
(SM06) to September (SM09). Darker grey shadings indicate the grid points where the temperatures were consistently below the thresholds in the observation. Only 
positive correlation coefficients are shown in blue. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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of the performance among the three strategies was basically B-S5 > P >
B-E5. For B-S5, the correlations of GST were up to 0.5 in April (SM04) 
and were increased to above 0.9 throughout the entire domain at SM10 
in Fig. 7. SPRTX attained correlations of above 0.7 in SM05 when April 
observation was included (see Fig. s5). 

The high fair RPSS of the B-S5 shown in Fig. 8 confirms the out
performance of B-S5. This is also seen in SPRTX in Fig. s6. More 
importantly, B-S5 was predominant in April and kept outperforming 
over a broad region throughout the seven months. Actually, the 

difference between B-S5 and B-E5 seemed to decrease between SM07 
andSM10. Besides, May could be the decisive month to obtain the 
forecasting skill for B-E5 while P attained positive fair RPSSs after the 
first three months were included. This could hint that a longer obser
vation is required for P to surpass climatology (see the bottom row). 
SPRTX basically has the same finding as GST (see Fig. s6). 

It is worth noting that using seasonal forecasts with the blending 
approach is more likely to outperform the other strategies in the earlier 
months of the defined period. However, this superiority was found to 

Fig. 5. Fair RPSS of SU36 and SU40 indicators of the four strategies: S5, B-S5, B-E5 and P from top to bottom. The start months range from June (SM06) to September 
(SM09) from left to right. Darker grey shadings indicate the grid points where the temperatures were consistently below the threshold in the observation. Only 
positive values are shown in green. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. ERA5 climatology of the (a) SPRTX (average maximum temperature from April to May) and (b) GST (7-month mean of the average of daily maximum and 
minimum temperatures from April to October) indicators over IP for the 1993–2016 period. 
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shrink with the increasing share of observations included in the 
computation of each indicator. This reduction in FRPSS could be fore
seen because the baseline climatology and the predictions progressively 
became more similar as more observations were introduced and, hence, 
this decreased the room for improvement. 

Conclusions 

This study analyzed the potential usage of seasonal predictions in the 
olive sector in the Iberian Peninsula (IP) by applying five seasonal 

prediction strategies to five sectoral bioclimatic indicators (SPR32, 
SU36, SU40, SPRTX, GST). In addition to the commonly used clima
tology and seasonal predictions, both of them were also combined with 
the actual observations once they became available (blending strategy). 
Besides, the persistence method was added in the comparison. After 
that, the behavior of the verification skill metrics was then analyzed for 
each initialization date as well as for each indicator and forecast 
strategy. 

The results show that, for all the indicators, blending either seasonal 
predictions or climatology with observations enhanced the capability of 

Fig. 7. Pearson’s correlation coefficients (r) of the S5, B-S5, B-E5 and P predictions (top to bottom) of the GST indicator from the start months April (SM04) to 
October (SM10) (left to right). Only positive correlation coefficients are shown here. 

Fig. 8. Fair RPSS of the GST indicator of the four strategies: S5, B-S5, B-E5 and P (top to bottom). The start months range from April (SM04) to October (SM10) from 
left to right. Only positive fair RPSSs are shown here. 
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forecasting the tercile category when compared with the use of clima
tology or seasonal predictions alone. Furthermore, the decisive month to 
obtain a marked increase in the skill metric could be identified: May for 
SPR32; July for SU36 and SU40; and May for GST. 

For the threshold-defined indicators, B-E5 tends to be more skilful 
over a wider area than the other methods. As seen in Fig. 4 and Fig. 5, 
the inclusion of the decisive month largely enhanced both verification 
metrics of the B-E5 than the other methods. Conversely, P could 
outperform climatology in the later start months. As for the period- 
average indicators (i.e., SPRTX and GST), the B-S5 was the best pre
diction in most start months although B-E5 could have a comparable 
skill. 

To better visualize the spatial variabilities of the best strategy 
throughout the indicator target period, Fig. 9 and Fig. 10 illustrate the 
performer with the highest fair RPSS in each grid point for each indi
cator in each start month. Each strategy corresponds to one color: green 
for B-S5, light green for S5, blue for B-E5, light blue for E5 and yellow for 
P. 

Overall, the best prediction for the threshold-defined indicators was 
changed from the E5 to B-E5 or a mixture of B-S5 and B-E5 with the 
increasing share of observations within the indicators. For example, E5 

outperformed the other methods in the first month for all three in
dicators and also in the second month for SPR32 and SU40. The S5 and 
B-S5 for SU36 could have the highest fair RPSS over the southern areas 
in the SM06 and SM07, respectively, although E5 could be seen in the 
rest regions. When the season progresses, with more available obser
vations, the B-E5 starts to appear. For instance, the B-E5 could be found 
in a widespread region for SU36 and SU40 in SM08 and SM09 while the 
B-S5 is predominant over the southwestern IP in SM08. Additionally, 
there is a mixture of B-E5, B-S5 and P for the last month of SPR32. The 
fact that B-S5 only exists for SPR32 and SU36 may indicate the difficulty 
for B-S5 to surpass B-E5 when the used threshold is too extreme (40 ◦C). 

On the other hand, for the period-average indicators, as shown in 
Fig. 10, the S5 was predominant in the first month and B-S5 basically 
had the highest fair RPSS across the entire IP in the remaining months 
(except for SPRTX in SM05) in particular for GST. Even so, B-E5 could 
appear in scattered locations for GST from SM07 to SM10. Also, B-E5 
could be found across the entire IP for SPRTX in SM05 while B-S5 has 
comparable fair RPSS as B-E5 (see Fig. s6). Unlike the threshold-defined 
indicators, the B-S5 strategy tends to have more skill in the period- 
average group. However, its superiority when compared to B-E5 also 
diminished in the latter months of the defined period (e.g., SPRTX in 

Fig. 9. The strategy with the highest fair RPSS in each start month (left to right) of the three threshold-defined indicators: SPR32, SU36 and SU40 (from top to 
bottom). The start months of SPR32 (SU36 and SU40) range from April to June (June to September). Each strategy corresponds to one color: green for B-S5, light 
green for S5, blue for B-E5, light blue for E5 and yellow for P. Darker gray shadings indicate the grid points where the observed temperatures are below the threshold 
throughout the defined period. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. s5 and s6; SM09 of SU36 and SM08 and SM09 of SU40 in Fig. 4). 
This finding is expected because the majority of the ‘blended’ prediction 
for both strategies corresponds to the same past observational data for 
these start dates. Therefore, this has to be considered when selecting the 
strategy for those indicators in the latter months. 

To conclude, when seasonally predicting bioclimatic indicators for 
the olive sector, it is highly recommended to uptake the available ob
servations as the indicator period progresses. On the one hand, the end- 
users are encouraged to combine the observations with SEAS5 pre
dictions for the period-average indicators (GST and SPRTX). On the 
other hand, when it comes to an indicator defined by a fixed threshold 
(SPR32, SU36 and SU40), the observed climatology would be a suitable 
option for the first month and it should also be combined with obser
vations as soon as they become available. Besides, the persistence- 
derived prediction could be considered only in the later month(s). 

The above findings provide the olive sector end-users with a general 
guideline to make the most of the seasonal predictions of their sectoral 
bioclimatic indicators (by taking advantage of all the possible usage 
options of the information already available). 
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Giannakopoulos, C., Gratsea, M., López-Neado, J., López-Feria, S., Sanderson, M. G., 
ZamoraRojas, R., Terrado M., Marcos R., Bruno Soares, M., Mihailescu, E., Arjona, 
R., Ponti, L., Calmanti S. (2019): MED-GOLD Deliverable 2.6 First feedback report 
from users on olive oil pilot service development. https://www.med-gold.eu/wp- 
content/uploads/docs/776467_MED-GOLD_DEL2.6_%20First-feedback-report-from- 
users-on-olive-oil-pilot-service.pdf. 
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