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1 Introduction 

In 1853 Chebyshev observed that there tend to be more primes of the form 4k + 3 than of 
the form 4k + 1 (k E Z). In fact, if denoting by 7r (x; q, a) the number of primes p ::::; x such 

that p = a (mod q), then the following inequality holds for more than 97% of x < 1011: 

1r(x; 4, 3) 2: 1r(x; 4, 1). 

Littlewood [11], however, proved that the difference 1r(x; 4, 3) -1r(x; 4, 1) changes its 
sign infinitely many times. In 1962 Knapowski and Turan conjectured that the limit of 
the percentage in all positive numbers of the set 

Ax= {x < X I 1r(x; 4, 3);:::: 1r(x; 4, 1)} 

as X →oo would equal 100%. However, now it is proved in [4] under the Generalized 

Riemann Hypothesis that the limit does not exist and that the conjecture is false. 
In place of such a naive density, the logarithmic density takes its place. Define the 

logarithmic density of the set Ax in [2, X] by 

1 
8(Ax) =J dt 

logX ltEAx t 

Rubinstein and Sarnak [12] proved that the limit limx→00 o(Ax) exists and equals 0.9959… 
under the assumption of the Generalized Riemann Hypothesis and the Grand Simplicity 
Hypothesis for the Dirichlet £-functions L(s, x), which asserts linear independence over 
Q of the imaginary parts of all nontrivial zeros of L(s, x) in the upper half plane. 

It is known by Dirichlet's prime number theorem in arithmetic progressions that the 
number of primes of the form 4k + 3 and 4k + l should equal asymptotically. Therefore, 

Chebyshev's bias means that the primes of the form 4k + 3 appears "earlier" than those 
of the form 4k + l. By this observation, Aoki and Koyama [1] adopted the following 

weighted counting function generalizing 1r(x; q, a) = 1r0(x; q, a): 

1r.(x; q, a) = とp<x:prime 
p三a (mod q) 

1 

ps 
(sミ0).
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Here the smaller prime p allows higher contribution to叩 (x;q, a), as long as we fix s > 0. 
Although the natural density of the set 

A(s) = {x > 0 I 7r8(x; 4, 3) -7r8(x; 4, 1) > O} 

does not exist when s = 0, they showed under the assumption of the DRH that it would 
exist and equal to 1 when s = ½, that is, 

｝凰½1EA（ふ）n[2,X]dt = 1 

More precisely, they proved in [1, Corollary 3.2] that the existence of a constant C such 

that 1 

1ri(x; 4, 3)-1ri(x; 4, 1) = ~loglogx+C+o(l) (x→oo) (1) 
2 

is equivalent to the convergence of the Euler product of the Euler's L-function L(s, x-4) 
at the centers= 1/2 with x-4(p) = (-l)(p-l)/2 for odd primesp. This central covergence 

is a part of the conjecture named the Deep Riemann Hypothesis (DRH) proposed by 
Kurokawa [9] that is described in the next section. 

Virtue of the formula (1) allows to reach a formulation of the Chebyshev bias of prime 
ideals j) of a global field K: 

Definition 1.1 (Aoki-Koyama [1]). Let a(p) E良 bea sequence over prime ideals j) of K 
such that 

lim 
#{μ I a(μ)> 0, N(μ)さx}

= 1. 
X• ~#{µI a(μ)< 0, N(μ) ~ x} 

The sequence a(μ) has a Chebyshev bias to being positive, if there exists C > 0 such that 

L ~ ~ Cloglogx (x→oo), 
N~x ✓団面

where p runs through primes of K. Yet, a(p) is unbiased, if 

L ~=0(1) (x→oo). 
N(P ） ~x ✓団面

Definition 1.2 (Aoki-Koyama [1]). Assume that the set of all primes p of K with N(p)：：：：： 

xis expressed as a disjoint union Pi(x) U A(x) and that their proportion converges to 

J = lim IP心）1

X→oo |P2(x)|' 

There exists a Chebyshev bias toward Pi (or Chebyshev bias against P:かifthe following 
asymptotic holds: 

区 -J区
PEPl(x)”PE乃(x)`

~ Clog log x (x→oo) 
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for some C > 0. On the other hand, there exist no biases between Pi and g, if the 
following holds: 

こ
1 

-6と 1 
= 0(1) (x→ (X)）． 

PEPl(m)` PEP2(x) ` 

Aoki and the author [1] have found various examples of Chebyshev biases of prime 

ideals in Galois extensions of global fields such as the biases against splitting primes and 

principal prime ideals. Kurokawa and the author [8] have obtained an analog of this 

phenomenon for the Ramanujan T-function T(p) and proved that DRH for the autompor-

phic £-function L(s +見，△） impliesthe bias of T(p)/p1112 toward positive values. Later 

Kaneko and the author [5] discovered the Chebyshev bias emerged from elliptic curves. 

The main purpose of this article is to survey such recent results as well as to generalize 

the work of [8] to other weights k = 12, 16, 20 and k = 18, 22, 26. We observe that 

the bias would exist in all these cases, but its direction would become opposite if the 

£-function has a zero at s = 1/2 (Theorem 4.1). 

2 Deep Riemann Hypothesis 

Let K be a one-dimensional global field, which is either a number field or a function field 

in one variable over a finite field. For a place v of K, let M(v) be a unitary matrix of 

degree rv EN= {1, 2, 3,…｝.We consider an L-function expressed by the Euler product 

L(s, M) = IJ det(l -M(v)q;;-8戸， (2) 
v: finite place 

where qv is the cardinal of the residue field kv at v. The product (2) is absolutely conver-

gent in扮(s)> 1. In this paper we assume that L(s, M) has an analytic continuation as 

an entire function on <C and that a functional equation holds for s⇔ 1 -s. Moreover we 

put 

b(M) = -ords=1L(s, Mり
with ords=l signifying the order of the zero at s = 1. Here we do not suppose that M is 

a representation. The square M2 is interpreted as the Adams operation. Note that since 

it holds that 

L(s, M2) = IJ det(l -M(v)2幻）ー1

V 

L(s, Sym2 M) 

L(s，バM)'

5(M) = -ords=1L(s, Sy面M)+ ords=1L(sバM),

where Sym2 andバdenotethe symmetric and the exterior square of matrices. 

When M is an Artin representation 

p: Gal(Ksep / K)→Autc(V) (pヂ1)

(3) 
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with a representation space V, then it holds that 

o(M) = mult(l, Sym2p) -mult(l, /¥2p) 

with mult(l, a) being the multiplicity of the trivial representation 1 in a. 

Conjecture 2.1 (Deep Riemann Hypothesis (DRH)). Assume that L(s, M) has an an-
alytic continuation as an entire function on C and that a functional equation holds with 

s ⇔ 1 -s. Let m = ords=1;2L(s, M). Then it holds that 

hm (（logx)mqリ~det(l -M(v)q-;;1!2)―1) = 
ぼ叫(m)（い，M)

の→oo emm! 
(4) 

Conjecture 2.2 (Convergence Conjecture (CC)). The limit in (4) exists. 

Obviously DRH implies CC. Yet CC is meaningful since it is essentially equivalent to 

the Chebyshev biases. Several examples of works along this direction will be explained in 

the next section. 

Conjecture 2.1 is known to be true for positive characteristic cases as in the following 

theorem. The proof is substantially given by Conrad [2, Theorems 8.1 and 8.2] in a 

different context under the assumption of the second moment hypothesis, and the full 

proof is recently given by Kaneko-Koyama-Kurokawa [6, Theorem 5.5]. 

Theorem 2.1 (Kaneko-Koyama-Kurokawa [6]). Conjecture 2.1 holds for char(K) > 0. 

3 Applications of DRH 

This section illustrates applications of DRH to Chebyshev's bias discovered by Aoki-

Koyama [1] and generalized by Koyama-Kurokawa [7, 8]. It is revealed by the DRH 
that the bias is a natural phenomenon for making a well-balanced disposition of the 

whole sequence of primes, in the sense of the convergence of the Euler product at the 
center. By means of a weighted counting function of primes, Aoki and the author succeed 

in expressing magnitudes of the deflection by a certain asymptotic formula under the 

assumption of DRH, which is a new formulation of Chebyshev's bias. Here, their main 

ideas are described. 

Note from Conrad's theorem [2, Theorem 5.3] that Conjecture 2.2 implies the conver-

gence in況(s)> ½- Thus Conjecture 2.2 is stronger than the RH. 

The proof of the equivalence between (1) and Conjecture 2.2 is simply illustrated as 

follows. It is known that m = 0 when M = p = x-4. Conjecture 2.2 is equivalent to 

II (1-X-4(P)口）―1=L+o(l) (x→oo) (5) 
p-C:x 
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with Lヂ0.Then it equivalently has a bounded logarithm: 

L log (1 -X-4(P)P―}）―1 = log L + o(l) (x→ (X)）． 
p<::x 

When expanding the left hand side as 

文こい（四，
k=l p:<;x kp2 

the subseries over k ~ 3 is absolutely convergent as x→ (X)．On the other hand, the 
subseries over k = 2 satisfies by Euler's theorem that 

こい(P)2＝こ上＝ ~loglogx+c+o(l) (x→ (X)） 
p'.S:x 

2p 
p'.S:x 

2p 2 
(6) 

for some c E罠． Thenfrom (5) and (6) the behavior of the remaining part k = l is 
obtained: 

どい（P） 1 

p:Sx 』
= -~loglogx+logL-c+o(l) (x→oo). 

2 

This completes the proof of the equivalence. 

Let L / K be a finite Galois extension of global fields. In [1] Aoki and Koyama examine 

various Chebyshev biases existing in the primes of K. Here we introduce some simplest 
examples. Let S be the set of all primes in K and Su C S be the subset of unramified 

primes whose Frobenius element (¥) is equal to O'E Gal(L/ K). 
Theorem 3.1 (a part of Theorem 2.2 [1]). Let L / K be a finite Galois extension of global 

fields. The following (i) and (ii) are equivalent: 

(i) Conjecture 2.2 holds for L(s, p) for all non trivial irreducible representations p of 

Gal(L/K). 

(ii) For any (J'EGal(L/ K) it holds that 

こ
1 [L: K] ~ 1 
~ ~ ~ =Cloglogx+c+o(l) (x→oo) 

P ESv  C。 PESc v亨
N(p)<:x N(p)<エ

for some constants C and c depending on u. 

Here C is expressed in terms of v and min Conjecture 2.1. Calculating such constants 
for specific cases under the assumption of (i), the following examples of Chebyshev biases 

are obtained. 

Example 3.1 (Bias against splitting primes (Example 3.3 [1])). Assume [L : K] = 2 and 
let x be the nontrivial character of Gal(L/ K). The following (i) and (ii) are equivalent: 
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(i) Conjecture 2.2 for L(s, x) holds. 

(ii) There exists a Chebyshev bias against splitting primes with the asymptotic 

こ
1 

p: nonsplit亨
N(p)こa•

こ
1 /1 

ぶ霊工亨＝（ぅ＋mx)log log x + c + o(1) (x→oo) 

for some constant c. 

Example 3.2 (Bias against quadratic residues (Corollary 3.2 [1])). Let q be a positive 

integer. Assume that L（ふx)ヂ0for all Dirichlet characters x modulo q. The following 
(i) and (ii) are equivalent: 

(i) Conjecture 2.2 holds for L(s, x) for any Dirichlet character x modulo q. 

(ii) There exists a Chebyshev bias against quadratic residues modulo q with the asymp-
totic 

2t-l 

叫 x;q,b)-1r1(x;q,a)= ~loglogx+c+o(l) 
cp(q) 

for some constant c and for any pair (a, b) of a quadratic residue a and a non-residue 
b, and there exist no biases for all other types of pairs (a, b). 

Example 3.3 (Bias against principal ideals (Corollary 3.5 [1])). We denote by K the 

Hilbert class field of K. The ideal class group is expressed as ClK'::::'Gal(K / K). An ideal 
K/K class [a] E ClK corresponds to叩：＝ （If-) E Ga揺／K).Assume Conjecture 2.2 for 

L(s, x) and that L（ふx)ヂ0for any character X of ClK. In the case that IClKI is even, 
there exists a Chebyshev bias against principal ideals in the whole set of prime ideals of 
K. Namely, the following holds with hK = ICl叫：

(x→oo) 

こ—(hK-1) L 1 1 |Clk/Clえ I — 1

p: nonprincipal亨 p:principa]”=  2 
log log x+c+o(l) 

N(p)三ェ N(p)三X

(x→oo). 

Kurokawa and the author [8] obtained a bias of Ramanujan's T-function by applying 
the ideas of Aoki-Koyama [1] to automorphic L-functions. 

Theorem 3.2 (Koyama-Kurokawa [8]). Assume Conjecture 2.2 for L(s +見，△）． Then
the sequence a(p) = T(p)p―11/2 has a Chebyshev bias to being positive. More precisely, 

the following holds with constant c: 

区
二

T(p) 1 

炉 2
= iloglogx+c+o(l) (x→oo). 

Here Ramanujan's £-function is defined as 

oo 

L(s，△）＝ど
T(n) 
ns 

n=l 

（況（s)>閏）．
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Theorem 3.2 suggests that the Satake parameters 0(p) E [O, 1r] have a bias to being in 

[O, 7r /2], where we define 0(p) as T(p) = 2砂 cos(0(p)).
Sarnak [13] also reached a similar prediction under the assumption of the Generalized 

Riemann Hypothesis in addition to the Grand Simplicity Hypothesis for L(s,△）， which 
asserts linear independence over Q of the imaginary parts of all nontrivial zeros of L(s,△） 
in the upper half plane. He has pointed out that the sum 

S(x)＝ど T(K)
p玄

p2 

prime 

has a bias to being positive, in the sense that the mean of the measure μ defined by 

logX [f  (lo〉xS(x))亨→1f(x)d,,(x) (x→oo) 

for f E C(ffi.) is equal to 1. In the proof, he closely examines the logarithmic derivative of 

L(s,△） to find that the second term in its expansion is the cause of the bias. While our 
above discussion deals with the logarithm instead of its derivative, we have also reached 
the point that the bias is derived from the second term in the expansion. Although the 
cause of the bias discovered by us in Aoki-Koyama [1] is the same as that in [13], our 
proof is more straightforward and simplified thanks to the DRH. 

4 Main Theorem 

In this section we extend Theorem 3.2 to general weights k such that dime Sk(r) = 1, that 
is k = 12, 16, 18, 20, 22, 26, where r = PSL(2, Z) and Skげ） isthe space of holomorphic 
cusp forms of weight k for r. Let 

oo 

ふ(z)= L Tk(n)e21rinz E skげ）
n=l 

be the holomorphic cusp form of weight k normalized as叫1)= 1. Define the L-function 

by oo 

L(s，ふ） ：＝区叫）
が・

n=l 

Then putting a紅） ＝叫）nザ， wehave 

L(s+~,~k) = lJ(l-ak(p)p-s+p―2s)―1. 

p 

Theorem 4.1 (A generalization of Theorem 3.2). Assume Conjecture 2.2 for L(s + 

デ心）． Thenthe sequence ak(P)＝冗(p)p―デ hasa Chebyshev bias to being positive 
for k = 12, 16, 20 and to being negative for k = 18, 22, 26. 
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More precisely, it holds that 

区冗(p)=iloglogx+c+0(1) （K = 12, 16,20) 

p:<:x pぃ {_iloglogx+ c+ 0(1) （K = 18, 22,26) 
prime 

as x→oo with some constants c. 

(7) 

Proof. By Aoki-Koyama [1, Proposition 2.1], we have under the assumption of Conjecture 
2.2 that 

〗翌＝じ— mk) loglogx+c+o(l), 

pnme 

where mk = ords=k/2L(s,ふ）． Hencethe result (7) follows from the theorem of Kurokawa— 
Tanaka [10, Theorem 1.2]: 

The proof is complete. 
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