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On the pigeonhole and the modular counting principles over the 

bounded arithmetic v0 
Eitetsu Ken, 

The Graduate School of Mathematical Sciences, 

The University of Tokyo 

Abstract 

The theorem of Ajtai ([1], improved by [11] and [12]), which shows a superpolynomial 
lower bound for AC0-Frege proofs of the pigeonhole principle, was a significant breakthrough 
of proof complexity and has been inspiring many other important works considering the 
strengths of modular counting principles and the pigeonhole principle. In terms of bounded 
arithmetics, the theorem implies that the pigeonhole principle is independent from the 
bounded arithmetic v0. Along the stream of researches, [7] gave the following conjectures 
and showed some sufficient conditions to prove them: 

• V0+UCPtげinjPHP;:+i.

• For any prime number pother than 2, v0 + oddtownk If Count~. 

• For any integer p :::> 2, v0 + FI Ek げ Count~.

Here, injPH~戸 is a formalization of the pigeonhole principle for injections, UCP,ピis
the uniform counting principle defined in [7], Count~ is the modular counting principle 
mod p, oddtownk is a formalization of odd town theorem, and FI Ek is a formalization of 
Fisher's inequality. 
In this article, we give a summary of the work of [7], supplement both technical parts 

and motivations of it, and propose the future perspective. 

1 Keywords 

Proof complexity, AC0-Frege system, bounded arithmetic, v0, Ajtai's theorem, Nullstellensatz 

proof system, pigeonhole principle, modular counting principle, uniform counting principle, 

general counting principle, oddtown theorem, Fisher's inequality. 

2 Introduction 

Ajtai's discovery ([1]) of V げ゚ ontoPHP,：：十1,where ontoP HP,：：十1is a碍侶formalizationof 

the statement "there does not exist a bijection between (n + 1) pigeons and n holes," was a 

significant breakthrough in proof complexity. The techniques which were later formalized in 

[11] as k-evaluation and switching lemma have been utilized to further works to compare the 

relative strengths of various types of counting principles (e.g. [2] and [3]). Along the course 
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of the researches, [7ドgavethe following conjectures and showed some sufficient conditions to 

prove them: 

• v0 + UCPk'dげinjPHP：：十1.

• For any integer p：：：：： 2 whichおn〇ta power of 2,V0 +゚ddtownkIf仰血盈

• For any integer p：：：：： 2, V。＋四且げGou叫化

Here, injPHP,：：十1is a formalization of the pigeonhole principle for injections, UC?, 
l,d 
k is the 

uniform counting principle defined in [7], Count~ is the modular counting principle mod p, 

oddtow閲 isa formalization of oddtown theorem, and FI Ek is a formalization of Fisher's 

inequality. 

In this article, we give a summary of the work of [7], supplement both technical parts and 

motivations of it, and propose the future perspective. 

To be concrete, the article is organized as follows. In section 3, we prepare the basic notions 
and notations which we need. In section 4, we summarize the main parts of [7] with some 

supplements. In section 5, we discuss the outlook of the future research. 

3 Preliminaries 

Throughout this paper, p and q denote natural numbers. The cardinality of a finite set Sis 

denoted by #S. We prioritize the readability and often use natural abbreviations to express 

logical formulae. We assume that the reader is familiar with the basics of bounded arithmetics 

and Frege systems (such as the concepts treated in [6]). Unless stated otherwise, we follow the 

convention of [6]. 

As propositional connectives, we use only V and---,.We assume V has unbounded arity. 
When the arity is small, we also use V to denote V-We define an abbreviation A by 

k k 

八'Pi:=---,V---,cp,.
i=l i=l 

When the arity of /¥ is small, we also use/¥to denote it. We give the operators V and /¥ 
precedence over V and /¥ as for the order of application. 

Example 1. /¥ふ V/¥j朽 means(/¥ふ） V(/¥]杓）．

We also define an abbreviation→by 

（ゃ→心） ：＝ -.cp V心．

For a set S of propositional variables, an S-formula °:1-eans. a propositional formula whose 

propositional variables are among S. For a set S = LJに{s{ hEij of propositional variables 

1 For the latest revised version, see [8]. 
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where each si is distinct, an S-formulaゆ， anda family｛叶｝iEIJ(j = 1,..., k) of propositional 
formulae, 

叫因／s;，・・・，碕／sり
denotes the formula obtained by substituting each叶fors{ simultaneously. 

It is well-known that a喜忍£かformula孤x1,...,xk,R1,...,Rz)can be translated into a 

family {'-P[n1,..., nか叩，．．．，叫｝叫.,nk,m1,…，mzENof propositional formulae (see Theorem VII 
2.3 in [6]). 

Now, we define several formulae which express so-called "counting principle." 

Definition 2. For each p 2: 2, let CountP(n, X) be an.C合formulaas follows (intuitively, it 

says for n羊0(mod p), [n] cannot be p-partitioned): 

Counザ(n,X):=-,pin→ -,((Ve E X.(eく (n+1)P →Code(e,n)) 

八(VkE [n]．ヨeEX.kご e)

八(Ve,e'EX.-,（eJ_ e'))) 

Here, pin is a埓 formulaexpressing p divides n. [n] denotes the set {1,..., n}, and we code a 

p-subset e =｛釘<・ • • < ep} of [n] by the number~「＝1 ei(n+ l)P-i, and Code(e, n) is a natural 
泣 predicatesaying "e is a code of p-subset of n." The elementship relation E* is expressed 

by a natural ~忍—predicate. e.l_ e'means "e=I=e'and en e'=I=0," and it is also expressed by a 

natural靖 predicate.
We also define the propositional formula Count~ as in [9]: 

-,（ /¥kE[n] Ve:kEeE[n]P在^
Count[ ：＝{ /¥e,e’E[n]P e_j_e,（元 V-,rg)）（if n芋0 (mod pl) 

1 ( otherwise) 

Here, [n]P denotes the set of all p-subsets of [n], and {re}eE[n]P is a family of distinct propositional 

variables. 

C onvention 3. It is easy to see that we may assume IX I = (n + l)P in C ountP (n, X) over vu. ゜Furthermore, with suitable identification of propositional variables, Coun伊(x,X)[n, (n+ 1)門is

equivalent to Count~ over AC0-Frege system modulo polynomial-sized proofs. Thus we often 
abuse the notation and write Count~ for Counザ(n,X).

Definition 4. The碑号formulaontoP HP(m, n, R) is a natural expression of the statement 

"If m > n, then R does not give a graph of a bijection between [m] and [n]," in a similar way 

as Counザ(n,X). Similarly, the瑶叶formulainj PH  P(m, n, R) is a natural expression of 

the statement "If m > n, then R does not give a graph of an injection from [m] to [n]." 

We also define the propositional formulae ontoP H ~位 and injPHP;1 by 

ontoPHP：：：．＝［ 
八iE[m]vjE[n] Tij I¥ A年 ’E[m]/¥jE[n](-.rij V -.r;,j) 

/¥ AjE[n] viE[m] Tij 

A A圧j'E[n]/¥iE[m]←Tij V-.叩）） （if m > n) 
1 (otherwise) 
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and 

•(/\iE[m] V jE[n] Tij I¥ /¥i#i'E[m] /¥jE[n] (•Tij V元）

injPH叩：＝｛ AA王 [nlA9E[ml(--,T2JV万）） （ifm > n) 
1 ( otherwise) 

With reasons similar to the one stated in Convention 3, we abuse the notations and use 

ontoPHP,：：： to d血⑯ 叩 ゎPH爪仇n」l)and in炉 HP：：： todeno記切炉HP(仇几m
The following are well-known: 

Theorem 5 ([1], improved by [11] and [12]). 

V0 If ontoPHP;:+1 

Here, we follow the following convention. 

C onvention 6. For E召—formulae 直...，切 and <p, we write 

V゚ ＋切＋..・十切卜¢

to express the fact that the theory v0 U {W加 Ii E [l]} implies W<p. Here, W means the 

universal closure. 

We use different parameters to express concrete心and<p in order to avoid the confusion. We 
also use letters p, q for fixed parameters of formulae (which is not universally quantified in the 

theory). For example, 

v0 + Count~ If Gou噂

means 

v0 + ¥:/k, X.CountP(k, X)げ¥:/n,X. Countq(n, X), 

while v0 If UCP,ビmeansv0げ¥:/l,d, n, R. UCP(l, d, n, R) (for the definition of UCP,肘and

UCP(l, d, n, R), see Definition 12). 
In the former example, note that we have used the different variables k, n in order to avoid 

confusions on the dependency of variables. 

Theorem 7 ([2]). For p, q 2: 2, v0 + Count~ 卜 Counti if and only ifヨNEN. q I pN. 

Theorem 8 ([3]). For any p 2: 2, v0 + Count~ If injPHP,：：十1.

Also, the following is a corollary of the arguments given in [9]: 

Theorem 9 (essentially in [9]). For all p 2: 2, v0 + injPHP!+lげCount¢

Remark 10. Note that the exact statement Theorem 12.5.7 in [9] shows is 

v0 + ontoPHP!+l If Count~. 

However, with a slight change of the argument, it is easy to see that Theorem 9 actually holds. 
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In the proof of Theorem 7 and 8, Nullstellensatz proofs (which is written shortly as "NS-

proofs") play an essential role in the arguments. The notion is also utilized in [7], so we set up 

our terminology on NS-proofs and end this section. 

Definition 11. Let R be a commutative ring, and F be a set of multivariate R-polynomials. 

For multivariate R-polynomials 91, 92 and hf (f E F),｛朽｝fEFis a NS-proof of 91 = 92 from 
F if and only if 

91 -92 =区朽f.
fEF 

The de9ree of a NS-proof {hj}JEF is defined by maxfEFdeg(h1)-Here, we adopt the conven-

tion; deg O := -oo. 

4 A summary of [7] with some supplements and remarks 

In this section, we give a summary of the main works of [7] and supplement some technical 

parts and intuitions. 

4.1 UCP,ドv.s.injPHP,：：十1

The direct motivation of [7] is Theorem 8. It is tried to make the result uniform with respect 

to p. In order to formalize the problem, the following "uniform" version of counting principles 

is defined: 

Definition 12. UCP(l,d,n,R) (which stands for Uniform Counting Principle) is an坑 for-

mula defined as follows: 

(d2:l/¥叫 n)→
吋ViE [l].(Vj E [d]．ヨeE [n].R(i,j,e) VVj E [d]．→ヨeE [n].R(i,j, e)) 

/¥ V(i,j) E [l] x [d].Ve-/ e'E [n]（-.R(i,j,e) v-.R(i,j,e')) 

/¥ V(i,j)-/ (i',j') E [l] x [d].Ve E [n].（-.R(i,j,e) v-.R(i',j', e)) 

/¥ Ve E [n]．ヨ(i,j)E [l] x [d].R(i,j, e)] 

The propositional formula UCP,仔isdefined as follows: 

uep臼：＝

→[ Aい((AfョVeE[n]ri,j,e) V (Af=l'VeE[n]巧，j,e))

加^，j)E[l]x[d]/\洋e'E[n] （ •Ti,j,e V •Ti,j,e') 

I¥ /¥(i,j)#（が，j')E[l]x[d]/¥eE[n]（元j,eV 0ri1,j1,e) 

/¥ /¥eE[n] V (i,j)E[l]x [d]巧，j,e] (if n手0 (mod d), d 2:: 1) 

1 (otherwise) 

As in the previous definitions, we abuse the notation and use UCP:忙toexpress UCP(l, d, n, R). 
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l.d Intuitively, UC p;-,:u states "if n苧0(mod d), then there does not exist a family｛ふ｝iE[l]

which consists of d-sets and emptysets which give a partition of [n]." Each variable ri,j,e reads 

"the j-th element of Si is e." 

We observe the following: 

Proposition 13. 1. For any p 2: 2, v0 l,d 
+ UCP{'a f-Gauntt 

2. v0 + UCP,:,d 
k f-ontoP HP:" n・ 

Hence, UCP,肘isindeed a generalization of counting principles. Seeing theorem 8, [7] 

conjectured the following: 

Conjecture 1. For any integer cミ1,

Fe+ UCPk'd 1/poly(n) injPHP,：：十I.

Here, for a family { a:k}知ENof propositional formulae, Fe + a:k is the fragment of Frege 

system allowing the formulae with depth :S c only and admitting { a:f}°f as an axiom scheme. 

Furthermore, P卜poly(n)'Pnmeans each'Pn has a poly(n)-sized P-proof. 

If this conjecture is true, then it follows that v0 +UC Pk'd If inj PH  P,：：十1by the witnessing 
theorem and the translation theorem. By Proposition 13, we can regard the statement as a 

"uniform" version of Theorem 8. 

In [7], the notions inj PH  P-tree and k-evaluations using inj PH  P-trees are defined, and a 

sufficient condition to prove Conjecture 1 is shown. 

Definition 14. Let D and R be disjoint sets. A partial injection from D to R is a set p which 

satisfies the following: 

1. Each x E p is either a 2-set having one element from D and one element from R, or a 

singleton contained in R (in the former case, if x = { i, j} where i E D and j E R, then 

we use a tuple〈i,j〉todenote x, In the latter case, if x = {j} where j ER, then we use 

1-tuple〈j〉todenote x). 

2. Each pair x=I=が Ep are disjoint. 

The 2-sets in a partial injection p gives a partial bijection from D to R. We denote it by Pbij・ 

Also, we set Psing := P ¥ Pbか

We define v(p) ：＝ U峠Px, dom~p) ~= v(pl n D.'. and ran(p) := v(p) n R. 
For two partial injections p and T from D to R, 

1. Pl Ir if and only if p UT is again a partial injection. 

2. p上Tif and only if Pllr does not hold. In other words, there exist x E p and y ET such 

that x=I=y and xny=I=0. 

3. CYT:＝び UT.
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In the following, if there is no problem, we identify domains having the same size n, and 

denote them Dn. Similarly, we identify ranges R having the same size n, and denote them Rn-

We also assume that for every pair m and n, Dm and尾 aremutually disjoint. 

Definition 15. For each m > n, M閃denotesthe set of all partial injections from Dm to叫

Definition 16. Let D and R be disjoint finite sets. injPHP-tree over (D, R) is a vertex-

labelled and edge-labelled rooted tree defined inductively as follows: 

1. The tree whose only vertex is its root and has no labels is an injP HP-tree over (D, R). 

2. If the root is labelled by "i→?’'having IRI children and each of its edges corresponding 

to each label“〈i,j〉”(jER), and the subtree which the child under the edge labelled by 

“〈i,j〉'’inducesis an inj PH  P-tree over (D ¥ { i}, R ¥ {j}), then the whole labelled tree is 

again an injP HP-tree over (D, R). 

3. If the root is labelled by "?→ j" having (IDI + 1) children and each of its edges corre-
sponding to each label“〈i,j〉”(iED) and“〈j〉,’'andthe subtree which the child under 

the edge indexed by〈i,j〉inducesis an injPHP-tree over (D ¥ {i},R ¥ {j}) while the 
subtree which the the child under the edge labelled by“〈j〉'’inducesis an injPHP-tree 

over (D,R¥ {j}), then the whole tree is again an injPHP-tree over (D,R). 

For an injPHP-tree T, we denote the height (the maximum number of edges in its branches) 

of T by height(T) and the set of its branches by br(T). 

The pair (T, L: br(T)→S) is called a labelled injPHP-tree with label set S. For each label 

s ES, we set br8(T) := L-1(s). 

Convention 17. When Tis an injPHP-tree over (D,R), each branch b E br(T) naturally 

gives a partial injection, which is the collection of labels of edges contained in b. We often 

abuse the notation and use b to denote the partial injection given by b. 

Definition 18. Let r be a subformula closed set of {rij}iEDm,jERn-formulae (m > n). A 

k-evaluation (using injPHP-trees) of I'is a map T:'-P E r →Tip satisfying the following: 

1. Each T'P is a labelled injPHP-tree over (D加 Rn)with label set {O, 1 }. 

2. T。isthe inj PH  P-tree with height 0, whose only branch is labeled by 0. 

3. T1 is the inj PH  P-tree with height 0, whose only branch is labeled by 1. 

4.尻 isthe injPHP-tree over (Dm,R叫withheight 1, whose label of the root is i→?and 

br1(Trij) =｛〈i,j〉}.

5. T~ip = T~, that is, Tマ isobtained from冗 byflipping the labels O and 1. 

6. TyiEI'Pi (where each'-Pi does not begin from v) represents uiEJ妃 (TipJ-Here, we say a 
{O, 1}-labelled injPHP-tree T represents a set F of partial injections if and only if the 
following hold: 

(a) For each b E br1 (T), there exists aぴ EF such that u C b. 
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(b) For each b E bro (T), every O'E F satisfiesび J_b. 

Theorem 19. Let f: N→N be a function satisfying n < f(n)::; n°C1l. Suppose(％）立1be a 
f(n) l d 

sequence of Frege-proofs such that冠 provesinjPHP/,,''"1 using UCP,,,'~ as an axiom scheme. 
Then there cannot be a sequence (Tり立1satisfying the following: each仔 isan o(n)-

evaluation using injPHP-trees over (DJ(n), Rn) of r n, where r n is the set of all subformulae 

appearing in冠

Roughly saying, an injPHP-tree is a kind of decision tree, and a k-evaluation using 
injP HP-trees is a kind of model of propositional logic, where k is a complexity measure 

J(n) 
of the model. The theorem can be read that any Frege-proof of injPHP/,,''"1 using UCPi; l.d 

cannot have a simple model. 

Hence, we obtain the following; 

Corollary 20. Assume Fe+ ucp;, l.d t'a f-poly(n) injPHP,：：十1is witnessed by AC0-Frege proofs 

（叩）n::O:l・ Suppose there are partial injections (Pn)n::O:l satisfying 

• For each n, Pn E M~+l. 

• n -#ran(pn)→oo (n→oo). 

• There exist o(n -# ran(pn))-evaluations (Tり立1of r~, where几 isthe all subformulae 

appearing in豆

Then we obtain a contradiction. 

The condition above is an analogue of the switching lemma used in a standard proof of 

Ajtai's theorem (see Lemma 15.2.2 and the section 15. 7 in [10] for reference and the historical 
remarks). It seems the proof of that this condition holds is beyond the current proof techniques. 
The difficulty is relevant to that of the famous open problem; does v0 f-injPHPJn hold? For 

future perspectives, see section 5. 

On the other hand, there is a natural generalization of counting principles which also implies 
injPHP,：：十1.

Definition 21. GCP(P, Qi, Q2, R1, R2, Mo, M1, M分(whichstands for Generalized Counting 

Principle) is a喝名 £1-formulaexpressing the following statement: bounded sets 

P, Qi, Q2, R1, R2, Mo, M1, M2 

cannot satisfy the conjunction of following properties: 

1. M。codesa bijection between (P x Q1) LJ R1 and (P x Q叫LJR2. 

2. M1 is an injection from R1 to R2 such that some element a E恥 isout of its range. 

3.恥 isan injection from恥 toP such that some element b E P is out of its range. 

Remark 22. We can consider the propositional translation of GCP as well as the previous 
l,d examples UCP;;a, Gauntt etc. However, we do not write it down here because we do not use 

it this time. 
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It is easy to see that: 

p roposition 23. 1. v0 + l.d 
GCP f--UCPn'． 

2. v0 + GCP f--injPHP,：：十1.

It is natural to ask: 

Question 1. 1. Does the following hold?: v0 l,d +UCP 卜GCP.k 

2. Is there any other combinatorial principle than GCP which also implies injPHP,：：十1and 

some of Count~? 

If the conjecture 1 is true, then the answer to the question 1 is no (since GCP implies 

injPHP,：：十1).

As for question 2, [7] considered oddtown theorem. 

4.2 On the strength of oddtown theorem 

Oddtown theorem is a combinatorial principle stating that there cannot be (n+l)-orthogonal 

normal vectors in lF~. In other words, (regarding each v E lF~ as the characteristic vector of a 

subset SC [n]) there cannot be a family (S;)iE[n+l] satisfying the following: 

• Eachふhasan odd cardinality. 

• Each S; n S;, (i < i') has an even cardinality. 

Historically, oddtown theorem and Fisher's inequality (introduced in Section 4.3) have been 

candidates for statements which are easy to prove in extended Frege system but not in Frege 

system ([4]). However, we still do not know the exact strengths of the principles. 

[7] first showed that a natural formalization of oddtown theorem over v0 is stronger than 
several combinatorial principles related to counting. 

Definition 24. Define the葛召 £1-formulaoddtown(n, P, Q, R, S) as follows: 

吋¥/iE [n + 1].¥/j E [n].(S(i,j)⇔ Q(i,j) Vヨe€ [n]2.（J・ご eI¥ P(i, e)) 

八Vi€ [n + 1]．ヨjE [n].Q(i,j) 

AVi € [n + 1] ．Vj ヂ j'€ [n]．（--,Q(i,j) V--,Q(i,j')) 

I¥ ¥/i E [n + 1].¥/j E [n].¥/e E [nド(jご e→ --,Q(i,j)V--,P(i, e)) 
八ViE [n + 1].¥/e =f e'E [n]2(e n e'=f 0→ --,P(i,e)V--,P(i, e')) 
I¥ ¥/i < i'E [n + 1].¥/j E [n].(S(i,j) /¥ S(i',j) ++ヨeE [n門(jE* e I¥ R(i, i', e))) 

I¥ ¥/i < i'E [n + 1].¥/eヂe'E[n]2.(e n e'ヂ0-+,R(i,i',e) V--,R(i, i', e'))] 

Intuitively, S above gives S; := {j E [n] I S(i,j)}, P gives a 2-partition of each S; leaving 

one element, which is specified by Q, and R gives a 2-partition of each S; n S;, (i < i'). 
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Definition 25. Define the propositional formula oddtownn as follows: 

oddtow加：＝

1 (n = 0) 

---,[ /¥iE[n+l] /¥jE[n](---,Sij V % V Ve:jEeE[n]2 Pie) 

/¥ (¥iE[n+l] (¥jE[n](Sij V褐）

AA9E[n+1] AJE[n]八口EeE[n]2(sij V加 e)

A A紀 [n+l]vjE[n] % 

/¥ /¥iE[n+l] /¥j<j'E[n] (---,q9J V ---,%') 

/¥ /¥iE[n+l] /¥jE[n] Ae:jEeE[n]2 (---,q9J V ---,Pie) 

A A9E[n+1］八，e'E[n]2:e1-e'(---,PieV---,知）

I¥ (¥i<i'E[n+l]八jE[n](---,Sij V---,8i'j V Ve:jEeE[n]2扉 e)

I¥ (¥i<i'E[n+l]八jE[n]八e:jEeE[n]2(8ijV---,Tii'e) 

A Atく衣[n+l]/¥jE[n] Ae:jEeE[n]2(8i'j V---,r叫

A A9く店[n+1]ん，e'E[n]2:e1-e'(---,r叩 V---,r，心）］ （n ~ 1) 

By a reason similar to that of Convention 3, we abuse the notation and write oddtownn to 

express oddtown(n, P, Q, R, S), too. It quickly turns out that: 

Proposition 26. 1. v0 + oddtownk f--injPH~：：：十 1.

2. v0 + oddtownk卜Count;,.

By theorem 8 and 9, we obtain 

Corollary 27. 

v0 + injPHPf+l tf oddtownn, 

v0 + Count~ げ oddtownn-

This rases the following natural problems: 

Question 2. 1. v0 + injPHPf+l + Count~ f--oddtown設 Howabout v0 + GC P f--
oddtown設

2. v0 + oddtownk f--Count{;; for which p? 

[7] tackled the item 2. 
From Proposition 26 and Theorem 7, it is easy to see: 

Corollary 28. If pis a power of 2, v0 + oddtownk f--Count{:;. 

[7] conjectured that the converse of this corollary holds. Furthermore, [7] conjectured the 

following: 

Conjecture 2. For each d E N and a prime p =J 2, Fd + oddtownk 咋~oly(n) Count化
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Using Theorem 7, it is easy to see that Conjecture 2 implies the converse of Corollary 28. 

[7] gave a sufficient condition to prove Conjecture 2: 

Theorem 29. Let p EN  be a prime other than 2. Suppose Fd + oddtownk f-poly(n) Count化
Then there exists a constant E > 0 such that for large enough n季0(mod p), there exists 

m EN  and a family (fij)iE[m+l],jE[m] of lF2-polynomials such that: 

1. mこ 詑(1).

2. For each i € [m+1]，there exists a NS-proofover恥 of区巧[m]ん＋1＝ 0 from ---,Coun恐
with degree::; O(log(n)) (here, we roundが tothe nearest integer which is not a multiple 

of p). 

3. For each i -/ i'E [m + 1], there exists a NS-proof over恥 of~jE[m] 几恥＝ 0 from 

---,Count~, with degreeさO(log(n)).

Here,---,Count岱(whereM 羊0(mod p)) means the following system of polynomials: 

こ叩一 1,x訊 e',x; -Xe 
e:JEeE[M]P 

(j E [M],e,e'E [M]丸el_ e') 

Hence, if we can prove that such E does not exist, then the Conjecture 2 is true. 

Roughly saying, the theorem states the following; if v0 + oddtownk 卜 Count~, then there 

exists a constant E > 0 such that for each n, we can construct a vector of n°C1) many F2-

polynomials whose violating oddtown condition can be verified by a NS-proof from -.Coun応
over恥 withdegree ::; O(log(n)). 

4.3 On the strength of Fisher's inequality 

When we discuss whether the condition given in Theorem 29 act叫 lyholds or not, it is 

natural to also consider the応 analogueof the condition, where区 isan arbitrary field other 

than『2-The next combinatoial principle (see Remark 31 for the informal meaning) relates to 

a condition which has a similar form to the analogue. 

Definition 30 (slightly modified from the version given in [7]り． Wedefine the瑶 店 formula

2see Remark 31 
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FIE(n,S,R) as follows: 

FIE(n,S,R) := 

噌 iE [n + 1]ヨjE [n]S(i,j) 

AVi1く砂 E[n+ 1]ヨjE [n]((S(i1,j) A-.S(i2,j)) V（-.S(i1,j) A S(i2,j))) 

AVi1く砂 E[n+l]Vii < i~ E [n+l]Vj E [n] 

（-.S(i1,j) V -.S(i2,j) Vヨj'E[n]R(i1,i2,ii,i~,j,j1)) 

＾叩 <i2E [n+l]Vii < i~ E [n+ l]Vj'E [n] 

（-.S(ii, j) V -.S(i~, j) VヨjE [n]R(i1, i2, ii, i~,j,j')) 

＾向く砂 E[n + l]Vii < i~ E [n + l]Vj,j'E [n] 

（遺(i1,i2,ii,i~,j,j') V S(i1,j)) 

八如く砂 E[n + l]Vii < i~ E [n + l]Vj,j'E [n] 

（遣（i1, 砂， ii,i~,j,j') VS（松j))

AVi1く砂 E[n + l]Vii < i~ E [n + l]Vj,j'E [n] 

（遺(ii,i2, ii, i公，j,j')V S(ii,j')) 

＾向く砂 E[n + l]Vii < i~ E [n + l]Vj,j'E [n] 

（遺(i1,i2,ii,i~,j,j') V S(i~,j')) 

A叩く砂 E[n + l]Vii < i~ E [n + l]Vj E [n]Vj'-/c j" E [n] 

（遺(i1,i2,ii,i~,j,j') V→R(i1, i2, ii, i~,j,j'')) 

＾如く砂 E[n + l]Vii < i~ E [n + l]Vj'E [n]Vj -/c J E [n] 

（道（i1,i2, ii, i~, j, j') V -.R(i1, i2, ii, i~ふ j'))]
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Furthermore, we define the propositional formula FI En as follows: 

FIEn:＝→（八 V stJ 
iE[n+l] jE[n] 

I¥ I¥ V ((Bi,j I¥ -.s;2j) V（-.Si,j I¥ Bi2j)) 
れ<i年 [n+l]jE[n]

八 八
., f 

八 八(V V V'1叫 1,'2)---,S紅j ---,Sむj rJ.,J ． I 

れ<i年 [n+1]片＜沿E[n+l]jE[n] J1E[n] 

八 八 八 八(VV V V V V i・ 1 叫•• I 1'"2• f ) ー1S’IlJ ・ →S %IJ ・ rJ.,J , I 
り<i年 [n+l]i~ <i;E[n+l]がE[n] jE[n] 

八 八 八
八（ 9．1叫．• I 心•I V)  

--,rJ.,J ． I 8れj
れ＜砂E[n+l]杓＜沿E[n+l]j,j1E[n] 

＾ 
八 八

八（れ，i2,i~,i;E[n+l] V)  ー1rJ.,J．t Si．2j ． 

n<9年［n+l]i', <i~E[n+l] J,J'E[n] 

＾ 
八 八

八（ 9．1叫．• I 心•I V)  →rJ.,J ．, s t•I 1J •I 
れ<i年 [n+1]杓＜沿E[n+l]j,j'E[n] 

＾ 
八 八

八 (ii11,叫i• I 1,"• I 2 V)  ー1rJ.,J．'S,•92J .， 
れ<i年 [n+1]片＜杓E[n+l]J,j'E[n] 

八 八 八 八 八
(i.1 叫．•I 心•9V rj:. 1,J/.・ 叫•9 直• I ） 
--,rJ.,J ．1 --,II  

れ<i2E[n+l]i~ <i;E[n+l] jE[n] j'cfaj"E[n] 

＾ 
八 八 八 八 （ーずJり・・,J叫・, ・ • I 1 9t• I2 v →T~ Ju.．,J ,． t,.2,t• 1 1 9% • I )） 

釘<i2E[n+l]ii <iらE[n+l]j'E[n] j=/jE[n] 

Remark 31. The above formulae are formalizations of Fisher's inequality: there does not exist 

a family {SふE[n+l]satisfying the following: 

• For each i, 0-/ Si C [n]. 

• For each i1 < i2, Si1 -/ Sゅ・

• For each i1く砂 andi~ < i;, #(Si1 n S叫＝ ＃（St'n s,. 

In the definition of FIE(n, S, R), S intuitively gives a family｛ふ｝iE[n+l],and R gives a family 

of bijections 

{R'l叫凶： si,nsゅ→ si~ n si;};1くり列<i;・ 

Note that the condition 0ヂふ isadded to the version given in [7] to make the statement 

valid in the standard model (if we did not impose the condition, {0, {1 },..., { n}} would give 
a counterexample). 

It is easy to see that FI En is a generalization of the pigeonhole principle. 



199

Proposition 32. v0 + FI Ek f--injPHP,：：十1.Hence, for each p：：：： 2, v0 + Count1げ四恥

It is natural to ask; which p satisfies v0 + FI Ek 卜 Count~?
As for the question, [7] gave the following conjecture: 

Conjecture 3. For any p：：：： 2, Fc+FIEk 在~oly(n) Gou鴫 Inparticular, v0 +FI EkげCount化

We give a slightly modified version of a sufficient condition to prove Conjecture 3 in [7], 

whose change is along that of the formalization of Fisher's inequality given in Definition 30. 

We may interpret the following theorem in a similar way as Theorem 29; roughly saying, the 

theorem states the following; if v0 + FI Ek f--Gauntt then there exists a constant E > 0 such 

that for each n, we can construct a vector of n°<1) many JK-polynomials whose violating Fisher's 

inequality can be verified by a NS-proof from -.Coun応 over照 withdegree ::; O(log(n)) (% 

and bi1i2j work as witnesses of Si=I=0 and Si1=I=出 inRemark 31). 

Theorem 33. Let駁 bea field. Suppose Fd + FI Ek f-poly(n) Gauntt Then there exists a 

constant E > 0 such that for large enough n芋 0(mod p), there exists m E N and fami-

lies (Jij)iE[m+l],jE[m], (%)iE[m+l],jE[m] and (bii1j)iくがE[m+l],jE[m]of応 polynomialssatisむingthe 
following: 

1. m三n0(1) 

2. For each i1 < i2 E [m + 1] and i~ < i~ E [m + 1], there exists a NS-proof of 

m m 

とい加＝ど加f心J
j=l j=l 

from --aCoun岱 overlK with degree S O(log(n)) (note that we roundが tothe nearest 

integer which is not a multiple of p). 

3. For i E [m + 1], there exists a NS-proof of aij(l -Jij) = 0 from --aCoun応 over恥 with

degree S O(log(n)). 

4. For i E [m + 1], there exists a NS-proof of区fa=laij = 1 from --aCoun佑 over応 with

degree S O(log(n)). 

5. For i < i'E [m + 1] and j E [ml, there exist NS-proofs of伽ふfヵ＝ 0and b叫 1-

ん）（1-恥） ＝0 from --,Coun忍 over氏 withdegree S O(log(n)). 

6. For each i < i'E [m + 1], there exists a NS-proof of ~J=l 鮎＝ 1 from --aCoun岱 over

応 withdegree S O(log(n)). 

Since the conditions 3 and 4 are newly added to the ones given in [7], we give a full proof 

of the theorem just for sure. 

Proof. We adopt the notations in [7]. For readability, we assume p = 3. Let proofs（冠）nEN

witness 

恥＋ FIEkf--poly(n) Count~. 
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Let I'n be the set of subformulae of 7rn, Apply the switching lemma for 3-tree (cf. Lemma 

15.2.2 in [10]), and obtain a constant E > 0 and a restriction Pn leavingが elementsof the 

universe [n] such that there exists an O(logn)-evaluation rn of rt We fix a large enough 

n芋0(mod p), and suppress scripts n of T八Pn,etc. (Count砂）P(which can be identified with 

Count;,) satisfies T ~ (Count;)P (here, T巨cpmeans br(Tip) = br1(Tip)). Soundness with 
respect to F (cf. Lemma 15.1.7 in [10]) gives that some instance 

I:= FIEm匹／Sij,cp 
i1,i2 ，叶，iられ，む，i~,iら
j,J.，／rj,j, ] 

satisfies T ~ I. With an additional restriction, we may assume that bro(T1) = br(T1). 
We obtain the following : 

1. Let T; := T, vjE[m]びij.Since 

Tp V呵

底 [m]

each b E br（I';) has at least one jb E [m] and b'E bri (T.。iJb)such that b'C b. We relabel 

each branch b E br(Ti) with〈jb〉andobtain a labelled injPHP-tree T;,. 

2. Let Ti1,i2 := TvjE ［叫（（6m^→6叫v(~u,1jAu,2j))· S mce 

Tp V(（叫＾呵叫 v(--,°m̂  ％])）， 
jE［叫

each b E br(Ti1,i2) has at least one jb satisfying one of the following : 

(a) For all b'E bro(T",1;) U bri(T;び923b)，bJ_ b'• 

(b) For all b'E bri (T",1;) U bro(T",2;), b.l_ b'. 

We relabel each branch b E br(Tii,i2) with〈j砂andobtain a labelled injPHP-tree T.れ，松
I • I ・ • I • I 

3. Let T心'i叫臼2:= T__ ・"-- "". __ iい2.ii,i;• Each b E br(T此'i叫臼2)is an extension 
元 1iV~ai2j VV j1 E [m]'P/;; 

of some element of bro(Tai1j), bro(Ta,2i), LJj, br1(T_,1,,2,,いら）． If b is an extension of an 
ゃ．
3,3 
， 

element of br1 (T 
'P 

\,,~), such j'is unique. i1,i2,ii_ •'2 J' 
j,j I 

f ・f

4. Let T91,92,t19t2 
・f ・f

2,j' := T.Each  b € br(T91,t2,＇叫 isan extension of 
→吋jv'ui如VVjE［叫ち，J'

i1,i2,ii,iら 2,j'

an element of bro(Tu,ij'), bro(Tu,2j,), LJj br1 (Tr',凸2,iぃ砂 Ifb is an extension of an element 
勺J

J,J 

of br1(T'い2,,i,,;),such j is unique. 
り，j'
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Now, we set 

Clearly, m ::; n 0(1) 

fij:＝ L Xa, 
aEb門 (Ta,j)

的：＝ L Xa 

aEbr〈j〉(Ti)

bi,i2j := L ％・

aEbr〈3〉(Ti1,i2)

(i E [m+ 1],j E [ml) 

We show that each of the following has a NS-proof from---,Coun心over照 withO(log(n))-

degree: 

m 

I:%=1, 
J=l 

文虹j= 1, 
j=l 
m m 

こft1J加＝区恥ft2J1,
j=l j=l 

%(1-fo)=O, 

bい21fi11fi2j= o, 
bi1i2j(l -h1)(l -fi21) = 0. 

(i,i1,i2,i~,i; E [m+ l]&i1 < i2&i~ ＜杓＆j E [ml) 

(1): Since the left-hand side is the sum of all brances of the 3-pratition tree仇

(2): Since the left-hand side is the sum of all brances of the 3-pratition tree九，匂・

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(3): We first define Ai,，ゅ，J：= T知＊T匹 j (i1,i2 E [m+l],j E [ml,紅くり）． LetB紅，位，jbe the 

set of all branches b E Aれ，i2,jhaving the form 

b=cが (cE br1 (T,匹 ;),dE br1(T",2;)). 

It is easy to construct a NS-proof of 

恥勘＝こ 呪 (7) 
bEB打，i2,j

from---,Coun砧 over恥 withdegree ::; O(log(n)). 

Now, fix i1, i2, i'.t, i; E [m + 1] such that釘く砂 andi'.t <心． Foreach j E [ml, consider 
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For each r = b沙 (bE Bi1,i2,i, d E br(T7'¥ 
. 01,t2,t{ ,i; .• I 

i1,i,,j, d E br(T{:J""''1''2)), since dllb, there exists a unique j; such 

that d is an extension of some c E br1 (T_iい2A,i;)- Let BJ c br(RJ) be the set of all 
'P． I 
J,Jr 

branches having the above form. 

Similarly, for each r'= b沙 (bE Bi;.i~.i, d E br(Tい迅州） ・t1,i;，j, 2,J. , since di lb, there exists a 
っ

unique jr, such that d is an extension of some c E br1(T_,ぃ砂も）． LetBJ c br(RJ) be 

'P^  
J) 

J凸 J

the set of all branches having the above form. 

Now, we define 

乃，j':=(((T打，i2,i¥,ii
_1T 心＊T 叩 2"1,'2"~)*
J,J, vs,1J ーり，J， vs,23 

T ・ ・ '1>'2,•·1,'2 ・I.,) ＊ T ・ ・ ・I •I 
ーT

q,t2,’l',2)． 
J,J, vs,iJ’ →り，J， vsもJ'

for each j =f j'E [m]. Using these trees, we define 

均：＝凡＊ L(Tj,j:.＊ L (Rげ）八
rEBj tEbr(T,,, J,Jr ） 

吋：＝尻＊区（互，J＊ L (R訊）r'.
T’EB' 

J tEbr(T-:,. J Jr9,J 

Label each branch b E br(Sj) as follows: 

• If b extends some r E Bj, then label b with〈j,j仇

• Otherwise, label b with the symbol.l_. 

Similarly, we label each branch b'E br(S1) as follows: 

令

• If b extends some r'E B1, then label b with〈Jr9,j〉.

• Otherwise, label b with the symbol.l_. 

It is easy to see that for each j, j', br〈j,j'〉(Sj)=br〈j,j'〉(S1,).Hence, 

▽
 

こ％＝こ L X(3 

J,J'E [m] aEbr〈j,j'〉（S3) J,J'E[m] {3Ebr(j,j'〉(s;,l
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Furthermore, it is easy to see that the following have NS-proofs from--,Coun砧 over駁

with ~ O(log(n))-degree: 

どと％＝区叫（jE［叫），
J'E[m] aEbr(j,j'〉（名） bEB,1,is,j

ここ咋＝ L Xb (j'E [ml). 
JE[m] {-JEbr〈j,J'〉(S;,） bEBt'’ 1’92’3 

Hence, combined with (7), they give a NS-proof of区］ f紅j恥＝ Lj'Ji~Ji; satisfying the 
required conditions. 

(4): It follows similarly as (5) and (6) below. 

(5): bi1i2j恥恥＝ 0follows easily from--,Count~, since each a E br〈j)('1い） satisfiesa J_ b 
for all b EB・ 9 9 i1,i2,J・

(6): Note that we have NS-proofs of the following: 

恥＋ど四＝ 1,
(3Ebro(T,,, 913 ） 

加＋ど四＝ 1． 

(3E加（T"i2j)

(j E [ml) 

Hence, bi1叫 1-f叫（1-加） ＝0 follows easily from--,Coun砧 bya similar reason as 
the previous item. 

．
 

5 Future perspectives 

In this section, we discuss future perspectives of the three conjectures above. 

First, we note that the proof of Theorem 19 uses the uniform (with respect to the coefficient 
J(n) field) linear degree lower bound for NS-proofs of injP H P;/"1 shown in [13], which seems to 

be a natural approach. 

Next, Conjecture 1 is interesting on its own right; it casts the question on the difference 

between identifying the set size by division (using partitions) and doing it by ordering (using 

injections). 

It also should be noted that if Conjecture 1 is true, then in particular, 

v0 +ontoPH叶げinjPHP,：：：十1. (8) 

The situation is interesting since the models of v0 in which injP HP,戸 isviolated given so far 

(such as in [1] and [3]) actually violates ontoPH叶． Therefore,the proof technique utilized to 
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solve the problem (8) above may lead another breakthrough in proof complexity. The merit of 

approaching the problem (8) is that it seems to be easier than other important open problems 

of this field such as 

• v0 f---injPHP,炉？ and

• v0(2) f---injPHP,：：十1?

The pigeonhole principle to be violated in (8) is more similar to the known violated ones than 

injPHP,罰， thatis, the number of pigeons and that of holes are closer. Furthermore, over v0, 

the problem (8) compares simple葛界 statementswhile "V0(2) f---injPHP,：：十1?" compares a 

坪 oneand a瑶 one.
As for Conjecture 2, a natural approach to prove the sufficient condition given in Theorem 

29 is to utilize an appropriate version of "design" given in [5] and [3]. In order to achieve 

it, the bottleneck is the condition 3 of Theorem 29. We would like to construct a mapping 

from the set of low-degree monomials to lF2 (which can be naturally extended to lF2-module 

homomorphisms from the set of low-degree polynomials to lF2) which is compatible with the 

polynomially many equations 

I: Jiふ＋ 1=0 (i-fci'E[m+l]). 
jE[m] 

(If it succeeds, then we can derive the contradiction from the usual oddtown theorem). It 
seems that the treatment of multiplication is difficult. The difficulty may be related to that of 

constructing a model of a given extended NS-proof (see [5] and section 15.6 of [10] for reference). 
In other words, the solution to Conjecture 2 may include the tips to give a superpolynomial 

lower bound of応(2)-proofs.

As for Conjecture 3, it is important to note that the condition given in Theorem 33 admits 

arbitrary field駁． Hence,although the difficulty is similar as Conjecture 2, it may be more 

approachable to tackle Conjecture 3. 
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