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Abstract: This paper presents a fault diagnosis approach that combines structural and data-
driven techniques. The proposed method involves two phases. As a first step, the residuals
structure is obtained from the structural model of the system by using structural analysis
without considering mathematical models (only the component description of the system).
Secondly, the analytical expressions for residuals are derived from available historical data using
a robust identification approach. Through adaptive nets, residuals are adjusted by determining
an interval model that takes into account the uncertainties and noises affecting the system. In
the diagnosis part, residuals are tracked and evaluated. The presence of inconsistent residuals
can be regarded as a fault, therefore thresholds for each residual are introduced. In addition to
detecting faulty scenarios, it is also possible to determine which is the most likely fault that
occurred in the system. To accomplish such classification, the proposed approach implements
a Bayesian reasoning that uses the FSM (Fault Signature Matrix) that is obtained from the
structural analysis of the system and residual activation signals. A brushless DC motor (BLDC)
is used as a case study to illustrate the proposed approach. Simulation experiments illustrate
the overall performance.
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1. INTRODUCTION

With the advent of the Industry 4.0 era, the research
community has gradually realized the industrial interest
in fault diagnosis. Currently, the majority of the existing
model-based approaches require the system mathematical
model including both equations and parameters. Neverthe-
less, in real industrial systems it is very difficult or time
consuming to obtain a mathematical model of the system
that describes precisely its behavior, and even harder, to
obtain the model uncertainty required for including ro-
bustness in the fault diagnosis process. Thereby, a method
that only requires the knowledge of the structural model
can be useful to overcome such difficulties. Once the struc-
ture of the resulting analytical redundancy relations have
been obtained, they can be identified from historical data
of normal operation using machine learning and robust
identification, determining the model from data altogether
with its uncertainty bounds.

In this paper, a robust fault diagnosis approach that com-
bines the structural analysis and data-driven techniques
extending the applicability of conventional model-based
diagnosis methods is proposed. Some researchers have al-
ready explored similar ideas, for instance, using techniques
like Grey-box recurrent neural networks to generate resid-
uals in order to develop a hybrid fault diagnosis method
[4][5]. Another outstanding research is about combining
the state space neural networks and model-decomposition

methods for fault diagnosis [1]. Nevertheless, these re-
searches do not consider robustness in fault diagnosis. On
the other hand, most of the existing approaches are based
on application dependent methods that extract features
of the measured variables. In this work, we will avoid the
need to have the mathematical model of the system by ob-
taining the mathematical expressions of the residuals from
data using an Adaptive Neuro-Fuzzy Inference System ap-
proach, ANFIS [7], and considering parameter uncertainty
using interval methods. Many steps of this approach can be
dealt with alternative methods. For example, there exist
various methods to generate residuals from the structural
model of the system. In the same way, the identification of
the residuals can also be done with other machine learning
methods different from the one proposed in this paper. For
academic purposes, the overall procedure will be applied to
a brushless DC motor (BLDC), even it can be understood
as a general procedure to model structural relations.

The structure of the paper is the following: Section 2
introduces the proposed approach and the considered case
study. Sections 3 and 4 present a procedure for obtaining
the MSO model from data based on the ANFIS algorithm.
Section 5 presents the bounding of the MSO model un-
certainty. Section 6 presents the fault isolation procedure
based on Bayesian reasoning. Section 7 illustrates the
results for the considered case study (a BLDC motor).
Section 8 draws the conclusions of the paper.
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proach, ANFIS [7], and considering parameter uncertainty
using interval methods. Many steps of this approach can be
dealt with alternative methods. For example, there exist
various methods to generate residuals from the structural
model of the system. In the same way, the identification of
the residuals can also be done with other machine learning
methods different from the one proposed in this paper. For
academic purposes, the overall procedure will be applied to
a brushless DC motor (BLDC), even it can be understood
as a general procedure to model structural relations.

The structure of the paper is the following: Section 2
introduces the proposed approach and the considered case
study. Sections 3 and 4 present a procedure for obtaining
the MSO model from data based on the ANFIS algorithm.
Section 5 presents the bounding of the MSO model un-
certainty. Section 6 presents the fault isolation procedure
based on Bayesian reasoning. Section 7 illustrates the
results for the considered case study (a BLDC motor).
Section 8 draws the conclusions of the paper.



2. PROPOSED APPROACH

2.1 Description

The proposed method is targeted to study systems where
the exact analytic mathematical expressions of a model are
too difficult or time consuming to be obtained. Instead of
an exact mathematical model, it is assumed that only a
structural model description and a set of output observed
variables, y, as well as the set of system inputs, u, are
available.

Thinking of this general case where only structural rela-
tions can be defined, the use of adaptive networks allows to
model the relations between variables linked in a residual
(Sections 3 and 4). Due to modelling errors and signal
noise, trained residuals can present values different from
zero while processing non faulty data. This fact leads
to a secondary signal processing to accomplish residual
activation reasoning. Looking for robustness, the proposed
approach adapts interval techniques on a regressor descrip-
tion of ANFIS net (Section 5). To overcome the issues as-
sociated to oscillatory or asynchronous residual activation
between different signals, a probabilistic fault isolation
approach based on Bayesian reasoning has been developed
(Section 6).

2.2 Running example

The proposed methodology is illustrated in this paper
using a brushless DC (BLDC) motor case study (see [6]
for a detailed description of the model). The simplified
dynamic model used to simulate the data can be described
as follows:

e1: V (t) = (Leq+fL1
)
dI

dt
+(Req+fL2

) I(t)+Ke ω(t) (1)

e2: TL(t) = −J
dω

dt
−Br ω(t) +KT I(t) (2)

e3: y1 = I(t) + fi (3)

e4: y2 = ω(t) + fw (4)

In addition to the variables and parameters describing the
motor, this case study also analyzes several faults. For
illustration purposes, three different faults are examined,
where fi and fw are additive faults associated with in-
tensity and angular speed measurement respectively, and
fLi

is a parametric fault affecting the nominal value of
the induction coil. The latter is presented as two variables
in equation (1) (fL1

affecting inductance and fL2
the

resistance), both consequences of the coil defect, but for
practical purposes will be referred to as one variable, fL.

3. OBTAINING MSO STRUCTURE WITHOUT
MODEL EQUATIONS

3.1 Procedure

The proposed approach exploits the advantage of struc-
tural analysis. This procedure is commonly used while
considering analytical defined models, but it can also be
generalized to treat ill-defined ones, defined by a structural
description. Let assume that equations (1) to (4) (indeed
only needed for data generation purposes) are unknown
and only its structure is available, described by

E1: [V, I, dI, ω, fL] (5)

E2: [TL, ω, dω, I] (6)

E3: [y1, I, fi] (7)

E4: [y2, ω, fω] (8)

Since the BLDC is a dynamic system, it is necessary to
include two more restrictions to represent the differential
relations between variables in order to accomplish a proper
variable matching. In this case, the angular velocity and
intensity derivatives over time are considered as special
restrictions, E5 and E6, including the differential depen-
dency trough a reserved variable: dif .

E5: [I, dI, dif ] (9)

E6: [ω, dω, dif ] (10)

It can be assumed that V and TL are known variables
along with the sensors measures y1 and y2. In Table 1
the different elements used in the Structural Analysis are
presented as known variables (Z), unknown variables (X),
restrictions defined by the model (E) and faults to be
diagnosed (F).

Table 1. BLDC structure

Category Variables

Z y1 y2 V TL

X I ω dI dω
E E1 E2 E3 E4 E5 E6
F fi fω fL

Structural Analysis aims to find computable overdeter-
mined subsets of equations for a given structural model.
These subsets allow to compute estimations that rely on
the system being healthy and use the remaining variables
(given by the overderminded nature of the subset) to con-
trast with the real behaviour of the system. These feasible
overdetermined subsets of degree 1 are called Minimally
Structurally Overdetermined sets (MSO).

These subsets (MSO) are obtained by means of algebra of
sets from the model canonical decomposition. Even tough
different approaches and algorithms exist to define them,
the proposed method applies the techniques contained in
Fault Diagnosis Toolbox [8]. This methodology provides
deep interpretability, allowing to infer the causal relation-
ship between the equations used in each subset during
residual computation. The chosen MSO sets for this case
study are presented in Table 2.

Table 2. MSO set of BLDC model

MSO E1 E2 E3 E4 E5 E6

MSO1 - der der int - int
MSO2 der - int der int -
MSO3 der mixed - int mixed int

For each MSO, computational causality will depend on
the chosen residual equation, where int denotes inte-
gral causality, der derivative causality, algebraic algebraic
causality and mixed mixed causality. Equations marked
with - are non participants of the MSO defined by that
specific row.

Given the MSO sets described in Table 2, we can identify
which are the equations used in each subset. If an MSO is
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specific row.
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used to generate a residual (see Section 3.2), any discrep-
ancy between measures and estimations must be due to
one (or more) of the equations it contains. However, the
elements in the equations are either known or estimated,
therefore the observed deviations must be due to changes
in these known parameters. The role of the faults presented
in equations (1) to (4) is to account for these deviations
from the healthy behaviour.

As a result, we can link each MSO to the faults that could
be responsible for the ill estimations generated. The Fault
Signature Matrix (FSM) for the considered BLDC motor
is presented in Table 3, allowing to infer the underlying
fault from the observed residual activation.

Table 3. Fault sensitivity

MSO1 MSO2 MSO3

fi 1 1 0
fω 1 1 1
fL 0 1 1

3.2 MSO structure

From the model structure it is possible to draw the
computational graph described by the causal relationships
between the equations in an MSO. An example obtained
for the MSO3 and derivative causality is presented.

E4 : ω(k) = y2(k)

E6 : dω(k) =
ω(k)− ω(k − 1)

TS

E2 : i(k) = ξ1(ω(k), dω(k), TL(k)) (11)

E5 : di(k) =
i(k)− i(k − 1)

TS

E1 : Residual = V (k)− ξ2(i(k), di(k), ω(k))

In the computational sequence example presented in (11),
ξ1 and ξ2 are unknown functions. The proposed solution
consists in generating an estimator for the target variable
V̂ (k) (given only known variables in the MSO) to be
compared with the real values V (k). In (12), we can
observe how this consideration leads to a definition of a
residual.

V̂ (k) = ξ(TL(k), TL(k − 1), y2(k), y2(k − 1)) (12)

Residual = V (k)− V̂ (k)

In the example of MSO3 while considering derivative
causality, the supply voltage is estimated (V̂ ) from pre-
vious and present measurements, by means of an adaptive
net ξ. Using structural analysis, we can identify the ele-
ments required to compute the voltage in the absence of
uncertainties in the physical model.

The discrepancies between the measured voltage and the
estimated one must come from changes in the underlying
system. In the case of the equations (1) to (4), these
changes are fully accounted by the fault variables that in a
healthy behaviour are equal to 0. Therefore, the deviations

between the simulated model and the real one must come
from values of fi, fw or fL different from 0.

For a higher degree of fault isolation, the same computa-
tional analysis applied to MSO3 and the sequence (11)
can be extended to all the considered MSO sets. Table 4
summarizes the obtained results for this case study.

Table 4. I/O Network Structure

MSO Inputs(k) Inputs(k-1) Reference(k)

MSO1 y2 , TL y2 y1
MSO2 y1 , V y1 y2
MSO3 y2 , TL y2 , TL V

4. RESIDUAL MATHEMATICAL EXPRESSIONS
FROM DATA USING ANFIS

Let consider a particular MSO that involves a set of vari-
ables according to the structural analysis result presented
in previous section. Then, let consider that one of the
variables is the output and the rest of variables are related
by an unknown mathematical expression g as follows

y(k) = g(φ(k)) (13)

where φ(k) is the list of remaining variables (regressor) of
the associated MSO.

In this paper, to obtain the MSO mathematical expres-
sions from data, ANFIS neural networks (NN) will be used.
ANFIS NN returns a Takagi-Sugeno model for each MSO
using only the regressor structure obtained in (5) to (10)
for the BDLC motor using the approach proposed in [7].
ANFIS consists of five layers. The first layer is in charge
of the fuzzyfication through a membership function. The
second layer deals with the rules by using the fuzzyfied
values obtained in the first layer. The third layer is the
normalization layer where the strength of each rule is
calculated. The fourth layer is the defuzzyfication layer
where the different rules are combined to produce a value.
Finally, the fifth layer is in charge of summing the outputs
obtained by each layer

y(k) =

nr∑
i=1

ωi(pk)gi(k) =

nr∑
i=1

ωi(pk)gi(k)

nr∑
i=1

ωi(pk)

(14)

where nr is the number of rules (subsystems), ωi(pk) is
a specific scalar rule weight, pk represents the operating
point and the local model gi can be expressed in regressor
form as follows

gi(k) = φi(k)θi (15)

This allows writing the ANFIS model in regressor form

ŷ(k) = φ(k)θ0(pk) (16)

where

φ(k) = (φ1(k), ..., φi(k), ..., φnr
(k)) (17)



θ0(pk) =


ω1(pk)θ1

...
ωnr (pk)θnr


(18)

Let consider an overall of [x1, ..., xni ] inputs. Since con-
sequent systems θi, i ∈ [1, ..., nr] are defined as general
linear systems with an independent term, the proposed
formulation defines each subsystem regressor as

φi(k) = (x1, x2, ..., xni
, 1) (19)

Under this consideration, the new parameter space θ0(pk)
has an overall of nθ = nr(ni + 1) varying parameters that
depend on the operating point.

5. BOUNDING UNCERTAINTY

Using the regressor formulation for the ANFIS model ob-
tained above, the goal of this section is to provide a method
to estimate the parametric uncertainty and determine
the output prediction bounds, adapting the procedures
described for LPV systems in [2][3]. The exposed proce-
dure must be carried on once the parameter training has
concluded. The parameter uncertainty estimation λ will
be saved and used during the diagnosis stage. Considering
that the ANFIS model (16) is affected by additive bounded
noise |e(k)| < σ

ŷ(k) = φ(k)θ(pk) + e(k) (20)

The goal is to find the parametric uncertainty λ(k) =
(λ1(k), ..., λm(k), ..., λnθ

(k))T such that for the training
data set containing N input/output pairs allows to bound
y(k) as

y(k) ∈

ŷ(k)− σ, ŷ(k) + σ


∀k ∈ {1, · · · , N} (21)

Considering the following parametrisation

θ(pk) ∈ [θ0(pk)− λ(k), θ0(pk) + λ(k)] (22)

where θ0(pk) are the nominal ANFIS parameters. Extend-
ing (17) as φ(k) = (α1(k), ..., αm(k), ..., αnθ

(k)), condition
(21) can be rewritten as follows

ŷ0(k)−
nθ

m=1

λm |αm|−σ ≤ y(k) ≤ ŷ0(k)+

nθ
m=1

λm |αm|+σ

(23)

where ŷ0(k) = φ(k)θ0(pk) is the nominal ANFIS estima-
tion. Considering λm = λλ0

m(k) = λ
|αm(k)| and nθ as the

overall number of variant parameters, (23) leads to the
following two conditions

λ ≥ y(k)− ŷ0(k)− σ

nθ
, λ ≥ ŷ0(k)− y(k)− σ

nθ
(24)

Then, the satisfaction of (21) is achieved by selecting

λ = sup
k∈[1,...,N ]


max


|y(k)− ŷ0(k)| − σ

nθ
, 0


(25)

Thus, output prediction interval

ŷ(k), ŷ(k)


can be eval-

uated considering parametric uncertainty as follows:

ŷ(k) = ŷ0(k) +

nθ
m=1

λm(k) |αm(k)| (26)

ŷ(k) = ŷ0(k)−
nθ

m=1

λm(k) |αm(k)| (27)

6. FAULT DIAGNOSIS USING A BAYESIAN
APPROACH

6.1 Residual evaluation

For each MSOj of the considered set of MSO, residual
signal can be computed as the difference between the
known and estimated variable

rj(k) = yj(k)− ŷj(k) (28)

Each residual signal is affected by measurement noise and
uncertainty due to parameter estimation. This fact implies
the need of some robust residual evaluation to determine
whether the signal is consistent or not. The proposed

approach uses the prediction interval

ŷ
j
(k), ŷj(k)


to

establish an adaptive residual interval [ rj(k), rj(k)] as
follows

rj(k) = ŷj(k)− ŷj(k) (29)

rj(k) = ŷ
j
(k)− ŷj(k) (30)

Now, a new test condition for residual activation can be
formulated as

rj(k) ∈ [rj(k), rj(k)] (31)

Since residual boundaries are known, it is possible to nor-
malize each residual signal by means of Kramer function

ϕj(k) =




(rj(k)/rj(k))
4

1 + (rj(k)/rj(k))4
, if rj(k) ≥ 0

−
(rj(k)/rj(k))

4

1 + (rj(k)/rj(k))
4
, if rj(k) < 0

(32)

where ϕj(k) ∈ [−1, 1] can be used to determine the degree
of inconsistency. Considering the results of the residual
evaluation, the test condition (31) can be computed as
follows

Φj(k) =



1, if ϕi(k) ≥ 0.5

0, if ϕi(k) < 0.5

(33)

Assuming an overall set of m MSO, the previous residual
evaluation process will generate a consistency signal vector

ϕ(k) = (ϕ1(k), ..., ϕj(k), ..., ϕm(k)) (34)

and a residual activation signal

Φ(k) = (Φ1(k), ...,Φj(k), ...,Φm(k)) (35)

that will be used during the fault isolation process.
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ŷ(k)− σ, ŷ(k) + σ
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ϕ(k) = (ϕ1(k), ..., ϕj(k), ..., ϕm(k)) (34)

and a residual activation signal

Φ(k) = (Φ1(k), ...,Φj(k), ...,Φm(k)) (35)

that will be used during the fault isolation process.

6.2 Bayesian reasoning

Let consider a generic FSM for a set of residuals derived
from m MSO and nf faults, presented in Table 5.

Table 5. Generic FSM

Residual f1 ... fl ... fnf

r1 0 ... 1 ... 1
... ... ... ... ... ...
rm 1 ... 0 ... 1

Each column of the matrix contains a specific fault signa-
ture, denoted from now on as FSCl. For each considered
fault, the Bayesian probability distribution can be com-
puted at every time instant as follows

p(fl|Φ) =
p(Φ|fl) p(fl)∑nl

k=1 p(Φ|fk) p(fk)
(36)

where p(fl) is the prior probability of fl, Φ is the resid-
ual activation signal and p(ϕ|fl) is the actual degree of
occurrence, estimated as

p(Φ|fl) = |ϕ(k)| FSCl

nl
(37)

where nl =
∑

FSCl and ϕ(k) is the residual consistency
signal. The proposed methodology assumes that the initial
fault probability distribution is equiprobable among all
considered faults. Once a residual activation is detected,
the prior probability distribution can be updated on each
iteration, redefining the prior probability as follows

p(fl)(k + 1) = p(fl|Φ)(k) (38)

The overall implemented procedure flowchart is summa-
rized in Figure 1.

Fig. 1. Implemented Bayesian reasoning flowchart

In the classic isolation approach, the iterative process
will end up when all residuals become deactivated, that
is

∑
Φ(k) = 0. Residual activation signals can present

oscillatory behaviour for a given fault scenario, while
facing noisy signals, and considering the existence of
modelling errors. This will lead to a continuous break
in the iterative loop, losing the probabilistic context for
imminent residual activation signals. To attenuate this
effect, a second probabilistic state memory, hold memory
has been considered. In case of facing a complete residual

deactivation, last probability estimation will be stored
during Tlim time instants before assuming non faulty
behaviour.

7. RESULTS

In this section, we demonstrate the overall procedure by
using the running example that is presented along the
paper. All involved data, including measurement noise
in both output and control signals, was simulated. The
considered MSO sets, presented in Table 2, are modeled
using the ANFIS approach (Section 4) through an adap-
tation of the hybrid training method described in [7].
In order to simulate an inductance failure scenario, the
same simulation conditions were carried out, but with a
10% deviation in nominal inductance values. Following
the MSO3 example, a general overview of trained residual
performance over test and faulty data is shown in Figure
2.

Fig. 2. ANFIS modelling: Trained MSO3 response

In non-faulty conditions (left), both estimation and known
signal (Z signal) are contained within the uncertainty
boundaries, displaying few significant discrepancies. In the
case of faulty data (right), the objective variable (Z sig-
nal) associated to MSO3 crosses the residual uncertainty
boundaries, as expected, since MSO3 is affected by fL.
This will result in a specific residual activation signal, in
this case Φ3(k).

According to the diagnosis procedure detailed in Section
6.2, residual activation signals Φ1(k), Φ2(k), and Φ3(k)
derived from the trained model can be used to identify the
most probable fault causing the residual activation. The
isolation results obtained while processing faulty data are
presented in Figure 3.

Fig. 3. Residual activation and fault isolation. Tlim = 10

The fault isolation results presented in Figure 3 shows
that fL is the most probable fault, being consistent with



the considered faulty scenario. Residual signals tend to
present boundary crossing during transitory dynamics, in
this case forced by the acceleration and deceleration of
the BLDC caused by the trapezoidal control signal. These
regions present high intensity derivatives, amplifying the
inductance effects on the model’s estimation.

Once the general isolation has been presented, it is time
to increase the resolution in order to see how the Bayesian
fault probability is determined over time. An extract of the
fault isolation procedure for the classic and the proposed
Bayesian approach is presented in Figure 4.

Fig. 4. Extract of fault probability distribution

For a clearer interpretation, model FSM is presented again
before proceeding with the explanation.

MSO1 MSO2 MSO3

fi 1 1 0
fω 1 1 1
fL 0 1 1

Since MSO3 activation is not compatible with fi signa-
ture, this fault will not cause any confusion during fault
isolation. On the other hand, fw depends on all residuals,
while fL only depends on MSO2 and MSO3 activation.
Since MSO1 does not present any inconsistency, both
approaches end up by classifying the underlying fault fL
as the most probable. However, the continuous oscillation
in residual activation signals plays a negative role in terms
of isolation convergence while considering the classic ap-
proach (Tlim = 0). As shown in the left image, the loss
of probabilistic context after each residual deactivation
considers upcoming residual activation as independent.
To overcome this issue, the same faulty data has been
processed, but this time, considering a hold interval of
Tlim = 10. Under this consideration, fault probabilistic
context is stored up to 10 time instants after a complete
residual deactivation. As it can be seen on the right image,
the probability associated to fw decreases as new residual
activation signals are considered, obtaining a complete
isolation (probability of 1.0 or a 100%) of the underlying
inductance fault.

8. CONCLUSIONS

This paper has presented a robust fault diagnosis approach
that does not require the exact mathematical model of
the system. The proposed method uses structural anal-
ysis to determine the residual structure. Since only the
model structure is needed, it is possible to treat complex
industrial systems, without requiring precise mathematical
models. The MSO generation can be easily automated,
allowing to define a generic method to analyse a huge
variety of real industrial systems. Even tough an MSO

structure is known, its computational graph can not be
directly matched since the analytical model is unknown.
Since residual estimators only depend on known data,
the analytical expressions of residuals can be estimated
from available historical data, in this case by means of
machine learning approaches. The proposed approach uses
ANFIS neural net since it can be formulated in a regres-
sor form. Taking profit of this fact, a robust parameter
identification approach for ANFIS based on parameter
uncertainty is proposed. The obtained MSO uncertainty
bounding can be used to detect residual activation in a
robust manner. Throughout a Bayesian reasoning, residual
activation signals can be interpreted and transformed into
fault probability. The recursive computation of the method
attenuates the effects caused by non synchronized resid-
ual activation while classifying the most probable fault.
As an improvement, a second memory source has been
considered to attenuate the effect of oscillatory residual
activation caused by noise and modelling errors. During
the whole paper, the approach has been illustrated with a
BLDC system. Currently, this approach is being applied
to a real complex cooling system in collaboration with an
industrial partner.
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