
Base-Stock Policies with Constant Lead Time:
Closed-Form Solutions and Applications

Zhaolin Li
Discipline of Business Analytics, The University of Sydney Business School, Australia erick.li@sydney.edu.au

Guitian Liang
School of Management, Jinan University, Guangzhou, China lianggt@hotmail.com

Qi Fu
The University of Macau, Taipa, Macau, China, gracefu@um.edu.mo

Chung-Piaw Teo
NUS Business School, National University of Singapore, Singapore 119245, bizteocp@nus.edu.sg

We study stationary base-stock policies for multiperiod dynamic inventory systems with a constant lead time and inde-

pendently and identically distributed (iid) demands. When ambiguities in the underlying demand distribution arise, we

derive the robust optimal base-stock level in closed forms using only the mean and variance of the iid demands. This

simple solution performs exceptionally well in numerical experiments, and has important applications for several classes

of problems in Operations Management.

More important, we propose a new distribution-free method to derive robust solutions for multiperiod dynamic inven-

tory systems. We formulate a zero-sum game in which the firm chooses a base-stock level to minimize its cost while

Nature (which is the firm’s opponent) chooses an iid two-point distribution to maximize the firm’s time-average cost in

the steady state. By characterizing the steady-state equilibrium, we demonstrate how lead time can affect the firm’s equi-

librium strategy (i.e., the firm’s robust base-stock level), Nature’s equilibrium strategy (i.e., the firm’s most unfavorable

distribution), and the value of the zero-sum game (i.e., the firm’s optimized worst-case time-average cost). With either

backorders or lost sales, our numerical study shows that superior performance can be obtained using our robust base-stock

policies, which mitigate the consequence of distribution mis-specification.
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1. Introduction

A positive lead time makes stockouts common in supply chains (Ergin et al. 2022) and costly for retailers

(Corsten and Gruen 2004). In the inventory management literature, a system with lost sales and a positive

lead time is widely regarded as notoriously difficult but fundamentally important. A technical hurdle arises
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when tracking the pipeline inventory where the state space rapidly expands as the lead time grows. The curse

of dimensionality inevitably hinders the analysis. Numerous articles have proposed heuristics/algorithms

to compute policies with satisfactory numerical performance; however, these methods are computationally

intensive and cannot be easily implemented, e.g., in an Excel spreadsheet, which is a popular tool used by

many practitioners. Furthermore, these methods rely on a known prior distribution fitted from the training

data. The prior distribution could lead to model mis-specification and may not perform well if the demand

distribution experiences a distributional shift.

Motivated by these theoretical and practical challenges, we apply the robust max-min decision rule in a

multiperiod setting to develop closed-form solutions for base-stock policies in classical inventory problems.

Our solutions are not only suitable for implementing in Excel spreadsheets but also deliver high quality

numerical performance. We first consider the case of backorders and then extend the analysis to the case of

lost sales. We assume that the lead time is a positive constant and cost parameters are linear and stationary.

We also assume that the demand in each period is identically and independently distributed (iid) but with an

unknown distribution. The partially available information includes the mean and variance of the iid demand.

An innovative feature of our method is that we formulate the robust optimization model as a zero-sum game,

in which the firm chooses a base-stock level to minimize her cost while Nature chooses an iid distribution

to maximize the firm’s time-average cost in the steady state. This method overcomes the technical hurdle

encountered in the extant literature. Specifically, in the backorder model, we find that Nature’s equilibrium

strategy is a two-point distribution. For the lost-sales model, due to the difficulty in precisely deriving the

objective function, we consider a relaxed model where Nature chooses only two-point distributions. We then

characterize the (relaxed) zero-sum game equilibrium. Our numerical study shows that the firm’s optimal

base-stock level in the relaxed solution performs remarkably well.

1.1 Literature Review

In the extant literature, various heuristics have been developed for lost-sales models (see Goldberg et al.

2021, for an updated literature review). For example, Janakiraman and Roundy (2004) showed that with

a random lead time, the firm’s expected discounted total cost is convex with respect to the base-stock
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level. Zipkin (2008a) formulated a large-scale Markov chain to characterize the optimal policy, which is

state-dependent. To ease the computational effort, Levi et al. (2008) introduced a dual-balancing policy to

reduce the holding cost and lost-sales cost. Zipkin (2008b) showed that the optimal cost function exhibits

the L#-convex (also known as L-natural convex) property, and Chen et al. (2014) extended the concept

of L#-convexity to develop an algorithm with pseudopolynomial computational time. Huh et al. (2009)

used backorder solutions to construct a weighted-average base-stock level for the lost-sales counterpart. By

aggregating the dynamics of the inventory system into a one-dimensional state space, Arts et al. (2015)

developed a new heuristic to choose the base-stock level. van Jaarsveld and Arts (2021) considered a pro-

jected inventory level policy, under which the expected inventory level is raised to a fixed level. Wei et al.

(2021) solved a deterministic model with backorders and then showed that the resultant policy is asymptoti-

cally optimal with backorders or lost sales. Xin (2021) demonstrated that capped base-stock policies (which

include a base-stock level and a cap on the order size) perform satisfactorily.

In addition to the base-stock policies, the constant order policy (COP), under which the firm orders the

same amount of inventory in each period irrespective with the pipeline and on-hand inventory, has received

increasing attention in the literature. Goldberg et al. (2016) showed that COP can be asymptotically optimal

under a long lead time or high understock cost. Xin and Goldberg (2016) provided explicit bounds for the

profit gap between COP and the optimal policy and then proved that this gap converges to zero with an

exponential speed as the lead time increases. The subsequent studies focus on determining the COP quantity

in various environments such as dual sourcing (Xin and Goldberg 2018) and random supply (Bu et al. 2020).

In contrast, we consider stationary base-stock policies with unknown demand distributions.

The literature on robust inventory management is inspired by Scarf (1958), and single-period models

are prevalent. A typical assumption is that the firm knows only the mean and variance of the demand. The

firm aims to find an order quantity to maximize her expected profit against the worst possible distribution.

While Scarf’s research applied semi-infinite programming (SIP) tools, Gallego and Moon (1993) provided

an alternative proof using the Cauchy inequality. These traditional methods focused on the firm’s perspec-

tive and encountered a few roadblocks when the ex post profit function is complex or the t-th moment
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(where t > 1) is known. In contrast, Li et al. (2022) proposed a more efficient method to analyze the single-

period model from Nature’s perspective, thus making closed-form solutions attainable. Multiperiod robust

inventory models are rare. Mamani et al. (2017) proposed a method that combines the central limit theorem

with robust optimization tools. Xin and Goldberg (2022) developed a multiperiod model with zero lead

time, backorders, and Martingale demand. The main difference is that Martingale demand provides partial

information about the mean of the demand (which equals the realization of the most recent demand).

1.2 Our Contributions

We highlight our main contributions and results as follows.

• We propose a novel method to solve multiperiod robust inventory models as a zero-sum game. We

consider the steady-state equilibrium, in which both the firm and Nature employ stationary strategies. We

obtain the closed-form solution in the firm’s relaxed model (where Nature chooses only two-point distribu-

tions). We show that the firm’s relaxed solution is optimal for the general backorder model and a special

case of the lost-sales model.

• We show that backorders and lost sales create different impacts on the relaxed equilibrium. With lost

sales, the equilibrium strategy of Nature is unaffected by the lead time. The intuition is that with lost sales,

the impact of shortage only lasts for one period (rather than accumulates), forcing Nature to resume the

single-period strategy. Hence, the value of the zero-sum game is also unaffected by the lead time (but the

base-stock level is affected by the lead time). In contrast, with backorders, the demand history is preserved,

and accumulated shortages can grow, enabling Nature to employ a lead-time-dependent strategy to punish

the firm. Both the firm’s equilibrium strategy and the value of the zero-sum game depend on the lead time

under backorders. Therefore, backorders increase the firm’s cost.

• Our numerical study shows that the robust base-stock policy generated from the relaxed model per-

forms satisfactorily. Due to the notorious difficulty in using the exact demand distribution to compute the

optimal policy for the lost-sales models, our closed-form robust solution is an attractive alternative with

significant practical and theoretical value. This simple but elegant equation is suitable for implementation

in Excel spreadsheets and comprehensively captures the effect of lead time.
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2. The Backorder Model with Constant Lead Time
2.1 Known Demand Distribution

In the model with backorders, the planning horizon is divided into multiple discrete periods, of which the

lengths are identical and scaled to one unit of time. Any replenishment order arrives after a constant lead

time l (where l≥ 1 is an integer). The holding cost for on-hand inventories is $h and the backorder cost is

$b per unit per period. In each period, the same sequence of events proceeds as follows: (1) the previously

scheduled shipment arrives; (2) the firm places an order; (3) the external demand for the current period is

realized; and (4) holding and backorder costs are incurred. Hereafter, we use a tilde to indicate a random

variable and no tilde to indicate a realized value. The external demand that the firm receives in each period

is represented by a nonnegative random variable θ̃, which follows an iid cumulative distribution function F .

The literature has demonstrated that the optimal inventory policy when the firm precisely knows the

distribution F is a stationary base-stock policy (e.g., see Section 2.1 of Shang and Song 2003, for details).

We let s be the base-stock inventory level and ξ =
∑l+1

i=1 θi be the realized demand during the lead time and

the current period. In the steady state, the time-average cost equals

M (s|F ) =E

[
b
(
ξ̃− s

)+

+h
(
s− ξ̃

)+
]
, (2.1)

which depends on the iid demand distribution F . The unambiguous optimal base-stock level satisfies

Fl+1 (ŝ) =
b

b+h
, where Fl+1 (·) is the (l+1)-fold convolution of F (·).

2.2 Unknown Demand Distribution

We assume that the exact form of F is unknown except that the values of the mean (E(θ̃) = µ > 0) and

variance (V ar(θ̃) = σ2 > 0) are known. Let Ω be the collection of all the possible distributions satisfying

the mean and variance conditions. Formally, we define set Ω as follows:

Ω=

{
F (·) |

∫ ∞

0

dF (θ) = 1,

∫ ∞

0

θdF (θ) = µ,

∫ ∞

0

θ2dF (θ) = µ2 +σ2

}
. (2.2)

The number of feasible distributions in set Ω is infinite and each feasible distribution satisfies the mean-

variance constraints. We let ρ= σ
µ

be the coefficient of variation of the demand. Under the assumption of
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iid demands, the mean and variance of ξ̃ satisfy E(ξ̃) = (l+1)µ and V ar(ξ̃) = (l+1)σ2, respectively.

Because the stationary base-stock policy is optimal for the unambiguous benchmark, we assume that the

firm uses a stationary base-stock policy when F is unknown. The firm applies the robust max-min decision

rule to solve the following robust optimization model in the steady state:

Z =min
s≥0

sup
F∈Ω

{M (s|F )}=min
s≥0

sup
F∈Ω

{∫ ∞

0

b (ξ− s)
+
+h (s− ξ)

+
dFl+1(ξ)

}
, (2.3)

which has a neat zero-sum game interpretation. Note that for any distribution F0 ∈ Ω, we have

supF∈Ω {M (s|F )} ≥ M (s|F0); hence Z obtained above is an upper bound to the optimal cost

mins≥0M (s|F0), when the iid demand distribution F0 is known.

We introduce Nature as the second player of the game. The firm chooses an inventory level s to minimize

the expected cost M (s|F ) while Nature chooses a distribution F to maximize the firm’s expected cost

M (s|F ). The set Ω in equation (2.2) specifies Nature’s strategy space. Denote the equilibrium of this zero-

sum game by (s∗,F ∗), where s∗ is the firm’s equilibrium strategy (or her distributionally robust inventory

level) and F ∗ is Nature’s equilibrium strategy (or the firm’s most unfavorable distribution). Consequently,

Z∗ =M (s∗|F ∗) represents the value of the zero-sum game (or the firm’s optimized worst-case expected

cost). We clarify that when the firm plays an arbitrary inventory level s, Nature responds by playing its

best response Fbst (s). Evidently, it holds that Fbst (s
∗) = F ∗ and for any other s ̸= s∗, Fbst (s) ̸= F ∗,

indicating that the equilibrium strategy of Nature differs from its best response to an arbitrary base-stock

level s. We focus on deriving the equilibrium strategies (F ∗, s∗) rather than the off-equilibrium actions. To

avoid uninteresting results, we assume b≥ ρ2h (which is consistent with Scarf’s rule) throughout this paper.

Otherwise, the firm may backorder forever without keeping any on-hand inventory.

2.3 A Relaxed Solution

Conceptually, the firm and Nature engage in a multiperiod zero-sum game. The popular methods to solve

the game include the subgame perfect conditions and the one-shot deviation principle (Fudenberg and Tirole

1991). Because we are interested in the steady-state equilibrium where both the firm and Nature employ

stationary strategies, these two popular methods become less effective. For example, with a positive lead

6



time (and later with lost sales), the number of subgames grows rapidly. Under the iid assumption, if Nature

deviates from its initial strategy in one shot, it must keep playing the same deviating strategy in every period

and cannot resume to its initial strategy. Therefore, whenever Nature deviates from its initial strategy, we

must examine the changes over the entire planning horizon rather than just one short period. To overcome

these challenges, we first consider a relaxed model for the firm.

To understand the motivation for this relaxation, we note that in (2.3), ξ =X1+ . . .+Xl+1, where Xi are

iid random variables with prescribed mean and variance, and the optimal solution depends on the critical

fractile at b/(b+ h) for ξ. To simplify the problem, we use the fact that any real-valued random variable

Xi has a Bernoulli decomposition in the form Xi ∼ Yp(ti) + δp(ti)ηi where ti is uniformly distributed in

(0,1), ηi is independent of ti and is a Bernoulli random variable taking value in 0 or 1, with probability

1− p and p respectively (cf. Aizenman et al. 2022). In particular, if we choose p= (b/(b+ h))1/(l+1), then

ξ̃ =
∑l+1

i=1 Yp(ti) with probability b/(b + h), which is the critical ratio in the problem. The challenge is

to characterize how this critical fractile changes as each ti varies over (0,1) independently in a uniform

manner.

Note that each Xi can be represented as mixture of Bernoulli random variables. In the rest of the paper, we

restrict the problem to the space of Bernoulli distributions to derive the equilibrium solution. Our analysis

shows that the worst case distribution for Xi in this setting is actually a Bernoulli random variable, with

p= (b/(b+h))1/(l+1), and values chosen to satisfy the mean and variance constraints.

Let Ω0 be the collection of two-point distributions satisfying the following equation:
Pr
(
θ̃= µ−σ

√
1−β
β

def
= L

)
= β,

Pr
(
θ̃= µ+σ

√
β

1−β

def
= H

)
= 1−β.

(2.4)

In this relaxed model, Nature chooses the demand distribution F from Ω0, defined by equation (2.4). We

omit the nonnegative constraint on θ̃ but retrospectively verify that this constraint still holds in the equi-

librium. Interestingly, due to the zero-sum feature of the game, Nature’s constrained model becomes the

firm’s relaxed model. When Nature’s strategy space shrinks from Ω to Ω0, Nature (weakly) suffers but the

firm (weakly) benefits.
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In the relaxed model, the distribution of the demand during lead time satisfies the following property:

Pr
(
ξ̃ = (l+1− i)L+ iH

)
=

(l+1)!

(l+1− i)!i!
βl+1−i (1−β)

i
.

The firm’s time-average cost, which is denoted by M (β, sl), equals

M (β, sl) =
l+1∑
i=0

(l+1)!

(l+1− i)!i!
βl+1−i (1−β)

i

h (sl − (l+1− i)L− iH)
+

+b ((l+1− i)L+ iH − sl)
+

 .
The firm chooses her base-stock level sl to minimize M (β, sl) while Nature chooses β (since each two-

point distribution in Ω0 is uniquely determined by the parameter β) to maximize M (β, sl). For l≥ 0, let

β∗ =

(
b

b+h

) 1
l+1

be a constant, where the subscript l indicates the length of the lead time.

Proposition 1 In the firm’s relaxed model with backorders, the equilibrium strategy of Nature is the follow-

ing distribution:

F ∗
l =


Pr
(
θ̃= µ−σ

√
1−β∗

β∗
def
= Ll

)
= β∗,

Pr
(
θ̃= µ+σ

√
β∗

1−β∗
def
= Hl

)
= 1−β∗.

(2.5)

The firm’s equilibrium strategy is the following base-stock level:

s∗l = (l+1)µ+σ

(
2β∗ − 1

2
√
(1−β∗)β∗

− l

√
1−β∗

β∗

)
. (2.6)

The value of the zero-sum game is equal to

Z∗ = bσ(l+1)

√
1−β∗

β∗ . (2.7)

Proposition 1 characterizes the equilibrium when Nature chooses a demand distribution from Ω0. First,

we find that the probability of a low demand (measured by β∗) is concave and increasing with respect to the

lead time l. If l approaches infinity, β∗ approaches 1. We can verify that the skewness of this distribution

equals 2β∗−1√
β∗(1−β∗)

, which approaches infinity in an asymptotic case where the lead time is sufficiently long.

This skewed demand distribution is detrimental to the firm and forces the firm to raise her base-stock level.
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Second, Proposition 1 suggests that when each θ̃i is an iid two-point distribution, the demand during the

lead time
∑l+1

i=1 θ̃i is a transformed binomial distribution satisfying Pr
(
θ̃1 + θ̃2 + . . .+ θ̃l+1 = (l+1)Ll

)
=

b
b+h

, which is the firm’s newsvendor ratio. This implies that in the steady-state equilibrium, backorders

occur with probability h
b+h

. Third, the value of the zero-sum game (i.e., the firm’s optimized expected cost)

is increasing with respect to the standard deviation σ, backorder cost b, and holding cost h but is unaffected

by the mean µ.

Remark 1 A crucial question is whether the relaxed solution indeed characterizes the true equilibrium.

The key step is to investigate whether Nature changes its strategy when its action space expands from Ω0

to Ω. If Nature does not alter its strategy, then the relaxed solution describes the true equilibrium. In the

online appendix, we show that with backorders, Nature indeed maintains its strategy unchanged.

3. Case With Lost Sales and Constant Lead Time

In the lost-sales model, the selling price of the firm’s product is $p, the production cost is $c (where p >

c ≥ 0), and the holding cost is $h > 0. Thus, (p− c) can be regarded as the penalty cost of lost sales.

The sequence of the event is the same as that in the backorder model except that the demand in excess of

the available on-hand inventory is lost rather than backordered. To avoid an uninteresting equilibrium, we

assume that

p− c

h
≥max

{
ρ2, l

}
. (3.1)

We justify condition (3.1) as follows. Both lost-sales and backorder models exclude the holding cost for the

inventory in transit. However, if the holding cost for the inventory in transit is also $h per unit per period,

the inequality in (3.1) implies that the profit margin (p− c) must be sufficiently high to justify prestocking

inventories. The second condition (p− c)≥ ρ2h is consistent with Scarf’s rule with zero lead time. Overall,

condition (3.1) is a mild assumption on the cost parameters.

Given an unknown demand distribution, the firm is unable to estimate the transition probability under

any state-dependent policy. Therefore, we focus on stationary base-stock policies such that the sum of
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the pipeline inventory and the on-hand inventory equals a constant s, which represents the firm’s base-

stock level. We also consider a profit maximization problem with lost sales rather than a cost minimization

problem because of the convenience in illustrating the analysis. Similar to the backorder model, we can

formulate the zero-sum game under lost sales as: Z = maxs≥0 infF∈Ω {M (s|F )}, where M (s|F ) is the

firm’s time-average profit. However, the challenge is that we must first derive M (s|F ) explicitly.

3.1 System Dynamics

We introduce the following notations. At the beginning of period t, we use It to represent the on-hand

inventory before receiving any due delivery and vector Qt = (Qt,Qt−1, . . . ,Qt−l), which is a row vector

with l + 1 elements, to describe the pipeline inventory. Counting from left to right, the first variable Qt

represents the order that is placed in period t, the second variable Qt−1 represents the order that was placed

in period t− 1, and the final variable Qt−l represents the order that was placed in period t− l but is due

to arrive in the current period t. At any period t, we can fully characterize the state of the system using

(Qt|It), exploiting the fact that the demand per time period is either L or H . This considerably simplifies

the state transition matrix in the lost sales model. The state transition proceeds as follows. After the order

Qt−l arrives, the on-hand inventory in period t becomes It +Qt−l. The sales quantity in period t equals

Wt =min(θt, It +Qt−l). In the steady state under a stationary base-stock policy, the sum of the on-hand

inventory and pipeline inventory must be lower than the base-stock level s and thus, in period t the firm’s

order quantity equals Qt = s − It −
∑t−1

i=t−lQi. The closing inventory of period t (after the demand θt

arrives) becomes the initial inventory of period t+1 and equals It+1 = (It +Qt−l − θt)
+. The order to be

placed in the next period t+1 equals

Qt+1 = s− It+1 −
t∑

i=t−l+1

Qi = s− (It +Qt−l − θt)
+ −

t∑
i=t−l+1

Qi,

which depends on the realized demand θt in the current period t. When θt =H , (It +Qt−l − θt)
+
= 0, and

hence Qt+1 = s−
∑t

i=t−l+1Qi. This expression is either s− lL, when all the other Qi is L, or L when one

of the Qi is s− lL and the rest are L.
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Let E (I∞), E (W∞), and E (Q∞) respectively represent the expected on-hand inventory, sales quantity,

and order quantity in the steady state (where the subscript ∞ indicates that time approaches infinity). It is

well known that E (W∞) =E (Q∞) such that the inventory in the steady state never indefinitely builds up or

depletes. The time-average profit then equals M (F,s) = (p− c)E (W∞)− hE (I∞). The extant literature

recognizes that the expressions E (I∞) and E (W∞) can be so complex as to be intractable when the iid

demand follows an arbitrary distribution F ∈ Ω. Therefore, we continue to focus on the relaxed model

where Nature is restricted to choose a two-point distribution from set Ω0.

3.2 Lost-Sales Equilibrium

The key step is to compute the time-average profit M (β, s) (we use M (β, s) to replace M(s|F ) since β

uniquely determines Nature’s two-point distribution). To determine the recurring states in the Markov chain,

we start with a special case where l= 0. Evidently, L≤ s≤H must hold; otherwise, the firm can increase

or decrease the base-stock level s to increase her profit. Thus, two recurring states occur: 1) with probability

(1−β), It = (s−H)
+
= 0; hence, Qt = s; 2) with probability β, It = s−L; hence, Qt =L. Two recurring

states exist in this Markov chain, where state 1 is (s|0) and state 2 is (L|s−L). The steady-state distribution

is π1 = 1−β and π2 = β.

Next, we consider l≥ 1. Notably, when Nature plays a two-point distribution with a low realized demand

L, the demand during the lead time must be at least (l+1)L units. Because the max-min decision rule is

conservative, we first consider a low inventory level with (l+1)L≤ s≤ lL+H and verify this condition

retrospectively. For the case where l = 0, this condition nonetheless holds. We find that the Markov chain

now has l+2 recurring states, including (s− lL,L, ...,L|0), (L,s− lL,L, ...,L|0), ..., (L, ...,L, s− lL|0),

and (L, ...,L|s− (l+1)L). Specifically, the initial inventory at the beginning of period t is either It = 0

(indicating that the previous period stockouts) or It = s− (l+1)L (due to the precondition s≤ lL+H).

When It = 0, only one of the orders in the pipeline can be s− lL while all the other orders in the pipeline

equal L such that Qt = L. We recall that Qt is a row vector with (l+1) elements. Depending on which

pipeline order equals (s− lL), we have (l+1) different Qt vectors when It = 0. Similarly, if the on-

hand inventory is It = s − (l+1)L, all the pipeline orders equal L including Qt = L and thus, Qt =
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(L,L, ...,L) is unique. In summary, the l+2 recurring states include (s− lL,L, ...,L|0), referred to as state

1, (L,s− lL,L, ...,L|0), referred to as state 2, ..., and finally (L, ...,L|s− (l+1)L), referred to as state

l+2.

Let matrix Il be an identity matrix with l rows and l columns, vector 0l = (0,0, · · · ,0) be the zero row

vector with l columns, and vector 0T
l be the zero column vector with l rows. The transition matrix is the

following: 
0T
l Il 0

T
l

1−β 0l β

1−β 0l β

 . (3.2)

For the first l + 1 states, since only one of the pipeline orders can be s− lL, the state evolves from i to

(i+ 1), for i = 1, ..., l, with probability one, therefore the transition is represented by an identity matrix

Il. For the transition from states (l + 1) and (l + 2), We elaborate the transition matrix using the last

state (L, ...,L|s− (l+1)L) as an example. Observe that Qt−1 = . . . = Qt−l = L, and It = s− (l+1)L.

According to the base-stock policy, the order to be placed at time t satisfies

Qt = s− It −
t−1∑

i=t−l

Qi = s− s+(l+1)L− l ·L=L,

confirming that Qt = L. After receiving the delivery Qt−l, which is due at time t, the on-hand inventory

becomes It +Qt−l = s− (l+1)L+ L = s− lL, which is positive. With probability 1− β, the realized

demand at period t is θt =H . Because the firm stockouts at the end of period t, the leftover inventory is

It+1 = 0. At period t+1, the sum of the pipeline inventory and on-hand inventory before an order is placed

equals It+1 +
∑t

i=t−l−1Qi = lL. As such, the firm orders Qt+1 = s− lL units of inventory in period t+1,

and the Markov chain enters the state (s− lL,L, ...,L|0). With probability β, the realized demand at time

t is θt = L; consequently, the leftover inventory is It+1 = s− (l+ 1)L > 0. At time t+ 1, the firm orders

Qt+1 = L units of inventory such that the Markov chain returns to the same state (L, ...,L|s− (l+1)L).

Similarly, the transitions of the remaining states can be confirmed.

Using the Markov transition matrix in equation (3.2), we find that the steady-state distribution satisfies

π1 = π2 = . . .= πl+1 =
1

(l+1)+ β
1−β

=
1−β

l+1− lβ
, πl+2 =

β
1−β

(l+1)+ β
1−β

=
β

l+1− lβ
. (3.3)
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In the notable special case where l= 0, equation (3.3) reduces to

π1 =
1

1+ β
1−β

= 1−β and π2 =

β
1−β

1+ β
1−β

= β,

confirming with our earlier discussion. The steady-state distribution in equation (3.3) enables us to precisely

compute the time-average profit as follows (we refer readers to the proof of Proposition 2 for details):

M (β, s) =
1

l+1− lβ
[(p− c+(l+1)h)βL−β(p− c+h)s+(p− c)s] . (3.4)

We characterize the equilibrium in the following proposition.

Proposition 2 If condition (3.1) holds, then the equilibrium in the firm’s relaxed model with lost sales

exhibits the following properties. i) The equilibrium strategy of Nature in each period is the following two-

point distribution

F ∗ =


Pr
(
θ̃= µ−σ

√
h

p−c
=L∗

)
= p−c

p−c+h
,

Pr
(
θ̃= µ+σ

√
p−c
h

=H∗
)
= h

p−c+h
.

, (3.5)

which is unaffected by the lead time. ii) The value of the zero-sum game equals Z∗ = (p− c)µ −

σ
√
(p− c)h, which is also unaffected by the lead time. iii) The equilibrium strategy of the firm is given by

the following base-stock level:

s∗ = (l+1)µ+σ

(
1

2

√
p− c

h
− l+1

2

√
h

p− c

)
. (3.6)

3.3 Backorders vs. Lost Sales

We now compare the equilibriums in Propositions 1 and 2. Both equations (2.6) and (3.6) are applicable for

any lead time l ≥ 0 and simple enough for Excel spreadsheet implementation. We define the safety stock

factors as follows:

SFb =
2β∗ − 1

2
√
(1−β∗)β∗

− l

√
1−β∗

β∗ and SFl =
1

2

√
p− c

h
− l+1

2

√
h

p− c
,

where the subscript b indicates backorders and l indicates lost sales. Figure 1 contrasts the safety stock

factors when the lead time and newsvendor ratio vary. Figure 1a) shows that under backorders, the safety

13



Figure 1 Safety Stock Factors
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(b) Lost Sales

stock factor SFb is nonmonotonic with respect to the lead time or newsvendor ratio; however, Figure 1b)

shows that under lost sales, the safety stock factor SFl is nonincreasing with respect to the lead time.

More important, Nature behaves differently. Lost sales force Nature to resume the game whenever stock-

out occurs. If the distribution F ∗ in equation (3.5) is the most unfavorable for the firm with zero lead time,

Nature continues to play the same distribution F ∗ in each period despite the longer lead time, explaining

why the value of the zero-sum game is unaffected by the lead time due to lost sales. In contrast, backo-

rders create an accumulative effect, which exacerbates the shortage problem and enables Nature to adjust

the parameter β in its two-point distribution to punish the firm when the lead time l increases. Therefore,

backorders are more detrimental to the firm than lost sales.

Corollary 1 In the relaxed models, if the marginal understock and overstock costs remain unchanged,

backorders are more costly than lost sales from the worst-case perspective.

3.4 Constant Order Policy (COP)

A surprising result that a COP can be asymptotically optimal with a long lead time has inspired a growing

literature stream. Because the optimal COP quantity is difficult to determine, Bu et al. (2020) proposed the

following formula:

R= µ

(
1−

√
ρ2

1+ 2cu
co

)
= µ

(
1−

√
hρ2

h+2(p− c)

)
, (3.7)
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where R is the constant order quantity, which is unaffected by the lead time. An important result in Propo-

sition 2 is that Nature’s equilibrium strategy does not change with the lead time. The two-point distribution

played by Nature offers a helpful hint on choosing the COP quantity. We propose a new closed-form formula

R′ = µ
(
1− ρ

√
h

p−c

)
, which is the lower realized demand that Nature chooses. Interestingly, our numerical

experiments indicate that the new COP quantity R′ substantially outperforms R when the lead time is short.

4. Numerical Study

Because the backorder model is closely related to the risk-pooling model developed in Section 5.1, where

we present the numerical study about equation (2.6), this section only considers the lost-sales model.

4.1 Lost-Sales Model

We evaluate the performance of the robust base-stock policy shown in equation (3.6). We assume that the

production cost is c = 1 and the holding cost is h = 1. We consider four different distributions for the

underline distribution F , including the Poisson, triangle, uniform, and exponential distributions. All of these

distributions have the same mean µ= 5. The Poisson distribution is discrete and has a coefficient of varia-

tion ρ= 0.447. The remaining three distributions are nonnegative and continuous. We do not use a normal

distribution because it could be negative. The coefficient of variation of the exponential distribution is ρ= 1,

that of the chosen triangle distribution is ρ= 0.408, and that of the uniform distribution is ρ= 0.577. We

compute the robust base-stock level s∗ according to equation (3.6). Because the lost-sales model in an unam-

biguous environment is notoriously difficult, we use the sample path method to evaluate the performance of

the robust policy. We generate four sample paths according to the underline distribution shown in the first

column of Table 1. Each sample path consists of 400 periods. We disclose the sample paths that we use

in the supplementary file (DataDisclosure.xlsx) so that interested readers can independently replicate our

results. To avoid the technical challenge in computing the optimal profit under a known distribution, we use

the retrospective optimization method to compute Ẑ as a benchmark. Specifically, we choose a static (rather

than dynamic) base-stock level s̄ based on the generated sample path to maximize the average profit of the

entire path. Clearly, the value of Ẑ must be larger than the optimal profit under the best base-stock policy
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because the retrospective method chooses the static base-stock level from hindsight. The performance gap

is defined as Gap=
Ẑ−Z(s∗,F)

Ẑ
× 100%, where Z (s∗,F ) is the value of the zero-sum game with lost sales

under a specific distribution F . We report the data of Gap in Table 1.

Table 1 Performance Gap of Robust Policies with Lost Sales: We change the selling price to p= 5, 10, 20,

and 30 so that the range of the newsvendor ratio is between 0.8 and 0.967. We also change the lead time to

l= 1, 2, 3, and 4.

Lead Time l= 1 Lead Time l= 2

Distribution F p= 5 p= 10 p= 20 p= 30 p= 5 p= 10 p= 20 p= 30

Poisson 0.9% 3.2% 1.0% 1.1% 0.2% 0.5% 0.5% 0.3%

Exponential 0.4% 0.0% 0.1% 0.0% 0.2% 0.5% 0.4% 0.0%

Triangle 1.8% 2.5% 0.7% 1.4% 0.8% 0.5% 0.1% 0.0%

Uniform 0.3% 2.5% 2.8% 2.0% 1.8% 2.5% 1.3% 0.5%

Lead Time l= 3 Lead Time l= 4

Poisson 0.0% 1.2% 0.5% 0.1% 0.1% 0.7% 0.8% 0.5%

Exponential 1.0% 0.3% 0.4% 0.6% 0.3% 1.8% 2.7% 0.2%

Triangle 0.3% 0.3% 0.3% 0.2% 0.1% 0.2% 0.6% 0.4%

Uniform 1.2% 2.9% 1.8% 0.9% 0.7% 2.7% 2.3% 1.5%

When the demand is exponential, Table 1 shows that the average Gap is 0.6%, meaning that the average

profit under the robust base-stock policy s∗ is on average 0.6% lower than the retrospective optimal profit Ẑ.

When the demand follows the Poisson distribution, Table 1 shows that the average Gap is 0.7%. A notable

phenomenon is that the robust policy performs the worst under the uniform distribution (with an average

gap of 1.74%), suggesting that the uniform distribution could be the most rigorous benchmark for testing

the robust policy.
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4.2 Industrial Data and Heuristics

The extant literature has proposed various heuristic methods with different levels of complexity to solve

the lost-sales model. We choose the following two representative methods based on their performance and

implementation simplicity. 1) The weighted-average policy (Huh et al. 2009), under which the stationary

base-stock level is equal to

sw =
p− c

p− c+h
F−1

l+1

(
p− c

p− c+h

)
+

h

p− c+h
F−1

(
p− c

p− c+h

)
, (4.1)

where F−1 is the inverse of the cumulative distribution function and F−1
l+1 is the inverse of the (l+1)

fold convolution. Notably, in equation (4.1), two backorder solutions are applied to construct a weighted-

average base-stock level for the lost-sales counterpart. The first backorder solution assumes the lead time

to be l while the second backorder solution assumes a zero lead time. The weight to be put on the first

backorder solution is the newsvendor ratio. 2) The COP quantities R and R′ shown in Section 3.4. In terms

of computational effort, sw, R and R′ are light and can be implemented in Excel (but sw requires a prior

demand distribution and its (l+1)-fold convolution). When the demand distribution is unknown, many

sophisticated state-dependent policies such as the projected inventory level policy in van Jaarsveld and Arts

(2021) cannot be easily implemented.

We use daily data from a large beverage company in China (https://www.coap.online/

competitions/1) to conduct an applied numerical study. The data set contains the demand data for

seventy-seven SKUs (stock-keeping units). We extract the data for SKU8 for testing purposes for the fol-

lowing reasons. First, SKU8 has a long time frame (starting from 1 January 2018 to 31 July 2020) to ensure

the steady state can be reached. Second, for SKU8, there are 142 zero-demand days (significantly lower

than many other SKUs). During the lockdown period related to COVID-19 restrictions in China, days with

zero demand are common but can undermine the performance of the other candidate policies. For example,

inventory accumulates when the demand is zero under the COP policy. We find that the sample mean is

1,824 and sample standard deviation is 1,464. We draw a histogram to confirm that the Poisson distribution
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is a suitable prior distribution so that we can compute sw according to equation (4.1). Readers can refer to

the online supplementary file (DataDisclosure.xlsx) for details.

The original data exclude pricing information due to business confidentiality. We assume that p = 5,

c = 1 and h = 1 so that the newsvendor ratio is 0.8. To benchmark the performance of various methods,

we use the retrospective optimization method to determine a stationary base-stock level sr and compute

the retrospective profit Ẑ = Z (sr) using the industrial data. When the demand distribution is unknown,

the retrospective profit Ẑ provides a convenient benchmark. Due to the positive lead time, we assume

that the firm starts with zero pipeline and on-hand inventory. However, non-zero initial inventories do not

qualitatively affect the ranking of the performance due to the long study period. The following Table 2

reports the values of Z (s∗), Z (sw), Z (R) and Z(R′) when the lead time changes from l= 1 to l= 4.

Table 2 Performance Gaps in the Industrial Data

Lead Retrospective Our Solution Weighted Average Constant Order Policy

Time sr Ẑ s∗ Z (s∗) sw Z (sw) R Z (R) R′ Z(R′)

l= 1 4412 4309 4381 4308 3331 4015 1336 2519 1092 3551

l= 2 5764 3924 5839 3923 4799 3798 1336 2512 1092 3545

l= 3 6734 3457 7296 3427 6266 3426 1336 2505 1092 3540

l= 4 8303 2989 8754 2983 7733 2971 1336 2498 1092 3534

Average Profit 3670 3660 3552 2508 3542

The last row of Table 2 shows that our robust policy delivers the best performance in terms of average

profit across all lead times. We also examine the maximum percentage gap of each policy. We find that 1)

the maximum gap of the robust policy s∗ is 0.9% (when the lead time is l = 3); 2) that of the weighted-

average policy sw is 6.8% (when the lead time is l = 1); 3) that of the COP heuristic R is 41.5% (when

the lead time is l = 1); and 4) that of the second COP heuristic R′ is 17.6% (when the lead time is l = 1).

In summary, given its consistent performance and light computational effort, we recommend equation (3.6)

for practical implementation.
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An interesting observation is that the second COP policy R′ delivers a retrospective profit higher than Ẑ

when the lead time is l= 3 or l= 4. We emphasize that the true optimal policy for the lost-sales model has

a complex structure and is state-dependent (for example, see Zipkin 2008a). Theoretically, neither the COP

nor the stationary base-stock policy dominates. The retrospective profit Ẑ is based on a stationary base-stock

policy, whereas Z(R′) is based on a constant order quantity policy. Hence, the difference Z(R′)− Ẑ can

have an indefinite sign. Different inventory policies may produce different equilibria. We plan to investigate

the equilibrium under the COP policy in the future.

5. Applications and Extensions

The multiperiod inventory system with a constant replenishment lead time is a fundamental model in the

field of Operations Management. Furthermore, the zero-sum game method (using two-point iid distribu-

tions) appears to overcome the technical difficulties caused by a high-dimensional convolution associated

with many interesting stochastic control problems. This section explores the application of this method to

other classes of operational problems.

5.1 A Single-Period Risk-Pooling System

We consider a single-period system with a (central) warehouse and N ≥ 1 retailers. Let θi be the demand

of retailer i (where i= 1,2, ...,N ). We assume that θi is iid with mean µ and variance σ2. Let ξ =
∑N

i=1 θi

be the aggregate demand that the warehouse receives and s be the inventory level of the warehouse. We

assume that each retailer is equally important. If a shortage occurs, the warehouse linearly allocates the

available inventory according to θi. The aggregate shortage of the warehouse equals (ξ− s)
+ and the left-

over inventory equals (s− ξ)
+. Let cu be the understock cost and co be the overstock cost of the warehouse.

By properly defining the values of cu and co, we can comprehensively analyze either backorder or lost sales

in this single-period model. Under the max-min decision rule, the warehouse determines the inventory level

by solving the following model:

Z =min
s≥0

sup
F∈Ω

{∫ ∞

0

cu (ξ− s)
+
+ co (s− ξ)

+
dFN(ξ)

}
, (5.1)

where FN is the N -fold convolution of iid demand distribution F .
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The literature has followed Scarf’s rule by assuming that Nature directly chooses the distribution of ξ

subject to the mean constraint E(ξ̃) =Nµ and variance constraint V ar(ξ̃) =Nσ2. As such, the inventory

level and the value of the zero-sum game of the warehouse satisfy

s̄=Nµ+

√
Nσ

2

(√
cu
co

−
√

co
cu

)
and Z̄ =

√
Ncucoσ. (5.2)

Notably, this approach uses only the correlation information but ignores the fact that FN is the convolution

of N iid distributions, each of which may be highly skewed, although FN is approximately symmetrical

when N is large.

Alternatively, by letting N = l+ 1, we can directly apply Proposition 1 to obtain the optimal inventory

level

s∗N =Nµ+σ

(
2β∗ − 1

2
√
(1−β∗)β∗

− (N − 1)

√
1−β∗

β∗

)
, (5.3)

where β∗ = (cu/(cu + co))
1/N and the value of the zero-sum game equals Z∗ = cuσN

√
1−β∗

β∗ under the

iid constraints. From the zero-sum game perspective, the iid distribution constraints reduce Nature’s action

space and therefore benefit the firm. We can verify that Z̄ is higher than Z∗ for any ratio cu
cu+co

.

5.1.1 Numerical Performance The values of Z̄ and Z∗ merely quantify the firm’s costs under the worst

distributions. We are more interested in the numerical performance of s̄ and s∗N in a known prior distribution.

We set the holding cost at h= 1 and consider three commonly used distributions: (1) the normal distribution

(which is continuous and symmetric); (2) the Poisson distribution (which is discrete and skewed); and (3)

the exponential distribution (which is continuous and skewed). Both the normal and Poisson distributions

have the same mean µ= 5 and same standard deviation σ=
√
5. However, the mean and standard deviation

of the exponential distribution are µ= σ = 1. As such, the normal and Poisson distributions have the same

coefficient of variation ρ= 0.447, and the exponential distribution has a coefficient of variation ρ= 1.

We compute s̄ and s∗N based on equations (5.2) to (5.3). We also compute the distribution-dependent

base-stock levels sn, sp and se (where the subscript n indicates the normal distribution, p indicates the

Poisson distribution, and e indicates the exponential distribution). We do not round s̄ or s∗N to an integer
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even when demand follows the Poisson distribution. Under the normal distribution, we compute Z (s̄|n),

Z (s∗N |n), and Z(sn|n), which respectively represent the expected cost when the base-stock levels s̄, s∗N and

sn are implemented. We compute the performance gaps: Gap-s̄ = Z(s̄|n)−Z(sn|n)
Z(sn|n) × 100% and Gap-s∗N =

Z(s∗N |n)−Z(sn|n)
Z(sn|n) × 100%. Similarly, under the Poisson and exponential distributions, we also compute the

two performance gaps using the distribution-dependent profits Z (sp|p) and Z (se|e) as the benchmarks. We

report the results in Table 3.

Table 3 Performance of Robust Base-Stock Levels with Risk-Pooling: h= 1

Backorder Normal Distribution Poisson Distribution Exponential Distribution

Cost N Gap-s̄ Gap-s∗N Z (sn|n) Gap-s̄ Gap-s∗N Z (sp|p) Gap-s̄ Gap-s∗N Z (se|e)

b= 1 2 0.0% 0.88% 2.52 0.0% 1.42% 2.50 2.9% 0.5% 1.05

3 0.0% 1.42% 3.09 0.0% 1.47% 3.07 1.9% 0.0% 1.32

4 0.0% 1.70% 3.57 0.0% 1.40% 3.55 1.4% 0.0% 1.54

5 0.0% 1.88% 3.99 0.0% 1.31% 3.98 1.1% 0.1% 1.74

6 0.0% 2.00% 4.37 0.0% 1.60% 4.36 0.9% 0.3% 1.91

b= 4 2 0.43% 1.62% 4.43 0.58% 0.82% 4.61 0.06% 0.06% 2.24

3 0.43% 2.15% 5.42 0.44% 2.43% 5.59 0.0% 0.39% 2.71

4 0.43% 2.43% 6.26 0.63% 2.25% 6.44 0.0% 0.69% 3.10

5 0.43% 2.61% 7.00 0.64% 2.34% 7.17 0.02% 0.94% 3.44

6 0.43% 2.74% 7.67 0.15% 2.47% 7.86 0.03% 1.13% 3.75

b= 9 2 0.13% 0.00% 5.55 0.61% 0.08% 5.87 0.0% 0.12% 3.09

3 0.13% 0.04% 6.80 0.39% 0.49% 7.12 0.0% 0.23% 3.68

4 0.13% 0.07% 7.85 0.06% 0.65% 8.19 0.0% 0.30% 4.17

5 0.13% 0.09% 8.77 0.00% 0.01% 9.15 0.0% 0.34% 4.59

6 0.13% 0.11% 9.61 0.33% 0.47% 9.95 0.0% 0.36% 4.97
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Due to the relationship between the lead time and the number of iid retailers (i.e., l =N − 1), Table 3

also evaluates the performance of equation (2.6) in the backorder model. In a special case where N = 1

(such that the lead time is l = 0), s̄ = s∗N must hold and hence, we start with N = 2. Table 3 shows that

neither s̄ nor s∗N dominates but both of them perform satisfactorily. In general, when the prior distribution

is symmetric, s̄ is more likely to outperform s∗N (because s∗N anticipates that Nature chooses a skewed

distribution in the zero-sum game).

5.2 A Two-Echelon System with Expedited Delivery

We consider a two-echelon system with one central warehouse and N iid retailers. The (regular) lead time of

the warehouse is lw and that from the warehouse to the retailer k is lk (where k= 1,2, ...,N ). Each retailer

faces iid demand with mean µk, variance σ2
k, backorder cost bk and holding cost hk. Let β∗

k = (bk/(bk +

hk))
1/(lk+1) be the constant. The warehouse and retailers independently decide their own stationary base-

stock levels. Proposition 1 indicates that the base-stock level of retailer k equals:

s∗lk = (lk +1)µk +σk

(
2β∗

k − 1

2
√
(1−β∗

k)β
∗
k

− l

√
1−β∗

k

β∗
k

)
.

We assume the warehouse uses a stationary base-stock policy to replenish the orders from the retailers, with

holding and ordering cost of hw and cw respectively. However, the shortfalls are filled by a backup vendor

at a cost of pw > cw for expedited deliveries (zero lead time) such that the warehouse fills all the orders

arriving from the downstream retailers. Under the assumption that retailers’ demands are independent of

one another and every retailer employs a stationary base-stock policy, in the steady state, each retailer places

an order that equals the realized demand in the previous period. We observe that this two-echelon system

can be decomposed into two separate locations. The warehouse operates as if with lost sales, and hence we

can use Proposition 2 to compute the base-stock level for the warehouse as follows:

s∗w = (lw +1)
∑
k

µk +

√∑
k

σ2
k

(
1

2

√
pw − cw

hw

− lw +1

2

√
hw

pw − cw

)
.

Certainly, if expedited delivery is unavailable, the system cannot be decomposed and becomes a variant

of the classic serial supply chain. The new challenge is that the demand distribution is endogenous in the

zero-sum game, and we plan to study this system in future research.
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6. Conclusion

This paper considers the classic inventory models with a positive lead time when only the mean and variance

of the demand are known. We establish multiperiod zero-sum games to obtain the firm’s distributionally

robust base-stock policies in closed forms. Under backorders, we show that Nature’s equilibrium strategy is

a two-point distribution, which is affected by the lead time. We show that a myopic policy is optimal under

backorders and the robust base-stock level is indeed optimal among all feasible policies.

Due to the notorious difficulty of the lost-sales model and the success in solving the backorder model,

we consider a relaxed model where Nature chooses only two-point distributions under lost sales. We fully

characterize the relaxed zero-sum game equilibrium to show that Nature’s optimal two-point distribution is

unaffected by the lead time. This result differs from the backorder model. Lost sales avoid the accumulative

effect that backorders entail such that Nature cannot punish the firm by changing its distribution. Therefore,

backorders exacerbate the shortage problem of the firm when the lead time increases, making backorders

more costly than lost sales. Although the complete proof of the general model of lost sales is still unavail-

able, we believe that Nature’s strategy remains to be a two-point distribution in the zero-sum game with lost

sales. A tractable special case also confirms this conjecture. Nonetheless, the numerical study shows that

our robust base-stock policy outperforms rival policies and can serve as a benchmark for future research.

This paper develops a promising methodology to analyze a large class of robust inventory models. Tradi-

tionally, the objective of the research on robust inventory models is to provide an easy-to-compute solution

for the unambiguous model. This paper tackles a notoriously difficult problem, in which the unambiguous

counterpart is intractable. Therefore, our closed-form solution can serve as the theoretical replacement of

the unambiguous solution. Alternatively, we can ignore the prior distribution and use its mean and variance

to compute the robust base-stock level.
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Appendix: Technical Proofs
Proof of Proposition 1:

We first derive the (l+1)-fold convolution of the two-point distribution specified by Ω0 in (2.4). For expo-

sitional simplicity, let ∆=H −L and τ̃ be the standard Bernoulli random variable with parameter (1−β)
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such that Pr(τ̃ = 1) = 1 − β and Pr(τ̃ = 0) = β. The convoluted variable ξ̃ satisfies ξ = (l+1)L +

∆
(∑l+1

i=0 τ̃ i

)
, which is a transformed binomial random variable. In particular,

Pr
(
ξ̃ = (l+1− i)L+ iH

)
=

(l+1)!

(l+1− i)!i!
βl+1−i (1−β)

i
.

Therefore, the firm’s time-average cost under backorder, which is denoted by M (β, s), equals

M (β, s) =
l+1∑
i=0

(l+1)!

(l+1− i)!i!
βl+1−i (1−β)

i

h (s− (l+1− i)L− iH)
+

+b ((l+1− i)L+ iH − s)
+

 .
The firm chooses her base-stock level s to minimize M (β, s) while Nature chooses β (since each two-

point distribution in Ω0 is uniquely determined by the parameter β) to maximize M (β, s). The two first

order conditions (FOCs) with respect to β and s (i.e., ∂M(β,s)

∂β
= ∂M(β,s)

∂s
= 0) are sufficient and necessary to

characterize the equilibrium.

Before calculating the FOCs, we need to simplify M (β, s). We start with the case with low inventory

level by assuming that the base-stock level satisfies (l+1)L < s ≤ lL +H . The transformed binomial

distribution yields the following:

M (β, s) = βl+1h (s− (l+1)L)+
l+1∑
i=1

(l+1)!

(l+1− i)!i!
βl+1−i (1−β)

i
b ((l+1− i)L+ iH − s)

= βl+1h (s− (l+1)L)−βl+1b ((l+1)L− s)+βl+1b ((l+1)L− s)

+
l+1∑
i=1

(l+1)!

(l+1− i)!i!
βl+1−i (1−β)

i
b ((l+1− i)L+ iH − s)

= βl+1h (s− (l+1)L)−βl+1b ((l+1)L− s)

+
l+1∑
i=0

(l+1)!

(l+1− i)!i!
βl+1−i (1−β)

i
b ((l+1− i)L+ iH − s)

= βl+1 (h+ b) (s− (l+1)L)+ b ((l+1)µ− s)

= βl+1 (h+ b)

(
s− (l+1)µ+(l+1)σ

√
1−β

β

)
+ b ((l+1)µ− s)

= (h+ b)
[
βl+1 (s− (l+1)µ)+βl (l+1)σ

√
(1−β)β

]
+ b ((l+1)µ− s) ,

where the fourth equation is due to E
(
ξ̃
)
= (l+1)µ. By letting ∂M(β,s)

∂s
= (h+ b)βl+1 − b= 0, we obtain

β∗ =
(

b
b+h

) 1
l+1

to confirm equation (2.5).
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The FOC with respect to β yields

∂M (β, s)

∂β
= (h+ b)

[
(l+1)βl (s− (l+1)µ)+

(l+1)σβl (1− 2β)

2
√
(1−β)β

+ l (l+1)βl−1σ
√
(1−β)β

]
= 0.

The constant (h+ b) (l+1) can be factored out. We find that

βl (s− (l+1)µ)+
σβl (1− 2β)

2
√

(1−β)β
+ lβl−1σ

√
(1−β)β = 0,

implying that

βl (s− (l+1)µ) 2
√
(1−β)β+σβl (1− 2β)+ 2lβl−1σ (1−β)β = 0,

which is equivalent to

(s− (l+1)µ) 2
√
(1−β)β+σ (1− 2β)+ 2lσ (1−β) = 0.

After re-organizing the terms, we confirm equation (2.6). Substituting β∗ and s∗l into M(β, s), we find that

the value of the zero-sum game equals Z∗ = bσ(l+1)
√

1−β∗

β∗ .

Next, we need to show that Ll is nonnegative. Notice that β∗

1−β∗ = 1

1−( b
b+h )

1
l+1

− 1, which is increasing in

l; therefore β∗

1−β∗ ≥
b

b+h

1− b
b+h

= b
h

. To prove Ll = µ−σ
√

1−β∗

β∗ ≥ 0, it suffices to prove that β∗

1−β∗ ≥ (σ
µ
)2 = ρ2.

According to the assumption of b≥ ρ2h, we can conclude that β∗

1−β∗ ≥ b
h
≥ ρ2 for any l≥ 0.

The final step is to verify the presumption (l+1)Ll < s∗l ≤ lLl +Hl. We have

s∗l − (l+1)Ll = (l+1)µ+σ

(
2β∗ − 1

2
√
(1−β∗)β∗

− l

√
1−β∗

β∗

)
− (l+1)

(
µ−σ

√
1−β∗

β∗

)

= σ

(
2β∗ − 1

2
√
(1−β∗)β∗

+

√
1−β∗

β∗

)
=

1

2
√

(1−β∗)β∗
> 0,

and

lLl +Hl − s∗l = (l+1)µ+σ

(√
β∗

1−β∗ − l

√
1−β∗

β∗

)
− (l+1)µ−σ

(
2β∗ − 1

2
√
(1−β∗)β∗

+ l

√
1−β∗

β∗

)

= σ

(√
β∗

1−β∗ −
2β∗ − 1

2
√
(1−β∗)β∗

)
=

1

2
√
(1−β∗)β∗

> 0.

Hence, equation (2.6) is the firm’s equilibrium strategy. Q.E.D.
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Uniqueness of Equilibrium in Proposition 1

We show that M (β, s) is supermodular by verifying that ∂2M
∂β∂s

> 0. With l≥ 0, we find that

∂2M

∂β∂s
=

∂M

∂β

(
∂M

∂s

)
=

∂

∂β
(coPr(ξ ≤ s)− cuPr(ξ > s))

=
∂

∂β
(coPr(ξ ≤ s)− cu + cuPr(ξ ≤ s)) = (co + ch)

∂

∂β
Pr(ξ ≤ s) .

Here, ∂M
∂s

= coPr
(
ξ̃ ≤ s

)
− cuPr

(
ξ̃ > s

)
is the well-known result in the newsvendor model where the

random demand is ξ̃ and inventory level is s. There are l+1 cases with recursive structures.

Case 1) When (l+1)L≤ s < lL+H , Pr(ξ ≤ s) = βl+1 and hence, ∂
∂β

Pr(ξ ≤ s) = (l+1)βl > 0.

Case 2) When lL+H < s< (l− 1)L+2H , Pr(ξ ≤ s) = βl+1 + (l+1)βl (1−β) = (l+1)βl − lβl+1

and hence,
∂

∂β
Pr(ξ ≤ s) = (l+1) lβl−1 − (l+1) lβl = (l+1) lβl−1 (1−β)> 0.

Case 3) When (l− 1)L+2H < s< (l− 2)L+3H , Pr(ξ ≤ s) = (l+1)βl− lβl+1+ (l+1)l

2
βl−1 (1−β)

2

and hence,

∂

∂β
Pr(ξ ≤ s) = (l+1) lβl−1 (1−β)+

(l+1) l

2

[
(l− 1)βl−2 (1−β)

2 − 2βl−1 (1−β)
]

=
(l+1) l (l− 1)

2
βl−2 (1−β)

2
> 0.

Case k) When (l+1− k)L≤ s < (l− k)L+ kH (where k= 0,1, ..., l), the recursive form is

∂

∂β
Pr(ξ ≤ s) =

(l+1)!

(l− k)!k!
βl−k (1−β)

k
> 0.

We conclude that M (β, s) is strictly supermodular.

Let s (β) be the firm’s best response to β. The firm’s objective is to minimize M (β, s), and supermodu-

larity implies that s (β) is strictly increasing in β. Conversely, Nature’s objective is to minimize −M (β, s),

indicating that − ∂2M
∂β∂s

< 0 or submodularity. Let β (s) be Nature’s best response to s. The submodularity

implies that β (s) is strictly decreasing in s. We can visualize these two best response curves in a two-

dimensional plane where the horizontal axis is β and the vertical axis is s. The firm’s best response s (β)

moves from lower left to upper right, and Nature’s best response β (s) moves from upper left to lower right.

The number of intercepts is either zero or one. Proposition 1 has established that the point (β∗, s∗l ) is an

intercept of the two best response curves. Thus, the point (β∗, s∗l ) is the unique equilibrium (or intercept).
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Proof of Proposition 2:

Using the steady-state distribution shown in equation (3.3), we find that the firm’s time-average profit equals

M (β, s) = π1 [pL− c (s− lL)]+
l∑

i=2

πi (pL− cL)

+(πl+1 +πl+2){−cL+β [pL−h (s− (l+1)L)]+ (1−β)p (s− lL)}

=
(1−β) [(lp+ c)L− cs]

l+1− lβ
+

[−cL+β [pL−h (s− lL−L)]+ (1−β)p (s− lL)]

l+1− lβ

=
[(p− c+(l+1)h)βL−β(p− c+h)s+(p− c)s]

l+1− lβ
.

The FOC with respect to s yields

∂M (β, s)

∂s
=

−β(p− c+h)+ (p+ c)

l+1− lβ
= 0,

which confirms that β∗ = p−c
p−c+h

. We also find that under assumption (3.1),

∂2M (β, s)

∂s∂β
=

−β(p− c+h)+ (p+ c)

l+1− lβ
=

−(p− c)+ lh

(l+1+ lβ)2
< 0,

which confirms submodularity.

The FOC with respect to β yields

∂M (β, s)

∂β
= − 1

(l+1− lβ)2
[(lp+ c)L− cs] +

1−β

l+1− lβ
· σ(lp+ c)

2β
√
β(1−β)

+
l

(l+1− lβ)2
[(l+1) (p+h)βL−βhs+(1−β)ps− lpL− cL]

+
1

l+1− lβ

{
(l+1) (p+h)L− (p+h)s+

σ[(l+1) (p+h)β− lp− c]

2β
√
β(1−β)

}

= −p− c+(l+1)h

(l+1− lβ)2

[
s− (l+1)µ+

σ

2

(l+1)− (l+2)β√
β(1−β)

]
.

Given β∗ = p−c
p−c+h

, we find that

s∗ = (l+1)µ+σ

(
1

2

√
p− c

h
− l+1

2

√
h

p− c

)
,

which confirms equation (3.6). We also find that the first derivative with respect to l equals

∂s∗

∂l
= µ− σ

2

√
h

p− c
≥ µ− σ

2ρ
=

µ

2
> 0,
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where we use the pre-condition (3.1). We conclude that the firm’s robust optimal base-stock level s∗ is

increasing in l.

By substituting β∗ and s∗ into M(β, s), we find that

Z∗ =M(β∗, s∗) =
1

l+1− lβ∗ [(p− c+(l+1)h)β∗L−β∗(p− c+h)s∗ +(p− c)s∗]

=
p− c+h

p− c+(l+1)h

 (p− c+(l+1)h) p−c
p−c+h

(µ−σ
√

h
p−c

)

− p−c
p−c+h

(p− c+h)s∗ +(p− c)s∗

= (p− c)µ−σ
√
(p− c)h.

The final step is to verify (l+1)L∗ ≤ s∗ ≤ lL∗ +H∗. We find that

s∗ − (l+1)L∗ = (l+1)µ+σ

(
1

2

√
p− c

h
− l+1

2

√
h

p− c

)
− (l+1)µ+(l+1)σ

√
h

p− c

=
σ

2

(√
p− c

h
+(l+1)

√
h

p− c

)
> 0,

and

lL∗ +H∗ − s∗ = (l+1)µ+σ

(√
p− c

h
− l

√
h

p− c

)
− (l+1)µ−σ

(
1

2

√
p− c

h
− l+1

2

√
h

p− c

)

=
σ

2

√
h

p− c

(
p− c

h
− l+1

)
≥ 0,

where the last inequality is due to the assumption (3.1). Q.E.D.

Proof of Corollary 1

To compare the values of zero-sum games under backorder and lost sales, we first streamline the notation.

Let cu = b= p− c be the understock cost and co = h be the overstock cost. According to equation (2.7), the

value of the zero-sum game under backorder equals

bσ(l+1)

√
1−β∗

β∗ = cuσ(l+1)

√
1−β∗

β∗ ,

where β∗ =
(

cu
cu+c0

) 1
l+1

. The value of the zero-sum game under lost sales presented in Proposition 2 is the

firm’s profit, and we need to change it to the cost version. In particular, the mean of the firm’s revenue is
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(p−c)E
(
θ̃
)
= (p−c)µ; therefore, the value of the zero-sum game under lost sales in the cost minimization

version equals

(p− c)µ−
(
(p− c)µ−σ

√
(p− c)h

)
=
√
cucoσ.

We find that when l= 0, cuσ(l+1)
√

1−β∗

β∗ =
√
cucoσ, indicating that backorder and lost sales are equally

expensive.

The next task is to show that (l+1)
√

1−β∗

β∗ is increasing in l≥ 0, which implies that when the lead time

increases, backorders are strictly more expensive than lost sales. We transform the variables by letting k =

1
l+1

, α= cu
cu+co

, and g(k) = 1
k

√
1−αk

αk , where k ∈ (0,1] and α ∈ [ 1
2
,1). It holds that g(k) = (l+ 1)

√
1−β∗

β∗ .

The first derivative with respect to k equals

∂g(k)

∂k
=− 1

k2

√
1−αk

αk
− lnα

2k
√

αk(1−αk)
=− lnαk − 2αk +2

2k2
√

αk(1−αk)
.

Let w(x) = lnx−2x, where x= αk ∈ [ 1
2
,1) for k ∈ (0,1]. Because ∂w(x)

x
= 1

x
−2≤ 0, w(x) is decreasing in

x. This means that w(x)≥w(1) =−2, which further implies that lnαk−2αk+2≥ 0. Therefore, ∂g(k)

∂k
≤ 0.

We conclude that g(k) is decreasing in k and (l+1)
√

1−β∗

β∗ is increasing in l. Q.E.D.
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Online Appendix: Nature’s Full Model

The previous sections consider a relaxed version of the original zero-sum game. A crucial question is

whether the relaxed solution indeed characterizes the true equilibrium. The key step is to investigate whether

Nature changes its strategy when its action space expands from Ω0 to Ω. If Nature does not alter its strategy,

then the relaxed solution describes the true equilibrium.

Zero Lead Time

We start with the easiest case of zero lead time. To streamline the notations under backorders and lost

sales, we define cu as the understock cost and co as the overstock cost. Using the well-known identities

min(θ, q) = θ − (θ− q)
+
= q − (q− θ)

+, we find that the single-period ex post cost equals Z (θ, q) =

cu (θ− q)
+
+ co (q− θ)

+. Specifically, with lost sales, cu = p− c and co = h; and with backorders, cu = b

and co = h. Sobel (1981) showed that a myopic policy is the equilibrium in a multiperiod stochastic game if

the following three conditions hold: i) the reward depends on the current state and action; ii) the transition

probability depends on the action but not on the current state; and iii) a static policy yields a repeatable

Markov chain. With zero lead time, these three conditions hold; and thus, according to equation (2.3), we

derive the myopic equilibrium by solving the following model:

Z =min
s≥0

sup
F∈Ω

{∫ ∞

0

cu (θ− s)
+
+ co (s− θ)

+
dF (θ)

}
, (A-1)

which is indeed Scarf’s model. It is well known that Nature prefers the two-point distributions defined in

Ω0. Therefore, with L< s<H occurring in the equilibrium, the time-average cost equals

M (β, s) = coβ

(
s−µ+σ

√
1−β

β

)
+ cu (1−β)

(
µ+σ

√
β

1−β
− s

)
= (coβ+ cuβ− cu) (s−µ)+ (cu + co)σ

√
β (1−β), (A-2)

which yields the following results.

Corollary 2 With cu ≥ ρ2co and zero lead time, the two-player zero-sum game in equation (2.3) has a

unique equilibrium satisfying

β∗
0 =

cu
cu + co

and s∗0 = µ+
σ

2

(√
cu
co

−
√

co
cu

)
(A-3)
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such that the value of the zero-sum game equals Z∗ =
√
cucoσ. Nature’s equilibrium strategy satisfies:

F ∗
0 =


Pr
(
θ̃= µ−σ

√
co
cu

)
= cu

cu+co
,

Pr

(
θ̃= µ+σ

√
cu
c0

)
= co

cu+co
.

(A-4)

There are several noteworthy observations that can be made from Corollary 2. First, when l= 0, equations

(2.6), (3.6), and (A-3) are identical, meaning that the firm’s relaxed solution (under both backorder and

lost sales) is optimal for the case with zero lead time. Second, when choosing the parameter β from the

two-point distribution in Ω0, Nature uses the firm’s newsvendor ratio β∗ = cu
cu+co

. From the perspective of

zero-sum games, Nature must anticipate the firm’s best response to the chosen distribution. If the firm knows

the demand distribution, she must apply her newsvendor ratio to determine her inventory level. Because the

firm always applies her newsvendor ratio, Nature also uses the same ratio to determine its strategy. Hence,

Nature’s equilibrium strategy satisfies equation (A-4). Third, when cu ≥ ρ2co, the lower realized value of

F ∗
0 in equation (A-4) is nonnegative, and the firm’s equilibrium strategy happens to be the average of the

two realized values of F ∗
0 .

Positive Lead Time and Backorder

We next study the backorder model with positive lead time. Clearly, the demand during the lead time ξ̃ =∑l+1

i=1 θ̃i is a sufficient statistic to describe the system. Thus, after we replace
(
θ̃, F

)
with

(
ξ̃, Fl+1

)
, the

three conditions in Sobel (1981) continue to hold, making the myopic equilibrium optimal. The remaining

task is to solve the model in equation (2.3). A tempting shortcut is to apply Corollary 2 to construct a

convolution Fl+1. However, we cannot identify an iid distribution F such that the corresponding convolution

Fl+1 can satisfy Corollary 2 unless l= 0. We must consider an alternative path to advance the analysis.

Suppose that Nature chooses a distribution F with n≥ 3 realized values rather than a two-point distribu-

tion. We denote λi = Pr
(
θ̃= θi

)
for i= 1,2, ..., n as the probability when the realized demand is θi. To

avoid degenerated solutions (otherwise, Nature chooses fewer points), we assume that 0≤ θ1 < θ2 < ... <

θn, λ1 > 0, λn > 0 and λi ≥ 0 for i = 2, ..., n− 1. Before characterizing the equilibrium, we develop an

important intermediate result as follows.
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Lemma 1 It holds that for i∈ {2, ..., n− 1},

∂θ1
∂θi

=−λi (θn − θi)

λ1(θn − θ1)
and

∂θn
∂θi

=
λi (θ1 − θi)

λn(θn − θ1)
. (A-5)

When Nature chooses a distribution with multiple points, Lemma 1 enables us to identify the relationship

between the two end points (i.e., θ1 and θn) and the middle points θi, where i= 2, ..., n− 1. Specifically,

we find that the first derivatives of both θ1 and θn with respect to θi are linearly associated with λi. Based

on this result, we can now derive the zero-sum game equilibrium when Nature chooses its strategy from Ω.

Proposition 3 The firm’s and Nature’s strategies characterized in Proposition 2 are optimal for the original

backorder model with a positive lead time.

Proposition 3 indicates that when only the mean and variance of the demand are known, the firm’s

most unfavorable distribution is indeed a two-point distribution. Thus, the original backorder model is fully

resolved. We next shift our attention to the case of lost sales.

Positive Lead Time and Lost Sales

We believe that the firm’s relaxed solution in Proposition 2 is optimal for the lost-sales model with positive

lead time. However, we are unable to produce a complete proof to show that λ∗
i = 0 for i ∈ {2, ..., n− 1}.

The curse of dimensionality prevents us from explicitly deriving the objective function. Nevertheless, to

support our claim, we have managed to solve a special case where the lead time is l= 1 and Nature chooses

a three-point distribution.

Corollary 3 When the lead time l = 1 and Nature’s strategy is a three-point distribution with parameters

(λi, θi), where λi = Pr
(
θ̃= θi

)
for i ∈ {1,2,3} and 0≤ θ1 < θ2 < θ3, Nature’s optimal strategy satisfies

λ∗
2 = 0.

When λ∗
2 = 0, Nature must prefer two-point rather than three-point distributions when l= 1. Corollary 3

can be extended to other cases where both n and l are small enough to be tractable (e.g., (n, l) = (4,2) is

also tractable). For a generic pair of (n, l), the firm’s time-average profit cannot be precisely derived; thus,

we are unable to prove that Nature keeps its strategy unchanged. We hope that a new path to prove this

conjecture can be discovered in future research.
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Proof of Corollary 2

Using equation (A-2), we find the following two FOCs:

M (β, s)

∂s
= coβ− cu (1−β) = 0

M (β, s)

∂β
= (cu + co) (s−µ)+ (cu + co)σ

(1− 2β)

2
√

β (1−β)
= 0,

yielding equation (A-3). We then substitute β∗
0 and s∗0 into M(β, s) to compute the value of the zero-sum

game as follows:

Z∗ = (cu + co)σ
√

β∗ (1−β∗) = (cu + co)σ

√
cu

cu + co

co
cu + co

=
√
cucoσ.

This completes the proof of Corollary 2. Q.E.D.

Proof of Lemma 1:

When Nature plays a distribution F with n≥ 3 realized values, its decision variables include (λi, θi), i=

1,2, ..., n. The three moment conditions include:
λ1 +

∑n−1

k=2 λk +λn = 1,

λ1θ1 +
∑n−1

k=2 λkθk +λnθn = µ,

λ1θ
2
1 +
∑n−1

k=2 λkθ
2
k +λnθ

2
n = µ2 +σ2.

We regard λ1 and (λi, θi) as Nature’s free decision variables (where i= 2, ..., n−1) and express the two end

points (θ1, θn) based on the other free variables. Specifically, the moment conditions yield that λ1 + λn =

1−
∑n−1

k=2 λk and that

θ1 =
µ−

∑n−1

k=2 λkθk
λ1 +λn

−

√
λnσ2

λ1 (λ1 +λn)
− λnY

λ1 (λ1 +λn)
2 ,

θn =
µ−

∑n−1

k=2 λkθk
λ1 +λn

+

√
λ1σ2

λn (λ1 +λn)
− λ1Y

λn (λ1 +λn)
2 ,

where

Y =
n−1∑
k=2

λk (µ− θk)
2 − 1

2

n−1∑
k=2

n−1∑
j=2

λkλj(θk − θj)
2.
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Note that θk − θj = 0 whenever k = j. To have a better understanding of Y , consider a special case with

n= 4, where

Y = λ2 (µ− θ2)
2
+λ3 (µ− θ3)

2 − 1

2
λ2λ3(θ2 − θ3)

2 − 1

2
λ3λ2(θ3 − θ2)

2.

For any i= 2, . . . , n− 1 (i.e., the middle (n− 2) points), it holds that

∂θ1
∂θi

= λi

 −1

λ1 +λn

−
λn(µ− θi)+λn

∑n−1

j=2 λj(θi − θj)

λ1 (λ1 +λn)
2
√

λn
λ1(λ1+λn)

σ2 − λn

λ1(λ1+λn)
2Y

 .

Hence, ∂θ1
∂θi

takes the form of ∂θ1
∂θi

= λiK1,i. We continue to simplify K1,i. According to the expressions of

θ1 and θn, we observe that

λ1θ1 = λ1

µ−
∑n−1

k=2 λkθk
λ1 +λn

−

√
λ1λnσ2

(λ1 +λn)
− λ1λnY

(λ1 +λn)
2 ,

λnθn = λn

µ−
∑n−1

k=2 λkθk
λ1 +λn

+

√
λ1λnσ2

(λ1 +λn)
− λ1λnY

(λ1 +λn)
2 .

Therefore, we find√
λ1λnσ2

(λ1 +λn)
− λ1λnY

(λ1 +λn)
2 = λ1

µ−
∑n−1

k=2 λkθk
λ1 +λn

−λ1θ1 = λnθn −λn

µ−
∑n−1

k=2 λkθk
λ1 +λn

,

which implies that√
λ1λnσ2

(λ1 +λn)
− λ1λnY

(λ1 +λn)
2 =

1

2

(
λnθn −λ1θ1 +

(λ1 −λn)(λ1θ1 +λnθn)

λ1 +λn

)
,

where we apply the mean constraint: µ−
∑n−1

k=2 λkθk = λ1θ1 +λnθn. We also find that

µ− θi +
n−1∑
j=2

λj(θi − θj) =
n∑

j=1

(λjθj −λjθi)+
n−1∑
j=2

(λjθi −λjθj) = λ1 (θ1 − θi)+λn (θn − θi) .

After combining these equations, we find that

K1,i =
−1

λ1 +λn

− λn [λ1 (θ1 − θi)+λn (θn − θi)]

λ1 (λ1 +λn)
2
√

λn
λ1(λ1+λn)

σ2 − λn

λ1(λ1+λn)
2Y

=
−1

λ1 +λn

1+
λn [λ1 (θ1 − θi)+λn (θn − θi)]

(λ1 +λn)
√

λ1λn

(λ1+λn)
σ2 − λ1λn

(λ1+λn)
2Y


=

−1

λ1 +λn

1+
2λn [λ1 (θ1 − θi)+λn (θn − θi)]

(λ1 +λn)
(
λnθn −λ1θ1 +

(λ1−λn)(λ1θ1+λnθn)

λ1+λn

)


=
−1

λ1 +λn

(
1+

λn [λ1 (θ1 − θi)+λn (θn − θi)]

λ1λn(θn − θ1)

)
=

−1

λ1 +λn

(λ1 +λn)(θn − θi)

λ1(θn − θ1)
=

− (θn − θi)

λ1(θn − θ1)
,
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which proves that ∂θ1
∂θi

=− λi(θn−θi)

λ1(θn−θ1)
.

Using the same method, we can also prove that∂θn
∂θi

= λi
θ1−θi

λn(θn−θ1)
=Kn,i, where Kn,i =

θ1−θi
λn(θn−θ1)

. How-

ever, for any k /∈ {1, i, n}, it holds that ∂θk
∂θi

= 0 because θk is freely chosen. Q.E.D.

Proof of Proposition 3:

The profile of Nature’s n-point distribution is (θi, λi), in which θi is the realized value or point chosen by

Nature and λi is the probability that Nature plays θ̃= θi in any period, where i ∈ {1,2, ..., n}. To illustrate

the regular pattern, we first analyze a special case where l = 1 and then extend the analysis to the general

case where l≥ 1. When l= 1, the firm’s time-average cost equals

M =
n∑

t1=1

n∑
t2=1

λt1λt2

[
b (θt1 + θt2 − s)

+
+h (s− θt1 − θt2)

+
]
, (A-6)

where the vector (θt1 , θt2) represents the realized demand on a sample path during 2 periods. Here, ti ∈

{1,2, ..., n} such that if t1 = 1, the realized demand in period 1 is θ1; and if t2 = 4, the realized demand in

period 2 is θ4 (or the fourth point of Nature’s distribution profile). There are n2 pairs of (t1, t2) determining

n2 different sample paths. We let

T (t1, t2) = λt1λt2

[
b (θt1 + θt2 − s)

+
+h (s− θt1 − θt2)

+
]

(A-7)

be the weighted cost when the sample path is the vector (θt1 , θt2). The weight is the probability that the path

occurs. When θt1 + θt2 ≥ s, we find that T (t1, t2) = λt1λt2b (θt1 + θt2 − s). Similarly, when θt1 + θt2 < s,

we find that T (t1, t2) = λt1λt2h (s− θt1 − θt2).

We consider the case when the base-stock level satisfies 2θ1 < s < θ1 + θ2. Therefore, when

t1 = t2 = 1, T (1,1) = λ1λ1h (s− θ1 − θ1); however, for all the other (t1, t2) ̸= (1,1), T (t1, t2) =

λt1λt2b (θt1 + θt2 − s). We then find that

M = λ1λ1h (s− θ1 − θ1)+
n∑

t1=2

n∑
t2=2

λt1λt2b (θt1 + θt2 − s)

= λ1λ1h (s− θ1 − θ1)−λ1λ1b (θ1 + θ1 − s)+
n∑

t1=1

n∑
t2=1

λt1λt2b (θt1 + θt2 − s)

= λ1λ1 (h+ b) (s− θ1 − θ1)+ b (2µ− s) ,
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where we apply the mean of Nature’s demand profile
∑n

k=1 λkθk = µ. Hence, for any point i∈ {2, ..., n− 1}

in the middle,

∂M

∂θi
=−2λ1λ1 (b+h)

∂θ1
∂θi

=−2λ1λ1 (b+h)

(
−λi (θn − θi)

λ1(θn − θ1)

)
=

2λ1λi (b+h) (θn − θi)

(θn − θ1)
,

where ∂θ1
∂θi

= − λi(θn−θi)

λ1(θn−θ1)
follows Lemma 1. When λ1 > 0 and θ1 < ... < θi < ...θn, we conclude that if

and only if λi = 0, ∂M
∂θi

= 0. This directly implies that Nature chooses λ∗
i = 0 for all the middle points

i∈ {2, ..., n− 1}. Therefore, for l= 1, Nature’s equilibrium strategy is a two-point distribution.

Next, we consider the general case where l≥ 1. Let
(
θt1 , θt2 , ..., θtl+1

)
be a vector with (l+1) elements.

Essentially, vector
(
θt1 , θt2 , ..., θtl+1

)
is an extension of vector (θt1 , θt2) as the lead time increases from 1 to

l. There exist nl+1 sample paths. Using a similar method, we can verify that for (l+1)θ1 < s < lθ1 + θ2,

the firm’s time-average cost equals M = (λ1)
l
(h+ b) [s− (l+1)θ1] + b [(l+1)µ− s] such that

∂M

∂θi
=

(l+1) (λ1)
l
λi (b+h) (θn − θi)

(θn − θ1)
.

The FOC ∂M
∂θi

= 0 holds if and only if λ∗
i = 0, for i∈ {2, ..., n− 1}. We can now conclude that for any l≥ 0,

Nature prefers two-point distributions from Ω0. The relaxed solution in Proposition 1 is optimal for any lead

time l≥ 0 in the original zero-sum game with backorder. Q.E.D.

Proof of Corollary 3:

When l = 1, the order quantity placed in the period t arrives in the next period t+ 1. Similarly, we can

describe the system by using (qt, qt−1; It), where the first variable qt represents the order quantity that has

just been placed in the current period t, the second variable qt−1 represents the delivery due in the current

period, and the third variable represents the on-hand inventory before receiving the delivery qt−1. It is

more convenient to use INt = qt−1 + It as the new state variable to replace (qt−1, It). The new variable

INt represents the inventory available for sales. Under a base-stock level s, it must hold that s = qt +

INt. Because the base-stock level cannot be too high, it must hold that INt < θ3 (otherwise, stockouts
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never occurs in the steady state). We can verify that the Markov chain has 4 recurring states: (θ1, s− θ1),

(θ2, s− θ2), (s− θ2, θ2), and (s− θ1, θ1), so that the Markov chain transition matrix is given as:

λ1 λ2 0 λ3

λ1 λ2 λ3 0

λ1 λ2 +λ3 0 0

1 0 0 0


.

We obtain the steady-state distributions as follows:

π1 =
1

1+λ3 +
(λ2+λ2λ3)

1−λ2−λ2λ3−λ2
3

, π2 =
λ2π1

1−λ2 −λ2λ3 −λ2
3

, π3 = λ3π2, and π4 = λ3π1. (A-8)

We can then compute the time-average profit M in the steady state as follows:

M = π1

[
−cθ1 +

3∑
i=1

λi

(
pmin(θi, s− θ1)−h (s− θ1 − θi)

+
)]

+π2

[
−cθ2 +

3∑
i=1

λi

(
pmin(θi, s− θ2)−h (s− θ2 − θi)

+
)]

+π3

[
−c (s− θ2)+

3∑
i=1

λi

(
pmin(θi, θ2)−h (θ2 − θi)

+
)]

+π4

[
−c (s− θ1)+

3∑
i=1

λi

(
pmin(θi, θ1)−h (θ1 − θi)

+
)]

.

We explain the above equation as follows. In the steady state, the system is in state (θ1, s− θ1) with prob-

ability π1. In this state, the firm orders θ1 units of inventory in the current period but has s− θ1 units of

inventory available for sales. With probability λi, the realized demand in the current period is θi. The firm

sells min(θi, s− θ1) units of the product and keeps (s− θ1 − θi)
+ of leftover inventory.

We consider that θ2 ≤ INt < θ3 and simplify M as follows:

M = π1

−cθ1 +λ1 (pθ1 −hs+2hθ1)

+λ2 (pθ2 −hs+hθ1 +hθ2)+λ3p (s− θ1)

+π2

−cθ2 +λ1 (pθ1 −hs+hθ2 +hθ1)

+λ2 (pθ2 −hs+2hθ2)+λ3p (s− θ2)


+ π3 [−c (s− θ2)+λ1 (pθ1 −hθ2 +hθ1)+λ2pθ2 +λ3pθ2] +π4 [−c (s− θ1)+λ1pθ1 +λ2pθ1 +λ3pθ1] .
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The FOC with respect to s equals:

∂M

∂s
= π1 [λ3p−h (λ1 +λ2)]+π2 [λ3p−h (λ1 +λ2)]+π3 (−c)+π4 (−c)

= [λ3p−h (λ1 +λ2)] (π1 +π2)− c (π3 +π4)− (π1 +π2)

= [λ3p−h (1−λ3)] (π1 +π2)− c (1−π1 −π2) = (λ3p+λ3h−h+ c) (π1 +π2)− c= 0.

On the other hand, equation (A-8) implies that

π1 =
1

1+λ3 +
(λ2+λ2λ3)

1−λ2−λ2λ3−λ2
3

and π2 =
λ2π1

1−λ2 −λ2λ3 −λ2
3

.

We find that

π1 +π2 =
1

1+λ3 +
(λ2+λ2λ3)

1−λ2−λ2λ3−λ2
3

(
1+

λ2

1−λ2 −λ2λ3 −λ2
3

)
=

1

1+λ3

. (A-9)

Thus, ∂M
∂s

= 0 yields that

λ3p+λ3h−h+ c

1+λ3

− c= 0,

indicating that λ∗
3 =

h
p−c+h

.

The final step is to prove that λ∗
2 = 0. We take the first derivative of M with respect to θ2 and obtain the

following result:

∂M

∂θ2
= π1

−c∂θ1
∂θ2

+λ1 (p+2h) ∂θ1
∂θ2

+λ2

(
p+h∂θ1

∂θ2
+h
)
−λ3p

∂θ1
∂θ2

+π2

−c+λ1

(
p∂θ1
∂θ2

+h+h∂θ1
∂θ2

)
+λ2 (p+2h)−λ3p


+π3

[
+c+λ1

(
p
∂θ1
∂θ2

−h+h
∂θ1
∂θ2

)
+λ2p+λ3p

]
+π4

[
+c

∂θ1
∂θ2

+λ1p
∂θ1
∂θ2

+λ2p
∂θ1
∂θ2

+λ3p
∂θ1
∂θ2

]
= π1

∂θ1
∂θ2

[−c+λ1 (p+2h)+λ2h−λ3p] + (π2 +π3)
∂θ1
∂θ2

[λ1 (p+h)]+π4 (p+ c)
∂θ1
∂θ2

+π1λ2 (p+h)+π2 (−c+λ1h+λ2 (p+2h)−λ3p)+π3 (c−λ1h+λ2p+λ3p) .

According to Lemma 1, it holds that ∂θ1
∂θ2

= λ2K1,2. We obtain that

∂M

∂θ2
= λ2K1,2 {π1 [−c+λ1 (p+2h)+λ2h−λ3p] + (π2 +π3) [λ1 (p+h)]+π4 (p+ c)}

+λ2 [π1 (p+h)+π2 (p+2h)+π3p] + (π2 −π3) (−c+λ1h−λ3p) .
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In the above equation, the first two terms have a common factor λ2. Because

π2 −π3 =
λ2π1

1−λ2 −λ2λ3 −λ2
3

−λ3

λ2π1

1−λ2 −λ2λ3 −λ2
3

=
λ2 (1−λ3)π1

1−λ2 −λ2λ3 −λ2
3

.

The third term also has a common factor λ2. By factoring out the common term λ2, we find that

∂M

∂θ2
= λ2K1,2 {π1 [−c+λ1 (p+2h)+λ2h−λ3p] + (π2 +π3) [λ1 (p+h)]+π4 (p+ c)}

+λ2 [π1 (p+h)+π2 (p+2h)+π3p] +λ2

(1−λ3)π1 (−c+λ1h−λ3p)

1−λ2 −λ2λ3 −λ2
3

.

By letting ∂M
∂θ2

= 0, we obtain an equilibrium where λ∗
2 = 0. Accordingly, we find λ∗

1 =
p−c

p−c+h
. Therefore,

Nature’s equilibrium strategy is a two-point distribution. Q.E.D.
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