
Automatic, Efficient and Scalable Provenance
Registration for FAIR HPC Workflows
Raül Sirvent

Barcelona Supercomputing Center
raul.sirvent@bsc.es

Javier Conejero
Barcelona Supercomputing Center

javier.conejero@bsc.es

Francesc Lordan
Barcelona Supercomputing Center

francesc.lordan@bsc.es

Jorge Ejarque
Barcelona Supercomputing Center

jorge.ejarque@bsc.es

Laura Rodrı́guez-Navas
Barcelona Supercomputing Center

laura.rodriguez@bsc.es

José M. Fernández
Barcelona Supercomputing Center

jose.m.fernandez@bsc.es

Salvador Capella-Gutiérrez
Barcelona Supercomputing Center

salvador.capella@bsc.es

Rosa M. Badia
Barcelona Supercomputing Center

rosa.m.badia@bsc.es

Abstract—Provenance registration is becoming more and more
important, as we increase the size and number of experiments
performed using computers. In particular, when provenance is
recorded in HPC environments, it must be efficient and scalable.
In this paper, we propose a provenance registration method for
scientific workflows, efficient enough to run in supercomputers
(thus, it could run in other environments with more relaxed
restrictions, such as distributed ones). It also must be scalable in
order to deal with large workflows, that are more typically used
in HPC. We also target transparency for the user, shielding them
from having to specify how provenance must be recorded. We
implement our design using the COMPSs programming model as
a Workflow Management System (WfMS) and use RO-Crate as a
well-established specification to record and publish provenance.
Experiments are provided, demonstrating the run time efficiency
and scalability of our solution.

Index Terms—Provenance, Reproducibility, Replicability, Sci-
entific Workflows, FAIR, High Performance Computing,
COMPSs, RO-Crate

I. MOTIVATION

The volume of data gathered to be analysed, computed or
treated in many different domains keeps continuously growing.
Even more, if we consider the increase in computing capacities
(i.e., the more computing we have available, the more data we
want to gather to be analysed). Besides, when many results
are generated, the need for adding extra metadata on how an
experiment or an analysis was conducted becomes much more
important, if we want to understand how they were achieved
(i.e., the more results we have, the more important metadata

This work has been supported by the Spanish Government (PID2019-
107255GB-C21), by Generalitat de Catalunya (contract 2017-SGR-01414) and
the EU’s Horizon research and innovation programme under Grant agreement
No 101058129 (DT-GEO). Also, it has been contributed in the CECH project,
co-funded with 50% by the European Regional Development Fund under the
framework of the ERFD Operative Programme for Catalunya 2014-2020, with
a grant of 1.527.637,88C. LRN, JMF and SCG are partly supported by INB
Grant (PT17/0009/0001 - ISCIII-SGEFI / ERDF), and their work received
funding from the EU’s Horizon 2020 research and innovation programme
under grant agreements EOSC-Life No 824087, and EJP RD No 825575. All
URLs in footnotes have been accessed on October 2022.

becomes). This can be seen specially in domains such as Big
Data Analytics, IoT and Scientific Workflows. It is also a fact
that results of such analyses have been traditionally shared in
research by just providing a numerical and textual description
of the experiments in a scientific paper, where readers could
not easily verify those results, leading to what we know these
days as the reproducibility crisis [1].

With the objective of dealing with these problems, the
Provenance field has been targeting to register and associate
metadata to existing or newly generated data in order to
improve reproducibility or replicability of scientific results.
Reproducibility to allow third parties to re-execute an ex-
periment exactly the way it was originally conducted (to
verify results). Replicability to be able to apply the same
procedures specified in the experiment to a new input set,
obtaining different results. The literature also presents the
concept of FAIR data (Findable Accessible Interoperable and
Reusable) [2] to solve these previously mentioned problems.

We find many different existing systems to register prove-
nance, some of which are thought to be directly consumed
by humans (i.e., with visual tools, like the EBRAINS Data
and Knowledge Service1). Others are oriented to be consumed
by machines, with a specific focus on interoperability (RDF2,
OWL3, PROV [3]). Hand-made provenance registration using
visual tools has the clear drawback of scalability, since a
drawing can become very complex when the number of
involved entities is very large. On the other hand, using directly
RDF and OWL may be difficult for non-computer scientists.

In this paper, we propose to create a lightweight interoper-
able provenance registration method for scientific workflows
in the High Performance Computing (HPC) domain. In HPC
environments, performance is a mandatory dimension, since

1https://ebrains.eu/services/data-and-knowledge/
2https://www.w3.org/RDF/
3https://www.w3.org/2001/sw/wiki/OWL

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any 
copyrighted component of this work in other works. DOI 10.1109/WORKS56498.2022.00006

https://ebrains.eu/services/data-and-knowledge/
https://www.w3.org/RDF/
https://www.w3.org/2001/sw/wiki/OWL


the cost of supercomputers is high, and their resources must
always be used in the most effective way. Therefore, our
provenance registration must be efficient and scalable. Effi-
cient to avoid including run time overheads when recording
provenance. Scalable to be able to deal with large workflows
(more common in supercomputers). We also target our regis-
tration to be automatic, meaning that no specific annotations
must be provided by the user to indicate what needs to be
recorded, or at which level of granularity. We will use the
COMPSs programming model to implement such registration
mechanism, and demonstrate its properties with two real use
case scenarios that belong to two different domains, showing
that our solution is domain-agnostic. Our workflow runs are
made FAIR by being published in the WorkflowHub registry
(Findable and Accessible), while leveraging the use of RO-
Crate, that makes them Interoperable and Reusable.

The rest of this paper is structured as follows: Section II
reviews existing literature on provenance, Section III presents
the needed background that will be used to design our solution
(described in detail in Section IV). At the end, Section V
presents results for two use cases from life and earth sciences
domains. And finally, Section VI reviews the main contribu-
tions of this paper and proposes future work.

II. RELATED WORK

Ideas about provenance recording for information systems
have been around for many years, as shown by Buneman et
al. [4] in the domain of databases during the early 2000s.
Anyway, although provenance concepts are not new, they are
currently being applied to many new areas.

The provenance literature may be a bit misleading term-
wise. A very good attempt of establishing a common ter-
minology throughout provenance literature is provided by
Herschel et al., [5], where workflow provenance is particu-
larly explored. However, during recent years, the terms have
continued evolving while being re-adapted to different fields,
using new and related wording such as Data Lineage, Data
Curation, Data Governance. We consider all these new terms
included in a semantically broader concept of Provenance. In
addition, the most recent well-established FAIR [2] also targets
reproducibility, as registering provenance does. Considering
the classification made at [5], the provenance registration
targeted in our paper includes information system provenance
(in our case, the general parameters of a process), workflow
provenance (the main workflow source file) and data prove-
nance (the source code of a task in the workflow that generates
a specific data asset). However, our provenance is not related
to databases, as it is assumed in many papers when the term
data provenance is used.

As discussed in [6], in the late 2000s provenance for work-
flows were early explored, and both prospective provenance
(i.e., the workflow definition) and retrospective provenance [7]
(i.e., steps and environment needed to generate a data asset)
were targeted. While the first one was covered by their own
workflow language definition on each case, the second was

commonly solved by gathering general information of a spe-
cific run of a workflow, such as the user who ran it, execution
time, and some other basic information or statistics. Then,
many of these systems stored their retrospective provenance in
a separate database, with the goal of later querying it. Although
most of these frameworks used their own provenance format
representation, some of these approaches even considered
using Semantic Web technologies such as RDF or OWL to
achieve certain interoperability, which may be complex to be
used directly for non-computer science specialists.

During the early 2010s, and as the need was seen in
previous papers, standardisation and interoperability activities
emerged, like in the W3C Provenance Working Group with
the resulting PROV family of documents [3]. In particular,
the FAIRness idea gained momentum in the upcoming years
since the publication of [2], and we see these days many
research projects and papers concerned about FAIRness of
their data. Even some conferences have started to request data
assets that can prove the results obtained in a publication,
in order to ensure the paper results can be reproducible by
other researchers. The ideas established in such initiatives
have recently derived in projects such as the Research Object
Crate [8], that targets to establish a lightweight approach to
package research data together with their metadata. RO-Crate
will be described in more detail in Section III-B.

With respect to current workflow environments that are able
to generate provenance of some kind, Nextflow [9] includes
a log command4, which enables to return some information
about the workflow execution that can later be used to man-
ually build a provenance report. Similarly, Snakemake [10]
has the report and summary functionalities, where different
bits of provenance information are returned. In both cases,
some manual annotations or template definitions from the
user are expected, and a own format is used (jeopardizing
interoperability). The Common Workflow Language project
(CWL) produced the CWLProv [11] format, and implemented
a hierarchical provenance registration framework using Re-
search Objects (ROs), BagIt and PROV. In their paper, runs
with provenance activated cause quite an overhead in the ex-
periments. Besides, no scalability studies with large workflows
are included (i.e., thousands of tasks).

Our lightweight provenance registration approach is trans-
parent to users and scalable, as required in [12] to achieve
FAIR computational workflows. To the best of our knowl-
edge, none of the existing environments have been able to
demonstrate automation (no provenance-related annotations),
efficiency (no run time overhead) and scalability (large work-
flows and number of data assets) all at the same time for
provenance registration, as we do in this paper.

III. BACKGROUND

The solution we present at Section IV is mainly based on
two existing frameworks: the COMPSs programming model
and the RO-Crate specification. This Section provides a brief
introduction to both.

4https://training.seqera.io/# execution provenance

https://training.seqera.io/#_execution_provenance


A. COMPSs

COMP Superscalar (COMPSs) [13] is a task-based pro-
gramming model that focuses on making easier the devel-
opment of parallel applications for distributed computing. Its
syntax is based on the use of annotations to identify those
methods that will become tasks at execution time and in a
small API for synchronization.

COMPSs supports Java as native language, and Python
(PyCOMPSs [14]) and C through language bindings. Listing 1
shows a sample Python task annotated with the @task deco-
rator. Tasks are the parallelism unit. Every time an annotated
method (task) is invoked from the main program, the COMPSs
runtime creates a node in a task-graph and looks for data
dependencies with previous existing tasks. The task annota-
tion includes directionality clauses (i.e., IN in the example)
that enable to infer the data dependencies at runtime. These
directionality clauses allow the runtime to control how data
changes during the workflow execution (i.e., IN indicates
data used by the task, OUT indicates data created in the task,
INOUT indicates data modified in the task). Each node in the
graph denotes a task, and edges between them denote data
dependencies between the connected tasks. The runtime is
then able to exploit the potential parallelism of the task-graph
by scheduling those tasks that do not have data dependencies
between them, and it is also able to execute in an asynchronous
fashion, being able to start new tasks once their predecessors
end.

1 @task(data:IN, returns=dict)
2 def wordCount(data):
3 partialResult = {}
4 for entry in data:
5 if entry not in partialResult:
6 partialResult[entry] = 1
7 else:
8 partialResult[entry] += 1
9 return partialResult

Listing 1: Sample task code

The syntax is completed with a small set of API calls,
mainly focusing on synchronization. The COMPSs runtime
handles all data transfers automatically, by moving data on-
demand between the computing nodes of the cluster or dis-
tributed computing infrastructure. However, when a task result
is needed in the main program, we need to wait for the
task to end and data needs to be sent (synchronized) to the
computing node where the main program is executed. Listing 2
shows a sample PyCOMPSs code with a synchronization
call. The methods wordCount and merge_two_dicts are
tasks and their invocations are executed in parallel and in
a distributed fashion. In order to get the final result, the
synchronisation call waits for all tasks to finish and collects
the last value of result to make it available to the main
program.

The described syntax is powered by the COMPSs runtime,
which is organized as a set of components providing the
different required functionalities. It is deployed following the
master-worker paradigm, with one computing node acting as

1 result = {}
2 for block in read_word_by_word(pathF, sizeB):
3 presult = wordCount(block)
4 merge_two_dicts(result, presult)
5 result = compss_wait_on(result)

Listing 2: Sample PyCOMPSs code with synchronisation API

master and multiple computing nodes acting as workers. The
master runs the user code (with the decorators and invocations
to the API) together with the runtime, which is the entity in
charge of adding nodes (tasks) and edges (data dependencies)
in the task-graph, as previously explained.

As soon as part of the tasks have been generated, the
COMPSs scheduler starts to select ready to run tasks and
assigns them to workers. The runtime also takes care of doing
the required data transfers (i.e., files, objects, scalars, etc.)
between the different computing nodes, in such a way that
the data required by each task is there at execution time. To
reduce the number of data transfers, the scheduler takes data
locality into account.

The task parameters can be both objects in memory or files,
and a special data type are data collections, which enable
to detect data dependencies between tasks that operate on
individual objects of a collection and others that operate with
the whole object. Recently, the stream data type was also
added, which enables to define dependencies between tasks
that operate with streams of data [15].

The COMPSs runtime can be deployed in different types
of infrastructures: clouds, large clusters (or supercomputers)
and container managed clusters [16]. In the case of clusters
or supercomputers managed with job schedulers, the whole
COMPSs application is queued as a single allocation of a
set of computing nodes. Once the allocation is obtained, the
COMPSs runtime selects one of the computing nodes to act
as master and the rest will become workers. Different types
of container environments are supported, while the more com-
mons are Docker or Singularity in the case of supercomputers.

With regard fault tolerance, a mechanism at task level is
provided, where the programmer can indicate in a decorator
the behavior to implement in case of task failure (i.e., ignore
the failure of the task and continue, stop the whole workflow,
etc.) [17]. In addition, a checkpointing mechanism at task
level has been implemented, which enables to recover a failed
execution from the last checkpointed task.

COMPSs source files are available on GitHub5, and the
provenance capabilities described in this paper have been
included in version 3.0.

B. RO-Crate

Many computational analyses nowadays suffer from a lack
of reproducibility and replicability because critical compo-
nents are not usually published, archived or well-tracked. In
this scenario, the Research Object (RO)6 was proposed to
improve the reproducibility and replicability of experimental

5https://github.com/bsc-wdc/compss
6https://www.researchobject.org/

https://github.com/bsc-wdc/compss
https://www.researchobject.org/


results, since ROs allow to semantically relate all the digital
objects which were involved to obtain research results, in-
cluding identifiers, provenance, relations or annotations. The
Research Object Crate (RO-Crate) [18] specification describes
the Research Objects in a structured language and is also an
evolution from DataCrate7, which details a simple method to
describe and aggregate research data with associated metadata.

Compared to the current standard academic publishing pro-
cess, usually a PDF with a couple of supplemental materials
or the STAR Methods8, an RO-Crate is a machine-readable
bundle capable of communicating an RO’s diverse digital and
physical resources. It can include objects such as data (raw
and processed), computational workflows and scripts, results
(graphs, derived data), metadata, etc. In our work, RO-Crates
include COMPSs applications (see Section III-A).

The context of our data provenance (see Section IV), the
entities involved in its generation, and its reproducibility and
replicability are all described as associated metadata in an
accessible and practical manner. RO-Crate uses a JSON-LD
representation (a structured form of JSON that can repre-
sent linked and semantic data graphs) to declare the struc-
tured metadata by using vocabularies, mainly published in
Schema.org9. Thus, we use the valid and graph-structured RO-
Crate JSON-LD that includes:

• RO-Crate Metadata File: A file (ro-crate-metadata.json)
describing the RO-Crate, its content, and related metadata
using linked data, as well as providing authors, organiza-
tions and licenses.

• Root Data Entity: A directory identified by the presence
of the RO-Crate Metadata File at the root (the RO-
Crate Root) that provides metadata about other files and
directories represented by Data Entities. It represents the
RO as a dataset and its minimal requirements are name,
description and datePublished, as well as a contextual
entity identifying its license.

• Data Entities: Files or directories located within the RO-
Crate Root using the hasPart property, and web resources
or restricted data recognised by absolute IRIs, including
Persistent Identifiers (PIDs). Data entities are further
described with contextual entities.

• Contextual Entities: Non-digital elements (e.g., a person
or an organization) or conceptual descriptions as meta-
data, like contact information.

RO-Crates can be used as general-purpose containers for
arbitrary data and open metadata exchange. Such freedom,
in practice, can hinder the interoperability of systems able
to produce or consume RO-Crates. To correct this, RO-Crate
profiles are promoted as an extensible mechanism that allows
defining and describing the minimal set of conventions, types,
properties, and restrictions to be fulfilled to allow interop-
erability within a given domain, application, or framework.
One of these profiles is the Workflow RO-Crate profile, which

7https://github.com/UTS-eResearch/datacrate.git
8https://www.cell.com/star-methods
9https://schema.org/

is a specialization of RO-Crate on workflows for capturing
the provenance of computational workflow executions. This
profile strictly conforms to the more generic Bioschemas
ComputationalWorkflow10 profile as data entity.

The Workflow RO-Crate profile is used in this paper for
packaging, typing, and annotating a COMPSs workflow’s con-
stituent files. The generated RO-Crate describes the authors,
license, diagram previews, and a list of the workflow’s inputs
and outputs. We utilised the RO-Crate Python library [19] (ro-
crate-py) to build this RO-Crate, and the WorkflowHub reg-
istry [20] to publish the workflows. WorkflowHub is a registry
for describing, sharing and publishing scientific computational
workflows, and it is compliant with the RO-Crate specification.
By simply providing the generated crate (i.e., the package of
files with a corresponding workflow run), WorkflowHub is able
to automatically import and publish a workflow, facilitating
also the generation of a corresponding DOI.

The RO-Crate specification has recently become the conflu-
ence of a growing community of developers and users from
very different disciplines. It is being applied in research do-
mains such as Bioinformatics, Regulatory Science and Cultural
Heritage. Furthermore, many tools from its ecosystem, such
as Describo11, and libraries such as the previously mentioned
ro-crate-py, are easing the adoption of the specification and
promoting relevant developments, including WorkflowHub,
UTS Cultural Datasets12 or the WfExS-backend13.

IV. DESIGN AND IMPLEMENTATION OF EFFICIENT
PROVENANCE GATHERING

As it has been briefly seen in Section I, we established a
set of requirements for enabling FAIR HPC workflows that
are going to influence the design of our solution: automatic,
efficient and scalable. More in detail:

• Our data provenance registration must provide support to
HPC workflows, but not be limited to them.

• It must enable reproducibility and replicability, specifi-
cally for workflows.

• Automatic provenance registration is wanted, to shield
users about having to register their data assets and work-
flow processes by hand or with annotations.

• Registration must be scalable, to support very big work-
flows (e.g., thousands of inputs, outputs and tasks).

• The provenance representation format must be simple to
use, but powerful enough to represent complex workflows
(i.e., large number of tasks and input/output data).

• Provenance registration must be efficient, and not add
any significant overheads that can increase the workflow
makespan.

After a thorough review of the literature and current experi-
ences in provenance (see Section II), we selected RO-Crate as
the standard to be used for registering the workflow execution.

10https://bioschemas.org/profiles/ComputationalWorkflow/1.0-RELEASE
11https://github.com/Arkisto-Platform/describo
12https://arkisto-platform.github.io/case-studies/uts-cultural/
13https://github.com/inab/WfExS-backend

https://github.com/UTS-eResearch/datacrate.git
https://www.cell.com/star-methods
https://schema.org/
https://bioschemas.org/profiles/ComputationalWorkflow/1.0-RELEASE
https://github.com/Arkisto-Platform/describo
https://arkisto-platform.github.io/case-studies/uts-cultural/
https://github.com/inab/WfExS-backend


RO-Crate has been described in detail in Section III-B and, as
it has been seen, many of its features match our requirements.
It is a simple format (JSON-LD, simpler than any existing
formats to register provenance), but very powerful, as the
different profiles that can be created on top of it demonstrate.
In our case, we will be compliant with the workflow profile14,
enabling reproducibility and replicability of workflows. Auto-
matic generation of RO-Crates can be achieved by using some
of the tools that have been built as an ecosystem around the
standard (as detailed here15), and scalability is also covered,
since with RO-Crate there are no limits in terms of how
many software bundles or input/output files can be represented
(as it could happen in a graphical registration tool). The
workflow runs will be published in the RO-Crate compliant
WorkflowHub registry16, so they can be searched and queried
for.

A. Registered data assets using COMPSs

In order to implement our idea of automatically, efficiently
and scalably generating provenance for HPC workflows, we
will use the COMPSs programming model (see Section III-A).
This is not only because it is our previous work, but also due
to its strong capabilities regarding workflows on HPC envi-
ronments, and its efficiency in handling very big workflows
that can have large number of task nodes and input/output
parameters. Besides, both COMPSs and RO-Crate are domain-
agnostic, leading to a solution that can be applied to any field.

The registration of provenance information of COMPSs
workflows needs to target not only the data assets used/gener-
ated by COMPSs (i.e., the input and output files or parameters)
but also the source code of the application that generates the
workflow. Currently, COMPSs supports applications written
in Java, C/C++ and Python, and we have selected the Python
binding (PyCOMPSs [14]) to implement provenance capture.
However, the same capabilities could be achieved for Java and
C/C++ applications, considering the specific particularities of
each language, which we leave as future work.

The main decision to be taken when using RO-Crate to
register a COMPSs workflow execution is the data assets
needed to be directly included in the crate (i.e., the package
that includes all files resulting from recording provenance).
A COMPSs application is composed by its source code files
(this is, the programmed application) and the input files
and parameters passed to the application, so it can be run.
Thus, if we want to re-execute a COMPSs program, all this
information needs to be included in the RO-Crate. However,
many scientific workflows use very big files as inputs, and
to avoid packaging them in the RO-Crate and having big data
movements between environments, we will add them as URIs,
so users know where to find them to reproduce an execution.
This approach is commonly used in the life sciences domain,
where online catalogs of commonly used files (e.g., the EGA

14https://www.researchobject.org/ro-crate/profiles.html
15https://www.researchobject.org/ro-crate/tools/
16https://workflowhub.eu/

Archive17) are provided, and applications that process them
only need to refer to the URI where they can be found for
downloading.

Our URI minting is influenced by the HPC case (using a
supercomputer), and the fact that COMPSs does not accept
URIs as file parameters (only local files). The URI points to a
hostname, and the path where a file can be found in its local
file system. A new user willing to utilize the corresponding
URIs will need to have prior access granted to both hostname
and paths specified. URIs in this scenario are not meant to be
directly accessed, but placeholders to indicate users that the
file can be found in a particular host, in a specific path.

Including the source files of the COMPSs application in
the provenance recording guarantees replicability, since it will
allow to execute the same application using different inputs,
and generating different outputs. When we also add inputs and
outputs together with the source code, we are ensuring that the
results of a workflow execution can be verified by third parties
(reproducibility), using the same supercomputer.

B. COMPSs runtime modifications
The COMPSs runtime is able to generate a workflow from

a sequential piece of code, and analyse data dependencies be-
tween the tasks generated (i.e., the function calls in the code),
therefore, it contains all the information we need to automati-
cally generate an RO-Crate document. Simple parameters used
in the application (e.g., scalars, strings, etc.) can be either
passed in the CLI, or coded in the main application. As will
be seen, including a command_line_parameters.txt
file we can record CLI introduced parameters. In addition, the
source files of the application will be included in the crate,
thus, covering both cases.

The biggest assets exchanged between computing nodes
are files, so, one of our main targets will be to correctly
register the files that the workflow has used as inputs, and
generated as outputs. We have modified the COMPSs runtime
to automatically log any access to a file in a workflow’s task,
when a specific –provenance flag is activated. We register
the URI of the file used, together with the direction of the
parameter: if the file is an IN (only read in the task), OUT
(newly generated in the task), or INOUT (read, but also
modified in the task). This lightweight information registration
approach at run time is key to achieve efficiency. Listing 3
shows an example of a dataprovenance.log file, where
accesses to files are stored.
3.0.rc2206
lysozyme_in_water.py
App_Profile.json
file://s03r1b01-ib0/home/bsc19/dataset/2hs9.pdb IN
file://s03r1b01-ib0/home/bsc19/output/2hs9.gro OUT
file://s03r1b01-ib0/home/bsc19/output/2hs9.top OUT
...

Listing 3: Registered file accesses at dataprovenance.log

We can notice in the log file that the first three lines provide
information that are not files:

17https://ega-archive.org/

https://www.researchobject.org/ro-crate/profiles.html
https://www.researchobject.org/ro-crate/tools/
https://workflowhub.eu/
https://ega-archive.org/


• The specific COMPSs version used (3.0.rc2206): this
information is extremely relevant, because different ver-
sions of the runtime could implement some COMPSs
features differently, which could affect the replicability
of the workflow.

• The name of the file with the main() method: since
applications can be programmed using many files, we
need to know which one contains the main program.

• Name of the file containing the application profile
(App_Profile.json): we allow the user to set the
application profile file name, thus we register it here. The
details on profiling will be discussed later.

There are other pieces of information that we deem as
important to record provenance in COMPSs, and can be also
automatically gathered:

• Command line parameters: as with any application,
in a COMPSs application some parameters can be
passed through the command line interface (CLI) when
running a workflow. They need to be recorded to
ensure reproducibility. We have created a text file
that stores them, which is included in the crate
(command_line_parameters.txt).

• Graphical representation of the workflow: the image of
the workflow is a valuable piece of information for
users, since it can help to understand the application
and its parallelism chances. We enable the option in
the COMPSs runtime to generate a DOT18 file (graph
description language from GraphViz) that can be later
converted to a PDF file with the workflow image, and
we add it to the crate (generated_graph.pdf).

• Application profiling: COMPSs can return information
on which type and how many tasks have been executed
on each resource, and statistics about their run time. We
include this information in a JSON file named by default
App_Profile.json.

C. Information provided by users

While with all the elements previously mentioned we have
all the information needed to record provenance application-
wise, there are certain pieces of information that cannot be
automatically obtained from the execution of a COMPSs
workflow. Information such as long name of the application,
detailed description, license, source files forming the appli-
cation, authors, and their related institutions is hard to be
transparently obtained, while it is mandatory to be defined
in an RO-Crate. To solve this, we define an extra YAML file
ro-crate-info.yaml where users can specify all these
terms that will be added to the RO-Crate. An example of this
YAML is shown in Listing 4. Notice the use of YAML lists for
authors, and the list used for the source files of the application,
which provides freedom both for the number of authors and
source files that can be specified.

18https://graphviz.org/doc/info/lang.html

COMPSs Workflow Information:
name: COMPSs Matrix Multiplication
description: Hypermatrix size 2x2 blocks
license: Apache-2.0
files: [matmul_files.py, matmul_tasks.py]
Authors:
- name: Raül Sirvent
e-mail: Raul.Sirvent@bsc.es
orcid: https://orcid.org/0000-0003-0606-2512
organisation_name: Barcelona Supercomputing

Center↪→

ror: https://ror.org/05sd8tv96

Listing 4: YAML file ro-crate-info.yaml example

D. RO-Crate generation post-process

Once the COMPSs application has ended its execution
and the file accesses have been registered, we have all
the information we need to generate the provenance, so
the next step is to process it all to obtain the RO-Crate
that represents this workflow run. We have created a post-
processing script in Python that iteratively processes all the
information available in the ro-crate-info.yaml and
the dataprovenance.log, and takes advantage of the ro-
crate-py [19] library (we have used version 0.6.1) to create the
associated RO-Crate. The fact that this metadata generation
script is done in a separated post-process is a clear advantage
when execution time is a concern: the workflow can run
efficiently while only registering file accesses, and the RO-
Crate creation script can be invoked by the user later, at any
convenient time. More about the efficiency of this process will
be discussed in Section V.

One of the special characteristics of this script is that it is
able to automatically (without user intervention) identify what
are true inputs of the workflow: only IN files that have not been
generated as OUT in a previous task are considered inputs of
the overall workflow. If a task generates an OUT file that is
later used as an IN, we are in the case of an intermediate
file. All OUT files need to be considered final results of a
workflow, no matter if they are intermediate files, because
they will remain unless the user deletes them explicitly. The
rest of File type directions provided by COMPSs (INOUT,
CONCURRENT, COMMUTATIVE) are also supported, and
even File collections can be used (see the COMPSs user
manual19 for more details).

Our RO-Crate generation post-processing script adds to the
RO-Crate both files that will be directly copied in the crate
(as mentioned earlier), but also files referenced as URIs, which
point to the machine name and path where a file can be found
(see previous Listing 3). For online catalogs or open access
repositories, the URL may be directly accessed but, in our
particular case, we wanted to support the supercomputing case
with shared file systems. The URI of a supercomputer will be
only accessible for the users that can log into that machine,
and have permission rights to access the path specified.

It is also important to highlight that, our post-processing
script registers extra context information for each file ref-

19https://compss-doc.readthedocs.io/

https://graphviz.org/doc/info/lang.html
https://compss-doc.readthedocs.io/


erenced in the RO-Crate, whether it is physically included
in the crate or not. The terms contentSize and the
sdDatePublished are specially important to ensure files
have not been altered, since they register the file size and its
last modification time, respectively. Although it is currently
not mandatory in the RO-Crate specification, file checksums
could be added to ensure the exact same files are used when
reproducing the workflow. For now, we did not add them in
order not to include a possible run time overhead.

The script also identifies and adds contextual information
about which one is the main workflow file, the workflow
image, which ones are auxiliary source files of the application,
and also adds encodingFormat contextual information
when needed. All these terms included comply with the
RO-Crate specification and Workflow RO-Crate profile, as
mentioned earlier.

E. Resulting crate sub-directory

The result of the post-process script is a sub-
directory under the application’s working directory
named COMPSs_RO-Crate_[uuid], which is the
crate defined in the specification. It contains: the
source files of the application, the files with extra
information (command_line_parameters.txt,
generated_graph.pdf, App_Profile.json), and
the RO-Crate JSON-LD file ro-crate-metadata.json,
that describes the whole package and the application
from which provenance has been recorded. Due to the
impossibility of reproducing in this paper the whole
JSON-LD file, an example of a COMPSs generated
ro-crate-metadata.json is provided online20 and also
available in our use case results (see Section V). As mentioned
earlier, we have ensured to be compliant with the Workflow
RO-Crate profile, thus related terms to it can be found in
the JSON-LD, such as: ComputationalWorkflow,
image, input, output or programmingLanguage.
The record includes a single run of a workflow.

This JSON-LD example is also useful to show that we
have included the ability to automatically describe directories
as input or output parameters of the workflow. COMPSs
already supported this feature, but we had to enhance our
post-processing to: identify sub-directories and their direction,
and inspect them recursively to include the information of all
their files in the ro-crate-metadata.json, as can be
seen in the example. The sub-directory itself is included in
the RO-Crate as a Dataset and all the files that belong
to it as its hasPart term. It is important to mention that,
while directories are internally represented in COMPSs as
dir:// URI scheme (as facilitated by the corresponding
Java libraries), the RO-Crate scheme represents directories as
a file:// that ends with a slash, thus we have had to handle
the translation of these URIs to ensure compliance.

20https://compss-doc.readthedocs.io/en/3.0/Sections/05 Tools/04 Data
Provenance.html

F. Provenance querying and reproducibility

Our current approach to handle the generated provenance is
to keep it in the working directory where the workflow is run.
Users with access to the specific path will be able to grep all
results to query for provenance of past executed workflows,
ensuring sensitive data is not exposed. This could be extended
with the set up of a local database that stores the generated RO-
Crates. In case of users willing for a public exposure of their
workflow provenance, we rely on WorkflowHub, a workflow
registry that is interoperable with RO-Crate.

Reproducibility of a workflow by a new user in the same
supercomputer is very simple. The new user can download or
copy the crate generated (i.e., the sub-directory containing the
source files and RO-Crate) to their working directory in the file
system, and submit the main Python application specified by
the ComputationalWorkflow term, with the parameters
specified in the command_line_parameters.txt file.
File access permissions should be checked for inputs and
outputs of the workflow, although they can be easily managed
by UNIX group identifiers. The correctness of results can be
checked by using diff on the output files of the workflow. If
a different machine or supercomputer should be used, data
assets should be made available there, as well as any software
the application depends on. Finally, in all cases, replicability
would require an extra effort, by changing the input files used
in the workflow.

V. USE CASE EXAMPLES

As detailed in Section IV, two of our main requirements to
implement automatic gathering of workflow provenance are
that it must be scalable and efficient. Scalable in the sense
that our implementation must support workflows with a large
number of both tasks to be executed (this is, the nodes in
the graph), and input/output data assets (i.e., files). Efficient
meaning that, when provenance is generated, the possible
overhead added to the execution must be negligible. Thus,
in order to study how good is our implementation in both
scalability and efficiency terms, we have selected two real use
case scenarios: Lysozyme in Water (from life sciences domain)
and BackTrackBB (from earth sciences domain). Both cases
have been selected due to their large number of tasks and files
(read or created during execution).

Our tests have been run in the MareNostrum IV super-
computer21, using an adequate number of computing nodes
for each corresponding case depending on its workload, and
having dedicated computing nodes for both the COMPSs
master and each worker to avoid any interference during our
measurements. Input and output files are accessed through
the GPFS file system provided in the supercomputer. For
each of the use cases, we have run the application 5 times,
getting the average time and Confidence Intervals (CIs) of
the application execution time, the graph image conversion
time (from DOT to PDF, to produce a graphical image of
the COMPSs generated workflow), and the generation time

21https://www.bsc.es/marenostrum/marenostrum/technical-information

https://compss-doc.readthedocs.io/en/3.0/Sections/05_Tools/04_Data_Provenance.html
https://compss-doc.readthedocs.io/en/3.0/Sections/05_Tools/04_Data_Provenance.html
https://www.bsc.es/marenostrum/marenostrum/technical-information


of the resulting RO-Crate where provenance is finally stored.
This way, we will understand the execution time differences
when provenance is activated, and the extra time needed to
generate the graph image and the RO-Crate, together with their
variability.

In addition, since it is very difficult to reproduce in this
paper the resulting RO-Crates, we will make them pub-
licly available using WorkflowHub (see Section III-B). The
published information includes the whole sub-directory crate
generated, that includes not only the RO-Crate file, but also
the source files of the application, and the rest of extra files
as described in Section IV-B.

A. Lysozyme in Water

This case is a COMPSs implementation of the Lysozyme
in Water example included in the GROMACS Tutorial22,
which creates a simulation system containing a set of proteins
(lysozymes) in boxes of water, with ions. We have used a
single computing node for the master part of the COMPSs
application, and two worker computing nodes to run tasks (48
cores at each computing node). The generated workflow of this
case is composed of 1336 tasks, that overall require 171 input
files (43 MB size), and at the end of its execution 1503 output
files are created (2.2 GB size). It is also interesting to remark
that, during the execution, the COMPSs runtime has registered
in the dataprovenance.log a total of 4175 accesses to
files (either inputs, outputs or inouts), while tasks are executed.
As previously explained, this is the main information the RO-
Crate post-process script uses to generate the provenance.

TABLE I
LYSOZYME IN WATER EXECUTION TIMES (ALL IN SECONDS)

Average time Confidence Interval
No Provenance 113,6 ±2, 78
Provenance 112,85 ±1, 54
Graph conversion 38,1 ±0, 4
RO-Crate creation 16,55 ±0, 38

Table I shows the average times when executing Lysozyme
in Water with and without provenance activated, together with
the graph image conversion and RO-Crate creation times, and
all their CIs. From the numbers, we can see that the activation
of the provenance registration does not add any noticeable
run time overhead to the execution of the workflow. The extra
time is paid after the workflow execution ends, with the post-
process that creates the graph image and the RO-Crate. The
DOT to PDF graph image conversion takes quite some time
in this case, due to the fact that we are dealing with a big
workflow (1336 tasks). The RO-Crate creation time includes
both the time of processing the dataprovenance.log
and the use of the ro-crate-py library to write the resulting
ro-crate-metadata.json, while also copying the files
to the crate sub-directory, that are 2.45 MB big in size. We
have made available the resulting files at WorkflowHub23.

22http://www.mdtutorials.com/gmx/lysozyme/index.html
23https://doi.org/10.48546/workflowhub.workflow.379.1

B. BackTrackBB

BackTrackBB [21] is an application for the detection and
space-time location of seismic sources based on multi-scale,
frequency-selective statistical coherence of the wave field
recorded by dense large-scale seismic networks and local
antennas. It performs signal processing, space-time imaging
and detection and location in order to enhance coherence
of the signal statistical features across the seismic sources.
This second case has been executed using 10 MareNostrum
IV computing nodes, 1 for the COMPSs master, and 9 for
the workers executing tasks (again, with 48 cores available
per computing node). We have configured the BackTrackBB
workflow to run 1 simulation day with 100 stations, which
creates a workflow of 700 tasks, and reads 2400 input files
(7.1 GB total size) to execute them, generating 48 final outputs
(37 MB). The dataprovenance.log has recorded 2448
accesses to files, that were used to generate the crate sub-
directory with the RO-Crate and source files (22 MB size).
Again, we have uploaded in WorkflowHub24.

TABLE II
BACKTRACKBB EXECUTION TIMES (ALL IN SECONDS)

Average time Confidence Interval
No Provenance 3799,65 ±53, 24
Provenance 3772,05 ±39, 14
Graph conversion 3,72 ±0, 06
RO-Crate creation 37,02 ±0, 34

Table II shows the same times gathered for Lysozyme in
Water, but now for BackTrackBB: average execution time with
provenance deactivated and activated, graph image conversion,
and RO-Crate creation times (plus CIs). We can observe that,
execution times are quite longer than in the Lysozyme case, but
again we do not see an influence in the execution time when
the automatic provenance registration is activated in COMPSs,
since the resulting execution times are inside the Confidence
Intervals. The most curious results come from the graph image
conversion and RO-Crate creation times. In the former, the
time is an order of magnitude smaller than in Lysozyme,
which we attribute to the fact that the workflow is smaller (i.e.,
less task nodes, less edges). Anyway, we consider the specific
time of graph image generation and how to improve it out of
scope of this paper. In the latter case (RO-Crate creation time),
we see that the time is more than double of the Lysozyme
case. Comparing both applications, we see that BackTrackBB
registers less accesses to files than the Lysozyme, therefore we
cannot consider that the number of file accesses is negatively
influencing the RO-Crate creation time. The larger number of
input and output files used in BackTrackBB (2448 vs 1674 in
Lysozyme) seems to be the main cause of increase in the RO-
Crate creation time. Although this time is reasonable compared
to the application’s execution time, we will investigate in the
future if there is room for improvement in the time taken when
adding a file record in the RO-Crate using the ro-crate-py
library.

24https://doi.org/10.48546/workflowhub.workflow.386.1

http://www.mdtutorials.com/gmx/lysozyme/index.html
https://doi.org/10.48546/workflowhub.workflow.379.1
https://doi.org/10.48546/workflowhub.workflow.386.1


VI. CONCLUSIONS

This paper proposes to achieve FAIR HPC workflows
through the adoption of the RO-Crate specification for prove-
nance metadata registration and publication. Our workflow
runs are made FAIR by being published in the WorkflowHub
registry (Findable and Accessible), while leveraging the use
of the RO-Crate specification, that makes them Interoperable
and Reusable.

We have studied the related work and have not found
any solution for large HPC workflows that is able to record
data provenance avoiding run time overheads. Our lightweight
design when recording provenance information at run time can
inspire others to follow the same approach in their systems,
avoiding to cause an increase to the makespan of the workflow.

The merging of COMPSs with the RO-Crate specification
has been able to jointly provide the strong capabilities of both:
register automatically the workflow provenance information al-
ready available at the COMPSs runtime, and record it using the
simple, powerful and well-established RO-Crate specification,
which provides to our solution interoperability with a number
of existing systems and tools. Our COMPSs RO-Crates can
be understood not only by WorkflowHub, but any other tools
or systems that currently adopt RO-Crate.

We have demonstrated that we meet the requirements es-
tablished in our design:

• HPC workflows are supported (Section V).
• Reproducibility and replicability, specifically for work-

flows (Sections IV-E and IV-F).
• Automatic provenance registration (Section IV-B).
• Scalable registration to support large workflows (Sec-

tion V).
• Simple provenance representation format, compatible

with complex workflows (Sections III-B, IV-A, and
IV-D).

• Efficient provenance registration in terms of run time
(Section V).

With the results of our experiments, we can affirm that our
COMPSs automatic data provenance recording method is both
scalable (it supports large workflows) and efficient (because
no run time overhead is added while recording provenance).
We have also identified that the graph image generation time
depends very much on the workflow structure. Besides, the
RO-Crate generation time is not highly influenced by the
number of file accesses recorded (validating our lightweight
approach), but more by the number of input/output files
included in the RO-Crate metadata file. These two generation
times are implemented as a post-process, which avoids having
to pay the extra time at run time. We will consider to
deeper study generation times in our future work, together
with the adaptation to other programming languages supported
by COMPSs (i.e., Java and C/C++) and explore RO-Crate
interoperability with other tools (e.g., WfExS).

REFERENCES

[1] M. Baker, “Reproducibility crisis,” Nature, vol. 533, no. 26, pp. 353–66,
2016.

[2] M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg, G. Appleton,
M. Axton, A. Baak, N. Blomberg, J.-W. Boiten, L. B. da Silva Santos
et al., “The FAIR Guiding Principles for scientific data management and
stewardship,” Scientific data, vol. 3, no. 1, pp. 1–9, 2016.

[3] P. Missier, K. Belhajjame, and J. Cheney, “The W3C PROV family of
specifications for modelling provenance metadata,” in Proceedings of
the 16th International Conference on Extending Database Technology,
2013, pp. 773–776.

[4] P. Buneman, S. Khanna, and T. Wang-Chiew, “Why and where: A
characterization of data provenance,” in International conference on
database theory. Springer, 2001, pp. 316–330.

[5] M. Herschel, R. Diestelkämper, and H. Ben Lahmar, “A survey on
provenance: What for? What form? What from?” The VLDB Journal,
vol. 26, no. 6, pp. 881–906, 2017.

[6] J. Freire, D. Koop, E. Santos, and C. T. Silva, “Provenance for compu-
tational tasks: A survey,” Computing in science & engineering, vol. 10,
no. 3, pp. 11–21, 2008.

[7] B. Clifford, I. Foster, J.-S. Voeckler, M. Wilde, and Y. Zhao, “Tracking
provenance in a virtual data grid,” Concurrency and Computation:
Practice and Experience, vol. 20, no. 5, pp. 565–575, 2008.

[8] S. Soiland-Reyes, P. Sefton, M. Crosas, L. J. Castro, F. Coppens, J. M.
Fernández, D. Garijo, B. Grüning et al., “Packaging research artefacts
with RO-Crate,” Data Science, vol. 5, no. 2, pp. 97–138, 2022.

[9] P. Di Tommaso, M. Chatzou, E. W. Floden, P. P. Barja, E. Palumbo,
and C. Notredame, “Nextflow enables reproducible computational work-
flows,” Nature biotechnology, vol. 35, no. 4, pp. 316–319, 2017.

[10] J. Köster and S. Rahmann, “Snakemake—a scalable bioinformatics
workflow engine,” Bioinformatics, vol. 28, no. 19, pp. 2520–2522, 2012.

[11] F. Z. Khan, S. Soiland-Reyes, R. O. Sinnott, A. Lonie, C. Goble, and
M. R. Crusoe, “Sharing interoperable workflow provenance: A review of
best practices and their practical application in CWLProv,” GigaScience,
vol. 8, no. 11, 2019.

[12] C. Goble, S. Cohen-Boulakia, S. Soiland-Reyes, D. Garijo, Y. Gil, M. R.
Crusoe, K. Peters, and D. Schober, “FAIR Computational Workflows,”
Data Intelligence, vol. 2, no. 1-2, pp. 108–121, 2020.

[13] F. Lordan, E. Tejedor, J. Ejarque, R. Rafanell, J. Álvarez, F. Marozzo,
D. Lezzi, R. Sirvent, D. Talia, and R. M. Badia, “ServiceSs: an
interoperable programming framework for the Cloud,” Journal of Grid
Computing, vol. 12, no. 1, pp. 67–91, 2014.

[14] E. Tejedor, Y. Becerra, G. Alomar, A. Queralt, R. M. Badia, J. Tor-
res, T. Cortes, and J. Labarta, “PyCOMPSs: Parallel computational
workflows in python,” The International Journal of High Performance
Computing Applications, vol. 31, no. 1, pp. 66–82, 2017.

[15] C. Ramon-Cortes, F. Lordan, J. Ejarque, and R. M. Badia, “A Program-
ming Model for Hybrid Workflows: combining Task-based Workflows
and Dataflows all-in-one,” Future Generation Computer Systems, vol.
113, pp. 281–297, 2020.

[16] C. Ramon-Cortes, A. Serven, J. Ejarque, D. Lezzi, and R. M. Badia,
“Transparent orchestration of task-based parallel applications in contain-
ers platforms,” Journal of Grid Computing, vol. 16, no. 1, pp. 137–160,
2018.

[17] J. Ejarque, M. Bertran, J. Á. Cid-Fuentes, J. Conejero, and R. M. Badia,
“Managing failures in task-based parallel workflows in distributed com-
puting environments,” in European Conference on Parallel Processing.
Springer, 2020, pp. 411–425.

[18] P. Sefton, E. Ó Carragáin, S. Soiland-Reyes, O. Corcho, D. Garijo,
R. Palma, F. Coppens, C. Goble, J. M. Fernández, K. Chard et al.,
RO-Crate Metadata Specification 1.1.2, Jan. 2022, Recommendation
published by researchobject.org - see https://w3id.org/ro/crate/1.1.

[19] P. De Geest, B. Droesbeke, I. Eguinoa, A. Gaignard, S. Huber, S. Leo,
L. Pireddu, L. Rodrı́guez-Navas, R. Sirvent, and S. Soiland-Reyes,
“ro-crate-py,” May 2022. [Online]. Available: https://doi.org/10.5281/
zenodo.6594974

[20] C. Goble, S. Soiland-Reyes, F. Bacall, S. Owen, A. Williams,
I. Eguinoa, B. Droesbeke, S. Leo, L. Pireddu et al., “Implementing
FAIR Digital Objects in the EOSC-Life Workflow Collaboratory,” Mar.
2021. [Online]. Available: https://doi.org/10.5281/zenodo.4605654

[21] N. Poiata, C. Satriano, J.-P. Vilotte, P. Bernard, and K. Obara, “Multi-
band array detection and location of seismic sources recorded by dense
seismic networks,” Geophysical Journal International, vol. 205, no. 3,
pp. 1548–1573, 2016.

https://w3id.org/ro/crate/1.1
https://doi.org/10.5281/zenodo.6594974
https://doi.org/10.5281/zenodo.6594974
https://doi.org/10.5281/zenodo.4605654

	Motivation
	Related Work
	Background
	COMPSs
	RO-Crate

	Design and implementation of efficient provenance gathering
	Registered data assets using COMPSs
	COMPSs runtime modifications
	Information provided by users
	RO-Crate generation post-process
	Resulting crate sub-directory
	Provenance querying and reproducibility

	Use case examples
	Lysozyme in Water
	BackTrackBB

	Conclusions
	References

