TITLE：

ON DELIGNE＇S CONJECTURE FOR SYMMETRIC FIFTH \＄L\＄－FUNCTIONS AND QUADRUPLE PRODUCT \＄L\＄－FUNCTIONS OF MODULAR FORMS（Automorphic form， automorphic $\$ L \$$－functions and related topics）

AUTHOR（S）：

CHEN，SHIH－YU

[^0]
ON DELIGNE'S CONJECTURE FOR SYMMETRIC FIFTH L-FUNCTIONS AND QUADRUPLE PRODUCT L-FUNCTIONS OF MODULAR FORMS

SHIH-YU CHEN

1. Introduction and main results

This report is based on a talk given at the RIMS conference "Automorphic form, automorphic L-functions and related topics" which was held online in January, 2022.

In [Del79], Deligne proposed a remarkable conjecture on the algebraicity of critical values of L-functions of motives, in terms of the periods obtained by comparing the Betti and de Rham realizations of the motives. As special cases, we consider the conjecture for symmetric power L-functions and tensor product L-functions of modular forms.

1.1. Symmetric power L-functions. Let

$$
f(\tau)=\sum_{n=1}^{\infty} a_{f}(n) q^{n} \in S_{\kappa}(N, \omega), \quad q=e^{2 \pi \sqrt{-1} \tau}
$$

be a normalized elliptic modular newform of weight $\kappa \geqslant 2$, level N, and nebentypus ω. For each prime $p \nmid N$, denote by α_{p}, β_{p} the Satake parameters of f at p and put

$$
A_{p}=\left(\begin{array}{cc}
\alpha_{p} & 0 \\
0 & \beta_{p}
\end{array}\right)
$$

Recall that α_{p}, β_{p} are the roots of the Hecke polynomial $X^{2}-a_{f}(p) X+p^{\kappa_{i}-1} \omega(p)$. For $n \geqslant 1$, the symmetric n-th power L-function $L\left(s, \operatorname{Sym}^{n}(f)\right)$ is defined by an Euler product

$$
L\left(s, \operatorname{Sym}^{n}(f)\right)=\prod_{p} L_{p}\left(s, \operatorname{Sym}^{n}(f)\right), \quad \operatorname{Re}(s)>1+\frac{n(\kappa-1)}{2} .
$$

Here the Euler factors are defined by

$$
L_{p}\left(s, \operatorname{Sym}^{n}(f)\right)=\operatorname{det}\left(\mathbf{1}_{n+1}-\operatorname{Sym}^{n}\left(A_{p}\right) \cdot p^{-s}\right)^{-1}
$$

for $p \nmid N$, where $\mathrm{Sym}^{n}: \mathrm{GL}_{2}(\mathbb{C}) \rightarrow \mathrm{GL}_{n+1}(\mathbb{C})$ is the symmetric n-th power representation. By the result of Barnet-Lamb, Geraghty, Harris, and Taylor [BLGHT11, Theorem B], the symmetric power L-functions admit meromorphic continuation to the whole complex plane and satisfy functional equations relating $L\left(s, \operatorname{Sym}^{n}(f)\right)$ to $L\left(1+n(\kappa-1)-s, \operatorname{Sym}^{n}\left(f^{\vee}\right)\right)$, where $f^{\vee} \in S_{\kappa}\left(N, \omega^{-1}\right)$ is the normalized newform dual to f. The archimedean local factors are defined by

$$
L_{\infty}\left(s, \operatorname{Sym}^{n}(f)\right)= \begin{cases}\Gamma_{\mathbb{R}}\left(s-\frac{n(\kappa-1)}{2}\right) \prod_{i=0}^{r-1} \Gamma_{\mathbb{C}}(s-i(\kappa-1)) & \text { if } n=2 r \text { and } r(\kappa-1) \text { is even, } \\ \Gamma_{\mathbb{R}}\left(s-\frac{n(\kappa-1)}{2}+1\right) \prod_{i=0}^{r-1} \Gamma_{\mathbb{C}}(s-i(\kappa-1)) & \text { if } n=2 r \text { and } r(\kappa-1) \text { is odd }, \\ \prod_{i=0}^{r} \Gamma_{\mathbb{C}}(s-i(\kappa-1)) & \text { if } n=2 r+1\end{cases}
$$

Here

$$
\Gamma_{\mathbb{R}}(s)=\pi^{-s / 2} \Gamma\left(\frac{s}{2}\right), \quad \Gamma_{\mathbb{C}}(s)=2(2 \pi)^{-s} \Gamma(s) .
$$

A critical point for $L\left(s, \operatorname{Sym}^{n}(f)\right)$ is an integer m such that $L_{\infty}\left(s, \operatorname{Sym}^{n}(f)\right)$ and $L_{\infty}\left(1+n(\kappa-1)-s, \operatorname{Sym}^{n}\left(f^{\vee}\right)\right)$ are holomorphic at $s=m$. Associated to f, we have a pure motive M_{f} over \mathbb{Q} of rank 2 with coefficients in $\mathbb{Q}(f)$, which was constructed by Deligne [Del71] and Scholl [Sch90], such that

$$
L\left(M_{f}, s\right)=\left(L\left(s,{ }^{\sigma} f\right)\right)_{\sigma: \mathbb{Q}(f) \rightarrow \mathbb{C}}
$$

We have the Hodge decomposition

$$
H_{B}\left(M_{f}\right) \otimes_{\mathbb{Q}} \mathbb{C}=H_{B}^{0, \kappa-1}\left(M_{f}\right) \oplus H_{B}^{\kappa-1,0}\left(M_{f}\right)
$$

as well as the Hodge filtration

$$
H_{d R}\left(M_{f}\right)=F^{0}\left(M_{f}\right) \supsetneq F^{\kappa-1}\left(M_{f}\right) \supsetneq 0 .
$$

The comparison isomorphism

$$
I_{\infty}: H_{B}\left(M_{f}\right) \otimes_{\mathbb{Q}} \mathbb{C} \longrightarrow H_{d R}\left(M_{f}\right) \otimes_{\mathbb{Q}} \mathbb{C}
$$

induces

$$
I_{\infty}^{ \pm}: H_{B}^{ \pm}\left(M_{f}\right) \otimes_{\mathbb{Q}} \mathbb{C} \hookrightarrow H_{B}\left(M_{f}\right) \otimes_{\mathbb{Q}} \mathbb{C} \longrightarrow H_{d R}\left(M_{f}\right) \otimes_{\mathbb{Q}} \mathbb{C} \rightarrow H_{d R}\left(M_{f}\right) / F^{\kappa-1}\left(M_{f}\right) \otimes_{\mathbb{Q}} \mathbb{C} .
$$

The Deligne's periods of M_{f} are elements in $(\mathbb{Q}(f) \otimes \mathbb{Q} \mathbb{C})^{\times} / \mathbb{Q}(f)^{\times}$defined by

$$
\delta\left(M_{f}\right):=\operatorname{det}\left(I_{\infty}\right), \quad c^{ \pm}\left(M_{f}\right):=\operatorname{det}\left(I_{\infty}^{ \pm}\right)
$$

where the determinants are computed with respect to $\mathbb{Q}(f)$-rational bases on both sides. Consider the symmetric power motive $\operatorname{Sym}^{n}\left(M_{f}\right)$. We have

$$
L\left(\operatorname{Sym}^{n}\left(M_{f}\right), s\right)=\left(L\left(s, \operatorname{Sym}^{n}\left({ }^{\sigma} f\right)\right)\right)_{\sigma: \mathbb{Q}(f) \rightarrow \mathbb{C}}
$$

In [Del79, Proposition 7.7], Deligne computed the periods of $\operatorname{Sym}^{n}\left(M_{f}\right)$. More precisely, we have

$$
c^{ \pm}\left(\operatorname{Sym}^{n}\left(M_{f}\right)\right)= \begin{cases}\delta\left(M_{f}\right)^{r(r \pm 1) / 2}\left(c^{+}\left(M_{f}\right) c^{-}\left(M_{f}\right)\right)^{r(r+1) / 2} & \text { if } n=2 r \\ \delta\left(M_{f}\right)^{r(r+1) / 2} c^{ \pm}\left(M_{f}\right)^{(r+1)(r+2) / 2} c^{\mp}\left(M_{f}\right)^{r(r+1) / 2} & \text { if } n=2 r+1\end{cases}
$$

As a special case of the conjecture in [Del79, Conjecture 2.8], we have the following:
Conjecture 1.1 (Deligne). Let $m \in \mathbb{Z}$ be a critical point for $\operatorname{Sym}^{n}\left(M_{f}\right)$. We have

$$
\frac{L\left(\operatorname{Sym}^{n}\left(M_{f}\right), m\right)}{(2 \pi \sqrt{-1})^{(-1)^{m}}\left(\operatorname{Sym}^{n}\left(M_{f}\right)\right) m} \cdot c^{(-1)^{m}}\left(\operatorname{Sym}^{n}\left(M_{f}\right)\right) \quad \in \mathbb{Q}(f),
$$

where $d^{+}\left(\operatorname{Sym}^{n}\left(M_{f}\right)\right)=r+1, d^{-}\left(\operatorname{Sym}^{n}\left(M_{f}\right)\right)=r$ if $n=2 r$, and $d^{ \pm}\left(\operatorname{Sym}^{n}\left(M_{f}\right)\right)=r+1$ if $n=2 r+1$.
The conjecture holds if f is a CM-form. For general f, as explained in [Del79, §7], the conjecture is known if $n=1$. It was then considered by various authors when $n=2,3,4,6$ listed as follows:

- $n=2$: Sturm [Stu80], [Stu89].
- $n=3$: Garrett-Harris [GH93] and C.- [Che21a].
- $n=4,6$: Morimoto [Mor21] and C.- [Che21b], [Che21c].

In these cases, the conjecture was proved using the integral representations of automorphic L-functions and their algebraic/cohomological interpretations. When $n=2$, we have the integral representation discovered by Shimura [Shi75]. When $n=3$, the symmetric cube L-function appears as a factor of the triple product L function $L(s, f \otimes f \otimes f)$ for which we have the integral representation due to Garrett [Gar87]. For $n=2,3$, the ideas for the proof of algebraicity of these integral representations are similar to the ones in the pioneering work of Shimura [Shi76]. The authors consider holomorphic Eisenstein series integrated against complex conjugation of elliptic modular forms. In [Mor21], Morimoto observed that (twisted) symmetric even power L-functions are factors of adjoint L-functions of unitary groups. In [GL21], Grobner and Lin proved a period relation between the Betti-Whittaker periods of cohomological conjugate self-dual cuspidal automorphic representations of GL_{N} over CM-fields and certain special values of adjoint L-functions of unitary groups. On the other hand, we have the result of Raghuram [Rag10], [Rag16] which expressed the algebraicity of critical values of Rankin-Selberg L-functions for $\mathrm{GL}_{N} \times \mathrm{GL}_{N-1}$ in terms of product of Betti-Whittaker periods. Therefore, Conjecture 1.1 for $n=4,6$ (under some assumptions) then follows from the algebraicity results of Morimoto [Mor14], [Mor18] for $\mathrm{GSp}_{4} \times \mathrm{GL}_{2}$ and Garrett-Harris [GH93] for $\mathrm{GL}_{2} \times \mathrm{GL}_{2} \times \mathrm{GL}_{2}$. In [Che21b], based on the same idea, we show that Conjecture 1.1 holds for $n=4$ when $\kappa \geqslant 3$ by generalizing and refining the results of Grobner-Lin [GL21] to essentially conjugate self-dual representations in the case $\mathrm{GL}_{3} \times \mathrm{GL}_{2}$. In [Che21c], we show that Conjecture 1.1 holds for $n=6$ when $\kappa \geqslant 6$. We extend the result of Morimoto based on a different approach. The observation is that the (twisted) symmetric sixth power L-function is a factor of the adjoint L-function of the Kim-Ramakrishnan-Shahidi lift of f to GSp ${ }_{4}$. We define the de Rham-Whittaker periods associated to globally generic cohomological cuspidal automorphic representations of GSp_{4}. In the case of the Kim-Ramakrishnan-Shahidi lift, we establish some periods relations between the de Rham-Whittaker periods and powers of Petersson norms of f. The conjecture then follows from our previous results [CI19], [Che22a]. Following is our main result for $n=5$ (see also Remark 1.3 for higher n):

Theorem 1.2 ([Che22c]). If $\kappa \geqslant 6$, then Conjecture 1.1 holds.
Remark 1.3. Recently, we have proved Conjecture 1.1 in [Che22b, Theorem 5.11] when n is odd, κ is odd, and $\kappa \geqslant 5$. It's an ongoing project of the author to prove Conjecture 1.1 when n is even under the same assumptions on κ.
1.2. Quadruple product L-functions. As another example of Deligne's conjecture, we consider quadruple product L-functions of modular forms. Let $f_{i} \in S_{\kappa_{i}}\left(N_{i}, \omega_{i}\right)$ be normalized elliptic newform for $i=1,2,3,4$. Define the quadruple product L-function $L\left(s, f_{1} \otimes f_{2} \otimes f_{3} \otimes f_{4}\right)$ by an Euler product

$$
L\left(s, f_{1} \otimes f_{2} \otimes f_{3} \otimes f_{4}\right)=\prod_{p} L_{p}\left(s, f_{1} \otimes f_{2} \otimes f_{3} \otimes f_{4}\right), \quad \operatorname{Re}(s)>1+\sum_{i=1}^{4} \frac{\kappa_{i}-1}{2}
$$

Here the Euler factors are given by

$$
L_{p}\left(s, f_{1} \otimes f_{2} \otimes f_{3} \otimes f_{4}\right)=\operatorname{det}\left(\mathbf{1}_{16}-A_{1, p} \otimes A_{2, p} \otimes A_{3, p} \otimes A_{4, p} \cdot p^{-s}\right)^{-1}
$$

for $p \nmid N_{1} N_{2} N_{3} N_{4}$. By the results of Jacquet-Shalika [JS81a], [JS81b] and Ramakrishnan [Ram00], the quadruple product L-function admits meromorphic continuation to the whole complex plane and satisfies a functional equation relating $L\left(s, f_{1} \otimes f_{2} \otimes f_{3} \otimes f_{4}\right)$ to $L\left(1+\sum_{i=1}^{4}\left(\kappa_{i}-1\right)-s, f_{1}^{\vee} \otimes f_{2}^{\vee} \otimes f_{3}^{\vee} \otimes f_{4}^{\vee}\right)$. For $1 \leqslant i \leqslant 4$, let $G\left(\omega_{i}\right)$ be the Gauss sum of ω_{i} and $\left\|f_{i}\right\|$ the Petersson norm of f_{i} defined by

$$
\left\|f_{i}\right\|=\operatorname{vol}\left(\Gamma_{0}\left(N_{i}\right) \backslash \mathfrak{H}\right)^{-1} \int_{\Gamma_{0}\left(N_{i}\right) \backslash \mathfrak{H}}\left|f_{i}(\tau)\right|^{2} y^{\kappa_{i}-2} d \tau
$$

Assume $\kappa_{1} \geqslant \kappa_{2} \geqslant \kappa_{3} \geqslant \kappa_{4}$. We have three types of critical ranges:

$$
\begin{cases}\kappa_{1}+\kappa_{4}-1>\kappa_{1}-\kappa_{4}+1>\kappa_{2}+\kappa_{3}-1>\kappa_{2}-\kappa_{3}+1 & \text { Case 1, } \\ \kappa_{1}+\kappa_{4}-1>\kappa_{2}+\kappa_{3}-1>\kappa_{1}-\kappa_{4}+1>\kappa_{2}-\kappa_{3}+1 & \text { Case 2, } \\ \kappa_{2}+\kappa_{3}-1>\kappa_{1}+\kappa_{4}-1>\kappa_{1}-\kappa_{4}+1>\kappa_{2}-\kappa_{3}+1 & \text { Case 3. }\end{cases}
$$

In [Bla87], Blasius explicitly computed Deligne's periods of tensor product motives for GL_{2}. In particular, we have the following refinement of Deligne's conjecture for the quadruple product L-function:
Conjecture 1.4 (Blasius). Let $m \in \mathbb{Z}$ be a critical point for $L\left(s, f_{1} \otimes f_{2} \otimes f_{3} \otimes f_{4}\right)$. We have

$$
\sigma\left(\frac{L\left(m, f_{1} \otimes f_{2} \otimes f_{3} \otimes f_{4}\right)}{(2 \pi \sqrt{-1})^{8 m} \cdot c\left(f_{1} \otimes f_{2} \otimes f_{3} \otimes f_{4}\right)}\right)=\frac{L\left(m,{ }^{\sigma} f_{1} \otimes^{\sigma} f_{2} \otimes{ }^{\sigma} f_{3} \otimes^{\sigma} f_{4}\right)}{(2 \pi \sqrt{-1})^{8 m} \cdot c\left({ }^{\sigma} f_{1} \otimes^{\sigma} f_{2} \otimes^{\sigma} f_{3} \otimes{ }^{\sigma} f_{4}\right)}, \quad \sigma \in \operatorname{Aut}(\mathbb{C})
$$

Here

$$
c\left(f_{1} \otimes f_{2} \otimes f_{3} \otimes f_{4}\right)=(2 \pi \sqrt{-1})^{4 \sum_{i=1}^{4}\left(1-\kappa_{i}\right)} \cdot \prod_{i=1}^{4} G\left(\omega_{i}\right)^{4} \cdot\left(\pi \cdot\left\|f_{i}\right\|\right)^{t_{i}}
$$

with

$$
\left(t_{1}, t_{2}, t_{3}, t_{4}\right)= \begin{cases}(4,0,0,0) & \text { Case 1 } \\ (3,1,1,1) & \text { Case 2, } \\ (2,2,2,0) & \text { Case 3 }\end{cases}
$$

When two of the f_{i} 's are CM by the same imaginary quadratic extension, the quadruple product L function decomposes into product of triple product L-functions. In this special case, Conjecture 1.4 reduces to Deligne's conjecture for triple product L-functions. For the general case, recently we were able to prove the conjecture under certain parity and regularity conditions on the weights. Following theorem is a special case of [Che22b, Theorem 5.8] $(n=4)$:

Theorem 1.5. Conjecture 1.4 holds under the following conditions:
(1) $\kappa_{1}+\kappa_{2}+\kappa_{3}+\kappa_{4}$ is even.
(2) $\left|\sum_{i=1}^{4}\left(\varepsilon_{i}-\varepsilon_{i}^{\prime}\right)\left(\kappa_{i}-1\right)\right| \geqslant 6$ for all $\left(\varepsilon_{1}, \cdots, \varepsilon_{4}\right)$ and $\left(\varepsilon_{1}^{\prime}, \cdots, \varepsilon_{4}^{\prime}\right)$ in $\{ \pm 1\}^{4}$.

2. Sketch of proof

2.1. Sketch of proof of Theorem 1.2. Let Π be an automorphic representation of $\mathrm{GL}_{n}(\mathbb{A})$, where \mathbb{A} denotes the ring of adeles of \mathbb{Q}. We say Π is regular algebraic if the infinitesimal character of Π_{∞} is regular and belongs to $\left(\mathbb{Z}+\frac{n+1}{2}\right)^{n}$. We say Π is tamely isobaric if it is isobaric and the exponents of the summands are the same. First we recall the following theorem which is a consequence of (a variant of) the result of Raghuram [Rag10]. It is an algebraicity result on the ratio of product of critical values of Rankin-Selberg L-functions of regular algebraic tamely isobaric automorphic representations.

Theorem 2.1. Let Σ, Σ^{\prime} (resp. Π, Π^{\prime}) be regular algebraic tamely isobaric automorphic representations of $\mathrm{GL}_{n}(\mathbb{A})\left(\right.$ resp. $\left.\mathrm{GL}_{n^{\prime}}(\mathbb{A})\right)$ satisfying the following conditions:
(1) Σ and Σ^{\prime} are cuspidal.
(2) $n^{\prime}=n-1$ and $\left(\Sigma_{\infty}, \Pi_{\infty}\right)$ is balanced.
(3) $\Sigma_{\infty}=\Sigma_{\infty}^{\prime}$ and $\Pi_{\infty}=\Pi_{\infty}^{\prime}$.

Let $m_{0} \in \mathbb{Z}+\frac{n+n^{\prime}}{2}$ be a critical point for $L(s, \Sigma \times \Pi)$ such that $L\left(m_{0}, \Sigma \times \Pi^{\prime}\right) \cdot L\left(m_{0}, \Sigma^{\prime} \times \Pi\right) \neq 0$. Then, for $\sigma \in \operatorname{Aut}(\mathbb{C})$, we have

$$
\sigma\left(\frac{L\left(m_{0}, \Sigma \times \Pi\right) \cdot L\left(m_{0}, \Sigma^{\prime} \times \Pi^{\prime}\right)}{L\left(m_{0}, \Sigma \times \Pi^{\prime}\right) \cdot L\left(m_{0}, \Sigma^{\prime} \times \Pi\right)}\right)=\frac{L\left(m_{0},{ }^{\sigma} \Sigma \times{ }^{\sigma} \Pi\right) \cdot L\left(m_{0},{ }^{\sigma} \Sigma^{\prime} \times{ }^{\sigma} \Pi^{\prime}\right)}{L\left(m_{0},{ }^{\sigma} \Sigma \times{ }^{\sigma} \Pi^{\prime}\right) \cdot L\left(m_{0},{ }^{\sigma} \Sigma^{\prime} \times{ }^{\sigma} \Pi\right)} .
$$

Remark 2.2. In practice, conditions (1) and (2) are too strong for application. In [Che22b, Theorem 1.2], we remove conditions (1) and (2). Instead, we impose some parity and regularity conditions on Σ_{∞} and Π_{∞}.

Back to our normalized newform $f \in S_{\kappa}(N, \omega)$. We may assume that f is not a CM-form. Let $\Pi(f)$ be a regular algebraic cuspidal automorphic representation of $\mathrm{GL}_{2}(\mathbb{A})$ generated by f (it is unique up to twisting by integral powers of the adelic absolute value $\left|\left.\right|_{\mathbb{A}}\right)$. For $n \geqslant 1$, let $\operatorname{Sym}^{n} \Pi(f)$ be the functorial lift of $\Pi(f)$ to $\mathrm{GL}_{n+1}(\mathbb{A})$ with respect to the symmetric n-th power representation of $\mathrm{GL}_{2}(\mathbb{C})$. The existence of the lifts was proved by Newton and Thorne [NT21a], [NT21b] (see also [GJ72], [KS02], [Kim03], [CT15], [CT17] for $n \leqslant 8$). It is easy to see that $\operatorname{Sym}^{n} \Pi(f)$ is regular algebraic and tamely isobaric. Since we assumed that f is not a CM-form, $\operatorname{Sym}^{n} \Pi(f)$ is cuspidal. To prove Conjecture 1.1 for $n=5$, we apply Theorem 2.1 in the case $\mathrm{GL}_{4} \times \mathrm{GL}_{3}$. More precisely, let Σ and Π be regular algebraic cuspidal automorphic representations of $\mathrm{GL}_{4}(\mathbb{A})$ and $\mathrm{GL}_{3}(\mathbb{A})$ respectively defined by

$$
\Sigma=\operatorname{Sym}^{3} \Pi(f), \quad \Pi=\operatorname{Sym}^{2} \Pi(f)
$$

One can verify easily that $\left(\Sigma_{\infty}, \Pi_{\infty}\right)$ is balanced (cf. [Rag10, Theorem 5.3]). For a cuspidal automorphic representation τ of $\mathrm{GL}_{2}(\mathbb{A})$, let $\Pi(f) \boxtimes \tau$ be the functorial lift of the Rankin-Selberg convolution of $\Pi(f)$ and τ to $\mathrm{GL}_{4}(\mathbb{A})$. The existence of the lift was proved by Ramakrishnan in [Ram00]. We assume further τ is chosen so that:

- τ is regular algebraic and non-CM.
- $\left(\Pi(f)_{\infty} \boxtimes \tau_{\infty}\right) \otimes\left|\left.\right|_{\infty} ^{-1 / 2}=\Sigma_{\infty}\right.$.

We also choose an algebraic Hecke character of \mathbb{A}^{\times}such that

$$
\left(\tau_{\infty} \otimes| |_{\infty}^{-1 / 2}\right) \boxplus \chi_{\infty}=\Pi_{\infty}
$$

Let Σ^{\prime} and Π^{\prime} be isobaric automorphic representations of $\mathrm{GL}_{4}(\mathbb{A})$ and $\mathrm{GL}_{3}(\mathbb{A})$ respectively defined by

$$
\Sigma^{\prime}=(\Pi(f) \boxtimes \tau) \otimes| |_{\mathbb{A}}^{-1 / 2}, \quad \Pi^{\prime}=\left(\tau \otimes| |_{\mathbb{A}}^{-1 / 2}\right) \boxplus \chi
$$

By our assumptions on τ and χ, it is easy to see that Σ^{\prime} (resp. Π^{\prime}) is regular algebraic and cuspidal (resp.tamely isobaric), and $\Sigma_{\infty}=\Sigma_{\infty}^{\prime}, \Pi_{\infty}=\Pi_{\infty}^{\prime}$. Therefore, by Theorem 2.1, for all non-central critical points $m+\frac{1}{2} \in \mathbb{Z}+\frac{1}{2}$ for $L(s, \Sigma \times \Pi)$, we have

$$
\begin{equation*}
L\left(m+\frac{1}{2}, \Sigma \times \Pi\right) \sim \frac{L\left(m+\frac{1}{2}, \Sigma \times \Pi^{\prime}\right) \cdot L\left(m+\frac{1}{2}, \Sigma^{\prime} \times \Pi\right)}{L\left(m+\frac{1}{2}, \Sigma^{\prime} \times \Pi^{\prime}\right)} \tag{2.1}
\end{equation*}
$$

Here \sim means the ratio of left-hand side by right-hand side is equivariant under $\operatorname{Aut}(\mathbb{C})$. On the other hand, we have the following factorizations of L-functions:

$$
\begin{align*}
L(s, \Sigma \times \Pi) & =L\left(s, \operatorname{Sym}^{5} \Pi(f)\right) \cdot L\left(s, \operatorname{Sym}^{3} \Pi(f) \otimes \omega_{\Pi(f)}\right) \cdot L\left(s, \Pi(f) \otimes \omega_{\Pi(f)}^{2}\right) \\
L\left(s, \Sigma \times \Pi^{\prime}\right) & =L\left(s-\frac{1}{2}, \operatorname{Sym}^{3} \Pi(f) \times \tau\right) \cdot L\left(s, \operatorname{Sym}^{3} \Pi(f) \otimes \chi\right) \tag{2.2}\\
L\left(s, \Sigma^{\prime} \times \Pi\right) & =L\left(s-\frac{1}{2}, \operatorname{Sym}^{3} \Pi(f) \times \tau\right) \cdot L\left(s-\frac{1}{2}, \Pi(f) \times \tau \otimes \omega_{\Pi(f)}\right) \\
L\left(s, \Sigma^{\prime} \times \Pi^{\prime}\right) & =L(s-1, \Pi(f) \times \tau \times \tau) \cdot L\left(s-\frac{1}{2}, \Pi(f) \times \tau \otimes \chi\right)
\end{align*}
$$

Here $\omega_{\Pi(f)}$ is the central character of $\Pi(f)$. By the result of Shimura [Shi76], Deligne's conjecture holds for $L\left(s, \Pi(f) \times \tau \otimes \omega_{\Pi(f)}\right)$ and $L(s, \Pi(f) \times \tau \otimes \chi)$. By the results of Garrett-Harris [GH93] and the author [Che21a], Deligne's conjecture holds for the triple product L-function $L(s, \Pi(f) \times \tau \times \tau)$. When $\kappa \geqslant 3$, Deligne's conjecture also holds for $L\left(s, \operatorname{Sym}^{3} \Pi(f) \otimes \omega_{\Pi(f)}\right)$ (cf. [Che21a, Theorem 1.6]). Consider the descent of $\operatorname{Sym}^{3} \Pi(f)$ to $\mathrm{GSp}_{4}(\mathbb{A})$. By the results of Morimoto [Mor14], [Mor18] and the author [Che21b], we see that Deligne's conjecture holds for $L\left(s, \operatorname{Sym}^{3} \Pi(f) \times \tau\right)$ when $\kappa \geqslant 6$. We then conclude from (2.1) that Conjecture 1.1 for $n=5$ holds for non-central critical points. Indeed, it is easy to deduce from (2.1) and Deligne's conjecture for the L-functions on the right-hand sides of (2.2) (except for $\operatorname{Sym}^{5} \Pi(f)$) that $L^{(\infty)}\left(m+\frac{1}{2}, \operatorname{Sym}^{5} \Pi(f)\right)$ is equivalent to some integral powers of $2 \pi \sqrt{-1}, \delta(f)$, and $c^{ \pm}(f)$. A straightforward computation shows that the exponents do coincide with the expected ones. For the central critical point, Conjecture 1.1 follows from the non-central critical points together with the result of Harder-Raghuram [HR20].
2.2. Sketch of proof of Theorem 1.5. The idea of the proof is similar as above. We apply Theorem 2.1 in the case $\mathrm{GL}_{4} \times \mathrm{GL}_{4}$ (cf. Remark 2.2). Let Π_{i} be a regular algebraic cuspidal automorphic representation of $\mathrm{GL}_{2}(\mathbb{A})$ generated by f_{i} for $i=1,2,3,4$. Let Σ and Π be the regular algebraic tamely isobaric automorphic representations of $\mathrm{GL}_{4}(\mathbb{A})$ defined by

$$
\Sigma=\left(\Pi_{1} \boxtimes \Pi_{2}\right) \otimes| |_{\mathbb{A}}^{1 / 2}, \quad \Pi=\left(\Pi_{3} \boxtimes \Pi_{4}\right) \otimes| |_{\mathbb{A}}^{-1 / 2}
$$

Let $\Pi_{1}^{\prime}, \Pi_{2}^{\prime}, \Pi_{3}^{\prime}, \Pi_{4}^{\prime}$ be auxiliary regular algebraic cuspidal automorphic representations of $\mathrm{GL}_{2}(\mathbb{A})$ such that

$$
\Pi_{1, \infty}^{\prime} \boxplus \Pi_{2, \infty}^{\prime}=\Sigma_{\infty}, \quad \Pi_{3, \infty}^{\prime} \boxplus \Pi_{4, \infty}^{\prime}=\Pi_{\infty}
$$

Let Σ^{\prime} and Π^{\prime} be the regular algebraic tamely isobaric automorphic representations of $\mathrm{GL}_{4}(\mathbb{A})$ defined by

$$
\Sigma^{\prime}=\Pi_{1}^{\prime} \boxplus \Pi_{2}^{\prime}, \quad \Pi^{\prime}=\Pi_{3}^{\prime} \boxplus \Pi_{4}^{\prime} .
$$

The assumptions (1) and (2) in Theorem 1.5 then implies that Theorem 2.1 holds in our case. Therefore, we have

$$
\begin{equation*}
L(m, \Sigma \times \Pi) \sim \frac{L\left(m, \Sigma \times \Pi^{\prime}\right) \cdot L\left(m, \Sigma^{\prime} \times \Pi\right)}{L\left(m, \Sigma^{\prime} \times \Pi^{\prime}\right)} \tag{2.3}
\end{equation*}
$$

for all critical points $m \in \mathbb{Z}$ for $L(s, \Sigma \times \Pi)$. On the other hand, we have the following factorizations of L-functions:

$$
\begin{align*}
L(s, \Sigma \times \Pi) & =L\left(s, \Pi_{1} \times \Pi_{2} \times \Pi_{3} \times \Pi_{4}\right) \\
L\left(s, \Sigma \times \Pi^{\prime}\right) & =L\left(s+\frac{1}{2}, \Pi_{1} \times \Pi_{2} \times \Pi_{3}^{\prime}\right) \cdot L\left(s+\frac{1}{2}, \Pi_{1} \times \Pi_{2} \times \Pi_{4}^{\prime}\right) \\
L\left(s, \Sigma^{\prime} \times \Pi\right) & =L\left(s-\frac{1}{2}, \Pi_{3} \times \Pi_{4} \times \Pi_{1}^{\prime}\right) \cdot L\left(s-\frac{1}{2}, \Pi_{3} \times \Pi_{4} \times \Pi_{2}^{\prime}\right) \tag{2.4}\\
L\left(s, \Sigma^{\prime} \times \Pi^{\prime}\right) & =L\left(s, \Pi_{1}^{\prime} \times \Pi_{3}^{\prime}\right) \cdot L\left(s, \Pi_{1}^{\prime} \times \Pi_{4}^{\prime}\right) \cdot L\left(s, \Pi_{2}^{\prime} \times \Pi_{3}^{\prime}\right) \cdot L\left(s, \Pi_{2}^{\prime} \times \Pi_{4}^{\prime}\right)
\end{align*}
$$

By the result of Shimura [Shi76], we known that Deligne's conjecture holds for the Rankin-Selberg L-functions for $\mathrm{GL}_{2} \times \mathrm{GL}_{2}$. Therefore, by (2.3), we are reduced to show that Deligne's conjecture holds for the triple product L-functions appear on the right-hand sides of (2.4). For these triple product L-functions, we can play the same trick as above. This time apply Theorem 2.1 in the case $\mathrm{GL}_{4} \times \mathrm{GL}_{2}$.

Acknowledgement. The authors would like to thank Professor Kazuki Morimoto and Professor Tadashi Miyazaki for giving him the opportunity to give a talk at the conference.

References

[Bla87] D. Blasius. Appendix to Orloff, Critical values of certain tensor product L-functions. Invent. Math., 90:181-188, 1987.
[BLGHT11] T. Barnet-Lamb, D. Geraghty, M. Harris, and R. Taylor. A family of Calabi-Yau varieties and potential automorphy II. Publ. Res. Inst. Math. Sci., 47(1):29-98, 2011.
[Che21a] S.-Y. Chen. Algebraicity of critical values of triple product L-functions in the balanced case. 2021. arXiv:2108.02111.
[Che21b] S.-Y. Chen. On Deligne's conjecture for symmetric fourth L-functions of Hilbert modular forms. 2021. arXiv:2101.07507.
[Che21c] S.-Y. Chen. On Deligne's conjecture for symmetric sixth L-functions of Hilbert modular forms. 2021. arXiv:2110.06261.
[Che22a] S.-Y. Chen. Algebraicity of critical values of adjoint L-functions for GSp 4 . Ramanujan J., 2022. DOI:10.1007/s11139-022-00582-4.
[Che22b] S.-Y. Chen. Algebraicity of ratios of special values of Rankin-Selberg L-functions and applications to Deligne's conjecture. 2022. arXiv:2205.15382.
[Che22c] S.-Y. Chen. On Deligne's conjecture for symmetric fifth L-functions of modular forms. Forum Math., 2022. DOI: 10.1515/forum-2021-0278.
[CI19] S.-Y. Chen and A. Ichino. On Petersson norms of generic cusp forms and special values of adjoint L-functions for GSp_{4}. 2019. arXiv:1902.06429.
[CT15] L. Clozel and J. A. Thorne. Level-raising and symmetric power functoriality, II. Ann. of Math., 181:303-359, 2015.
[CT17] L. Clozel and J. A. Thorne. Level-raising and symmetric power functoriality, III. Duke Math. J., 166(2):325-402, 2017.
[Del71] P. Deligne. Formes modulaires et représentations ℓ-adiques. In Séminaire Bourbaki 1968/69, volume 179 of Lecture Notes in Mathematics, pages 139-172. Springer-Verlag, 1971.
[Del79] P. Deligne. Valeurs de fonctions L et périodes d'intégrales. In Automorphic Forms, Representations and LFunctions, volume 33, Part 2 of Proceedings of Symposia in Pure Mathematics, pages 313-346. Amer. Math. Soc., 1979.
[Gar87] P. Garrett. Decomposition of Eisenstein series: Rankin Triple Products. Ann. of Math., 125(2):209-235, 1987.
[GH93] P. Garrett and M. Harris. Special values of triple product L-functions. Amer. J. Math., 115(1):161-240, 1993.
[GJ72] R. Godement and H. Jacquet. Zeta functions of simple algebras, volume 260 of Lecture Notes in Mathematics. Springer, 1972.
[GL21] H. Grobner and J. Lin. Special values of L-functions and the refined Gan-Gross-Prasad conjecture. Amer. J. Math., 143(3):859-937, 2021.
[HR20] G. Harder and A. Raghuram. Eisenstein cohomology for GL_{N} and the special values of Rankin-Selberg L-functions, volume 203 of Annals of Mathematics Studies. Princeton University Press, 2020.
[JS81a] H. Jacquet and J. A. Shalika. On Euler products and the classification of automorphic forms I. Amer. J. Math., 103(3):499-558, 1981.
[JS81b] H. Jacquet and J. A. Shalika. On Euler products and the classification of automorphic forms II. Amer. J. Math., 103(4):777-815, 1981.
[Kim03] H. H. Kim. Functoriality for the exterior square of GL4 and the symmetric fourth of GL(2). J. Amer. Math. Soc., 16(1):139-183, 2003.
[KS02] H. H. Kim and F. Shahidi. Functorial products for $\mathrm{GL}_{2} \times \mathrm{GL}_{3}$ and the symmetric cube for GL2. Ann. of Math., 155(2):837-893, 2002.
[Mor14] K. Morimoto. On L-functions for quaternion unitary groups of degree 2 and GL(2) (with an Appendix by M. Furusawa and A. Ichino). Int. Math. Res. Not., 2014(7):1729-1832, 2014.
[Mor18] K. Morimoto. On tensor product L-functions for quaternion unitary groups and GL(2) over totally real fileds: Mixed weight cases. Adv. Math., 337:317-362, 2018.
[Mor21] K. Morimoto. On algebraicity of special values of symmetric 4-th and 6 -th power L-functions for GL(2). Math. Z., 299:1331-1350, 2021.
[NT21a] J. Newton and J. A. Thorne. Symmetric power functoriality for holomorphic modular forms. Publ. Math. IHES, 134:1-116, 2021.
[NT21b] J. Newton and J. A. Thorne. Symmetric power functoriality for holomorphic modular forms, II. Publ. Math. IHES, 134:117-152, 2021.
[Rag10] A. Raghuram. On the special values of certain Rankin-Selberg L-functions and applications to odd symmetric power L-functions of modular forms. Int. Math. Res. Not., (2):334-372, 2010.
[Rag16] A. Raghuram. Critical values for Rankin-Selberg L-functions for $\mathrm{GL}_{n} \times \mathrm{GL}_{n-1}$ and the symmetric cube L-functions for GL_{2}. Forum Math., 28(3):457-489, 2016.
[Ram00] D. Ramakrishnan. Modularity of the Rankin-Selberg L-series, and multiplicity one for SL(2). Ann. of Math., 152:45-111, 2000.
[Sch90] A. J. Scholl. Motives for modular forms. Invent. Math., 100:419-430, 1990.
[Shi75] G. Shimura. On the holomorphy of certain Dirichlet series. Proc. Lond. Math. Soc., 31:79-98, 1975.
[Shi76] G. Shimura. The special values of the zeta functions associated with cusp forms. Comm. Pure Appl. Math., pages 783-804, 1976.
[Stu80] J. Sturm. Special values of zeta functions, and Eisenstein series of half integral weight. Amer. J. Math., 102(2):219240, 1980.
[Stu89] J. Sturm. Evaluation of the symmetric square at the near center point. Amer. J. Math., 111(4):585-598, 1989.
Institute of Mathematics, Academia Sinica, 6F, Astronomy-Mathematics Building, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC

Email address: sychen0626@gate.sinica.edu.tw

[^0]: CITATION：
 CHEN，SHIH－YU．ON DELIGNE＇S CONJECTURE FOR SYMMETRIC FIFTH \＄L\＄－FUNCTIONS AND QUADRUPLE PRODUCT \＄L\＄－ FUNCTIONS OF MODULAR FORMS（Automorphic form，automorphic \＄L\＄－functions and related topicS）．数理解析研究所講究録 2022，2230：119－125

 ISSUE DATE：
 2022－10
 URL：
 http：／／hdl．handle．net／2433／279766
 RIGHT：

