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ON DELIGNE’S CONJECTURE FOR SYMMETRIC FIFTH L-FUNCTIONS AND
QUADRUPLE PRODUCT L-FUNCTIONS OF MODULAR FORMS

SHIH-YU CHEN

1. INTRODUCTION AND MAIN RESULTS

This report is based on a talk given at the RIMS conference ” Automorphic form, automorphic L-functions
and related topics” which was held online in January, 2022.

In [Del79], Deligne proposed a remarkable conjecture on the algebraicity of critical values of L-functions
of motives, in terms of the periods obtained by comparing the Betti and de Rham realizations of the motives.
As special cases, we consider the conjecture for symmetric power L-functions and tensor product L-functions
of modular forms.

1.1. Symmetric power L-functions. Let

ar(n)q" € Sx(N,w), q= 2TV

s

flr) =

n=1

be a normalized elliptic modular newform of weight x > 2, level N, and nebentypus w. For each prime p{ N,
denote by «,, 8, the Satake parameters of f at p and put

_(ap O
(% 5):

Recall that o, 8, are the roots of the Hecke polynomial X2 —as(p)X + p ~1w(p). For n > 1, the symmetric
n-th power L-function L(s, Sym"(f)) is defined by an Euler product

L(s, Sym"(f)) = HLp(Sv Sylnn(f))7 RG(S) >1+ @

Here the Euler factors are defined by

Ly(s,Sym"(f)) = det (1,11 — Sym"(4,) -p~°)

for pt N, where Sym" : GL2(C) — GL,,41(C) is the symmetric n-th power representation. By the result of
Barnet-Lamb, Geraghty, Harris, and Taylor [BLGHT11, Theorem B], the symmetric power L-functions admit
meromorphic continuation to the whole complex plane and satisfy functional equations relating L(s, Sym" (f))
to L(1 + n(k — 1) — s,Sym™(f")), where f¥ € S.(N,w™!) is the normalized newform dual to f. The
archimedean local factors are defined by

—1

Tr(s— @) H;;& Ie(s—i(k—1)) if n =2r and r(k — 1) is even,
Loo(s,Sym™(f)) = { I'r(s — @ +1) H:;& Te(s—i(k—1)) ifn=2rand r(x—1) is odd,
IT_yTe(s —i(k — 1)) ifn=2r+1.

Here

Tr(s) =7 *20(%), Te(s) = 2(2m) °T(s).
A critical point for L(s, Sym™(f)) is an integer m such that L, (s, Sym"™(f)) and Lo (1+n(k—1)—s, Sym"(f"))
are holomorphic at s = m. Associated to f, we have a pure motive My over Q of rank 2 with cocflicients in
Q(f), which was constructed by Deligne [Del71] and Scholl [Sch90], such that

L(My,s) = (L(5,°f)) () -
We have the Hodge decomposition

Hp(My) ® C = Hy" ' (My) @ H™ (M)
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as well as the Hodge filtration
Hayr(My) = FO(My) 2 F*~1(My) 20.
The comparison isomorphism
Iy : Hp(My) ® C — Hyr(My)®q C
induces
If: HE(My) ®q C — Hp(My) ®g C — Hyr(M;) ®g C — Hyr(My)/F*(M;) ®q C.
The Deligne’s periods of My are elements in (Q(f) ®g C)*/Q(f)* defined by
S(My) :=det(I), (M) := det(I%),

where the determinants are computed with respect to Q(f)-rational bases on both sides. Consider the
symmetric power motive Sym" (My). We have
L(Sym™ (My), s) = (L(s, Sym" (°f)))s-a(f)—c-
In [Del79, Proposition 7.7], Deligne computed the periods of Sym™(Mjy). More precisely, we have
o (Symr () — (PO E R (Mg (1)) it n = 2,

: S(My)r D2k (M) D+ 26T (M) D2 i g = 2 4 1.
As a special case of the conjecture in [Del79, Conjecture 2.8], we have the following:
Conjecture 1.1 (Deligne). Let m € Z be a critical point for Sym"(My). We have

L(Sym” (M;), m) o
(2 /= 1) D7 Gy (Mp)m . o(=1)™ (Sym™ (My)) ’

where d* (Sym™(My)) = r + 1, d~ (Sym"(My)) = r if n = 2r, and d*(Sym"(My)) =7+ 1 if n = 2r + 1.

The conjecture holds if f is a CM-form. For general f, as explained in [Del79, § 7], the conjecture is known
if n = 1. It was then considered by various authors when n = 2,3, 4,6 listed as follows:
e n = 2: Sturm [Stu80], [Stu89].
e n = 3: Garrett-Harris [GH93] and C.- [Che21a].
e n =4,6: Morimoto [Mor21] and C.- [Che21b], [Che21c].

In these cases, the conjecture was proved using the integral representations of automorphic L-functions and
their algebraic/cohomological interpretations. When n = 2, we have the integral representation discovered
by Shimura [Shi75]. When n = 3, the symmetric cube L-function appears as a factor of the triple product L-
function L(s, f®f® f) for which we have the integral representation due to Garrett [Gar87]. For n = 2, 3, the
ideas for the proof of algebraicity of these integral representations are similar to the ones in the pioneering
work of Shimura [Shi76]. The authors consider holomorphic Eisenstein series integrated against complex
conjugation of elliptic modular forms. In [Mor21], Morimoto observed that (twisted) symmetric even power
L-functions are factors of adjoint L-functions of unitary groups. In [GL21], Grobner and Lin proved a period
relation between the Betti-Whittaker periods of cohomological conjugate self-dual cuspidal automorphic
representations of GLy over CM-fields and certain special values of adjoint L-functions of unitary groups.
On the other hand, we have the result of Raghuram [Ragl0], [Ragl6] which expressed the algebraicity of
critical values of Rankin—-Selberg L-functions for GLy x GLy_; in terms of product of Betti-Whittaker
periods. Therefore, Conjecture 1.1 for n = 4,6 (under some assumptions) then follows from the algebraicity
results of Morimoto [Mor14], [Mor18] for GSp, x GLy and Garrett—Harris [GH93] for GLy x GLg x GLg. In
[Che21b], based on the same idea, we show that Conjecture 1.1 holds for n = 4 when x > 3 by generalizing
and refining the results of Grobner-Lin [GL21] to essentially conjugate self-dual representations in the case
GL3 x GLy. In [Che2lc], we show that Conjecture 1.1 holds for n = 6 when k > 6. We extend the result
of Morimoto based on a different approach. The observation is that the (twisted) symmetric sixth power
L-function is a factor of the adjoint L-function of the Kim-Ramakrishnan-Shahidi lift of f to GSp,. We
define the de Rham—Whittaker periods associated to globally generic cohomological cuspidal automorphic
representations of GSp,. In the case of the Kim-Ramakrishnan—Shahidi lift, we establish some periods
relations between the de Rham—Whittaker periods and powers of Petersson norms of f. The conjecture then
follows from our previous results [CI19], [Che22a]. Following is our main result for n = 5 (see also Remark
1.3 for higher n):



Theorem 1.2 ([Che22c]). If k = 6, then Conjecture 1.1 holds.

Remark 1.3. Recently, we have proved Conjecture 1.1 in [Che22b, Theorem 5.11] when n is odd, & is odd,
and k > 5. It’s an ongoing project of the author to prove Conjecture 1.1 when n is even under the same
assumptions on A.

1.2. Quadruple product L-functions. As another example of Deligne’s conjecture, we consider quadruple
product L-functions of modular forms. Let f; € Sy, (N;,w;) be normalized elliptic newform for ¢ = 1,2,3,4.
Define the quadruple product L-function L(s, f1 ® fo ® f3 ® f4) by an Euler product

4
L(s, h® @ fs®f1) = [ [Lp(s, L ® 2@ f3® fu), Re(s) > 1+ ), =L,
P i=1

Here the Euler factors are given by

Lp(s, fi® f2® f3® fs) = det (116 — A1, ® Az, @ Az, @ Ay '1)75)71

for p { NyNoN3N,. By the results of Jacquet—Shalika [JS81al, [JS81b] and Ramakrishnan [Ram00], the
quadruple product L-function admits meromorphic continuation to the whole complex plane and satisfies a

functional equation relating L(s, f1 ® fo ® f3 ® fa) to L(1 + Zle(nz- —1)=s, ' ®f ®fy ®f). For
1 <i <4, let G(w;) be the Gauss sum of w; and | f;|| the Petersson norm of f; defined by

Uil = volTa NS [ Ry R
To(N:)\H
Assume k1 = Ko = K3 = k4. We have three types of critical ranges:
K1+ hs—1>K —Kg+1>ko+ky3—1>kKy— K3+ 1 Case 1,
Ki+ke—1>kKo+ky—1>K —ks+1>kKy—k3+1 Case?2,
Ko+ ky—1>K +ks—1>K —ks+1>kKy—k3+1 Case3.

In [Bla87], Blasius explicitly computed Deligne’s periods of tensor product motives for GLy. In particular,
we have the following refinement of Deligne’s conjecture for the quadruple product L-function:

Conjecture 1.4 (Blasius). Let m € Z be a critical point for L(s, f1 ® fo ® f3® fa). We have

a( Lim, 1 ® f2® f3® fa) ) _ Lim, "1 ®fa®fs ®f1) o € Aut(C)
@rV=1)3" - o(f1 ® f2 ® f3® f1) @ry/=1)fm - (" ©7f2 ©fs @fa)” .
Here
4
(f1® 2@ f3® fa) = (2ry/=1)' B0 [T G(wi) - (- £i])"
i=1
with

(4,0,0,0)  Case 1,
(t17t27t3%t4) = (3,1,1,1) Case 2,
(2,2,2,0) Case 3.

When two of the f;’s are CM by the same imaginary quadratic extension, the quadruple product L-
function decomposes into product of triple product L-functions. In this special case, Conjecture 1.4 reduces
to Deligne’s conjecture for triple product L-functions. For the general case, recently we were able to prove
the conjecture under certain parity and regularity conditions on the weights. Following theorem is a special
case of [Che22b, Theorem 5.8] (n = 4):

Theorem 1.5. Conjecture 1.4 holds under the following conditions:

(1) K1+ Ko + K3 + K4 is even.
(2) |2 (i — &) (ki — 1) = 6 for all (e1,--- ,e4) and (€}, ,&}) in {£1}*.
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2. SKETCH OF PROOF

2.1. Sketch of proof of Theorem 1.2. Let /I be an automorphic representation of GL,(A), where A
denotes the ring of adeles of Q. We say II is regular algebraic if the infinitesimal character of Il is regular
and belongs to (Z + %)" We say II is tamely isobaric if it is isobaric and the exponents of the summands
are the same. First we recall the following theorem which is a consequence of (a variant of) the result of
Raghuram [Ragl0]. It is an algebraicity result on the ratio of product of critical values of Rankin-Selberg
L-functions of regular algebraic tamely isobaric automorphic representations.

Theorem 2.1. Let X, X’ (resp. II,II') be regular algebraic tamely isobaric automorphic representations of
GL,,(A) (resp. GLy/ (A)) satisfying the following conditions:

(1) X and X' are cuspidal.

(2) n' =n—1 and (X, IIy) is balanced.

(3) Yoo = X!, and II, = IT),.
Let mo e Z + % be a critical point for L(s, X x IT) such that L(mg, ¥ x IT") - L(mo, X’ x II) # 0. Then,
for o € Aut(C), we have

L(mo, ¥ x IT) - L(mg, ¥ x II')\ _ L(m, "% x °IT) - L(mo, 5" x °II')
L(mo, ¥ x II') - L(mo, ¥’ x II) )~ L(mg,°Y x °II’) - L(mg, %" x °I)’

Remark 2.2. In practice, conditions (1) and (2) are too strong for application. In [Che22b, Theorem 1.2],
we remove conditions (1) and (2). Instead, we impose some parity and regularity conditions on X, and IT,.

Back to our normalized newform f € S, (IV,w). We may assume that f is not a CM-form. Let II(f) be a
regular algebraic cuspidal automorphic representation of GLa(A) generated by f (it is unique up to twisting
by integral powers of the adelic absolute value | [4). For n = 1, let Sym™II(f) be the functorial lift of II(f)
to GLy41(A) with respect to the symmetric n-th power representation of GLy(C). The existence of the lifts
was proved by Newton and Thorne [NT21a], [NT21b] (see also [GJ72], [KS02], [Kim03], [CT15], [CT17] for
n < 8). It is easy to see that Sym™II(f) is regular algebraic and tamely isobaric. Since we assumed that f
is not a CM-form, Sym"II(f) is cuspidal. To prove Conjecture 1.1 for n = 5, we apply Theorem 2.1 in the
case GL4 x GL3. More precisely, let X' and II be regular algebraic cuspidal automorphic representations of
GL4(A) and GL3(A) respectively defined by

¥ =Sym®I(f), I =Sym®I(f).

One can verify easily that (X, I;) is balanced (cf. [Ragl0, Theorem 5.3]). For a cuspidal automorphic
representation 7 of GLa(A), let IT(f) X 7 be the functorial lift of the Rankin-Selberg convolution of I7(f)
and 7 to GL4(A). The existence of the lift was proved by Ramakrishnan in [Ram00]. We assume further 7
is chosen so that:

o 7 is regular algebraic and non-CM.

o (I()eB70) ® | o6* = T

We also choose an algebraic Hecke character of A* such that

(Too ® ‘ ‘001/2) Hxew = .
Let X" and II’ be isobaric automorphic representations of GL4(A) and GL3(A) respectively defined by

|—1/2

Y=IHRD| ;A =l )@y

By our assumptions on 7 and ¥, it is easy to see that X’ (resp.II’) is regular algebraic and cuspidal
(resp. tamely isobaric), and Yo, = X/, II, = II},. Therefore, by Theorem 2.1, for all non-central criti-
cal points m + % eZ+ % for L(s, X x IT), we have

Lim+ 3,2 xII')- L(m+ %, 5" x IT)
Lim+ 1,5 = IT')

(2.1) Lim+ 1,2 x 1) ~



Here ~ means the ratio of left-hand side by right-hand side is equivariant under Aut(C). On the other hand,
we have the following factorizations of L-functions:

L(s, ¥ x IT) = L(s,Sym° I (f)) - L(s, Sym* I (f) @ wis(p)) - L(s, T (f) @ Wiy ),
L(s, 2 x II') = L(s — 3,Sym®II(f) x 7) - L(s, Sym* I (f) ® x),
L(s, ¥ x II) = L(s — ,SymSH(f)><7')-L(37%,H(f)><T®wn<f)),
L(s, X' x ') = L(s — LI(f) x 7 x7) - L(s — 3, II(f) x T ® X).

(2.2)

Here wyy(yy is the central character of II(f). By the result of Shimura [Shi76], Deligne’s conjecture holds for
L(s, II(f) x T®@wp(s)) and L(s, [T(f) x 7 ® x). By the results of Garrett-Harris [GH93] and the author
[Che21a], Deligne’s conjecture holds for the triple product L-function L(s, II(f) x 7 x 7). When k > 3,
Deligne’s conjecture also holds for L(s, Sym®IT( f) ®wpr(f)) (cf. [Che21a, Theorem 1.6]). Consider the descent
of Sym*II(f) to GSp,(A). By the results of Morimoto [Mor14], [Mor18] and the author [Che21b], we see
that Deligne’s conjecture holds for L(s, Sym®II(f) x 7) when x > 6. We then conclude from (2.1) that
Conjecture 1.1 for n = 5 holds for non-central critical points. Indeed, it is easy to deduce from (2.1)
and Deligne’s conjecture for the L-functions on the right-hand sides of (2.2) (except for Sym®IT(f)) that
L) (m+ 1, Sym°I1(f)) is equivalent to some integral powers of 27y/=1, 6(f), and ¢*(f). A straightforward
computation shows that the exponents do coincide with the expected ones. For the central critical point,
Conjecture 1.1 follows from the non-central critical points together with the result of Harder-Raghuram
[HR20].

2.2. Sketch of proof of Theorem 1.5. The idea of the proof is similar as above. We apply Theorem 2.1 in
the case GLy x GL4 (cf. Remark 2.2). Let II; be a regular algebraic cuspidal automorphic representation of
GL2(A) generated by f; for i = 1,2,3,4. Let X and IT be the regular algebraic tamely isobaric automorphic
representations of GL4(A) defined by
Z=(Mrme| | T=(mrme| "
Let I1{, II3, IT}, IT; be auxiliary regular algebraic cuspidal automorphic representations of GL2(A) such that
Hll,w HZIA,w = Yoo, Hé,w Hi,w = I.
Let X’ and II’ be the regular algebraic tamely isobaric automorphic representations of GL4(A) defined by
Y =M\, 0 =I58I.

The assumptions (1) and (2) in Theorem 1.5 then implies that Theorem 2.1 holds in our case. Therefore, we
have
L(m, X x II")- L(m, X" x II)

(2:3) L(m, Z > IT) ~ L(m, 5 x 1)

for all critical points m € Z for L(s, X x IT). On the other hand, we have the following factorizations of
L-functions:

L(s, X x II) = L(s,II1 x II, x II3 x II),
L(s, 2 x II') = L(s + %, Ih x I x I1}) - L(H%,Hlxlbxn;)
@4 L(s, %' x ) = L(s — &, IIs x Iy x II{) - L(s — &, IIs x IIy x II}),
L(s, 8" x I') = L(s, H1 x II}) - L(s, II] x IT}) - L(s, Iy x 1) - L(s, ITy x II).

By the result of Shimura [Shi76], we known that Deligne’s conjecture holds for the Rankin—Selberg L-functions
for GLg x GLy. Therefore, by (2.3), we are reduced to show that Deligne’s conjecture holds for the triple
product L-functions appear on the right-hand sides of (2.4). For these triple product L-functions, we can
play the same trick as above. This time apply Theorem 2.1 in the case GL4 x GLg.

Acknowledgement. The authors would like to thank Professor Kazuki Morimoto and Professor Tadashi
Miyazaki for giving him the opportunity to give a talk at the conference.
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