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Abstract: The main contribution of this paper is to present a novel solution for the leak diagnosis
problem in branched pipeline systems considering the availability of pressure head and flow rate
sensors on the upstream (unobstructed) side and the downstream (constricted) side. This approach
is based on a bank of Kalman filters as state observers designed on the basis of the classical water
hammer equations and a related genetic algorithm (GA) which includes a fitness function based on
an integral error that helps obtaining a good estimation despite the presence of noise. For solving the
leak diagnosis problem, three stages are considered: (a) the leak detection is performed through a
mass balance; (b) the region where the leak is occurring is identified by implementing a reduced bank
of Kalman filters which localize the leak by sweeping all regions of the branching pipeline through
a GA that reduces the computational effort; (c) the leak position is computed through an algebraic
equation derived from the water hammer equations in steady-state. To assess this methodology,
experimental results are presented by using a test bed built at the Tuxtla Gutiérrez Institute of
Technology, Tecnológico Nacional de México (TecNM). The obtained results are then compared with
those obtained using a classic extended Kalman filter which is widely used in solving leak diagnosis
problems and it is highlighted that the GA approach outperforms the EKF in two cases whereas the
EKF is better in one case.

Keywords: leak diagnosis; branched pipeline systems; Kalman filter; genetic algorithm; experimental
results

1. Introduction

Nowadays, a safe fluid transportation process is a challenging issue since natural
and/or abnormal events as aging pipes but also illegal intrusion could cause leaks, which
in turn, produce economic losses, disasters and environmental pollution. In the last decades,
legislators have reinforced laws to protect the environment against pollution by demanding
to guarantee a safe fluid transportation process. The scientific community has paid attention
to this problem and several pipeline monitoring techniques have been developed from
different perspectives to reduce the impact of undesirable events, such as leaks, no matter
what fluid is transported. In particular, taking care of water is of the special interest since
it ensures the safety of water and is directly related to public health issues due to its
worldwide inherent importance. Such techniques can be divided in two main approaches:
external methods and model-based methods. The first ones use external equipment such as
acoustic systems, electronic listening sticks, infra-red thermography, etc., to determine the
leak location (theses methods are often expensive, require experienced user and most of
the time it is require to use them all along the pipeline and sometimes even to empty it).
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As an alternative, there are computational algorithms that, in general, uses a mathematical
model of the pipe together with the inlet and outlet measurements in order to isolate the
leak. This work is a novel model-based proposal for a leak detection an isolation problem in
a branched pipeline system.

Recently in [1], it has been shown that unfortunately a great amount of drinking water
is lost through leaks in the distribution systems. According to this study, the worse cases
correspond to the water distribution networks (WDN) in the Mexican cities of Chihuahua,
San Luis Potosí and Tuxtla Gutiérrez with a water loss more than 40% and even up to 65% in
the case of Tuxtla Gutiérrez.

On the one hand, the problem of leak diagnosis in WDNs has been addressed as a
large-scale and complex problem. Most of these strategies consider two essential steps:
(a) sensor placement and (b) leak localization. In the first step, based on the number of
available head sensors, an optimization-based strategy is applied to select the best location
for those sensors aiming to identify all possible leak scenarios. In the second step, the leak
localization strategy is then applied to identify the leak location. This is the core of most
leak diagnosis strategies for WDN [2–6].

Moreover, in the water distribution process, the water is initially taken from natural
sources as rivers or lakes, and then is transported to treatment plants to be purified. Af-
ter that, the distribution to the final consumers begins. In this last process, the distribution
system is built with secondary elements which may adopt the shape of branching configura-
tions. In this work, the localization of leaks in WDNs with this topological configuration is
addressed since it represents a realistic challenge. Previous works have already considered
the leak problem for this type of systems as described in [7–9]. In [7], authors proposed a
two-step-based methodology to identify leak parameters in pipeline networks. As a first
step, the region where the leak occurs is identified on the basis of a residual analysis of
the flow rate which is generated between the measurements from the leaky WDN and
their estimation using a model without leaks. In a second step, the leak parameters are
identified via the use of the so-called extended Kalman filters by relying on an observ-
ability property fulfilled for both configurations: closed-loop and branching. Similarly
in [8], authors proposed an algorithm for detecting and localizing a single leak in pipelines
with multiple branches based on a similarity model. This approach is formulated in three
stages. The first two stages involve the fulfillment of generic conditions deduced from
head loss and flow rate balances for detecting and locating the specific section where the
leak is present, whereas the third stage is focused on leak localization. More recently in [9],
a solution for the multi-leak diagnosis problem in a branched pipeline system is proposed.
This scheme basically involves two essential steps: leak region identification based on
flow-rate residuals with a related Nearest Neighbors (k-NN) classifier, and then leak param-
eter identification (magnitude and position) via the use of the so-called Extended Kalman
Filters (EKFs) for each leak based on a simple generic model and fed with pressure head
estimations provided by an initial EKF. Other approaches also exist on the basis of transient
wave analysis and artificial intelligence [10,11], respectively.

The main contribution of this paper is a novel implementation of a genetic algorithm
together with a bank of Kalman filters to identify the parameters of a leak. At the same
time, the computational effort is minimized since it deals with a complex water distribu-
tion system. For the sake of illustration, some experimental results are presented using a
pilot plant built at Tuxtla Gutiérrez Institute of Technology (TecNM-Tuxtla). The paper is
organized as follows: Section 2 presents some mathematical preliminaries. The leak detec-
tion and isolation (LDI) scheme for branching pipeline systems is presented in Section 3.
The case study is fully described in Section 4, including several experiments in a pilot plant,
and finally in Section 5, some conclusions are given and future perspectives are discussed.
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2. Preliminaries
2.1. Pipeline Dynamical Model

The transient flow in a closed conduit is described by a couple of quasi-linear hyper-
bolic partial differential equations known as the water hammer equations. The derivation
of these equations is carried out by considering the following assumptions: the fluid is
slightly compressible, the duct wall is slightly deformable, the convective velocity changes
are negligible, and the fluid density is assumed to be constant [12,13]:
Momentum Equation:

∂Q(t, z)
∂t

+ gAφ
∂H(t, z)

∂z
+ µQ(t, z)|Q(t, z)| = 0 (1)

Continuity Equation:

b2 ∂Q(t, z)
∂z

+ gAφ
∂H(t, z)

∂t
= 0 (2)

where Q(t, z) stands for the flow-rate [m3/s]; H(t, z) is the pressure head [m]; z is the length
coordinate [m]; t is the time coordinate [s]; g is the gravity acceleration [m/s2]; Aφ is the
cross-section area [m2]; b is the pressure wave speed in the fluid [m/s]; µ = τ/2φAφ [m−3],
where φ is the inner diameter [m] and τ is the friction factor computed using Swamee-Jain
equation as described in [14,15] which depends among other things on the flow regime
and is suitable for smooth pipelines (plastic pipelines). Moreover, this friction factor does
not consider non-stationary losses because it implies a more complex model structure with
non-significant improving in leak diagnosis as discussed in [16].

2.2. Solution of Governing Equations through the Method of Characteristics (MOC)

A closed-form solution for those quasi-linear hyperbolic partial differential
Equations (1) and (2) is not available in general, but only for some specific boundary condi-
tions. However, several numerical-approximation-based methods have been developed
as the well-known method of characteristics (MOC) which is one of the most frequently
used due to its suitability for a numerical implementation in a computer (see [12,13,17],
for more details). By applying this method, an approximate solution can be carried out
via a discrete integration at any point (k, i) discretizing the pipe according to the scheme
shown in Figure 1.

i− th Pipe i + 1− th Pipe

Boundary Conditions

∆zi ∆zi+1

Hk−1
i+1

Qk−1
i+1

Hk−1
i

Qk−1
i

Hk−1
i+1

Qk−1
i+1

Figure 1. Pipeline discretization using the MOC.

Thus, after applying the MOC method through the characteristic line (Figure 2),
a couple of equations, namely characteristic equations, are obtained as follows:
Along the positive characteristic line A P

Qk
i = Cp − CaHk

i (3)

Along the negative characteristic line BP

Qk
i = Cn − Ca Hk

i (4)
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Figure 2. MOC-based discretization scheme.

Needless to say, Equations (3) and (4) can be solved together. In their a posteriori
representation:
A posteriori head equation:

Hk
i =

Cp − Cn

2Ca
(5)

A posteriori flow equation:

Qk
i =

Cp + Cn

2
(6)

where:
Cp = Qk−1

i−1 +
gAφ

b Hk−1
i−1 − µi−1∆tQk−1

i−1

∣∣∣Qk−1
i−1

∣∣∣
Cn = Qk−1

i+1 −
gAφ

b Hk−1
i+1 − µi+1∆tQk−1

i+1

∣∣∣Qk−1
i+1

∣∣∣
(7)

and:

Ca =
gAφ

b
(8)

2.2.1. Convergence and Stability Conditions

Following a procedure developed in [18], it can be shown that the stability of
Equations (3) and (4) is satisfied when ∆z = b∆t (Courant condition). It implies that the
characteristic line through T in Figure 2 must intersect the line A C between A and C
and between C and B. For a single pipe, the computational time interval and spatial grid
spacing can be selected in such a way that this condition is satisfied. However, this situation
is hard to reach if the system has more than one pipe (i.e., branched pipeline system). Since
it is advantageous to compute with specified time and space intervals, the following linear
interpolation may be used (see Figure 2):

Q k−1
Ri−1 = Qk−1

i − b∆t
∆zi

(
Qk−1

i −Qk−1
i−1

)

Q k−1
S i+1 = Qk−1

i − b∆t
∆zi+1

(
Qk−1

i −Qk−1
i+1

)
(9)

H k−1
Ri−1 = Hk−1

i − b∆t
∆zi

(
Hk−1

i − Hk−1
i−1

)

H k−1
S i+1 = Hk−1

i − b∆t
∆zi+1

(
Hk−1

i − Hk−1
i+1

)

The values of Hk
i and Qk

i may now be determined from Equations (3) and (4) by
replacing Hk−1

i−1 and Qk−1
i−1 (Hk−1

i+1 and Qk−1
i+1 ) by H k−1

Ri−1 and Q k−1
Ri−1 (H k−1

S i+1 and Q k−1
S i+1). This

is due to the characteristics through T now pass through R and S instead of through A
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and B, respectively. More information can be found in [12]. Thus, the Courant condition can
be fixed using the smallest branch, ∆z, in a branched pipe system ensuring, that every point
R and S fall inside the characteristic lines. It should be noted that such an interpolation
presented by Equation (9) causes attenuation and dispersion of steep waves speeds, so,
spurious waves could be generated at each boundary resulting in a slight error in the model
(more information can be found in [12]). However, such an modeling error is minimized in
the branch identification process due to the nature of the discrete time extended Kalman
filter design, as described in Section 3.2.2 later on.

2.2.2. Special Boundary Conditions

The solution of the governing Equations (1) and (2) by using the MOC method are
fully defined by a related pair of initial and boundary conditions. Such conditions describe
a special relationship that defines the head and the discharge at this point. Without loss of
generality, these conditions can describe a complete branched pipeline system. The algo-
rithm presented in Section 3 is also applicable if more complex boundary conditions are
needed (see [12]).

2.3. Discrete Time Extended Kalman Filter

The EKF is an algorithm for estimating unmeasured states of nonlinear dynamical
systems in discrete-time considering additive uncertainties:

Xk = F (Xk−1, Uk) + Wk (10)

Yk = CXk + Vk (11)

where Wk and Vk are disturbance and measurement noise, respectively. The EKF is
designed to minimize the covariance of the estimation error and is implemented in the
following form [19,20]:

X̂k = X̂k− + Kk
(

Yk − CX̂k−
)

(12)

where X̂k− = F (Xk−1, Uk) is the a priori estimate, and X̂k is the a posteriori estimate obtained
by adding a correction term including the Kalman gain Kk and the error between the
measurements Yk and their estimation.

2.4. Genetic Algorithms

Genetic algorithms (GAs) are a type of heuristic optimization approach useful for
solving non-convex optimization problems [21]. The heuristic GA search method is in-
spired by the theory of natural evolution. GA uses a recursive methodology to find a
value (or some values) which match, exactly or approximately to a solution (solutions) in
optimization and search problems [21]. Six phases are considered in a generic algorithm
as shown in Figure 3 (more information can be found in [22,23]). The recursive process is
repeated until a termination condition has been reached (namely termination in Figure 3).
Common termination conditions include minimum criteria (a solution is found that satisfies
minimum stopping criteria), allocated budget (computation time) reached, etc.

In this paper, GA will be used to find leaks in WDNs with complex branched pipeline
topology. The searching process for finding the leak location could be difficult (or even
impossible in some cases because of observability issues) via model-based algorithms based
on a single observer that have been designed to try to locate the leak in the exact branch.
On the other hand, if a bank of observers is designed to localize the position of the leak,
a large computational effort could be necessary due to the high number of branches in the
system. Therefore, the authors propose to reduce the number of observers in the bank and
to implement a genetic algorithm to optimize the LDI process (more details are provided in
Section 3).
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Initial Population

Fitness Function

Selection

Crossover

Mutation

Termination

end

Yes

No

Figure 3. Genetic algorithm scheme.

3. LDI Scheme in a Branched Pipeline WDN

The LDI process is the task of determining if the WDN is working under a leak (i.e.,
leak detection) and, finding its location once it has been detected (i.e., leak isolation) [24,25].
However, for branched pipeline WDNs, the LDI problem could be a challenging task in
case of complex and large scale case studies.

3.1. General Branched Pipeline LDI System Design Principles

Without loss of generality and for the sake of simplicity, a general branched pipeline
can be modeled with just three types of nodes: input, inner and output nodes. Input
nodes represent the upstream inputs of the system, (Figure 4c) (input measurement). In the
same way, inner nodes correspond to the branching junction of several pipes (Figure 4b).
Finally, output nodes characterize the downstream outputs of the system (Figure 4a).
Each node is related to a vector which is built by the flow-rate and the pressure head
corresponding to such a node, as Figure 4 shows. Notice that, in the inner node, three
flow rates are considered: Qi+1 denotes the flow-rate between the nodes Ni and Ni+1;
Q′i+1 is the flow-rate between the nodes Ni+1 and Ni+2; and, finally, Q′′i+1 denotes the
flow-rate between the nodes Ni+1 and Ni+3. These variables are related with the equation
at the boundary condition corresponding to a “branching junction” in the MOC. For the
output nodes, the downstream valve boundary condition could be the most suitable for its
characterization (see [12]). Here, the relative valve opening is fixed since orifice opening
remains constant over the transient response.

Nout

[
Hout

Qout

]

(a)

NiNi+1Ni+2

Ni+3

[
Hi

Qi

]


Hi+1

Qi+1

Q′
i+1

Q′′
i+1




[
Hi+2

Qi+2

]

[
Hi+3

Qi+3

]

(b)

Nin

[
Hin

Qin

]

(c)

Figure 4. Atomic representation for an output, inner an input node. (a) Output Node; (b) Inner Node;
(c) Input Node.
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To complete the whole LDI system design, the characterization of a leak in a particular
branch should be carried out. This can be done following a similar idea as for the inner
nodes presented above (Figure 4), but under certain considerations (see Figure 5): Note that
the leak flow influence is additive (because of the mass conservation law). That is, the flow
rate before the leak Q+

l must be equal to the sum of the flow rate after the leak, Q−l plus the
flow through the leak hole, that is Q+

l = Q−l + Ql (Figure 5). Thus, the boundary condition
equation for a leak node in Figure 5 following the branching junction derivation yields:

Hl =
Cpl−Cnl−Ql

2Ca
Q+

l = Cpl − Ca Hl
Q−l = Cnl − Ca Hl

(13)

where Cpl and Cnl are defined through the characteristic line. Noticed that subscripts pl
and nl denote the point before and after the leak, respectively. Moreover, in Equation (7)
µi−1 = µi+1 = µl and Ql is computed as in (16), see [12]. It is worth noting that in
Equation (9) ∆zi = z f while ∆zi+1 = zi − z f (zi is the distance between the i-th and
(i + 1)-th node where the leak is located).

Nl

Ql

Hl
Q+

lQ−
l

NiNi+1

Figure 5. Leak characterization scheme.

As outlined above, the present approach assumes only flow and pressure sensors at
the input (upstream) and output (downstream) nodes. Thus, the flow-rate and the pressure
head at the input nodes will be considered as the system entries, whereas the output
node measurements will be the system outputs. Thus, a branched pipeline system can be
characterized as individual units (nodes). Figure 6 shows a general scheme architecture
built by n inputs nodes, m− 2 layers of inner nodes and l outputs nodes. Here, each ki
denotes the number of nodes at the i-th inner layer.

......

. . .

. . .

. . .
......

N(1,1)

N(2,1)

N(n,1)

N(1,2)

N(2,2)

N(k1,2)

N(1,m)

N(2,m)

N(l,m)

Figure 6. General branched pipeline system architecture.

Now, each flow-rate and pressure head can be computed using Equations (5), (6),
(9) and (13), together with its respective boundary conditions. Proceeding in this way,
the pipeline system architecture shown in Figure 6 can be modelled using a difference
equation system as follows:
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Xk = F (Xk−1, Uk) (14)

Yk = CXk (15)

where:

X =
[

H1, Q1, Q′1, Q′′1 , . . . , Hp, Qp, Q′p, Q′′p , Hl , Q+
l , Q−l , Hout1 , Qout1 , . . . , Houto , Qouto

]T

U =
[

Hin1 , Qin1 , . . . , Hinq , Qinq

]T

C =
[

02o×(4p+3) | I2o
]

where the subscript q, p and o denote the number of inputs, inner and output nodes,
respectively.

3.2. Leak Detection and Isolation Process

In this work, the authors propose three phases for the LDI process: leak detection,
branch identification and leak isolation. Leak detection aims at detecting when the leak
appears in the system; branch identification consists in establishing the nodes among which
the leak is located; and, lastly, leak isolation consists in determining the distance between
the inner node of the fixed branch in a previous phase and leak position. More details of
these processes are explained in the following.

3.2.1. Leak Detection

Considering the mass conservation law, the flow-rate through a leak hole, Ql , can be
calculated using the following relationship [26]:

Ql =
q

∑ Qin −
q

∑ Qout (16)

Thus, the leak can be detected using the simple mass balance (16) altogether with a
threshold δ establishing the leak condition as follows: |Ql | > δ. This threshold should be
defined experimentally according to the noise in the measurements (as e.g., δ must be at
least larger than a number of times the variance of the difference between ∑ Qin −∑ Qout
to avoid false alarms). Moreover, the calculation of Ql will be used in the isolation process
as discussed below.

3.2.2. Branch Identification

If a leak occurs, an alarm is triggered when |Ql | > δ. Other kind of alarms can be
found in [27]. At this point, the GA-based branch identification algorithm following the
principles presented in Section 2.4 is started. To do that, the size of phenotype (population)
must be defined by the designer considering the computational effort and according to the
number of branches. Such a population is a subset of the natural number set N limited up
to the number of branches in the pipeline as follows:

P ⊆ Q = {1, 2, . . . , no} (17)

where Q stands for the search space, no is the number of branches. It should be noted that
the population is taken randomly from Q.

The branch identification process is done via an implementation of n′o = ‖P‖ (the
cardinality of the set P) EKFs by using (12) for a system description given by (14) which
allows the estimation error to be minimized. Such observer only differ in the position of
the leak variables, Hl , Q+

l and Q−l , in Equation (14), preserving the order of the branch in
question given by a number in P (i.e., for a number i ∈ P , the leak node is induced at
position li/2 of the corresponding branch).
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Fitness function. The bank of EKFs is used to generate a residual vector defined
as r(t) = [r1(t), r2(t), · · · , ro(t)]

T . Each residual ri(t) is the difference between the ob-
server output flows and the measured output flows normalized with respect to the real
(measured) flows:

ri(t) =
Qi(t)− Q̂i(t)

Qi(t)
(18)

where Qi and Q̂i stand for the flow-rate, measured and estimated in the i-th output node,
respectively. This normalization is used because of the possible differences between output
flows allowing the residuals to be comparable in [0, 1] scale.

GA-based algorithm aims at finding the leaking-branch (each of them characterized
by an observer) based on finding leak location that minimizes the L2-norm residual (i.e.,
the lowest energy observer) as in [28]:

min

√∫ t0+Tw

t0

r(t)Tr(t)dt (19)

where Tw is a time window.
Once the winning population is found, a new set of phenotypes is randomly generated

to replace the ones that have not survived and thus, to complete the whole population for
the new iteration (in other words, a new set of branch number, that has not already been
tried, is selected randomly). If no new population is generated, the termination conditions
are achieved.

3.2.3. Leak Isolation

The last step of the LDI process is to estimate the distance between the upstream
node of the winner branch and the leak point ẑ f , see Figure 7. As it can be seen, the input-
output pipe sections that include the leak node are shown with dashed line (input q to
output o). Those input-output that do not pass through to the leak node are denoted
by dashed lines (input and output number 1). The process to isolate the leak is carry
out taken any input-output pipeline that contains the leak node (for example input j to
output k, solid line). Then, let us consider that it is possible to compute the pressure drop
between two consecutive nodes using Equation (1) in steady state, i.e., ∂Q(t,z)

∂t = 0 and
∂H(t,z)

∂z = Hn+−Hn−
zn

, it yields:

Hn+ − Hn− =
znµn

gAφ
Q2

n (20)

where Hn+ and Hn− denote the measured pressures at the previous and posterior nodes,
respectively; Qn is the flow-rate, µn is computed as in Equation (1) and zn is the distance
through the analyzed section. Now, following the scheme depicted in Figure 7, it is possible
to take any input-output branch (input j to output k, for instance) and using (20) it is
possible to compute the pressure drop in all inner nodes. By hypothesis, the measurements
of the inner nodes are not available, but, it is possible to sum recursively the result given
by Equation (20) through the whole pipe-section under study (note that Hn appears with
negative sign in the first section but with positive sign in the next section, such that if (20)
is summed recursively, the inner pressure measurements disappear). After some algebraic
manipulations it results in:

ẑ f =
Hinj − Houtk −∑n

i=1 µiziQ2
i

µl((Q+
l )

2 − (Q−l )
2)

(21)

where Hinj and Houtk are the pressure head at upstream and downstream, respectively,
in the considered branch (see Figure 7); µi and µl are the constant µ (as in Equation (1))
but being µl computed with the friction factor in the branch where the leak is induced;
Qi the flow-rate in the i-th pipe in the network; and zi the distance of the pipe between
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the i-th and the (i + 1)-th node. Finally, Q+
i and Q−i is the flow-rate before and after the

leak location, respectively (see Figure 5). It is worth pointing out that in the summation
in Equation (21), if i is the leaky branch, then Qi = Q−i and Q+

i and Q−i can be computed
indirectly through the measured flows by means of a mass valance. Finally, note that
in steady state, ẑ f is computed using the pressure drop between any input and output
nodes since it must be equal to the pressure drop as a result of the flow rate in each branch
following the Darcy-Weisbach equation being its advantage over other methods [15,29].

. . .

. . .

. . .. . .

. . .

. . .

...

...

...

...
input j

input 1

input q

output k

output 1

output o

leak node

leak

z1zi−1zf

zi

zi − zfzi+1zn

. . . to another net section

. . . to the next section
another input-output line

input-output line including the leak

Figure 7. General scheme of a water distribution net.

3.2.4. LDI Pseudo Code

The following pseudo code summarizes the implementation of the proposed LDI
algorithm (Algorithm 1):

Algorithm 1 LDI Scheme
1: while true do
2: Qin1,2,...,q ← ReadFlowSensors()
3: Hin1,2,...,q ← ReadPressureSensors()

4: Ql =
q

∑ Qin −
q

∑ Qout
5: if |Ql | > δ then
6: P ← Take randomly n′o elements in Q (initial population)
7: while true do
8: for i = 1, . . . , n′o do
9: ri ← Run observer Tw second inducing the leak in the j-th branch (j ∈P)

10: end for
11: Take the best elements that fulfill Equation (19)
12: Remove the worst elements from Q
13: Complete P taking the rest element randomly from Q
14: if P = Q then
15: break
16: end if
17: end while
18: end if
19: if P = Q then
20: break
21: end if
22: end while
23: Compute ẑ f from Equation (21)
24: return ẑ f
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4. Tuxtla Gutiérrez Pilot Plant: A Case Study

To evaluate the performance of the proposed LDI scheme, experimental results are
presented in this section. The experiments are carried out using several databases from
the pilot plant built at the Hydraulics Laboratory of the National Technological Institute
of Mexico (TecNM) in Tuxtla Gutiérrez, Chiapas. A general description of the pipeline
prototype is presented below. Then, the pilot plant modeling and the application of the
LDI is presented. Finally, experiments for all possible leak scenarios are successfully solved
and discussed.

4.1. Pilot Pipeline Description

The layout of the pilot plant is depicted in Figures 8 and 9. This pilot plant is composed
by one main line and a couple of branches connected to it. This configuration has five pipe
sections. In each pipe section, a valve is installed and it can be opened to create a leak
scenario, see Figure 8. A 5 [HP] hydraulic pump impulses the water through the system
which is made of Polyvinyl Chloride (PVC) with an inner diameter of 4.86 [cm] (approx.
two inches). A variable-frequency drive to regulate the pressure head is also included.
A 2.5 [m3] reservoir is placed upstream and another is placed downstream to recirculate
the water.

PT

PT01

FT01

FT

PT

PT02

FT02

FT

PT

PT03

FT03

FT

PT

PT04

FT04

FT

PT06

PT

PT05

PT

PT

PT07

PT

PT08

19.75m 10.31m23.81m 6.25m

19.75m 8.39m15.91m 11.31m21.89m 6.25m

1.00m 1.00m

Elevation

z = 1m

Elevation

z = 0m

... Leak 3

1

2

′′

... Leak 2

1

2

′′

... Leak 1

1

2

′′

... Leak 4
1

2

′′

... Leak 5

1

2

′′

Tank

2500LPump

5 hp

2′′

2′′

2′′

2′′2′′ 3′′

Second

branch

First

branch

ℓ = 0.54m ℓ

ℓ ℓ

VFD

Figure 8. Pipeline system layout.

Figure 9. Pipeline prototype.
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Moreover, flow-rate sensors are placed upstream and also at all delivery points (down-
stream); pressure head sensors are installed at both upstream and downstream but also
at the branching connections. It should be noted that those pressure heads at branching
connections are not used by the LDI system but are only used for validation purposes.
The main pipeline parameters are shown in Table 1 (see [30] for more information).

Table 1. Pipeline parameters.

Parameter Symbol Value Dimension

Inner diameter φ 4.86× 10−2 m
Wave speed b 422.75 m/s
Relative roughness εr 3.47× 10−4 −
Fluid kinematic viscosity ν 8.03× 10−7 m2/s
Fluid density ρ 996.59 kg/m3

Acceleration due to gravity g 9.79 m/s2

4.2. Pilot Plant Modeling

Applying the proposed architecture to the Tuxtla Gutiérrez Pilot Plant (Section 3.1)
yields to the scheme depicted in Figure 10. As it can be seen, it has one input node(
[H1 Q1]

T), two inner nodes
(
[H2 Q2 Q′2 Q′′2 ]

T and [H3 Q3 Q′3 Q′′3 ]
T) and three output nodes(

[H4 Q4]
T , [H5 Q5]

T) and [H6 Q6]
T).

Hk
in1

Hk
1Hk

2
Hk

out1

Hk
out3

Hk
out2

Qk
in1

Qk
1Q′k

1

Q′′k
1

Qk
2Q′k

2

Q′′k
2

Qk
out1

Qk
out2 Qk

out3

Figure 10. Branched pipeline structure.

Considering q = 1, p = 2 and o = 3 in Equation (14) leads to the following state-space
representation:

X =
[
H1, Q1, Q′1, Q′′1 , H2, Q2, Q′2, Q′′2 , Hl , Q+

l , Q−l , Hout1 , Qout1 , Hout2 , Qout2 , Hout3 , Qout3

]T (22)

U =
[
Hin1 , Qin1

]T (23)

C =
[

06×11 | I6
]

(24)

Thus, if two phenotypes are selected, two observers must be built. In this example,
the number of branches is limited, therefore, an observer in each ramification can be built.
However, in a real case, where the number of branches are significant, a reduced observer
can be built. Each observer can seek for the leaking-branch (phenotypes in the GA). In this
way, computational effort can be reduced. Figure 11 shows two observers fighting for the
lowest residual (Fitness Function in Equation (19)). Obviously, here the phenotypes are 1
and 5 respectively.

The observers are designed using the state-space representation, Equation (14) and
EKF approach described in Section 2.3.
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Figure 11. LDI scheme.

4.3. Experimental Results

Five experiments are performed using several databases from the pilot plant described
in Section 4.1. The experiment was carried out under the same conditions: to emulate a
leak, the opening of one of the valves numbered from one to five (see Figure 8), respectively,
is carried out approximately ten seconds after the experiment begins. The algorithm is
started once the leak is detected via a mass balance approach as discussed in Section 3.2.1.
Immediately afterwards, the GA-based algorithm described in Section 2.4 is executed.

Figures 12–16 show the results regarding experiments based on creating leaks from
valves one to five, respectively. Figures 12a, 13a, 14a, 15a and 16a depict the dynamic of the
flow-rate and the pressure head at the upstream node (input variables).

As previously mentioned (Section 4.2), two phenotypes are used in this application.
However, for demonstration purposes, Figures 12b, 13b, 14b, 15b and 16b depict the residu-
als of the five observers (one for each branch of the system) once the GA has converged.
Note that the observer that presented the minimum energy is indeed the corresponding to
the leaking-branch. It should be noted that residuals were smoothed for clarity purposes.

Figures 12c, 13c, 14c, 15c and 16c depict the flow-rates outputs, observer (Q̂i) and
the measured one (Qi) of the winner observer. As it can be seen, the mathematical model
follows the real data in a proper way despite the measurement noise.

Figures 12d, 13d, 14d, 15d and 16d show the distance between the upstream leak
node and the leak position (leak isolation), the real one z f (concerning) and its estimation
ẑ f . As shown, the leak position is well estimated. In the same figure, the length of the
whole input-output branch where the leak is located, L is shown. The latter is performed to
illustrate the gap between the real leak distance and its estimation.
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leak

leak

(a) Pressure head and flow-rate at upstream
node (system inputs).

(b) Output residuals.

r4

r3

r5

r2

r1

(c) Flow-rates at downstrem nodes.
(system outputs).

Q̂4Q4

Q̂5Q5

Q̂6Q6

(d) Distance between the upstream leak node and
the leak position (Leak Isolation).

ẑf zf

L

Figure 12. Experiment 1: leak induced in valve 1: (a) Pressure head and flow rate at upstream,
(b) Output residuals, (c) Flow rate at downstream nodes and, (d) Leak position.

Finally, for the sake of comparison the classical extended Kalman filter designed as
in [7] is also implemented and its results are then compared with those obtained in this
paper. In Table 2 this comparison is summarized. As it can be seen, the GA approach
outperforms the classical extended Kalman filter (EKF) in two experiments whereas the
classic EKF is better in one experiment. Certainly, these results are obtained using a test bed
pilot plant and the following step is to evaluate the performance of the GA approach in a
real-life leak scenario to then compare it with the EKF which has already been implemented
to solve a real life leak problem [31].
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leak

leak

(a) Pressure head and flow-rate at upstream
node (system inputs).

(b) Output residuals.

r4

r5

r3

r1

r2

(c) Flow-rates at downstrem nodes.
(system outputs).

Q̂4Q4

Q̂5Q5

Q̂6Q6

(d) Distance between the upstream leak node and
the leak position (Leak Isolation).

ẑf zf

L

Figure 13. Experiment 2: leak induced in valve two: (a) Pressure head and flow rate at upstream,
(b) Output residuals, (c) Flow rate at downstream nodes and, (d) Leak position.

Table 2. Error norm for each LDI approach.

Case ‖ezl‖ GA [m] ‖ezl‖ EKF [m]

Experiment 1 1.29× 102 2.98× 102

Experiment 2 1.53× 102 4.46× 102

Experiment 3 1.08× 102 0.98× 102
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leak

leak

(a) Pressure head and flow-rate at upstream
node (system inputs).

(b) Output residuals.

r5

r4

r1

r2

r3

(c) Flow-rates at downstrem nodes.
(system outputs).

Q̂4Q4

Q̂5Q5

Q̂6Q6

(d) Distance between the upstream leak node and
the leak position (Leak Isolation).

zf ẑf

L

Figure 14. Experiment 3: leak induced in valve 3: (a) Pressure head and flow rate at upstream,
(b) Output residuals, (c) Flow rate at downstream nodes and, (d) Leak position.

4.4. Some Final Remarks

(1) The algorithm can hardly identify the parameters of a leak with a rate greater than
10 % of the nominal flow since this event can be considered as a catastrophic failure
instead of a simple fault, this is because the assumptions to obtain a modeling of
the system could not be fulfilled correctly. Moreover the smallest leak that can be
detected depends directly on the accuracy of the flow rate sensors (noise variance).

(2) To obtain moving average values of the input and output measurements, they are
filtered with the equation [31]:

ςF(k) =
1

2N + 1
(ς(K + N) + ς(k + N − 1) + ... + ς(k− N)) (25)

where ςF(k) is the smoothed value for the signal ς(•) at time k, N is the number of
neighboring data taken on either side of ςF(k), and 2N + 1 is the span dimension.

(3) The initial conditions of the observer, X0 are fixed as follows: H40 , Q40 , H50 , Q50 ,
H60 and Q60 are equal to the mean values of the measured outputs in a steady-state
leak-free condition.

(4) The inner pressure initial conditions (i.e., H20 , H30) are calculated using the well-
know Darcy-Weisbach friction equation [15,29]:

Hi0 = Hi−10 − µiziQ2
i0
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where i = {2, 3}.
(5) On the other hand, the inner flow-rate initial conditions. Q20 , Q′20

, Q′′20
, Q30 , Q′30

, Q′′30
,

are computed using the law of conservation of mass:

Qi0 = Q′i0 + Q′′i0 (26)

where, as before, i = {2, 3}. Moreover, due to the same law and in steady-state
conditions, the next relationships must be satisfied: Q′30

= Q40 , Q′′30
= Q50 , Q′′20

=

Q60 and Q′20
= Q30 (see Figure 10).

(6) As is well known, the friction factor, τ in Equation (1), radically changes with the
flow velocity in smooth pipes (pipes with a relative roughness usually lower than
1× 10−3). That is why in the present work, the friction factor is calculated by using
the Swamee-Jain [15]:

τ(Q) =
0.25

[
log10

(
εr

3.7
+

5.74
Re0.9

)]2 (27)

It is worth noting that it is not necessary to update the friction factor once the leak
appears, since its size by hypothesis is lower than 10% of the nominal flow rate in a
steady-state (see point (1)). The friction factors are shown in Table 3.

leak

leak

(a) Pressure head and flow-rate at upstream
node (system inputs).

(b) Output residuals.

r5

r1

r2

r3

r4

(c) Flow-rates at downstrem nodes.
(system outputs).

Q̂4Q4

Q̂5Q5

Q̂6Q6

(d) Distance between the upstream leak node and
the leak position (Leak Isolation).

zf ẑf

L

Figure 15. Experiment 4: leak induced in valve 4: (a) Pressure head and flow rate at upstream,
(b) Output residuals, (c) Flow rate at downstream nodes and, (d) Leak position.
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Table 3. Friction factors for each branch.

Branch Number Symbol Value

1 τ1 2.40× 10−2

2 τ2 2.68× 10−2

3 τ3 3.67× 10−2

4 τ4 5.95× 10−2

5 τ5 3.76× 10−2

leak

leak

(a) Pressure head and flow-rate at upstream
node (system inputs).

(b) Output residuals.

r4

r3

r2

r1

r5

(c) Flow-rates at downstrem nodes.
(system outputs).

Q̂4Q4

Q̂5Q5

Q̂6Q6

(d) Distance between the upstream leak node and
the leak position (Leak Isolation).

zf ẑf
L

Figure 16. Experiment 5: leak induced in valve 5: (a) Pressure head and flow rate at upstream,
(b) Output residuals, (c) Flow rate at downstream nodes and, (d) Leak position.

5. Conclusions and Future Work

The present work deals with the real-time leak detection and isolation problem in
branched pipeline systems present in many real water distribution networks. The approach
has been split into three main stages: leak detection, branch isolation and leak location.
The scheme only assumes flow and pressure sensors at the beginning and the end of
the system.
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The first point to underline is that in complex water distribution systems, the leak
location problem could be difficult to solve due to the high number of nodes (branches) in
the system. That is why the authors propose a genetic based algorithm together with a bank
of observer which aims to isolate the leaking branch by reducing the computational effort.

The leak location was carried out using the pressure drop between an input and an
output node of the branch in question and the flow-rate through it.

The approach estimated the leaking branch accurately and the leak position in a very
acceptable way. The use of a integration error as a fitness function, altogether with the
Kalman filter, helped obtain a good estimation despite the presence of noise.

As a future work, three paths will be addressed: (i) the proposed approach will
be refined to achieve better performance; (ii) the authors will explore the possibility of
extending the approach to locate two leaks; (iii) the algorithm will be tested to locate leaks
in a real water distribution network.
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