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A B S T R A C T

The capability of Convolutional Neural Networks (CNNs) for sparse representation has sig-

nificant application to complex tasks like Representation Learning (RL). However, labelled

datasets of sufficient size for learning this representation are not easily obtainable. The

unsupervised learning capability of Variational Autoencoders (VAEs) and Generative Adver-

sarial Networks (GANs) provide a promising solution to this issue through their capacity to

learn representations for novel data samples and classification tasks. In this research, a

texture-based latent space disentanglement technique is proposed to enhance learning

of representations for novel data samples. A comparison is performed among different

VAEs and GANs with the proposed approach for synthesis of new data samples. Two differ-

ent VAE architectures are considered, a single layer dense VAE and a convolution based

VAE, to compare the effectiveness of different architectures for learning of the representa-

tions. The GANs are selected based on the distance metric for disjoint distribution diver-

gence estimation of complex representation learning tasks. The proposed texture-based

disentanglement has been shown to provide a significant improvement for disentangling

the process of representation learning by conditioning the random noise and synthesising

texture rich images of fruit and vegetables.

� 2021 China Agricultural University. Production and hosting by Elsevier B.V. on behalf of

KeAi. This is an open access article under the CC BY-NC-ND license (http://creativecommons.

org/licenses/by-nc-nd/4.0/).

1. Introduction

Computer vision based classification of fruit and vegetables

has significant applications in the food industry for numerous

applications including quality assessment, fruit and vegeta-

bles grading, robotic harvesting and self-checkouts at super-

markets. The data used for these applications range from

binary to hyperspectral images. Machine learning techniques

have been exploited for both Deep Convolutional Neural Net-

works (DCNNs) [1,2] and statistical classification techniques

[3,4]. Detailed surveys on computer vision based food indus-

try applications can be found in [5–16]. The classification of

fruit and vegetables has notable inherent challenges as com-

pared to other computer vision tasks due to large numbers of

potential variations in texture shape and colour [17,18,87].

These challenges result in a large number of features being

required to differentiate the classes. These features must

come from the training samples, and hence require large

training datasets.
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Carefully estimated handcrafted features have been used

with a variety of classification algorithms and have shown

state-of-the-art results [19,20]. However, with the increase in

application domains of machine learning, the probability of

success of handcrafted feature methods reduces due to their

inherent limitations of time complexity, brittleness and

incompleteness. A significant result has been presented in

[21], where a joint distribution across n variables represented

by k variables shows a uniform nature however, variations

can be discovered if more data is considered, i.e. handcrafted

features are insufficient and can be incomplete for a large

number of classes. The need for more training samples can

also be explained by the curse of dimensionality principle in

machine learning problems, where the required number of

samples increases exponentially with the number of features

to be extracted, whereas the performance increases logarith-

mically [22]. As concluded in [23], a learning model that

depends upon local generalisation with a maximally varying

feature vector of n entries requires (2n) training samples.

The mathematical explorations of a Gaussian kernel based

learning algorithm w.r.t. a smoothness prior was performed

for a function with 2k zero-crossing along a straight line.

Smoothness prior is among the most popular assumptions

in low level vision applications measured as the energy term

for the number of times the assumption is violated. This term

is then used as an estimator to find the lower bound on the

number of training samples required.

Convolutional Neural Networks (CNNs) have an inherent

ability to deal with large application domains and number

of features due to their latent distributed representation

capability. This distributed representation is performed by

n-k active neurons out of n neurons which is a form of sparse

representation. Hence, with the distributed representation

capability of CNNs, the representation capability grows expo-

nentially w.r.t. the number of neurons. Based on the distribu-

tion capability of a neuron they can also generalise to a region

with no prior information. CNNs have a capability of learning

the features at lower levels to perform the representation and

this capability growswith the depth of the network [24]. Other

significant motivations to use CNNs are their capability to

estimate invariant representation and sparsity to cure the

curse of dimensionality, which eventually is required to meet

the goal of better representation. Based on this basic princi-

ple, posterior probabilities learned up to the penultimate layer

are used for decision making in the last layer. The learned

posterior probabilities can be considered as a manifold for

continuous data, i.e. signals or concentrated regions for dis-

crete data, e.g. text processing. However, availability of large

quantities of labelled data is the crucial limitation for training

supervised learning CNNs to estimate the manifold.

Techniques like data augmentation [25] and transfer learn-

ing [26] have been used for data enhancement at initial levels

to overcome the scarcity of labelled datasets. However, the

augmentation and transfer learning approaches are not

always meaningful for some applications, e.g. fruit and veg-

etables classification considering the case where classifica-

tion is based on colour and texture information only. More

recent techniques try to formulate the complex data distribu-

tions as functions of noise sampled from a Gaussian or Nor-

mal probability distribution. Variational Auto Encoders

(VAEs) [27] and Generative Adversarial Networks (GANs) [28]

are the most recent examples of these techniques. Both tech-

niques learn reusable feature representations while being

unsupervised in nature, hence no large labelled dataset is

required. These learned feature representations can be used

in many auxiliary applications such as semi-supervised

learning, in painting and to generate unseen data samples

for supervised learning tasks, e.g. vision based classification

of fruit and vegetables. However, VAEs have an inherent lim-

itation of assigning large probability to non-data points in a

distribution, hence causing atypical blur in images during

the synthesis process [29]. A method to address this limita-

tion of VAEs has been suggested by the GAN design in [28]

through application of the Jensen-Shannon Divergence

(JSD), where small probabilities are also assigned to data sam-

ples. Recently, a detailed study has been presented on low

magnitude GAN perturbations to generate visually salient

image features in [30]. The discriminative features learned

from the natural images are added to the GAN perturbations

as a global feature in the first step. These learned perturba-

tions are then refined for complex image regions to generate

images with greater details in the second step. The state-of

the-art robust DCNN classifiers including VGG-16 and

ResNet50 have been tested for the proposed attack-based per-

turbations accumulation technique. Note that VGG-16 is a 16-

layer deep CNN architecture named after the Visual Geometry

Group while ResNet50 is a 50-layer deep variant of the Resid-

ual Networks. The appropriate feature selection is an impor-

tant concept and has significant applications. Feature

selection techniques are presented in [31] for network intru-

sion detection. A Sparse Logistic Regression (SPLR) based fea-

ture selection technique has been proposed on a subset based

network intrusion feature extractor and selector. These fea-

tures are then used for final discriminative feature selection

for improved performance. An improved approach based on

a similar concept has been presented in [32]. The attack struc-

tures are used with SPLR to improve the feature selection for

network intrusion detection. The proposed technique is then

used for Support Vector Machine (SVM) based classification to

detect intrusion. A similar application of the appropriate fea-

ture selection is explained in [33].

In this research, we investigate the reuse of a manifold

learned by unsupervised VAEs and GANs. The learned mani-

fold is used to generate Representation Learning (RL) for data

enhancement, and later can be extended for feature extrac-

tion to classify fruit and vegetables, e.g., at a supermarket

self-checkout as a potential application. The concept of latent

space disentanglement is combined with the style transfer,

considering the strengths of the batch normalisation in con-

trolling the behaviour of the latent space GANs generation

process. The concept of batch normalisation, Information

Maximisation (IM) and style transfer have been studied in

detail separately, however, their combination still needs to

be explored in more detail. Various architectural variants of

VAEs and GANs are also investigated for learning the repre-

sentations. The classification of fruit and vegetables at super-

market self-checkouts has presented significant challenges

due to two basic limitations: (a) the fruit and vegetables in

86 I n f o r m a t i o n P r o c e s s i n g i n A g r i c u l t u r e 1 0 ( 2 0 2 3 ) 8 5 –1 0 5



supermarkets are sold in a huge number of classes and vari-

eties and have highly inconsistent features within each class

like shape, colour and texture, and (b) factors like ambient

light and the scanning process are also highly inconsistent

at self-checkouts. Additionally, the labelled datasets of fruit

and vegetables for supermarket self-checkouts are scarce

and building a dataset is a time consuming and expensive

task. The application of GANs and VAEs to enhance datasets

and synthesise the samples is a novel approach to enhance

this task. The extended applications of statistical distribution

learning can be data augmentation [34] and feature represen-

tation for classification.

The rest of the paper is organised as follows: the detailed

description of the significant efforts of RL is provided in Sec-

tion 2. The details on the dataset used and basic pre-

processing relevant to the application is presented in Sec-

tion 3.1. A discussion on the state-of-the-art techniques

implemented for the experiments is given in Sections 3.2

and 3.3. The proposed approach of texture-based disentangle-

ment is explained in Section 3.4. A comparison of results

based on our dataset is presented in Section 4. The conclusion

based on the implementation and results including the future

directions is provided in Section 5.

2. Related work

Unsupervised representation learning and its applications are

essential parts of machine learning and computer vision.

Graphical and energy based models are among the first ideas

for generative models for representation learning based on

latent space for example the Restricted Boltzmann Machine

(RBM) [35] and Deep Belief Network (DBN) [36]. In these mod-

els, expensive Markov Chain Monte Carlo (MCMC) techniques

have been used to deal with the intractable gradients in order

to extract inference and normalisation constants. The DCNNs

have a capability to be implemented as parameterised func-

tions to generate the samples and overcome the issues of

RBM and DBN. Probabilistic graphical models are used in VAEs

where the lower bound of data likelihood is maximised to

achieve the goal [27,37]. Recently a better RL technique has

been reported for Pixel Recurrent Neural Network (PRNN)

based on an autoregressive model [38]. VAEs and GANs are

among a few prominent approaches that have emerged

recently. Other significant approaches include Generative

Stochastic Networks (GSNs) [39], PRNNs [38] and Pixel Convo-

lutional Neural Networks (PCNNs) [40]. However, training

instability of GANs limits the generation of high resolution

representations, and much research has been reported to

improve the training process in GANs [41–44].

Conditional generative models have also shown significant

improvement for reconstruction of images from noise based

on the conditioning variables, i.e. class labels or visual attri-

butes [38,45,46]. Other significant work uses the image as a

condition to generate images for different applications like

photo editing [47], style transferring [48] and super resolution

[49]. However, all of these techniques are limited to low reso-

lution and size for the feature vector learned. A more recent

approach has used a stacked GAN as a series of two stages

to generate more detailed feature vectors [50]. The random

normal distribution is conditioned with unstructured text to

generate the representation. As proposed, the first stage gen-

erates the primitive shape and colour information for images

and the second stage improves the low resolutions regions.

This method has a significantly higher resolution of

256 � 256 pixels as compared to other methods based on text

conditioning [51,52].

A series of GANs is also used to generate images. In this

approach the image generation task has been separated into

structure and style generation [53]. A Laplacian pyramid

based series of GANs has been proposed where the output

image of the former stage is conditioned and added to the

input image as an input of the current stage [54]. A multilevel

pre-trained discriminator network has been used on different

spatial resolutions to generate images of 32 � 32 pixels from a

series of GANs. A progressively growing GAN has been pro-

posed that starts with a low resolution image of 4 � 4 pixels

and progressively adds layers to the network. The network

is programmed to shift attention to the new finer details with

the addition of each new layer to ultimately generate images

of 1 024 � 1 024 pixels [55]. These GANs have also set a bench-

mark performance with semi-supervised learning and image

and visual description based joint modelling [44].

The IM has been used recently in [46], where the IM is used

to improve the correspondence between semantic features of

data and the individual dimension of latent z. The latent code

c is concatenated with incompressible noise z to constrain the

use of z for image synthesis. The latent code is used to fac-

torise the noise z in a disentangled way. The overall process

is completely unsupervised; a similar approach is also pre-

sented in [56]. Considering the similar concept of learning dis-

entangled latent code the most recent approach has been

reported in [57]. A non-linear mapping based disentangled

latent space W has been generated by inputting a continuous

non-compressible noise signal. The non-linear mapping tech-

nique used in [57] is important to achieve good results, how-

ever, dealing with the complex datasets of fruit and

vegetables requires significant texture details. Specifically, in

our application of GANs for fruit and vegetable images syn-

thesis, texture details are very important due to similar tex-

ture features for multiple different fruit and vegetables.

Considering the significance of texture details in the synthe-

sised images, we have proposed a texture based non-linear

mapping of latent space. Previously mentioned state-of-the-

art techniques [46,56,57] have been proposed for non-linear

mapping of the Gaussian based latent codes where texture

based latent space disentanglement needs a detailed

exploration. In this research, we have used texture details of

fruit and vegetable images as latent code to disentangle the

latent space for synthesis of texture rich fruit and vegetable

images.

3. Proposed method

A discussion on the dataset used for experiments and testing

along with the proposed texture-based latent space disentan-

glement is described in this section. The latent space disen-

tanglement process is discussed in detail considering the

state-of-the-art VAE and GAN techniques.
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3.1. Dataset and Pre-processing

The experiments have been performed on a 4 000 images

dataset of 20 different fruit and vegetable classes (200 images

per class) including Apple, Broccoli, Brown Onion, Capsicum,

Cauliflower, Eggplant, Hass Avocado, Honey- dew Melon, Ice-

berg Lettuce, Kent Pumpkin, Kiwifruit, Lemon, Orange, Pack-

ham Pear, Potato, Rockmelon, Tomato, Topless Pineapple,

Watermelon and Yellow Banana with a base resolution of

640 � 640 pixels. The images have been captured with a

mobile phone camera (Huawei P9 lite) in the local supermar-

ket (Joondalup, Australia) to capture a real-life supermarket

environment. To maintain reasonable environmental and

lighting consistency for the dataset acquisition process, all

images have been captured during 10:00 am to 03:00 pm using

the ambient supermarket lighting. An approximate distance

of 35 cm between the fruit surface and mobile capturing

device has been maintained where the fruit and vegetables

were captured in their respective shelves. A brief description

of the image capturing device and environmental conditions

for dataset acquisition is presented in Table 1. The obtained

images of resolution 3 120 � 4 160 pixels are manually

inspected and segmented to 640 � 640 pixels (base resolution)

to remove any background and occlusion at the first stage (see

Fig. 1). The segmented images are further sliced to a resolu-

tion of 160 � 160 pixels this assumption is made to overcome

the significant size variation for fruit and vegetables, illus-

trated in Fig. 2. These sliced images are then used for training

and groundtruth, where an example sliced image of each

class is shown in Fig. 3. This two-stage image acquisition

and segmentation process results in 64 000 images (3 200

images per class) that after the slicing consist of colour and

texture details only. Smaller resolution patches have signifi-

cant benefits when dealing with inconsistent imaging, sur-

face defects or damage, texture, colour and size variations,

illumination changes and occlusions in the supermarket

environment. An example of variations of associated physical

aspects is that an image of 640 � 640 pixels cannot be used to

capture the shape of both a watermelon and grapes when the

images are captured at similar distance due to the significant

size differences of the two fruits. Considering the challenges

associated with the environment, multiple image patches of

a fruit or vegetable can be selected to verify and cross check

the results. The smaller image size will also help in model

size reduction and allow faster training and synthesis pro-

cesses. The approach is further based on the concepts of data

efficient Artificial Neural Network (ANN) training and Con-

structive Predictive Coding (CPC) [58,59]. The representation

of high dimensional data, i.e. high resolution images to a

latent vector of much lower dimension, causes the loss of sig-

nificant information. The concept of slicing and generating an

intermediate level representation preserves the significant

temporal and spatial information. A similar concept has been

provided in [60] for grey-scale to RGB image transformation.

3.2. Variational Autoencoders (VAEs)

Autoencoders (AEs) are unsupervised learning models in their

simplest form with only one linear transformation layer as a

single hidden layer along with an input and output layer. Con-

sidering the above definition as the simplest representation of

an AE, this can be described as:

AE h; h
0� �

¼ 1
N

XN

n¼1
jjIn �Dh

0 Eh Inð Þð Þjj2; ð1Þ

where Eh and Dh
0 are the encoder and decoder function,

respectively, which are simple linear transformation func-

tions, i.e. ReLU WIn þ bð Þ with weights W and bias b. The

learned parameters of the encoder and

decoder are denoted by h and h
0
for a dataset of N samples,

i.e., 64 000 in our case. The goal here is to convert the coded

feature vector back to the same feature vector and so the dif-

ference between the original features In and the generated

features is minimised to achieve this goal. However, AEs have

a rigid behaviour towards representation of a disjoint distri-

bution from the training dataset due to their limitation in

detecting a valid latent vector. VAEs can be used to learn

the representation from a latent vector, which can be used

to generate new samples with disjoint latent space for data

enhancement. The encoder and decoder in a VAE are con-

verted to probabilistic estimators for better RL. The VAE with

probabilistic encoders and decoders can be described as:

VAE h;/ð Þ ¼ �Ez�q/ zjInð Þ ph Injzð Þ þDKL q/ zjInð Þjjph zð Þ
� �h i

; ð2Þ

where ph and q/ are the probabilistic encoder and decoder,

respectively. The input feature vector is denoted by Inwhich

in our case is simply a vector of three channel values for

the RGB image, i.e. the size of this vector is 160 � 160 � 3.

The learned parameters of the encoder and decoder are repre-

sented by h and /, respectively where Kullback–Leibler diver-

gence is denoted by DKL. A latent vector z is used in proposed

approach for RL described in (6). The basic architectures of

AEs and VAEs are described in Fig. 4. This architecture of a

VAE can easily overcome the main issue of AEs by considering

that the new disjoint latent vector is sampled from a known

probability distribution. This is achieved by simply represent-

Table 1 – Description of mobile image capturing device and environmental conditions.

Image sensor/condition Description

Mobile device Huawei P9 lite
Vision sensor Sony IMX214 Exmor RS
Image resolution 3 120 � 4 160, 640 � 640 and 160 � 160 pixels
Device distance 35 cm from fruit/vegetable surface
Lighting condition Supermarket ambient lighting (10:00 am to 03:00 pm)
Location Local supermarket (Joondalup, Australia)
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ing each feature of a training dataset by a probability distribu-

tion. A dense VAE is implemented for our experiments with

an input feature vector of size 160 � 160 � 3 that passes

through a linear transformation layer, i.e. a dense layer to

estimate themean lð Þ and standard deviation rð Þ as statistical
features with a dimension of 2 for both. The behaviour of a

single dense layer VAE is studied for 256, 512, and 1 024 nodes.

qh zjInð Þ� �
and decoder Ph Injzð Þð Þ

The spatial details in an image are vital, especially for clas-

sification from colour and texture only. A 16-layer convolu-

tional VAE based on [61] is implemented for RL. The

convolutional VAE is implemented as a set of convolutional

and transposed convolutional layers for the encoder and

decoder, respectively. The detailed architecture along with fil-

ter sizes of the implemented convolutional VAE is described

in Table 2. Four convolutional layers extract the abstract lower

level features of an image before estimating the statistical

details for RL. The decoder is an inverse of the encoder net-

work and transposed convolutional [62] is used to up scale

the feature vector. Based on the approach of [61], the encoder

in the VAE can be described as a set of convolutional, batch

normalisation and activation operations as follows:

Rn
l ¼ In � Fl;n ¼ 1;2;3; � � � :;N and l ¼ 1;2; 3; � � � :;L; ð3Þ

lRn
l
¼ 1

m

Xm
1

Rl
m; ð4Þ

R
�l

n ¼ ReLU lRn
l

� �
; ð5Þ

where Rn
l is the representation learned by convolution layer l

with filter Fl from L layers on an image In from the dataset of N

Fig. 1 – Image data acquisition in a real-life supermarket environment: (a), (b) and (c) image acquisition at supermarket fruit

and vegetable shelves, (d) captured high resolution (3 120 � 4 160 pixels) fruit image, (e) Region of Interest (ROI)

representation for manual cropping, and (f) cropped image (640 � 640 pixels).
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images. The leaned representation is then normalised for m

elements in Rn
l to estimate the final representation R

�l

n based

on the ReLU activation function. The sampling from normal

distribution N for estimation of statistical features to define

the latent vector z in the designed network can be denoted as:

z � N lh R
�l

n

� �
;/h R

�l

n

� �� �
; ð6Þ

where mean and standard deviation of Rn
l based on h learning

parameters are represented as lh and /h, respectively. The

decoder is then used to convert a learned latent vector z back

to the input feature vector. The decoder network is based on

transposed convolution upsampling and can be described as:

f v ¼
XL

l¼1

z�al; ð7Þ

where � represents the transposed convolution between a

latent vector z and the activation filter al. This transposed

convolution has been repeated four times to convert the

latent vector to an input feature vector, i.e. images in our case.

The transposed convolutions are followed by batch normali-

sation and activation functions as defined in Eq. (4) and (5).

3.3. Generative Adversarial Networks (GANs)

The AE and VAE based models generate an input feature vec-

tor from a dataset space S by defining a low dimensional rep-

resentation z for each of the images In in the space. The

complex marginal distribution p 2ð Þ overall latent vectors Z

are ideally supposed be known. So, the new feature vectors

f v are generated by sampling p 2ð Þ and feeding this into the

decoder. However, there are significant limitations of AEs

and VAEs in terms of requirement for: (a) a precisely trained

decoder that can generate realistic feature vectors, and (b) a

match between P Zð Þand p 2ð Þ, i.e. these distributions should

overlap. Significant efforts have been reported to meet both

challenges by minimising the AE and VAE loss and by either

modifying the encoder or reducing the difference between

the two distributions [63]. More rigorous penalties have been

applied on mismatched distributions by converting Kullback–

Leibler (KL) divergence to Evidence Lower Bound Objective

(ELBO) in [64].

GANs in comparison generate the input feature vector

from high dimensional data distribution with a typical

architecture of two networks: (a) generator and (b) discrim-

inator. A latent code based input feature vector is generated

by a generator with an indistinguishable distribution from

the training data distribution. A discriminator network is

used to discriminate between fake and original feature vec-

tors, where gradient information during the discrimination

process can be used for fine tuning both networks for effec-

tive results. The generator is the most significant part of

this network however, the adaptive loss function learned

by the discriminator can be neglected once the training pro-

cess is completed. A basic architecture of a GAN is shown

in Fig. 5.

Fig. 2 – Visualisation of image slicing of a Rockmelon: (a) from a 640 � 640 pixels image to 16 patches of 160 � 160 pixels, and

(b) a comparison of sliced and groundtruth images.
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The vital element to reconstruct the input feature vector is

the distance reduction between the distribution of the origi-

nal and fake data. Multiple formulations have been derived

for estimation of the distance between these distributions.

However, the task is non-trivial if both distributions are not

easily distinguishable or do not have significant over-

lapping. Jensen-Shannon (JS) divergence was originally used

[28] as a distance metric between the distributions. More

stable distribution divergence techniques include least

squared [65], margin absolute deviations [66] and Wasserstein

distance [67]. Architectural variations have also been tested

for high resolution and improved feature representations

[50,55]. However, higher resolution feature vectors (i.e.

images) are easily distinguished form the originals by a dis-

criminator network. The convolution used in the GANs also

limits the process in terms of model size, training time and

variations over resolution [68]. We have applied the state-of-

the-art techniques for input feature vector regeneration for

a fruit and vegetables dataset. Starting from the initial effort

in [28] we have compared Wassertein Generative Adversarial

Network (WGAN) [67] and Information Maximisation Genera-

tive Adversarial Network (InfoGAN) [46,69] as two significant

variants of GAN.

Considering the problem of unsupervised learning the set

of some parametric probability densities are estimated to

achieve the maximum likelihood with examples of ground-

truth data [67]. In our case the above statement can be

described as:

max
h

1
N

XN
n¼1

log Ph Inð Þ; ð8Þ

where Ph is the set of parametric probability distributions and

In is an example of original data drawn from a dataset of N

elements. GANs also used a similar techniques for feature

vector generation by considering PIn as the real data distribu-

tion and Ph as the parametric distribution and applying a dis-

tance metric to reduce the distance between the two

overlapping probability distributions as the loss, e.g. KL diver-

gence for VAEs and JS divergence for GANs. However, there

can be many real-life examples where the distributions of a

real input feature vector and the generated feature vector

are disjoint or not overlapping. This issue is resolved by many

state-of-the-art GANs by adding noise distributions however

this can affect the quality of the generated feature vector

[67]. Moreover, if the distributions are disjoint, no parameter

updating takes place in the initial stages of the training pro-

cess [70]. Considering the loss function of a GAN illustrated

in Fig. 5, the above statement can be described as:

loss G;Dð Þ ¼ E log Inð Þ½ � þ E log 1�DðG zð Þð ÞÞ½ �; ð9Þ

Fig. 3 – Example sliced images (160 � 160 pixels) of 20 classes of fruit and vegetables.
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where the discriminator for an ideal GAN D/

� �
can be

described as:

D/ ¼ PIn

PIn þ PbIn
" #

; ð10Þ

where PbIn is the probability distribution of the generated fea-

ture vector. Substituting (10) into (9), it can be evaluated that

the loss term is zero for both KL and JS divergence as distance

metrics, i.e no parameter updating for discriminator or gener-

ator. The Wasserstein distance, however is a more stable dis-

tance metric if the distributions are disjoint, measuring the

horizontal distance between the means of both distributions.

This horizontal distance can be used as a measure of the dif-

ference between distributions for GANs. Based on the above

discussion it can be concluded that the Wasserstein distance

metric is more suitable for better and faster convergence of

both discriminator and generator meaning it is more suitable

for complex problems like representation learning for fruit

and vegetables. Hence, a Wasserstein GAN is implemented

in this study for representation learning of a fruit and vegeta-

bles dataset. The architectural details of the implemented

Wasserstein GAN are described in Table 3.

The process of RL has been studied as a mutual informa-

tion inclusion for latent vector generation in [46]. An assump-

tion has been made that the generator can use the noise

vector z as an input in a highly entangled manner for gener-

ation of the representation. To improve disentanglement, sta-

tistical semantic information s has been used as a condition

on the noise z to limit the randomness in the distribution.

This process provides significant benefits for RL of complex

tasks with a high number of classes through production of

effective feature vectors that can be used as novel samples.

Moreover, the samples among the multiple classes have some

inherent meaningful statistical factors and have distinct

physical characteristics. The colour of fruit and vegetables

for example have some specific combinations of probability

distribution for the three channels in RGB images, hence

additional statistical factors (e.g. shape or size) can improve

the effectiveness. Instead of using the random noise vector,

the InfoGAN uses random noise z and statistical semantics

of data distribution as a condition on processing the noise

vector. Considering the random noise as z and set of statisti-

cal semantic features as s, the objective function for InfoGAN

VIð Þ [46] can be described as:

min
G

max
D

VI D; Gð Þ ¼ V D; Gð Þ � kI s;G z; sð Þð Þ; ð11Þ

where G and D represent the generator and discriminator,

respectively, and I is the mutual information, also called the

regularisation term. Here, k is a regularisation parameter

and a value of less than 1 is recommended in [46]. The gener-

ator is now using random noise z and statistical information s

to generate a representation that can be further described by

substituting (9) described for our case in (11):

min
G

max
D

VI D; Gð Þ ¼ E log Inð Þ½ � þ E log 1�D G z; sð Þð Þð Þ½ �
� kI s;G z; sð Þð Þ; ð12Þ

which is basically subtraction of the mutual information (reg-

ularisation) term from the calculated loss in the GAN to

improve the overall process of RL. A detailed description of

the network implementing the InfoGAN is described in

Table 4. The network uses the one-hot-code based latent code

for disentangling the information of 20 classes of fruit and

vegetables. Representation of each class is generated by a sin-

gle hot-code to distinguish among the classes and random

noise sampled by a normal distribution is conditioned based

on this hot-code.

More recently, style based latent space disentanglement is

reported in [57,71]. Compared to the previous efforts for

improving discriminator networks [72–75], this work empha-

sises improvements in the overall generator architecture.

The latent vectors considered as input are first disentangled

with a non-linear dense network and added as a learned

affine transformation in the input to control Adaptive

Instance Normalisation (AdaIN). Our approach is largely

based on a similar concept to enhance the dataset for ANN

based fruit and vegetables classification. We have considered

the texture details of images as the semantic code for further

disentanglement of the latent as space discussed below.

Fig. 4 – Basic architectural description of: (a) single layer autoencoder (AE) for encoding and decoding feature vector (I) to (I),

respectively, and (b) variational autoencoder (VAE) with probabilistic encoder.
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3.4. Texture-based disentanglement

Linear subspaces in a latent space provide significant control

for RL in GANs. However, the probability of sampled latent

code should correspond to the probability density of the

actual dataset [57]. The same condition has been considered

while generating the semantic code for IM in [46]. In a real

world scenario, the datasets are not so disentangled and esti-

mation of probability density for such sampling is a non-

trivial task. Considering the new architecture of the generator

described in [57,71], this constraint can be easily overlooked

when, the latent space is unwrapped to linearise subsequent

factors. A similar approach has been used in our case where

the intermediate latent space W is similarly disentangled

and combined with the texture information extracted from

a subset of the training dataset. The images are processed

with an eight layer dense ANN to estimate an initial semantic

latent code for the 20 classes. The extracted texture details

are compressed to a latent code with a maximum dimension

matching the number of classes in the training dataset. This

intermediate latent space is then used to learn the affine

transforms for layer-by-layer style based representation

learning. A description of the intermediate latent space gen-

eration process is illustrated in Fig. 6, where a single style

Table 2 – Network description of 16-layer convolutional VAE.

Encoder Decoder

Layers Input Output Input Output

1 Conv2D (3, 160, 160) (16, 160, 160) Linear (1, 2 048) (1, 2 048)
2 B.Norm2D (16, 160, 160) (16, 160, 160) B.Norm (1, 2 048) (1, 2 048)
3 ReLU (16, 160, 160) (16, 160, 160) ReLU (1, 2 048) (1, 2 048)
4 Conv2D (16, 160, 160) (32, 80, 80) Linear (1, 2 048) (1, 25 600)
5 B.Norm2D (32, 80, 80) (32, 80, 80) B.Norm (1, 25 600) (1, 25 600)
6 ReLU (32, 80, 80) (32, 80, 80) ReLU (1, 25 600) (1, 25 600)
7 Conv2D (32, 80, 80) (64, 80, 80) T.Conv2D (1, 25 600) (64, 80, 80)
8 B.Norm2D (64, 80, 80) (64, 80, 80) B.Norm2D (64, 80, 80) (64, 80, 80)
9 ReLU (64, 80, 80) (64, 80, 80) ReLU (64, 80, 80) (64, 80, 80)
10 Conv2D (64, 80, 80) (16, 40, 40) T.Conv2D (64, 80, 80) (32, 80, 80)
11 B.Norm2D (16, 40, 40) (16, 40, 40) B.Norm2D (32, 80, 80) (32, 80, 80)
12 ReLU (16, 40, 40) (16, 40, 40) ReLU (32, 80, 80) (32, 80, 80)
13 Linear (16, 40, 40) (1, 2 048) T.Conv2D (32, 80, 80) (16, 160, 160)
14 B.Norm1D (1, 2 048) (1, 2 048) B.Norm2D (16, 160, 160) (16, 160, 160)
15 ReLU (1, 2 048) (1, 2 048) ReLU (16, 160, 160) (16, 160, 160)
16 Linear (1, 2 048) (1, 2 048) T.Conv2D (16, 160, 160) (3, 160, 160)

Conv2D: 2D Convolution, B.Norm2D: 2D Batch Normalisation, B.Norm1D: 1D Batch Normalisation

Fig. 5 – Basic architecture of a Generative Adversarial

Network (GAN).

Table 3 – Network description of implemented Wasserstein GAN.

Layer Generator Discriminator

1 z ¼ N l;rð Þl ¼ 0; r ¼ 1 In = (3, 160, 160)
2 Dense(100, 128) Dense(784, 512)
3 LReLU(0.2) LReLU(0.2)
4 Dense(128, 256) Dense(512, 256)
5 B.Norm1D(256) LReLU(0.2)
6 LReLU(0.2) Linear(256, 1)
7 Dense(256, 512)
8 B.Norm1D(512)
9 LReLU(0.2)
10 Dense(512, 1 024)
11 B.Norm1D(1 024)
12 LReLU(0.2)
13 Dense(1 024, 784)
14 Tanh()

LReLU: Leaky ReLU, B.Norm1D: 1D Batch Normalisation
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block has been considered to describe the input as a learned

affine transform and broadcast noise based on [71]. Each style

block architecture is based on the latest state-of-the-art style

based architecture described in [71]. The AdaIN operation [76]

is broken into the constituent parts and demodulation

instead of instance normalisation is used. Significant consid-

erations related to better convergence and faster training

have been made in our approach. The activation function is

applied after addition of bias and broadcast noise in the style

block. Previously LeakyReLU has been used in the original

design, which has significant limitations when used for com-

plex representation learning problems. Exponential Linear

Unit (ELU) has provided a combination of the pros of both

Table 4 – Network description of implemented InfoGAN.

Layer Generator Discriminator

1 z ¼ N l;rð Þl ¼ 0;r ¼ 1 In = (3, 160, 160)
2 B.Norm2D(128, eps = 1e�5) Conv2D(3, 3)
3 Upsample(s = 2.0, mode = nearest) LReLU(0.2)
4 Conv2D(3, 3) D.out2D(0.25)
5 B.Norm2D(128, eps = 0.8) Conv2D(3, 3)
6 LReLU(0.2) LReLU(0.2)
7 Upsample(s = 2.0, mode = nearest) D.out2D(0.25)
8 Conv2D(3, 3) B.Norm2D(32, eps = 0.8)
9 B.Norm2D(64, eps = 0.8) Conv2D(3, 3)
10 LReLU(0.2) LReLU(0.2)
11 Conv2D(3, 3) D.out2D(0.25)
12 Tanh() B.Norm2D(64, eps = 0.8)
13 LReLU: Leaky ReLU Conv2D(3, 3)
14 B.Norm2D: 2D Batch Normalisation LReLU(0.2)
15 D.out2D: 2D Dropout Layer D.out2D(0.25)
16 Conv2D: 2D Convolution B.Norm2D(128, eps = 0.8)

*The momentum for all 2D Batch Normalisation operations is 0.1.

Fig. 6 – Building a texture-based intermediate latent space

for a style based generative adversarial network,where

ÞA
�
and ÞB

�
represent the learned affine transform and

broadcast noise, respectively.

Fig. 7 – The network architecture for style transfer used in

the proposed approach based on [55,71], where ÞA
�
and ÞB

�

represent the learned affine transform and broadcast noise,

respectively.
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ReLU and LeakyReLU in [77]. The ELU improves the overall

process of learning by producing the negative values and

shifting the mean activation to zero, resulting in faster train-

ing. The complete network architecture of our approach has

been presented in Fig. 7. The image synthesis process pro-

gressively increases in resolution (22–1282) based on [55].

The process is initially started by considering a constant input

of resolution 22. A normalised initialisation process [78] is

used for this constant input and for the initial weights used

in the overall training process, which reduces the difference

of weight gradient and variance of network layers, hence pro-

viding a faster convergence rate.

We have further combined the concept of Information

Maximisation (IM) with the texture-based latent space disen-

tanglement. The shared high level information between data

elements can be learned by enhancing the mutual informa-

tion between them, where a significant challenge in this

regard is the reduction of low level noise. The initial latent

code estimated by passing images through the mapping net-

work reduces low level noise while preserving the abstract

texture details. The IM technique used in our approach

improves the control over the latent code in the image syn-

thesis. The initial latent code is improved based on the

mutual information maximisation principle defined in (11).

The implementation of the IM principle in our described

approach is based on [46], where the auxiliary distribution

for lower bound estimation is obtained by adding a dense

layer in the discriminator based on the continuous nature

of the semantic latent code and the auxiliary distribution is

treated as a factorised Gaussian for estimation of mutual

IM. A complete description of the implemented generator

and discriminator architecture is described in Tables 5 and

Table 6 for the mapping and synthesis networks, respectively.

The image dataset has been divided for training and

semantic latent code estimation. A disjoint set of 640 images

(20% of dataset) per class have been used for semantic latent

estimation, where 2 560 (80% of dataset) images per class

have been used for training the texture-based style represen-

tation learning.

The implemented ANN is considered a form of Helmholtz

machine, while the algorithm is defined in [79] as phases of

synthesis and information estimation for the training pro-

cess. A similar rule has been used for training the defined

approach. The synthesis phase draws the image samples for

estimation of auxiliary distribution and the information esti-

mation phase updates the auxiliary distribution for better

representation. The assumption behind this implementation

is that combining the pros from the techniques presented in

[46,55,57,71] will result in better RL outcomes incorporating

the stochastic nature of real-life images.

4. Results

The results of the above implemented techniques for our

dataset of supermarket fruit and vegetables have been illus-

trated in the form of images, Frechet Inception Distance

(FID) and classification accuracy between groundtruth and

synthesised images as a statistical metric. The FID and classi-

fication accuracy are considered as statistical metrics to esti-

mate the effectiveness of the proposed technique. These

statistical metrics are considered based on the state-of- the-

art techniques used for synthesised image analysis. More

details on both techniques used can be found in Sections

4.2 and 4.3.

4.1. Synthesised images

A single layer dense VAE is implemented for 256, 512 and 1

024 nodes to analyse the capability of RL for a higher number

of nodes in a single layer. An assumption of single layer ANN

convergence to any arbitrary function is considered for imple-

mentation of the dense VAE. The network described in (2) is

trained on 51 200 random images of 20 classes with a batch

size of 32 for 64 epochs, while 12 800 images have been con-

sidered as a random disjoint set to test the representation

effectiveness of the network. The adaptive learning rate of

individual parameters [80] has been used for optimisation of

the network, where the loss has been estimated using the

Mean Squared Error (MSE). A set of example groundtruth

and generated images is shown in Fig. 8. The spatial organisa-

tion of colour and edges can be extractedwith a convolutional

operation. A convolutional VAE network is described in Table 2

to consider the texture details for the RL process. The network

is trained using our dataset to learn a representation for fruit

and vegetables. The adaptive learning rate of individual

parameters is optimised to improve the effectiveness of RL.

The results are presented in Fig. 9 for groundtruth images

and generated images. More detailed colour and less blurred

texture information can be observed in the images generated

with convolutional VAE. Even deeper networks could be used

Table 5 – Description of synthesis network for texture-based intermediate latent synthesis using groundtruth images and
512-dimensional noise.

Mapping (Texture) Mapping (Noise)

1 Images (3, 128, 128) z ¼ N l;rð Þl ¼ 0;r ¼ 1
2 Dense (16 384, 512) Dense (1, 512)
3 Dense(512, 512) Dense (512, 512)
4 Dense(512, 256) Dense (512, 512)
5 Dense(256, 256) Dense (512, 512)
6 Dense(256, 128) Dense (512, 512)
7 Dense(128, 128) Dense (512, 512)
8 Dense(128, 64) Dense (512, 512)
9 Dense(64, 20) Dense (512, 512)
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to extract more abstract information of texture and colour.

However, deeper convolutional networks also have limita-

tions w.r.t. model size, training and synthesis time.

GANs are the most prominent network in the state-of-the-

art techniques for representation learning for data enhance-

ment, data augmentation and representation based classifi-

Table 6 – Detailed architectures of generator and discriminator for synthesis neural networks.

Generator architecture
Output size
Weight matrix

Discriminator architecture
Output size
Weight matrix

Layesrs Output size Weight matrix Layers Output size Weight matrix

1 Inputlatent (1, 532) – Imagein (3, 128, 128) –
2 Const4�4 (512, 4, 4) (1, 512, 4, 4) FromRGB128�128 (256 , 128, 128) (1, 1, 3, 256)
3 Conv4�4 (512, 4, 4) (3, 3, 512, 512) Conv128�128 (256, 128, 128) (3, 3, 256, 256)
4 ToRGB4�4 (3, 4, 4) (1, 1, 512, 3) ConvDown128�128 (512, 64, 64) (3, 3, 256, 512)
5 ConvUp8�8 (512, 8, 8) (3, 3, 512, 512) SkipConn128�128 (512, 64, 64) (1, 1, 256, 512)
6 Conv8�8 (512, 8, 8) (3, 3, 512, 512) Conv64�64 (512, 64, 64) (3, 3, 512, 512)
7 Upsample8�8 (3, 8, 8) – ConvDown64�64 (512, 32, 32) (3, 3, 512, 512)
8 ToRGB8�8 (3, 8, 8) (1, 1, 512, 3) SkipConn64�64 (512, 32, 32) (3, 3, 512, 512)
9 ConvUp16�16 (512, 16, 16) (3, 3, 512, 512) Conv32�32 (512, 32, 32) (3, 3, 512, 512)
10 Conv16 � 16 (512, 16, 16) (3, 3, 512, 512) ConvDown32�32 (512, 16, 16) (3, 3, 512, 512)
11 Upsample16�16 (3, 16, 16) – SkipConn32�32 (512, 16, 16) (1, 1, 512, 512)
12 ToRGB16�16 (3, 16, 16) (1, 1, 512, 3) Conv16�16 (512, 16, 16) (3, 3, 512, 512)
13 ConvUp32�32 (512, 32, 32) (3, 3, 512, 512) ConvDown16�16 (512, 8, 8) (3, 3, 512, 512)
14 Conv32�32 (512, 32, 32) (3, 3, 512, 512) SkipConn16�16 (512, 8, 8) (1, 1, 512, 512)
15 Upsample32�32 (3, 32, 32) – Conv8�8 (512, 8, 8) (3, 3, 512, 512)
16 ToRGB32�32 (3, 32, 32) (1, 1, 512, 3) ConvDown8�8 (512, 4, 4) (3, 3, 512, 512)
17 ConvUp64�64 (512, 64, 64) (3, 3, 512, 512) SkipConn8�8 (512, 4, 4) (1, 1, 512, 512)
18 Conv64�64 (512, 64, 64) (3, 3, 512, 512) Mini-Stddev4�4 (513, 4, 4) –
19 Upsample64�64 (3, 64, 64) – Conv4�4 (512, 4, 4) (3, 3, 513, 512)
20 ToRGB64�64 (3, 64, 64) (1, 1, 512, 3) Dense4�4 (512) (8 192, 512)
21 ConvUp128�128 (256, 128, 128) (3, 3, 512, 256) Output (1) (512, 1)
22 Conv128�128 (256, 128, 128) (3, 3, 256, 256) ScoreOut (1) –
23 Upsample128�128 (3, 128, 128) –
24 ToRGB128�128 (3, 128, 128) (1, 1, 256, 3)
25 Imagesout (3, 128, 128) –

ToRGB: RGB Conversion, ConvUp: Up Convolution, Upsample: Up Sampling Layer.

Fig. 8 – Comparison of results for Dense VAE: (a) image reconstruction of Brown Onion with 256 nodes, (b) image

reconstruction of Iceberg Lettuce with 512 nodes, and (c) image reconstruction of Rockmelon with 1 024 nodes.
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cation problems. Two kinds of GAN variants have been con-

sidered for this implementation based on the recent signifi-

cant methodology improvements in GAN design. The

vertical difference based cost has been evaluated for the VAEs

and the initial GAN designs using KL and JS based distribution

divergence. The KL and JS divergence have an inherent limita-

tion of having constant cost for disjoint distributions, how-

ever, many real-life complex applications of GANs can have

disjoint distributions. This issue has been resolved in Wasser-

stein GANs by using horizontal distance as a distance metric.

The Wasserstein GANs can model the disjoint distribution

divergence, which can be used for better parameter updating

for generator and discriminator. The Wasserstein GANs based

RL for fruit and vegetables is presented in Fig. 10, Fig. 11 and

Fig. 12 sampled at 1 600, 3 200 and 6 400 iterations, respec-

tively. The mutual information maximisation based InfoGAN

has been implemented to restrict the random distribution

conditioned on statistical semantic information for RL.

The informationmaximisation is added as a regularisation

term to improve the GAN objective function which can result

in faster and more effective RL for complex problems. Both

networks have been trained using the fruit and vegetables

dataset with a batch size and epoch size of 64, where Adam

optimisation [80] is used for parameter optimisation. A com-

parison of the groundtruth and InfoGAN based generated

images is presented in Fig. 13. Unwrapping of latent space

to linearise subsequent components has been reported as a

significant effort to control the stochastic nature of the syn-

thesis process in GANs [46,57,71]. A texture-based disentan-

glement has been implemented with a presumption of

synthesising more texture details in images to enhance the

dataset for ANN based classification of fruit and vegetables

as an application. Example images have been presented in

Fig. 14.

4.2. Statistical metrics

The mean and co-variance difference of high dimensional

image data distributions can be estimated by the Freet Incep-

tion Distance (FID) [81]. This distance can be used as a statis-

Fig. 9 – Comparison of example groundtruth images (upper row) and synthesised images (lower row) of Kiwifruit, Iceberg

Lettuce, Orange, Red Delicious Apple and Rockmelon, respectively for Convolutional VAE after 3 200 iterations (left to right).

Fig. 10 – Comparison of results forWasserstein GAN example groundtruth images (upper row) and synthesised images (lower

row) after 1 600 iterations for Honeydew Melon, Kiwifruit, Packham Pear, Topless Pineapple and Red Delicious Apple (left to

right).
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tical measure for synthesised image quality estimation [82].

To estimate this distance, a high dimensional distribution of

2 048 feature activations learned by the penultimate layer of

Inception V3 [83] for both the synthesised and groundtruth

images are obtained. These activation feature vectors are

then used to estimate the following FID:

d2 l;Covð Þ; ls;Covsð Þf g ¼ kl� lsk
2
2

þ Tr Cvs þ Covs � 2 CvsCovsð Þ12
� �

; ð13Þ

where l;ls and Cvs;Covs represent the feature based mean and

co-variance of the feature activation vectors of groundtruth

and synthesised images, respectively, and the trace matrix

is represented by Tr. The FID estimation of synthesised

images w.r.t. groundtruth images is described in Table 7.

The quantitative comparison between the synthesised

images and the training dataset illustrates significant overall

image quality enhancement due to the improvements result-

ing from better distribution divergence and the latent space

disentanglement techniques. As FID is based on Inception

V3 [83] which has recently been proposed for better texture-

based image classification, a lower FID indicates better image

similarity and with significant texture details. The synthe-

sised images with lower FID can be considered as novel sam-

ples, and hence can be used for training a CNN for texture and

colour based classification of fruit and vegetables. The evalu-

ation and comparison of images generated with the help of

VAEs and GANs has significant implications for future

research directions. As VAEs and GANs are purely unsuper-

vised techniques, better representations can be learned with

the concept of IM and enhanced disentanglement as a

semi-supervised approach. The concept of a better distance

metric is also useful for disjoint distribution divergence esti-

mation. More sophisticated statistical semantics information

Fig. 11 – Comparison of results forWasserstein GAN example groundtruth images (upper row) and synthesised images (lower

row) after 3 200 iterations for Capsicum, Eggplant, Lemon, Iceberg Lettuce, Topless Pineapple (left to right).

Fig. 12 – Comparison of results forWasserstein GAN example groundtruth images (upper row) and synthesised images (lower

row) after 6 400 iterations for Eggplant, Kiwifruit, Orange, Topless Pineapple, Red Delicious Apple (left to right).
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can be helpful to improve the overall process of RL for fruit

and vegetables dataset enhancement and classification.

4.3. Classification accuracy

A DCNN based image classification is performed to estimate

the image data enhancement. A pre-trained ResNet50 [84]

on ImageNet [85] is transfer learned with the groundtruth

and synthesised images for classification. The initial 45-

layers are considered as the bottleneck feature extractor

where the last five layers are adapted considering the hypoth-

esis of significant disparity between ImageNet and our classi-

fication task. This technique can also achieve significant

auxiliary goals of computational cost reduction and over-

fitting. The extracted features by bottleneck and adapted lay-

ers are then used to train a softmax classifier with 20 classes

where a categorical cross entropy and Adam Optimiser are

employed as loss function and optimiser, respectively. The

weights for trainable layers are initialised using Xavier uni-

form initialisation. A 10-fold cross validation with random

sample shuffling using an approximate proportion with class

labels is used for training the ResNet.

Training accuracy and loss for groundtruth and synthe-

sised images is illustrated in Fig. 15(a). The ResNet is transfer

learned for the groundtruth dataset and synthesised images

separately on 51 200 and 3 200 images, respectively. The test-

ing has been performed on a disjoint image dataset. A com-

parison of average test accuracy and error for both

groundtruth and synthesised images is depicted in Fig. 15(b)

and Fig. 15(c). The test set for both datasets is portioned in

three disjoint sets of 10 images per class where accuracy is

estimated for each class with transferred learned ResNet(s).

The per class accuracy obtained by disjoint test sets is aver-

aged to find the mean accuracy and error range for both the

groundtruth and synthesised images. A significant conjunc-

tion between the range of the estimated accuracy repre-

sented by the error bar of multiple classes implicates the

dataset similarities and, hence, dataset enhancement. Smal-

ler difference between the mean accuracy of the groundtruth

and synthesised images can also be used to estimate the sim-

ilarity of the two training datasets used. A much larger data-

set can be built and used for training complex and deeper

DCNNs. Significant similarity as a smaller mean accuracy dif-

ference can be observed for more texture rich fruit and veg-

etable images.

5. Conclusion

This paper has evaluated different Variational Autoencoders

(VAEs), Generative Adversarial Networks (GANs) and

texture-based latent space disentanglement based GAN for

the state-of-the-art application of Representation Learning

(RL) of a fruit and vegetables dataset. The scarcity of large

labelled datasets of fruit and vegetables is the major motiva-

Fig. 13 – Comparison of results for InfoGAN: (a) samples after 16 000 iterations for Orange, Capsicum and Hass Avocado, (b)

samples after 32 000 iterations for Topless Pineapple, Watermelon and Yellow Banana, (c) samples after 48 000 iterations for

Hass Avocado, Tomato and Honeydew Melon, and (d) samples after 64 000 iterations for Potato, Topless Pineapple and

Orange (left to right).
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Fig. 14 – Example synthesised images based on the texture-based latent space disentanglement for dataset enhancement.

Table 7 – Frechet Inception Distance (FID) estimation of synthesised and groundtruth images.

Method FID Estimation

1 Dense VAE (256) 46.23
2 Dense VAE(512) 48.56
3 Dense VAE(1 024) 44.15
4 Convolutional VAE 34.56
5 Wasserstein GAN(1 600) 34.78
6 Wasserstein GAN(3 200) 32.67
7 Wasserstein GAN (6 400) 31.33
8 InfoGAN (16 000) 22.45
9 InfoGAN(32 000) 21.78
10 InfoGAN(48 000) 19.99
11 InfoGAN(64 000) 16.74
12 Our Proposed Approach 5.18
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Fig. 15 – The ResNet based classification accuracy estimation for groundtruth and synthesised images: (a) Transfer learning

accuracy and loss, (b) A comparison of mean classification accuracy and error (transfer learned on groundtruth), and (c) A

comparison of mean classification accuracy and error (transfer learned on synthesised images).
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tion to perform RL for data enhancement. The classification

of fruit and vegetables is a multi-class classification problem

with significant inherent limitations. Convolutional Neural

Networks (CNNs) are a more suitable technique for suchmulti

class classification tasks, however the effective training of

CNNs requires a significantly large labelled dataset. The VAEs

and GANs have been evaluated to use the learned representa-

tion for novel sample generation. This representation can also

be extended for feature extraction for classification of fruit

and vegetables, which is the main purpose of this study.

Comparison of the implemented VAEs and GANs shows

that using the Wasserstein distance as a distribution diver-

gence metric improve the results significantly as compared

to dense VAE and convolutional VAE. Colour and texture

details are more evident in the test images generated with

the help of a Wasserstein GAN whereas the images generated

with dense VAE are similar to colour noise. The images gener-

ated with convolution VAE have no discrete texture and col-

our information that can be used for classification or

training of a supervised CNN. The mutual information max-

imisation used in the Information Maximisation Generative

Adversarial Network (InfoGAN) further improves representa-

tion and distinct colour and texture information is evident

in the generated images. As evident from the results a combi-

nation of mutual information maximisation and use of the

Wasserstein distance metric can improve the performance

significantly. The transformation of a high dimensional latent

space to linear sub spaces can provide significant control over

the representation learning and synthesis process. The disen-

tanglement obtained by the linear sub space transformation

has been explored to achieve more effective results with tex-

ture details. We have used a combination of disentanglement

techniques to achieve our goal of dataset enhancement for

Artificial Neural Network (ANN) based fruit and vegetables

classification. The texture details of a subsequent random

disjoint subset of training data has been used as a semantic

latent code to control the use of disentangled latent space

for image synthesis in the generator network. The image size

has been limited to 128 � 128 resolution to reduce the time

and computational complexity, however the results illustrate

that more texture rich high resolution images can also be syn-

thesised using the same approach.

As part of our futurework, wewill investigate sophisticated

statistical semantic information for better disentanglement

and use with semi supervised GANs [86]. There is a potential

of improvement using semi-supervised GANs with small

labelled datasets of fruit and vegetables. We will also investi-

gate more sophisticated distance metrics and a combination

of different distance metrics with sophisticated semantic

information to improveRL for fruit andvegetables. The learned

representationcanbeused forgenerationofnovel samplesand

feature extraction for classification as our final goal.
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