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1 Introduction 

Let N = Ng,n be a connected finite type nonorientable surface of genus g with n punctures 
and S = S9 ,n be a connected finite type orientable surface of genus g with n punctures. 
We will abbreviate N9 ,0 as N9 (we use the same notation for orientable surfaces). Ifwe are 
not interested in whether a given surface is orientable or not, we write F for the surface. 
In [2], Bowden, Hensel, and Webb introduced a new curve graph ct(S) called the fine 
curve graph in order to study the diffeomorphism group Diff0 (S) on a surface S. They 
proved that the graph ct(S) is Gromov hyperbolic and the action of the group Diff0 (S) 
on ct(S) satisfies the condition of Bestvina-Fujiwara [1]. The Gromov hyperbolicity of 
metric spaces is defined as follows: 

Definition 1.1. Let (X, d) be a metric space. For points x, y, w of (X, d), the Gromov 
product is defined to be 

1 
(x, Y)w := 2(d(w, x) + d(w, y) - d(x, y)). 

A metric space X is 6-hyperbolic if for all w, x, y, z E X we have 

(x, z)w ~ min{ (x, Y)w, (y, z)w} - 6. 

Morover, the definition of fine curve graphs for surfaces by Bowden, Hensel, and Webb 
[2] is the following: 

Definition 1.2. Let F = F9 be a closed surface of genus g ~ 3 if F is nonorientable and 
g ~ 2 if Fis orientable. A fine curve graph ct(N) of N is a graph whose vertices are the 
essential simple closed curves on N, and two vertices form an edge if the corresponding 
curves are disjoint. 

We remark that for low genera,that is, g = 0, 1 if F is orientable and g = l, 2 if F 
is nonorientable, we modify the definition of the fine cuve graph ct(F) of F so that two 
vertices form an edge if the corresponding curves intersect at most once. 
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In this article, we will give the outline of the proof of the uniform hyperbolicity of 
the fine curve graphs ct(N) of nonorientable surfaces. Here curve graphs are uniformly 
hyperbolic if we can choose the hyperbolicity constant <5 which is independent of the 
topological types of the surfaces: 

Theorem 1.3. There exists <5 > 0 such that for any closed nonorientable surface N = N 9 

of genus g ~ 2, ct(N) is <5-hyperbolic. 

2 Preliminaries 

A simple closed curve c on F is essential if c does not bound a disk, a disk with one 
marked point, or a Mobius band. The curve graph C(F) of F is the simplicial graph 
whose vertex set consists of the isotopy classes of all essential simple closed curves on F 
and whose edge set consists of all non-ordered pairs of isotopy classes of essential simple 
closed curves which can be represented disjointly. We define a nonseparating curve graph 
NC(F) of Fas the full subgraph of C(F) consists of the nonseparating curves on F. Two 
curves c1 and c2 in F are in minimal position if the number of intersections of c1 and 
c2 is minimal in the isotopy classes of c1 and c2 . Note that two essential simple closed 
curves are in minimal position in F if and only if they do not bound a bigon on F (see [4, 
Proposition 2 .1] for nonorientable surfaces). Slightly abusing the notation, we consider 
vertices of curve graphs as the (essential) simple closed curves on N which are in minimal 
position. Furthermore, so long as it does not cause confusion, we might say curves as 
essential simple closed curves on F. We define the distances dc(FJ(·, •) on C(F) by the 
minimal lengths of edge-paths connecting two vertices. Thus, we consider C(F), as a 
geodesic space. 

3 Proof of uniform hyperbolicity of fine curve graphs for nonori­
entable surfaces 

In this section, we prove Theorem 1.3 for g ~ 3, that is, the fine curve graph ct(N) of a 
closed nonorientable surface N of genus g ~ 3 is uniformly hyperbolic. First, we define 
some notations. Let N = N9 ,n be a nonorientable surface of genus g ~ 3 with n ~ 0 
punctures. 

Definition 3.1. The surviving curve graph C8 (N) is a full subgraph of the original curve 
graph C(N) whose vertices correspond to the isotopy classes of curves on N which are 
essential even after filling in the punctures. 

Note that each nonseparating curve is surviving, so the nonseparating curve graph 
NC(N) is a full subgraph of C8 (N). For a nonorientable surface N, a curve c is said to 
be one-sided if the regular neighborhood of c is a Mobius band. Moreover, c is said to be 
two-sided if the regular neighborhood of c is an annulus. Then, we define the two-sided 
curve graph Ctwo(N) of N, which is the subgraph of C(N) induced by the isotopy classes 
of all two-sided curves on N. We also denote by c± ( N) the curve graph whose vertices 
are the usual vertices and the isotopy classes of curves bounding a Mobius band, and 
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two vertices form an edge if the corresponding curves can be realized disjointly. We call 
c±(N) the extended curve graph of N. We use the same notation for NC(N), C8 (N), 
and ct(N). We may even use the notations at the same time; for instance, C!~(N) is 
the extended two-sided fine curve graph of N whose vertices are the two-sided essential 
curves and curves bounding a Mobius band. 

Definition 3.2. Let (X, d) and (X', d') be two metric spaces. Let r.p be a map from X to 
X'. The map r.p is a quasi-isometric embedding if there exists a constant>.~ 1 such that, 
for all x, y EX, the following inequality is satisfied: 

1 
>.d(x,y) - >. ~ d(r.p(x),r.p(y)) ~ >.d(x,y) + >.. 

The map r.p is quasi-dense if there exists a constant >. ~ 0 such that, for any point y E X', 
there exists some x E X such that d( r.p( x), y) ~ >.. Finally, The map r.p is a quasi-isometry 
if it is both a quasi-isometric embedding and is quasi-dense, and we call X is quasi­
isometric to X'. We will use the symbol X r-..:X' to mean that two metric spaces X and 

q.1. 

X' are quasi-isometric. 

We use the following two lemmas to prove Theorem 1.3, and we omit the proofs of the 
two lemmas in this article. 

Lemma 3.3. Let N = Ng,p be a nonorientable surface of genus g ~ 3 with p ~ 0 
punctures. Then, C8 (N), c±s(N), and Ct:0 (N) are path-connected, and 

Lemma 3.4. Let N = Ng be a closed nonorientable surface of genus g ~ 3. Then, ct(N), 
c±t(N), and C~0 (N) are path-connected, and 

ct (N) r-..:C±t (N) "'.C~0 (N). 
q.,. q.,. 

We know that the nonseparating curve graphs NC(N) of the finite type nonorientable 
surfaces N are uniformly hyperbolic (see [3]): 

Theorem 3.5. (/3/) Let N be any finite type nonorientable surface of genus g ~ 3. Then, 
there exists a constant J" > 0 not depending on N such that the nonseparating curve graph 
NC(N) is connected and 611 -hyperbolic. 

By combining Lemma 3.3 and Theorem 3.5, we obtain the following corollary: 

Corollary 3.6. There exists J' > 0 such that the extended two-sided surviving curve 
graphs c;:0 (N) are J' -hyperbolic. 

We are now ready to prove Theorem 1.3. Due to Lemma 3.4, it is enough to show the 
following proposition to prove Theorem 1.3. 

Proposition 3. 7. The extended two-sided fine curve graphs C~0 ( N) are uniform hyper­
bolic. 
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We need the following three lemmas to prove Theorem 3. 7. The lemmas come from 
Bowden, Hensel, and Webb [2, Lemmas 3.4, 3.5, 3.6] but with the assumption of ori­
entable surfaces changed to nonorientable ones. Instead of our giving the proofs of Lem­
mas 3.8, 3.9, and 3.10, readers may refer to the proofs of [2, Lemmas 3.4, 3.5, 3.6]. 

Let P C N be a finite set. In the following, for a curve a in N, let [a]N-P denote the 
isotopy class of a in N - P. We also write dc±s (N-P)(·, ·), for instance, for the metric of 

two 

C~0 (N). 

Lemma 3.8. ( cf. /2, Lemma 3.4/) Suppose that vertices a and b in C;.,~ ( N) a'f'e tmnsve'f'se, 
and a'f'e in minimal position in N \ P, whe'f'e P C N is finite and disjoint frnm a and b. 
Then, 

dc;;:o(N-P)([a]N-P, [b]N-P) = dc~o(N/a, b). 

Lemma 3.9. (cf. /2, Lemma 3.5/) Suppose that a 1 , · · · , an a'f'e two-sided curoes including 
curoes bounding a Mobius band that a'f'e pai'f'wise in minimal position in N - P. Let 
b1 , · · · , bm be two-sided cu roes including cu roes bounding a M obius band that a'f'e disjoint 
frnm P. Then, the bi can be isotoped in N - P such that a1 , · · · , an, b1, · · · , bm a'f'e pai'f'wise 
in minimal position in N - P. 

Lemma 3.10. (cf. /2, Lemma 3.6/) Let a, b E Ct'.;:0 (N) and PC N be a finite set. Then, 
we can find a geodesic a= v0 , • • • , vk = b such that vi n P = 0 jo'f' all O < i < k. 

Now we can prove Theorem 3.7. 

Prnof of Theo'f'em 3. 7. In particular, we will prove that, for all u, a, b, c E Ct'.;:0 (N), 

(a, c)u ~ min{ (a, b)u, (b, c)u} - 15' - 4, (3.1) 

where 15' is the uniform constant of C~0 (N) in Corollary 3.6. 
We relate the vertices u, a, b, c E C;.,~(N) with the vertices u', a', b', d E C~0 (N - P) 

satisfying the assumptions of Lemma 3.8, that is, the two properties , 

(i) dc!Jo(N/ a, a') ::; 1, dc~o(N/b, b') ::; 1, and dc~o(N/ c, d) ::; 1, 

(ii) the vertices u', a', b', c' are transversal. 

Set u' = u. Find a" that is disjoint from and isotopic to a (note that the two-sidedness 
of curves is needed in this step); then, find a small enough perturbation a' of a" satisfying 
(ii) (do this for band c as well). 

Now, choose a finite set P C N so that any bigon between a pair from u', a', b', c' 
contains a point of P. Then, by the bigon criterion, this ensures that u', a', b', are c' are 
pairwise in minimal position in N - P. 

By Lemma 3.8, for any pair d, e E { a, b, c} we have that 

(3.2) 

and 
l(d', e')u1 - (d, e)ul ::; 2. (3.3) 

Finally, we obtain formula (3.1) from (3.2), (3.3) above, and Corollary 3.6. □ 



5

Acknowledgments 

The second author wishes to express her great appreciation to the organizers for giving 
her a chance to talk at Intelligence of Low-dimensional Topology, and supporting her a 
lot. The first author was supported by JSPS KAKENHI Grant Number 20H00114. The 
secound author was supported by Foundation of Kinoshita Memorial Enterprise, by JSPS 
KAKENHI Grant-in-Aid for Early-Career Scientists, Grant Number 21K13791, and by 
JST, ACT-X, Grant Number JPMJAX200D. 

References 

[1] M. Bestvina and K. Fujiwara, Quasi-homomorphisms on mapping class groups, Glas. 
Mat. Ser．田， 42(62) (2007), no. 1, 213-236. 

[2] J. Bowden, S. Hensel, and R. Webb, Quasi-morphisms on surface diffeomorphism 
groups, J. Amer. Math. Soc. 35 (2022), 211-231. 

[3] E. Kuno, Uniform hyperbolicity of nonseparating curve graphs of nonorientable sur-
faces, arXiv:2108.08452. 

[4] M. Stukow, Subgroups generated by two Dehn twists on a nonorientable surface, 
Topology Proc. 50 (2017), 151ー 201.

Department of Mathematics 
Kyoto University 
Kyoto 606-8502 
JAPAN 
E-mail address: mkimura@math. kyoto-u. ac. j p 

Department of Mathematics 
Graduate School of Science 
Osaka University 
Osaka 560-0043 
JAPAN 
E-mail address: e-kuno@math.sci.osaka-u.ac.jp 

京都大学理学研究科 木村満晃

大阪大学大学院理学研究科数学専攻 久野恵理香




