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Abstract

We are often forced to make decisions without having access to all the infor-
mation we need. The need to make some guarantees about the quality of the
solution resulting from these decisions is what motivates our search for strongly
competitive online algorithms. Traditionally, an online algorithm must service a
request upon its arrival. In many practical situations, one can delay the service
of a request in the hope of servicing it more efficiently in the near future. As a
result, the study of online algorithms with delay has recently gained consider-
able traction. A variety of problems have been considered with delay. For most
problems, competitive algorithms have been developed that are independent of
properties of the delay functions associated with each request. Interestingly, this
is not the case for the online min-cost perfect matching with delays (MPMD)
problem, introduced by Emek et al. (STOC 2016). Existing work for this
problem is heavily tailored to the particular type of delay function considered.

In this thesis we show that some techniques can be modified to extend to
larger classes of delay functions, without affecting the competitive ratio. In the
interest of designing competitive solutions for the problem in a more general
setting, we introduce the study of online problems with set delay. Here, the
delay cost at any time is given by an arbitrary function of the set of pending
requests, rather than the sum over individual delay functions associated with
each request. In particular, we study the online min-cost perfect matching with
set delay (MPMD-Set) problem, which provides a generalisation of MPMD.
The notion of set delay allows us to examine an algorithm’s accumulation of
delay cost from a new perspective and define new classes of delay functions. In
contrast to previous work, the new model also allows us to study the problem
in the non-clairvoyant setting, i.e. where the future delay costs are unknown to
the algorithm.

We prove that for MPMD-Set in the most general non-clairvoyant setting,
there exists no competitive algorithm. Motivated by this impossibility, we ex-
plore what the most general setting of MPMD-Set is for which we can design
competitive algorithms. To this end, we introduce a new class of delay functions
called size-based and prove that for this version of the problem, there exist both
non-clairvoyant deterministic and randomised algorithms that are competitive
in the number of requests. Our results reveal that the quality of an online
matching depends both on the algorithm’s access to information about future
delay costs, and the properties of the delay function.
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Chapter 1

Introduction

Algorithms are at the core of our everyday choices when it comes to solving
problems. The traditional design and analysis of an algorithm assumes that
it has full knowledge of the entire input sequence in advance. This is often
unrealistic to assume in practical applications. In these applications, requests,
requiring service, arrive over time and need to be serviced with no knowledge of
future requests. We refer to the class of algorithms that address these problems
as online algorithms.

An online algorithm receives requests over time and makes decisions to ser-
vice a request upon its arrival. The algorithm can only base its decisions on
requests that have already arrived, and cannot rely on knowledge of future re-
quests. As we restrict access to information about the input it is important to
consider what happens to the quality of the solution. Hence, it is natural to
ask:

How does the lack of information impact the quality of the solution an online
algorithm can achieve for a given problem P?

To evaluate this, we need a measure of the performance of an online algo-
rithm. To this end, we perform a type of worst case analysis known as compet-
itive analysis, where the cost of a solution produced by an online algorithm is
compared to the cost of an optimal solution produced by an offline algorithm
that has full access to the entire request sequence in advance, and can process
the requests optimally. The ratio between these two solutions is known as the
competitive ratio, first introduced by Sleator and Tarjan [29]. The competitive
ratio is the main measure used for evaluating the performance of an online al-
gorithm. To understand how the restriction of access to information affects the
quality of a solution for a particular problem, we strive to find strong bounds
on the competitive ratio. Such bounds tell us what the best performance is that
we can guarantee from an online solution and, consequently, how the online
property affects the problem.

Traditionally, online algorithms need to service requests upon arrival. How-
ever, in many practical situations, a decision need not be made on the spot,
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but can instead be delayed in the hope of servicing the request more efficiently
in the near future. A simple illustrating example can be found in rideshare
platforms. Here, an algorithm will receive requests from drivers and passengers
over time and is required to match these into pairs. However, when a passenger
requests a driver, the only drivers available may be very far away. Instead of
instantly matching the passenger to a remote driver it may be beneficial to delay
the passenger for some time in the hope that a driver closer to the passenger
appears. Motivated by these practical applications, studying online problems
with delay is a line of study that has recently gained traction in the online al-
gorithms community (e.g. [4, 20, 22, 24]). In such problems, the algorithm may
choose to delay the service of the request upon its arrival. Delaying a request
comes at a cost given by a delay cost function associated with the request.
When the delay function is the same for each request we refer to the delay cost
as uniform, and otherwise non-uniform. The challenge with introducing delay
to a problem is that it not only increases the set of possible states an online
or offline algorithm can be in (hence increasing the complexity of the problem)
but, consequently, also significantly changes the structure of the optimal offline
solution we compare the online solution to.

In this thesis, we study a fundamental online problem with delay called the
online min-cost perfect matching with delay (MPMD) problem, introduced by
Emek et al. [20]. The problem is defined on a metric space where requests
arrive at points over time. Upon arrival, each request starts to accumulate a
delay cost defined by a delay cost function associated with the request. The aim
is to create a minimum cost perfect matching of all requests, where the cost of
a match is the distance between the two requests plus the delay cost incurred
by each request prior to being matched.

Previous work in MPMD has focused, without exception, on particular
classes of delay functions (such as linear, concave and convex functions) and
assumes the delay cost is uniform. Furthermore, all prior work assumes that
the algorithm has full knowledge of future delay costs associated with requests
that have arrived. We refer to this setting as clairvoyant and, when the algo-
rithm has no knowledge of future delay costs, as non-clairvoyant. Even in this
restricted setting where the delay is both uniform and clairvoyant, the tech-
niques used to design algorithms and their corresponding analysis have all been
tailored to the particular type of delay function. This, however, is not the case
for all other online problems that have been considered with delay, such as the
multi-level aggregation with delays problem [11,27], the bin-packing with delays
problem [5, 22], network design problems with deadlines or delay [9, 30], online
service with delay [7, 14], set cover with delay [4], and the online weighted car-
dinality joint replenishment problem with delay [18]. This raises the natural
question:

How does the type of delay function affect the quality of the solution for online
MPMD?

Liu et al. [28] were the first to identify a gap between the performance of
an online algorithm for MPMD with uniform linear delay and MPMD with
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uniform convex delay. The authors showed that for the problem with linear
delay on a uniform metric space, one can achieve constant competitiveness,
whilst for the problem with convex delay, one cannot achieve better than linear
competitiveness in the number of points in the uniform metric space.

In this thesis, we make progress towards understanding the effect a delay
function has on the algorithm and its analysis by showing that some existing
techniques can be generalised to be of use for larger classes of delay functions.
We do this by adapting an existing linear competitive algorithm for the problem
with uniform linear delay by Bienkowski et al. [12] to design a deterministic
linear competitive solution and corresponding competitive analysis for a much
larger class of delay functions.

Thus far, only the restricted setting where the delay is both clairvoyant and
uniform has been considered. To further develop our understanding of the effect
the type of delay has on the problem, we explore an entirely different way of
looking at an algorithm’s accumulation of delay costs. In previous work (both
in MPMD and other online problems with delay), delaying the service of a
request accumulates a delay cost given by a delay function associated with the
request. However, in some practical settings, such as those involving service-
level agreements (for example cloud computing), the cost of delaying a request
is a function of the set of pending requests at a particular time, and cannot be
modelled as individual functions associated with each request. In this thesis,
we introduce the study of online problems with set delay, which addresses the
practical shortcomings of the existing model by providing a generalisation of it.
In an online problem with set delay, the cost of delay is a function of the set
of pending requests at a particular time, rather than individual cost functions
associated with each request. We apply this generalisation to MPMD to create
the online matching with set delay problem (MPMD-Set). Using this new delay
model, we introduce an alternative view of the delay cost accumulation of an
online algorithm, which allows us to consider new classes of delay functions,
as well as new techniques for designing and analysing competitive algorithms
that do not rely on clairvoyance. This not only gives us an alternative insight
into the effect the type of delay has on the quality of the solution, but also its
relation to other problems.

Having generalised the notion of the delay cost, it is only natural to ask what
will happen if we restrict the algorithm’s access to information about it. This
leads us to the following question:

How does the restriction of information about future delay costs impact the
quality of the solution an online algorithm can achieve for a given problem P?

To the best of our knowledge, the only prior works that provide online algo-
rithms in the non-clairvoyant setting are for online set cover with delay [4] and
multi-level aggregation with delay [27]. The works show both problems admit
competitive algorithms in the non-clairvoyant setting. In chapter 2 of this the-
sis, we show this does not hold for MPMD with non-uniform delay (and hence
MPMD-Set) in the non-clairvoyant setting. The impossibility of a competitive
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algorithm for MPMD-Set in the non-clairvoyant setting motivates the following
question:

What is the most general setting of MPMD-Set for which we can design
competitive algorithms?

A natural direction is to explore whether there exist competitive solutions
in the non-clairvoyant setting for large classes of delay functions. In particular,
we introduce a new class of delay functions, which we refer to as size-based.
For MPMD-Set with size-based delay, the delay cost is a function of the size
of the set of unmatched requests at a particular time t. The concept of a size-
based delay function finds natural motivations in, amongst others, service level
agreements, such as those found in cloud computing applications. Note that
this delay cost can only be modelled by the set delay model and generalises
the case where each function is linear in the restricted model. For MPMD-Set
with size-based delay, we show a reduction to the classic Metrical Task Systems
(MTS) problem. One may be tempted to think that the reduction is trivial,
due to the fact that metrical task systems are used to model the states of any
online algorithm. The introduction of delay, nonetheless, makes this reduction
far from trivial. The main challenge is that the concept of delay can motivate
the MTS algorithm to undo a match after it has been made. It thus becomes
increasingly difficult to translate any competitive solution for MTS back into
a valid online matching. We address this problem by proving that, for size-
based delay functions, if any competitive MTS algorithms exist, there must
exist competitive MTS algorithms that do not undo any matches. It remains an
open problem whether we can reduce the MPMD-Set problem with any other
classes of delay functions to MTS.

1.1 Thesis Organisation
In Chapter 2 we motivate and introduce the study of online problems with set
delay and focus in particular on the online matching with set delay problem in
the non-clairvoyant setting. We start by proving a lower bound on the prob-
lem, which motivates us to restrict our attention to a class of delay functions
called size-based, with natural applications that could previously not be con-
sidered in the old delay model. For size-based delay functions we design both
deterministic and randomised algorithms that are competitive in the number of
request. We achieve this by reducing the problem to the metrical task system
problem, revealing a relation between the two problems. We also give lower
bounds for both the randomised and deterministic algorithms for the problem
with size-based delay.

In Chapter 3 we adapt an existing algorithm for the min-cost perfect match-
ing with linear delay problem, by Bienkowski et al. [12], to design the first
deterministic algorithm for the problem with concave delay. The algorithm is
linear competitive in the number of requests.

We conclude with future work directions in Chapter 4.

11



1.2 Preliminaries

1.2.1 Min-cost Perfect Matching with Delay
The min-cost perfect matching with delays (MPMD) problem, introduced by
Emek et. al [20] is defined on a metric space (V, d), which consists of a set of
points V and distance function d : V × V → R+. An online input instance
over (V, d) is a sequence of requests R = (r1, ..., rm) that arrive at points in
the metric space over time. Each rk ∈ R has an associated position and arrival
time.

Upon the arrival of a request, the algorithm must choose to either match the
request, incurring a cost equal to the distance between the two requests in the
metric space, or to delay the request, incurring a cost given by a delay function
associated with the request, in the hope of finding a more suitable match in the
near future.

A solution produced by an online matching algorithm is a sequence of match-
ings M = (M0...Mfinal), where Mi is the matching associated with the ith
timestep. Note that we assume that requests only arrive at the start of a
timestep. A solution M must satisfy the following properties:

• M0 = ∅

• Mfinal is a perfect matching

• For all i, Mi ⊆Mi+1

We refer to the third property as monotonicity. The cost associated with a
solution M consists of the sum of the distances between matched requests in
Mfinal plus the sum of the delay costs incurred by all requests. The aim of an
online matching algorithm is to produce a sequence of matchings that satisfies
the above properties with minimal cost.

1.2.2 Competitive Analysis
To evaluate the performance of an online algorithm we perform a type of worst-
case analysis referred to as competitive analysis. Let P be a given cost min-
imisation problem and ALG an online algorithm for P . We denote the cost of
ALG on an instance p (defined by a unique input sequence) of P as ALG(p).
To evaluate the performance of ALG on p we compare it’s cost to that of an
optimal solution produced by an offline algorithm (OPT ) that has full knowl-
edge of the request sequence up front. Let OPT (p) be the cost of the optimal
solution produced by an offline algorithm on the input sequence p. We evaluate
the overall performance of ALG by measuring, over all possible input sequences,
the worst case ratio between ALG(p) and OPT (p). We refer to this measure of
performance as the competitive ratio, first introduced by Sleator and Tarjan [29].

Definition 1. We say an online deterministic algorithm ALG for problem P is
α-competitive if, for any input sequence p of P , there exists a constant d such
that ALG(p) ≤ α ·OPT (p) + d.
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Similarly, for an online randomised algorithm we consider the expected cost
of the algorithm for the competitive ratio.

Definition 2. We say an online randomised algorithm ALG for problem P is
α-competitive if, for any input sequence p of P , there exists a constant d such
that the expected cost of ALG satisfies E[ALG(p)] ≤ α · E[OPT (p)] + d.

1.3 Related Work
MPMD with Uniform Linear Delay MPMD was first introduced by Emek
et al. [20]. They considered the case where the delay functions associated with
each request are uniform linear and designed a randomised algorithm for this
case that achieves a competitive ratio of O(log2 n+log∆), where n is the number
of points in the metric space and ∆ is its aspect ratio. Azar et al. [3] designed a
deterministic O(h)-competitive algorithm for the problem on Hierarchically Sep-
arated Trees (HST) (and hence a constant deterministic algorithm on uniform
metric spaces), where h is the height of the tree. They then used a randomised
HST embedding to provide an O(log n)-competitive almost-deterministic algo-
rithm on general metric spaces, improving Emek et al.’s bound and removing the
dependency on the aspect ratio of the metric space. Furthermore, they provided
a lower bound of Ω(

√
log n) for any randomised algorithm in the case of linear

delay. Liu et al. [1] improved this lower bound to Ω( logn
log logn ) and Ω(

√
logn

log logn )

for the bipartite case, which are the best known so far. Liu et al. furthermore
adapted the algorithm by Azar et al. to the bipartite setting and improved the
analysis of Emek et al.’s algorithm to O(log n).

The next deterministic algorithm for simple metrics was by Emek et al. [21]
who proved a competitive ratio of 3 for the simple metric space of 2 points. The
first deterministic algorithm for general metric spaces was by Bienkowski et
al. [13], whose analysis resulted in a competitive ratio of O(m2.46). Bienkowski
et al. [12] and Azar et al. [6] concurrently and independently improved this
bound to O(m) and O(m0.59) respectively, introducing the first linear and sub-
linear deterministic solutions to the problem. The algorithms above assumed
the delay cost to be given by a uniform linear delay function associated with
each individual request.

MPMD with Uniform Convex Delay Liu et al. [28] was the first to con-
sider convex delay functions and demonstrated an interesting gap between the
solutions for the case with linear delay and convex delay on a uniform met-
ric space by giving a deterministic asymptotically optimal O(m)-competitive
algorithm for the uniform metric space.

MPMD with Uniform Concave Delay Azar et al. [8] subsequently consid-
ered the problem with concave uniform delay and achieved an O(1)-competitive
deterministic algorithm for the single point metric space and an O(log n) ran-
domised algorithm for general metric spaces.
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The Power of Clairvoyance in Online Algorithms with Delay All prior
solutions to MPMD assumed clairvoyance. To the best of our knowledge, no
one has considered the non-clairvoyant generalisation of the problem. Non-
clairvoyant algorithms nevertheless have been designed for other online problems
such as the Set Cover problem [4] and multi-level aggregation [27].

Other Online Problems with Delay The notion of introducing delay to
online problems originated well before it was applied to online metric matching
and finds applications in amongst others aggregating messages in computer net-
works, aggregating orders in supply-chain management, and operating systems.
See [4, 5, 7, 9, 11, 14, 17, 18, 22, 24, 27, 30] for further reading. All problems above
define the cost of delay as a function associated with each request. To the best
of our knowledge, no online problems with delay have so far defined the cost of
delay as an arbitrary function of the set of unmatched requests.
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Chapter 2

Online Matching with Set
Delay

The delay cost incurred by an online algorithm has thus far always been defined
by the sum of continuous monotone non-decreasing functions, each associated
with an individual request. Though this approach successfully models most of
the traditional examples of applications of MPMD, it fails to model applications
where the delay cost is a function of the set of pending requests. Examples of
such applications can be found in, amongst others, cloud computing. This raises
the question of whether there exists a more general approach that may provide
an alternative view on the accumulation of the delay cost of an online algorithm.
In this chapter, we provide such an approach by introducing a generalisation
of the model of delay used for online problems. In doing so, we initiate the
study of online problems with set delay. In this model, we generalize the no-
tion of delay to one where the instantaneous delay cost at any point in time
is determined by an arbitrary monotone non-decreasing function of the set of
pending requests, rather than the sum of individual delay functions associated
with each request. In particular, we study the online min-cost perfect matching
with set delay (MPMD-Set) problem, which generalizes MPMD. Generalising
the problem allows us to consider new techniques for designing and analysing
competitive algorithms for online matching with delay. Furthermore, we study
the more general MPMD-Set in the least restrictive setting where the algorithm
does not know the metric space in advance and has no knowledge of future delay
costs. We refer to this setting as non-clairvoyant. In our pursuit for exploring
the most general setting of online matching with delay for which there exist
competitive algorithms, we introduce a new class of delay functions, which we
will refer to as size-based.

15



2.1 Our Results and Contributions
We begin by showing that, in contrast to prior results, the MPMD-Set problem
does not admit a deterministic competitive ratio that solely depends on the
number of points in the metric space (n) or the number of requests in the input
sequence (m).

Theorem 1. Every deterministic algorithm for MPMD-Set has competitive
ratio Ω(D), where D is the diameter of the metric space.

Interestingly, our lower bound holds even for simple instances where n and m
are constants. The impossibility of a competitive algorithm for OMSD motivates
us to restrict our attention to designing a competitive solution for the MPMD-
Set problem where the delay cost is a monotone non-decreasing function of the
number of unmatched requests. We call such a delay cost function size-based
(See Section 2.3 for a formal definition). MPMD-Set with size-based delay
(MPMD-Size) has natural applications in practical settings with service-level
agreements such as cloud computing.1

Our main results in this chapter are the first competitive algorithms for
MPMD-Size, where the competitive ratio is a function of the number of requests.
At the core of our result is a reduction from MPMD-Size to the classic well-
known Metrical Task System (MTS) problem. (defined in Section 2.2).

Theorem 2. For any f(N)-competitive algorithm for MTS with N states, there
is an f(Nm)-competitive algorithm for MPMD-Size, where Nm ∼ (me )

m/2 e
√

m

(4e)1/4

is the number of matchings on m vertices.

We obtain our main result by applying state-of-the-art algorithms for MTS
with some modifications.

Corollary 1. For MPMD-Size, there is an O((me )
m/2e

√
m)-competitive deter-

ministic algorithm and an O(m4 log4 m) randomised algorithm.

We emphasise that our algorithms are non-clairvoyant and do not need to
know the metric space in advance. To the best of our knowledge, the only
prior works that provide online algorithms in the non-clairvoyant setting are [4]
and [27].

We complement Corollary 1 with the following lower bounds.

Theorem 3. Every deterministic algorithm for MPMD-Size has competitive
ratio Ω(n).

Theorem 4. Every randomised algorithm for MPMD-Size has competitive ratio
Ω(log n).

1In these settings, the service level agreement requires the cloud provider to provide a
certain level of service and the provider incurs penalties if the level is not met.
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2.2 Our Techniques
Our main technical contribution is an online reduction from the MPMD-Set
problem to MTS, which constitutes the proof of Theorem 2.

We briefly outline the three main parts of the reduction below.

Step 1: MPMD-Set to MTS The first part of the reduction transforms an
instance of MPMD-Set into an instance of MTS. We achieve this by translating
the set of all possible matchings of the requests into the set of input states. The
set of input states thus develops over time as more requests arrive. The distance
cost can be easily translated into the transition cost between matchings, and the
delay cost is translated into the vector cost associated with serving tasks. From
here onward we refer to an instance of MTS that is reduced from MPMD-Set as
MPMD-Set-MTS, and an MTS instance that is reduced from MPMD-Set with
size-based delay as MPMD-Size-MTS.

The main challenge arises from translating the MTS solution back into a
matching. In the MPMD-Set problem we are not allowed to remove a match
once it has been made, while in the MTS problem, the algorithm may use
transitions that correspond to the removal of matches. We therefore define the
following property which we need an online schedule to satisfy before we can
translate it back into an online matching. Let σ = (M1, . . . ,Mk) be a schedule
for MPMD-Set-MTS.

Definition 1 (Monotone). We say a schedule σ is monotone if Mi−1 ⊆Mi for
every i, i.e. it never removes an edge. We call an algorithm for MPMD-Set-MTS
monotone if it always produces a monotone schedule.

A monotone schedule satisfies all requirements of an online matching as it
does not use transitions that correspond to the removal of matches. However,
we cannot guarantee that an arbitrary scheduling algorithm will produce such a
schedule. It remains to prove the existence of a competitive monotone schedul-
ing algorithm. To this end we define a relaxed version of this property as follows.
Let R(Mi) be the set of requests that are matched in Mi.

Definition 2 (Sensible). We consider σ to be sensible if R(Mi−1) ⊆ R(Mi). In
other words, a request can be re-matched to another request but it cannot be
unmatched once it has been matched. We call an algorithm for MPMD-Set-MTS
sensible if it always produces a sensible schedule.

Step 2: Converting to Sensible We show that we can convert, in an online
manner, an arbitrary MPMD-Size-MTS solution to a sensible solution at no
extra cost. We do this by designing an online algorithm which, given an online
sequence of states, produces for each state Mi a corresponding state M ′

i such
that the resulting schedule produced by the algorithm is sensible. We refer to
an algorithm that transforms a given state as a state conversion algorithm. To
prove the resulting schedule is of equal or less cost, we use a potential function
to keep track of the transition costs incurred by both schedules. For the cost
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associated with processing the tasks we rely on the fact that, because the delay
function satisfies the properties of a size-based delay function, there can be no
benefit in un-matching and re-matching a request.

Step 3: Converting to Monotone It remains to show we can convert, in an
online manner, every sensible MPMD-Size-MTS solution to a monotone solution
at no extra cost. We do this by designing a second online state conversion
algorithm which, given an online sequence of states, produces for each state
M ′

i , a corresponding state M ′′
i such that the resulting schedule produced by

the algorithm is monotone. The proof in Section 2.5.3 works for any delay
function. The main technique used by the algorithm is to maintain a monotone
matching of the requests that are matched in the previous state by matching
the endpoints of vertex-disjoint paths in the symmetric difference between the
current and previous state.

Since a monotone MPMD-Size-MTS solution corresponds to a matching of
the same cost, the composition of the conversion algorithms in steps 2 and 3
lets us convert every MPMD-Size-MTS solution into an online matching at no
extra cost.

Applying MTS algorithms There are two issues that prevent us from ap-
plying MTS algorithms directly. First, the cost bounds of all known algorithms
for MTS have an additive term that is equal to the diameter of the MTS state
space, and the MTS instance created by our reduction has state space with
diameter much larger than the optimal. The second issue is that our reduction
creates an MTS instance whose state space is constructed online, i.e. the states
arrive over time. In Section 2.5.4, we show how to overcome these issues.

2.3 Preliminaries
In this section we introduce our notation and give formal definitions for set delay
and size-based delay functions, as well as MPMD-Set.

We denote a match between two points by an edge e in the metric space and
define the weight of an edge w(e) to be the distance between the two points. For
any two matchings M and M ′, we define the cost of changing from one matching
to the other as the total weight of all the edges in the symmetric difference
between the two matchings

∑
e∈M⊕M ′ w(e), which we denote as c(M ⊕M ′).

We divide time into discrete timesteps.

Definition 3 (Set delay function). Let U be a set of requests. We define a
delay function ft : U → R+ to be a set delay function if it satisfies the following
properties:

• ft(∅) = 0

• A ⊆ B ⇒ ft(A) ≤ ft(B)
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• For all ∅ ≠ U ∈ 2V , we have
∑∞

t=0 ft(U) =∞

The last property implies that all requests must eventually be matched.

Definition 4 (Size-based delay function). We define a delay function ft : U →
R+ to be size-based if it satisfies all properties of a set delay function and is
monotone non-decreasing as a function of the size of the set of requests U for
any time t.

2.3.1 Metrical Task Systems
The Metrical Task System (MTS) problem, introduced by Borodin et al. [15],
is a cost minimisation problem defined by a set of states S = {s1, s2, ..., sk} and
a cost matrix d that defines the cost associated with moving between states.
The input is a sequence of tasks T = (t1, ..., tl). Each task tj is represented by
an n-dimensional cost vector Cj = {c1, c2, ..., ck} where ci defines the cost of
servicing task tj in state si. A solution is, for a given input task sequence T ,
a schedule, which is a sequence of states σ = (M1,M2, ...,ML), where Mj = si
means that task j is processed in state si. The aim is to produce a schedule of
minimal cost, where the total cost consists of the costs associated with moving
states (transition cost), as well as the cost of processing the tasks (processing
cost).

2.4 A Lower Bound for MPMD-Set
In this section, we prove Theorem 1 by constructing a lower bound instance that
results in a competitive ratio of Ω(D), where D is the diameter of the metric
space.

Proof of Theorem 1. Consider a four-point metric space (as depicted in fig-
ure 2.1) with three points at distance ϵ from one another, and the fourth point
(p4) at distance D from the other points, where D is the diameter of the metric
space.

Figure 2.1: A visualisation of the four-point metric space

We define a request sequence of six requests R = (r1, r2, r3, r4, r5, r6) where
the first four requests arrive at time t = 0 and the latter two arrive at time
t = 2. For each i ∈ {1...4}, we place request ri on point pi. At t = 2, we then
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place request r5 on p3 and r6 on p4. In terms of delay, we are working with the
special case of deadline functions. A deadline function is a delay function that
is 0 up until some time d, called the deadline, and ∞ afterwards. When the
deadline of a request is reached, the algorithm must ensure that the request is
matched.

At t = 0, request r1 reaches its deadline and hence the algorithm will need to
match two requests. Since the algorithm is non-clairvoyant, the algorithm has
no knowledge of the deadlines of future requests. We therefore assume without
loss of generality that it matches r1 to r3 and pays a distance cost of ϵ. At
t = 1, r2 reaches its deadline and the algorithm is forced to match it to r4 at
a distance cost of D. At t = 2, the final two requests will arrive and instantly
reach their deadline. The algorithm will consequently need to match r5 to r6 at
a distance cost of D. The total cost of ALG is 2D + ϵ.

The optimal offline solution OPT is to match r1 to r2 and match locally at
t = 2 on points p3 and p4. The total cost of OPT is therefore ϵ. This concludes
the proof of Theorem 1.

2.5 An Online Reduction from MPMD-Set to MTS
In this section, we prove Theorem 2 by defining a reduction from MPMD-
Set to MTS. We start by translating an arbitrary instance of MPMD-Set into
an instance of MTS in Section 2.5.1. In Section 2.5.2, we show that we can
transform an arbitrary MPMD-Size-MTS solution into a sensible solution of the
same or less cost. We then show in Section 2.5.3 that for any MPMD-Set-MTS
instance, we can transform every sensible solution into a monotone solution at
no extra cost. Finally, we use an observation that a monotone schedule directly
corresponds to an online matching of equal cost. This completes the proof of
Theorem 2. We finish this section with a proof of Corollary 1.

2.5.1 Translating an instance of MPMD-Set into and in-
stance of MTS

We define the set of internal states of the MTS instance to be the set of all possi-
ble matchings of the requests in the metric space associated with the MPMD-Set
instance. Without loss of generality, we assume the requests arrive at unique
points in the metric space. The cost of moving between two states is defined to
be the weight of the symmetric difference between the set of edges in each state
(c(Mi ⊕Mj)). It is easy to see that this satisfies the necessary requirements
for a metric space. Each task in the MTS instance is associated with a given
timestep in the MPMD-Set problem. The cost vector associated with each task
is, for every possible state, the delay cost accumulated by the set of unmatched
requests in the original MPMD-Set instance during that timestep. The total
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cost of a schedule σ can thus be expressed as follows.

cost(σ) =

|σ|−1∑
i=0

(c(Mi ⊕Mi+1) + fi(Ui(Mi))) .

By construction, the cost associated with processing the tasks represent
the delay cost incurred by the requests, while the distance cost is represented
by the transition costs associated with moving between states. It remains to
prove that we can translate a given schedule produced on the MPMD-Set-MTS
instance back into a valid matching. By definition of the MPMD-Set problem
all solutions have the property that once a match has been made, it will never
be removed. An MPMD-Set-MTS solution may not necessarily satisfy this
property, as the MTS problem definition allows the solution to move between
states that correspond to the removal of edges. We can however make the
following observation about the MPMD-Set-MTS instance.

Observation 5. Every monotone schedule corresponds to an online matching
of equal cost.

In the next two subsections, we show how to convert an arbitrary MPMD-
Size-MTS solution into a sensible solution, and an arbitrary sensible solution to
a monotone one.

2.5.2 Size-based delay functions admit sensible scheduling
algorithms

In this subsection, we prove the existence of an online algorithm that converts an
arbitrary MPMD-Size-MTS solution into a sensible solution, without incurring
any extra cost.

Lemma 1. There exists an online algorithm that converts an arbitrary MPMD-
Size-MTS solution into a sensible solution of the same or less cost.

Proof. To prove Lemma 1, we define an online state conversion algorithm (Sensible-
ALG) which, for every state Mi in a schedule σ, produced by any online schedul-
ing algorithm (OSA), produces a state M ′

i such that the cost of the schedule
σ′ = (M ′

0, ...,M
′
|σ|) is at most the cost of the original schedule σ, and σ′ is

sensible.
To introduce the state conversion algorithm, we require the following defini-

tion.

Definition 5 (Ri(M)). Given a matching M , let Ri(M) be the set of matched
requests in M among the requests that have arrived up to and including time i.

The state conversion algorithm aims to stay as close as possible to the states
in the original schedule σ while maintaining the main property of a sensible
schedule, which is that Ri(M

′
i−1) ⊆ Ri(M

′
i) for every i ∈ [|σ|]. Sensible-ALG

achieves staying close to the states in σ by augmenting along paths that are
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in the symmetric difference between the previous state produced by Sensible-
ALG (M ′

i−1) and the newly arrived state produced by OSA (Mi). Sensible-ALG
maintains sensibility by only augmenting along M ′

i−1-augmenting paths in the
symmetric difference between Mi and M ′

i−1.
We are now ready to formally define Sensible-ALG.

Description of Algorithm Our online algorithm takes as input a sequence
of states σ = (M1, . . . ,Mk) produced by an online scheduling algorithm, where
σ satisfies that for all 0 ≤ i < |σ| − 1, the symmetric difference Mi ⊕Mi+1

consists of a single connected component. Note that if the input schedule does
not satisfy these properties then we can add intermediate timesteps and states
to the schedule such that it satisfies the above property and the cost remains the
same. When a new state Mi arrives, the algorithm augments M ′

i along every
M ′

i−1-augmenting path in the symmetric difference M ′
i−1 ⊕Mi. In this online

fashion, the algorithm constructs a sequence of states σ′ = (M ′
1, . . . ,M

′
n) whose

cost is at most the cost of σ.

Algorithm 1: State conversion algorithm to construct a sensible online
schedule (Sensible-ALG)
M0 = ∅
for each i do

M ′
i = M ′

i−1

for each M ′
i−1-augmenting path P in Mi ⊕M ′

i−1 do
Augment M ′

i along P
end

end

Fix a timestep i. Since Mi−1 ⊕Mi is a single component, M ′
i−1 ⊕Mi can have

at most one more M ′
i−1-augmenting path than M ′

i−1 ⊕Mi−1. Moreover, since
Sensible-ALG augmented along every M ′

i−2-augmenting path in M ′
i−2 ⊕Mi−1

in the previous timestep, there are no M ′
i−1-augmenting path in M ′

i−1 ⊕Mi−1.
Thus, we conclude there is at most one M ′

i−1-augmenting path in M ′
i−1⊕Mi. Let

Pi denote the single connected component in Mi−1 ⊕Mi and let P ′
i denote the

single connected component in M ′
i−1⊕Mi (note that P ′

i can be empty for some
i). Since Sensible-ALG augments along P ′

i , it follows that c(M ′
i−1⊕M ′

i) = c(P ′
i ).

Since we only ever augment along M ′
i−1-augmenting paths in M ′

i−1 ⊕Mi, it
must be that Ri(M

′
i−1) ⊆ Ri(M

′
i). We thus conclude that σ′ is sensible.

It remains to show that the cost of σ′ is at most the cost of σ. We start by
showing that the transition cost incurred by σ′ is at most that incurred by σ.

Lemma 2.
∑|σ|−1

i=0 c(M ′
i−1 ⊕M ′

i) ≤
∑|σ|−1

i=0 c(Mi−1 ⊕Mi).

Proof of Lemma 2. We prove this lemma by introducing the potential ϕi =
c(Mi⊕M ′

i). Note that ϕi is the distance between the states M ′
i and Mi. Using

the potential, we will prove the cost incurred by the ith state transition in σ′ is
at most the cost of the ith state transition in σ.
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Claim 1. For all i, we have c(M ′
i−1 ⊕M ′

i) ≤ c(Mi−1 ⊕Mi)− (ϕi − ϕi−1).

Proof of Claim 1. We first show that since P ′
i is a subset of M ′

i−1⊕Mi, we can
express the transition cost incurred by Sensible-ALG during iteration i (c(P ′

i )) in
terms of c(M ′

i−1 ⊕Mi) and ϕi. We then use triangle inequality to upper bound
the transition cost incurred by OSA during iteration i. Finally, we combine
these results to conclude the correctness of the claim.

Since M ′
i = M ′

i−1 ⊕ P ′
i , it follows that:

c(M ′
i ⊕Mi) = c((M ′

i−1 ⊕ P ′
i )⊕Mi)

= c((M ′
i−1 ⊕Mi)⊕ P ′

i )

= c(M ′
i−1 ⊕Mi)− c(P ′

i ).

The last equality holds because P ′
i is a subset of M ′

i−1 ⊕Mi.
The cost of Sensible-ALG during iteration i can therefore be expressed as

follows.

c(P ′
i ) = c(M ′

i−1 ⊕Mi)− c(M ′
i ⊕Mi) (2.1)

= c(M ′
i−1 ⊕Mi)− ϕi. (2.2)

Having expressed the cost of Sensible-ALG during iteration i in terms of the
potential and the symmetric difference M ′

i−1 ⊕Mi, we now bound the cost of
the original online scheduling algorithm OSA during iteration i. Using triangle
inequality, we deduce:

c(M ′
i−1 ⊕Mi) ≤ c(M ′

i−1 ⊕Mi−1) + c(Mi−1 ⊕Mi)

= c(M ′
i−1 ⊕Mi−1) + c(Pi).

We thus bound the transition cost of OSA during iteration i as follows:

c(Pi) ≥ c(M ′
i−1 ⊕Mi)− c(M ′

i−1 ⊕Mi−1) (2.3)
= c(M ′

i−1 ⊕Mi)− ϕi−1. (2.4)

Combining Inequalities (2.1) and (2.3), we get:

c(P ′
i )− c(Pi) ≤ c(M ′

i−1 ⊕Mi)− ϕi)− (c(M ′
i−1 ⊕Mi)− ϕi−1)

≤ ϕi−1 − ϕi,

and so c(M ′
i−1 ⊕M ′

i) ≤ c(Mi−1 ⊕Mi)− (ϕi − ϕi−1). This completes the proof
of Claim 1.

Using Claim 1, we determine the total transition cost incurred by σ′ as
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follows.

|σ|∑
i=1

c(M ′
i−1 ⊕M ′

i) ≤
|σ|∑
i=1

c(Mi−1 ⊕Mi)−
|σ|∑
i=1

(ϕi − ϕi−1)

=

|σ|∑
i=1

c(Mi−1 ⊕Mi)− ϕ|σ| + ϕ0

≤
|σ|∑
i=1

c(Mi−1 ⊕Mi).

The last inequality holds because ϕ0 = 0 and ϕ|σ| ≥ 0.

Definition 6 (processing cost). We refer to the cost associated with processing
the tasks of an online scheduling algorithm as the processing cost.

Recall that in MPMD-Set-MTS, the processing cost is the delay cost incurred
by the set of unmatched requests in the state. It remains to show that processing
cost incurred by σ′ is at most that incurred by σ. To this end we use the following
fact.

Fact 1 ( [19]). Given two matchings M and M ′ such that |Ri(M
′)| > |Ri(M)|,

there exist at least |Ri(M
′)|−|Ri(M)|

2 vertex-disjoint M -augmenting paths in M⊕
M ′. Furthermore, if Ri(M) ⊆ Ri(M

′), then there exist exactly |Ri(M
′)|−|Ri(M)|

2
vertex-disjoint M -augmenting paths in M ⊕M ′ whose endpoints are exactly
Ri(M

′)\Ri(M).

Lemma 3.
∑

i∈|σ| fi(Ui(M
′
i)) ≤

∑
i∈|σ| fi(Ui(Mi)).

Proof of Lemma 3. Since fi is a size-based delay function, if |Ri(M
′
i)| ≥ |Ri(Mi)|

(and hence |Ui(M
′
i)| ≤ |Ui(Mi)|) for all i, then the lemma must hold. Since the

algorithm augments along every M ′
i−1-augmenting path in M ′

i−1⊕Mi, it follows
that |Ri(M

′
i)| ≥ |Ri(Mi)| for all i.

The cost of an MPMD-Set-MTS solution consists of the transitions cost, as
well as the processing cost. From Lemmas 2 and 3, we deduce that both the
transition cost and the processing cost of σ′ is at most that of σ produced by
any online scheduling algorithm. This concludes the proof of Lemma 1.

2.5.3 Sensible solutions imply monotone solutions
In this subsection, we prove the existence of an online algorithm that converts a
sensible MPMD-Size-MTS solution into a monotone solution without incurring
any extra cost.

Lemma 4. There exists an online algorithm that converts a sensible MPMD-
Size-MTS solution into a monotone solution of the same or less cost.
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Proof. To prove this lemma, we introduce a second online state conversion al-
gorithm Monotone-ALG, which converts any state Mi, produced by a sensible
scheduling algorithm on MPMD-Size-MTS, into a state M ′

i such that the sched-
ule σ′ = (M ′

0, ...,M
′
k) is monotone and of less or equal cost to the original

schedule. We start by defining some notation used in the proof.

Definition 7 (Newly matched request). Given a schedule σ, a request is newly
matched in Mi if r is matched in Mi but unmatched in all prior states {Mj}i−1

j=0

in σ.

We are now ready to define our algorithm.

Description of Algorithm Our online state conversion algorithm Monotone-
ALG takes as input an online sequence of states σ = (M1,M2, ...,MT ) produced
by a sensible scheduling algorithm and outputs, for each state Mi ∈ σ, a state
M ′

i , such that the cost of the schedule σ′ = (M ′
1,M

′
2, ...,M

′
T ) is at most that of

σ, and σ′ is monotone. When a new state Mi arrives, Monotone-ALG computes
the symmetric difference between the current state Mi and the previous state
Mi−1 in σ. By Fact 1, Mi−1⊕Mi contains at least k = |Ri(Mi)|−|Ri(Mi−1)|

2 vertex-
disjoint Mi−1-augmenting paths P1, . . . , Pk. Furthermore, since σ is sensible, all
endpoints of the paths are new requests with respect to Mi. Monotone-ALG
adds, for every path Pj , an edge between the endpoints (uj , vj) to M ′

i .

Algorithm 2: State conversion algorithm to construct a sensible online
schedule (Monotone-ALG)
for each i do

M ′
i = M ′

i−1

for each connected component in Mi−1 ⊕Mi do
Let P1, ..., Pk be the Mi−1-augmenting paths in Mi−1 ⊕Mi.
Let ui, vi be the endpoints of Pi.
for each path Pi do

M ′
i ←M ′

i ∪ (uj , vj)
end

end
end

Observe that since the algorithm only adds edges between new requests, it holds
that for any i, M ′

i−1 ⊆ M ′
i . Thus, the resulting schedule σ′ = (M ′

0, ...,M
′
|σ|) is

monotone.
It remains to show that the cost of σ′ is at most the costs of σ. We start by

proving the transition cost incurred by σ′ is at most the transition cost incurred
by σ.

Lemma 5. For every iteration j of the algorithm, c(M ′
j−1 ⊕M ′

j) ≤ c(Mj−1 ⊕
Mj).
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Proof of Lemma 5. Fix an iteration j of the algorithm. Let kj =
|Ri(Mj)|−|Ri(Mj−1)|

2 .
Recall that ui and vi are endpoints of Pi. The transition cost incurred by σ is

c(Mj−1 ⊕Mj) ≥
k∑

i=1

c(Pi)

≥
k∑

i=1

c(ui, vi)

= c(M ′
j−1 ⊕M ′

j),

where the second inequality is due to triangle inequality.

We now show that the processing cost incurred by σ′ is at most that incurred
by σ.

Lemma 6.
∑|σ|

i=0 fi(Ui(M
′
i)) ≤

∑|σ|
i=0 fi(Ui(Mi)).

Proof of Lemma 6. By construction, the cost of processing the ith task in any
given state is the cost of delaying all unmatched requests in the state at time i.
We know any set delay function satisfies that for any subsets A and B of requests
that have arrived so far, A ⊆ B implies that ft(A) ≤ ft(B). We consequently
introduce the following invariant.

Invariant 1. For any i, Ri(Mi) = Ri(M
′
i). In other words, all requests that

are matched in Mi are matched in M ′
i .

Proof of Invariant 1. We prove the invariant by induction on i.

If i = 0, then M0 = ∅ = M ′
0. Hence, Ri(M0) = Ri(M

′
0).

Assume Ri(Mi) = Ri(M
′
i) for all i in {0...k}. Then Ri(Mk+1)\Ri(Mk) is

simply the set of new requests with respect to iteration k+1. From Fact 1 and
the sensibility of σ, we can deduce that since Ri(M

′
k) = Ri(Mk) ⊆ Ri(Mk+1),

there must exist Ri(Mk+1)−Ri(M
′
k)

2 vertex-disjoint paths between all the new re-
quests in Ri(Mk+1). By construction Monotone-ALG will match all new re-
quests. Therefore, Ri(M

′
k+1) = Ri(Mk+1).

We can now use Invariant 1 to prove the lemma as follows. For all i,
Ri(M

′
i) = Ri(Mi) implies that Ui(M

′
i) = Ui(Mi) and thus fi(Ui(M

′
i)) ≤

fi(Ui(Mi)). Therefore,
∑|σ|

i=0 fi(Ui(M
′
i)) ≤

∑|σ|
i=0 fi(Ui(Mi)). This concludes

the proof of Lemma 6.

We conclude that the total cost of σ′ is at most that of σ and that σ′ is
monotone, which completes the proof of Lemma 4.
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2.5.4 Applying MTS Algorithms to MPMD-Set-MTS
In this section, we prove Corollary 1. Consider an instance of MPMD-Set with
m requests in a metric space of n points and the instance of MPMD-Set-MTS
created by applying Theorem 2. Let N be the number of states of the MPMD-
Set-MTS instance.

There are two issues that arise when applying MTS algorithms to MPMD-
Set-MTS directly.

Eliminating the Diameter

The first issue is that all known MTS algorithms have a cost bound of the
form f(N) · cost(OPT ) +D where OPT is the optimal MTS solution and D is
the diameter of the MTS state space. Observe that D is at least the distance
between the empty matching and the max-cost perfect matching, i.e. the cost of
the max-cost perfect matching. Unfortunately, the cost of the max-cost perfect
matching can be much larger than that of the optimal solution. To overcome
this, one could restrict the MTS solution to only use states whose distance from
the initial state is at most cost(OPT ). This can be achieved by setting the
costs of the other states to be infinite. This effectively reduces the diameter of
the state space to at most 2 · cost(OPT ), and would give us a cost bound of
O(f(N)) · cost(OPT ) + 2 · cost(OPT ). The issue is that, since the MTS tasks
arrive in an online fashion, the optimal solution remains unknown until all
tasks have arrived. To address this issue we use the Guess-and-Double Method,
which, maintains a guess of the value of the optimal solution as the tasks are
processed. This guess is used to determine the diameter of the state space used
by the algorithm. When the guess becomes too small, the value of the guess
is increased and the algorithm is simulated on the input that has already been
processes, only this time on the larger state space, to determine the state it
would now be in, and processes the new tasks accordingly. For the benefit of
the reader, we give a high level overview of the method below.

The Guess-and-Double Method Let R = [r1, r2, ...rT ] be the sequence
of tasks given by the MTS problem. Let OPTt be the cost of the optimal
solution for processing the tasks that have arrived up to and including time t.
At any time t we maintain a guess j such that

2j−1 < OPTt ≤ 2j . (2.5)

When our guess j no longer satisfies (2.5) we increase it’s value (thus dou-
bling the radius of the metric space) until it is back within our bounds. Each
new guess instantiates a new phase. At the start of each phase, we restart the
MTS algorithm with a superset of the previous state space, which now con-
sists of all states within distance 2j from the original start state. Note that by
restart we mean that we simulate the MTS algorithm with the new diameter
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on all tasks that have arrived so far, and process the new tasks in accordance
with the decisions made by the algorithm with the new diameter.

Our initial guess j satisfies 2j−1 < OPT1 ≤ 2j . We define MTSj to be the
MTS algorithm that operates on the given state space with diameter 2j . Let
Rt = [r1, ..., rt] be the sequence of tasks that have arrived up to and including
timestep t. We define MTSj(Rt) to be the state MTSj would end up in after
processing Rt. The Guess-and-Double method, for every timestep t, maintains
a guess j that satisfies (2.5), and moves to MTSj(Rt).

Algorithm 3: Updating the guess and splitting the tasks into phases.
Initialise the first phase.
Choose j such that 2j−1 < OPT1 ≤ 2j .
for Every timestep t do

if 2j−1 < OPTt ≤ 2j then
Move to state MTSj(Rt)

end
else

End the previous phase and initialise a new Phase.
Update the value of j such that 2j−1 < OPTt ≤ 2j .
Move to state MTSj(Rt)

end
end

Note that each time we update the value of our guess, the value of the
optimal solution has at least doubled since we made our last guess.

To analyse the total cost of the resulting schedule we look at two separate
costs. The first is the cost incurred within each phase. This includes the transi-
tion costs incurred during the phase (from moving between states), plus the cost
associated with servicing all tasks that arrived during the phase in the states
the algorithm moved through during the phase. We refer to this cost as the
internal phase cost. The second cost consist of the transition costs incurred in
moving between the last state of a phase i, and the first state of the consecutive
phase i+ 1. We refer to this cost as the external phase cost.

We start by bounding the internal phase cost. Let cost(MTSj) denote the
internal phase cost of the phase associated with guess j. Because cost(MTSj)
can be upper bounded by the cost the algorithm would have incurred for pro-
cessing all tasks that arrived prior to and during the phase associated with guess
j, we can bound cost(MTSj) as follows:

cost(MTSj) ≤ (O(f(N)) + 2) · cost(OPTj).
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Therefore, the total internal phase cost incurred over all k phases is

k∑
i=1

ALGi ≤ (O(f(N)) + 2) ·
k∑

i=1

cost(OPTi)

≤ 2 · (O(f(N)) + 2) · cost(OPTk).

Next, we bound the external phase cost. Let Si be the last state of a given
phase i, associated with a guess j, and let S′

i+1 be the first state of phase i+1,
associated with the next guess j′. We bound d(Si, S

′
i+1)

2 as follows:
Let S0 be the empty start state.

d(Si, S
′
i+1) ≤ d(Si, S0) + d(S′

i+1, S0).

For all consecutive phases i and i+ 1, associated with guesses j and j′ respec-
tively, it holds that

d(Si, S0) ≤ (O(f(N)) + 2) · cost(OPTi)

and

d(S′
i+1, S0) ≤ (O(f(N)) + 2) · cost(OPTi+1).

We thus bound the cost over all k − 1 phase transitions as follows

k−1∑
i=1

d(Si, S
′
i+1) ≤ 2 ·

k−1∑
i=1

(O(f(N)) + 2) · cost(OPTi+1)

≤ 4 · (O(f(N)) + 2) · cost(OPTk).

The total cost of the solution produced by the Guess-and-Double method can
thus be bounded by 6 · (O(f(N)) + 2) · cost(OPTk).

We can now use the O(N)-competitive deterministic algorithm of [15] to
obtain our deterministic algorithm for MPMD-Size.

The Need for an Online Embedding

The second issue stems from the fact that the reduction in Theorem 2 creates
an MTS instance where the states are arriving over time. This is because the
states correspond to matchings of requests and the requests are arriving online.
This does not pose a problem for the deterministic O(N)-competitive Work
Function Algorithm of [15]. However, we cannot directly apply the current-
best randomised algorithm for MTS of [16] as it pre-computes a probabilistic
embedding of the MTS metric space into a hierarchically separated tree (HST).
Instead, we need to use a probabilistic online embedding into a HST together
with the O(logN)-competitive randomized algorithm for MTS on HSTs of [16].
Using the online embedding of [25] adds a factor of O(logN log Φ) where Φ is

2Recall that we denote the transition cost of going from state Si to S′
i+1 by d(Si, S

′
i+1).
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the ratio of the largest distance to the smallest distance in the MTS state space,
i.e. the aspect ratio. However, Φ can be arbitrarily large. We deal with this by
proving that the Abstract Network Design Framework of [10] can be extended
to apply to MTS. For the benefit of the reader, we give a short overview of the
Abstract Network Design Framework.

The Abstract Network Design Framework In an instance of abstract
network design, the algorithm is given a connected graph G(V,E) with edge
lengths d : E → R+. At each timestep i, a requests that consists of a set of
points in the graph, called terminals, arrive in an online fashion. The algorithm
provides a response Ri = (Gi, Ci), which consists of a subgraph Gi ⊆ E, and a
connectivity list Ci, which is an ordered subset of terminal pairs from the ter-
minals that have arrived so far, and determines what will become (and remain)
connected from this timestep onwards. The algorithm is given, at each timestep,
a feasibility function Fi : (C1, ..., Ci)→ {0, 1} that maps a sequence of connec-
tivity lists to either 0 (infeasible) or 1 (feasible). A solution Si, which consists
of a sequence of responses for every time step up to and including timestep i,
is feasible if Fi(C1, ..., Ci) = 1 and all pairs in Cj are connected in all Gi for
all i ≥ j. To determine the cost of a solution to the first i requests Si, the
framework uses a load function ρi : 2{1,...,i} → R+, which takes as input the
sequence of timesteps in which the edge was used, and outputs a corresponding
multiplier to the cost of an edge d(e). It aims to model how the cost of using
an edge grows as the edge is used multiple times. The function must be subad-
ditive, monotone non-decreasing, and satisfy ρi(I) = 0 if and only if I = ∅. The
total cost of a solution Si is defined as follows.

cost(Si) =
∑
e∈E

d(e) · ρ({j ≤ i : e ∈ Gj})

Extending the Abstract Network Design Framework Though we
can express the transition cost of an instance of general MTS using this frame-
work, we cannot express the cost vectors associated with processing the tasks
in MTS in the current state of the framework. In order to address this issue,
we propose the following alterations to generalise the framework.

We replace the feasibility function with a function F ′
i : (C1, ..., Ci) → R+,

where F ′
i (C1, ..., Ci) is the processing cost of the algorithm during timestep i if

the solution Si = ((G1, C1), . . . , (Gi, Ci)) is feasible, and ∞ otherwise.
We now re-define the cost of a solution to the first i requests Si to incorporate

the total processing cost incurred by the algorithm.

cost(Si) =
∑
e∈E

d(e) · ρ({j ≤ i : e ∈ Gj}+
i∑

l=1

F ′(C1, . . . , Cl)

Since the processing cost provided to the algorithm is independent of the metric
space, it follows that the processing cost remains unaffected by the online em-
bedding. It therefore does not affect the overhead due to the online embedding.
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Note that the extension of this framework means it can now be used to
model online problems with delay, where the delay cost can be modelled as the
processing cost.

Expressing MTS in the Abstract Network Design Framework It
remains to formulate the general MTS problem in the Extended Abstract Net-
work Design Framework defined above.

We define the terminal set of the ith request to be the set of states that have
arrived so far. We define the cost of an edge d((u, v)) to be the transition cost
between states u, v. Let Ti be the cost vector associated with processing task i,
and Ti(w) be the cost of processing task i in state w. Let v be the last terminal
in Ci. The extended feasibility function Fi is defined by Fi(C1, . . . , Ci) = Ti(v)
if there is only a single ordered pair in each Cj for all j ≤ i and the sequence
of (C1, . . . , Ci) is a valid path. The load function is simply the cardinality
function because we pay the transition cost associated with the edge each time
we transition to a different state.

Bartal et al. [10] show that if the problem can be captured by the Abstract
Network Design Framework and admits a min-operator, it is possible to reduce
the overhead due to the online embedding to O(log3 N).

Definition 8 (Min-operator). An algorithm admits a min-operator with fac-
tor µ ≥ 1 if there exists a competitive algorithm3 for the problem, and for
any two deterministic online algorithms A and B4, there exists a third on-
line deterministic algorithm C such that the cost of C satisfies cost(C) ≤
µ ·min{cost(A), cost(B)}, where cost(A) and cost(B) are the respective costs of
algorithms A and B. If either algorithms A or B are randomised, the expected
cost of C must satisfy E[cost(C)] ≤ µ ·min{E[cost(A)], E[cost(B)]}.

We have shown that the results by Bartal et al. [10] also hold for the extended
Abstract Network Design Framework. Since the MTS problem in general admits
a min-operator [2], using the framework of [10] allows us to reduce the overhead
due to the online embedding to O(log3 N) for an overall competitive ratio of
O(log4 N).

2.6 A Deterministic Lower Bound for MPMD-
Size

In this section we lower bound the competitive ratio of any deterministic online
matching algorithms for MPMD-Size.

Theorem 6. Every deterministic algorithm for MPMD-Size has competitive
ratio Ω(n), where n is the number of points in the metric space.

3This algorithm may be randomised.
4Note that these algorithms need not be competitive on all instances of the problem.
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Proof. Consider an n-point uniform metric space with distance 1 between all
points. We fix a deterministic online matching algorithm ALG that will process
a request sequence of size 2n − 2 determined by an adversary. The aim is to
force ALG to match requests at two distinct points in the metric space n − 1
times by ensuring that each time ALG needs to match two requests there is at
most a single unmatched request available at each point in the metric space. We
then ensure the optimal solution to the instance is to match requests at distinct
points only once by placing two requests at n − 2 points in the metric space,
and placing only a single request at two points in the metric space. To this end
we define the adversary to satisfy the following properties at all times:

1. A new request is only ever placed at a point with no unmatched requests.

2. Every point in the metric space receives at most 2 requests.

The first property of the adversary ensures that at most one unmatched
request is available at any point in the metric space at all times and thereby aims
to ensure ALG must match requests across two distinct points each time. The
second property aims to ensure the optimal solution is to only match requests
at distinct points a single time.

Before we define the behaviour of the adversary in more detail, we divide
time up into phases and define the delay function in relation to each phase. The
first phase starts at t = 0 and ends when ALG performs a match. The next
phase begins when the previous phase ends, and the last phase ends when ALG
has matched the last request in the request sequence. The delay function is the
same for all timesteps t within the same phase. For the ith phase the delay
function is defined as follows.

For all timesteps t in phase i, for any subset of requests S,

ft(S) =

{
0 |S| ≤ (n− i)

∞ |S| = (n− i) + 1
(2.6)

We are now ready to define the behaviour of the adversary in more detail.
At time t = 0, the first phase begins and the adversary places n requests, one
at every point in the metric space. This satisfies all properties of the adversary
and invokes an infinite delay cost for ALG, forcing the algorithm to perform a
match. Since we have exactly 1 unmatched request at every point, ALG is forced
to match requests at distinct points in the metric space and incur a distance
cost of 1.

To define the behaviour of the adversary during the remaining phases, we
first introduce the following terminology.

Definition 9 (Saturated points). We call a point in the metric space saturated
if it has received at least 2 requests so far, and unsaturated otherwise.

Definition 10 (Active points). We call a point in the metric space active if it
currently hosts an unmatched request, and inactive otherwise.
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For all i ∈ {2...n−1}, at the start of phase i, the adversary will place a request
at an inactive unsaturated point. By definition, this satisfies the properties of
the adversary and thereby forces ALG to match two distinct points in the metric
space to avoid infinite delay.

Before we analyse the competitive ratio we need to show that the adversary
is well-defined. To this end we prove that, regardless of the behaviour of ALG,
at the end of each phase i ∈ {1...n − 2}, after ALG has performed a match,
there always exists an inactive unsaturated point that the adversary can place
a request on. We formalise this in the following claim.

Claim 2. At the end of each phase i (after ALG has matched), there exist i+1
inactive points and at least two of these points are unsaturated.

Proof of Claim 2. We prove the claim by induction on the number of phases i.
The base case is when i = 1. At the start of phase 1, every point in the

metric space receives a single request. At the end of phase 1, ALG is forced to
match 2 arbitrary requests at different points in the metric space. Therefore,
at the end of phase 1, there will be 2 points in the metric space that are both
inactive and unsaturated.

Assume the claim holds for all phases i = 1 up to i = k. By this assumption,
at the start of phase k+1 we have k+1 points in the metric space that are inactive
and at least two of these requests are unsaturated. The adversary can now
place a new requests at one of the two unsaturated points, satisfying its current
properties, and leaving k points inactive (one of which is still unsaturated). At
the end of phase k+1, ALG will be forced to match requests across two distinct
points in the metric space again, adding another 2 points to the set of inactive
points. By the end of phase k+1, there are thus a total of k+2 inactive points
and at least one of them is unsaturated. It now remains to prove at least two of
the inactive points must be unsaturated. Assume for the sake of contradiction
that this is not the case. Then all remaining k + 1 inactive points must be
saturated. Since the points are inactive and saturated this means that ALG has
matched at least 2 · (k+1) points in k+1 phases. In every phase ALG matches
exactly 2 points. By the end of phase k + 1, ALG can thus have matched at
most 2 · (k + 1) requests. But the k + 1 saturated and 1 unsaturated points
imply at least 2 · (k + 1) + 1 requests must have been matched by the end of
this phase. This constitutes a contradiction. We conclude that there are k + 2
inactive points by the end of iteration k + 1 and that at least 2 of them are
unsaturated. By the principle of induction, Claim 2 holds.

We conclude the adversary is well-defined. It remains to analyse the com-
petitive ratio. Because the adversary maintained the first property, it follows
that each point in the metric space hosts at most one unmatched request at
any time. From this we conclude that ALG incurred a distance cost of 1 during
each phase, resulting in a total distance cost of n−1. Furthermore, because the
adversary maintained the second property and a total of 2n− 2 request arrived
at n points in the metric space, it follows that two requests arrived at n − 2
points in the metric space and one request arrived at two points in the metric
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space. Let us refer to the latter two points as v1 and vn. The optimal solution
is to match the requests at v1 and vn in the first phase and in each consecutive
phase, to match the two requests at the same point. Since neither ALG nor
OPT incurred any delay cost, the total cost of ALG and OPT are as follows:

Cost(OPT ) = 1

Cost(ALG) = n− 1

From this we conclude our lower bound on the competitive ratio for any deter-
ministic online matching algorithm on MPMD-Size.

2.7 A Randomised Lower Bound for MPMD-Set
with Size-based Delay

In this section, we lower bound the competitive ratio of any randomised online
matching algorithm for MPMD-Size.

Theorem 7. Every randomised algorithm for MPMD-Size has competitive ratio
Ω(log n), where n is the number of points in the metric space.

Proof. Consider an n-point uniform metric space with distance 1 between all
points. Applying Yao’s principle [31], we define a uniform random distribution
over the inputs such that any deterministic online matching algorithm will have
expected cost Ω(log n). We define the behaviour of the adversary to ensure the
expected cost of the optimal solution is always 1. To this end we define the
adversary, which will place 2n− 2 requests, to satisfy the following property at
all times:

• Every point in the metric space receives at most 2 requests.

This property ensures the optimal solution is to only match requests at
distinct points a single time, regardless of where the requests are placed in the
metric space.

Similar to the previous section, we divide time up into phases and define the
delay function in relation to each phase. The first phase starts at t = 0 and
ends when ALG performs a match. The next phase begins when the previous
phase ends, and the last phase ends when ALG has matched the last request in
the request sequence. The delay function is the same for all timesteps t within
the same phase. For the ith phase the delay function is defined as follows.

For all timesteps t in phase i, for any subset of requests S,

ft(S) =

{
0 |S| ≤ (n− i)

∞ |S| = (n− i) + 1
(2.7)

We now define the behaviour of the adversary in more detail. At time t = 0,
the first phase begins and the adversary places n requests, one at every point
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in the metric space. This satisfies all properties of the adversary and invokes
an infinite delay cost for ALG, forcing the algorithm to perform a match. Since
we have exactly 1 unmatched request at every point, ALG is forced to match
two requests at distinct points in the metric space, and incur a distance cost of
1. In order to define the behaviour of the adversary on the remaining phases,
recall from Section 2.6 that we define a point to be saturated if it has received 2
requests (and unsaturated otherwise) and active if it hosts an unmatched request
(and inactive otherwise).

For all i ∈ {2...n − 1}, at the start of phase i, the adversary will drop a
request uniformly at random at any of the unsaturated points. By definition,
this satisfies the adversary property.

We observe that the expected cost of any deterministic algorithm ALG on
the input sequence described above is lower bounded by the expected number
of phases in which it is forced to match two requests at distinct points in the
metric space.

We thus wish to compute, for each phase i, a lower bound on the probability
that ALG will have to match two distinct points and thereby incur a distance
cost of 1. We note that if the adversary drops a request on an active unsaturated
point, ALG can match the two requests at that point without incurring any
distance cost. We conclude that ALG will only be forced to match requests at
two distinct points in the metric space if the adversary places the request on an
inactive unsaturated point. It would thus be helpful to consider the number of
unsaturated points the adversary can place a request at during phase i, as well
as how many of these are inactive. To this end we state the following observation
followed by a claim regarding the number of unsaturated points, as well as the
number of inactive unsaturated points at the end of phase i. (Note that Claim 3
is the same claim as we made in Section 2.6, which requires a new proof due to
the change in behaviour of the adversary).

Observation 8. At the end of every phase i (after ALG has matched), there
exist n− i+ 1 unsaturated points.

Claim 3. At the end of every phase i (after ALG has matched), there exist
i+ 1 inactive points and at least two of these points are unsaturated.

Proof of Claim 3. We prove the claim by induction on the number of phases i.
The base case is when i = 1. At the start of phase 1, every point in the

metric space receives a single request. At the end of phase 1, ALG is forced to
match 2 arbitrary requests at different points in the metric space. Therefore,
at the end of phase 1, there will be 2 points in the metric space that are both
inactive and unsaturated.

Assume the claim holds for all phases i = 1 up to i = k. Thus, at the start
of phase k + 1, we have k + 1 points in the metric space that are inactive and
at least two of these requests are unsaturated. The adversary can now place a
new requests at any of the unsaturated points (both active and inactive).

If it places it on an active unsaturated point, ALG is able to match the two
active requests at the same point and incur no distance cost. However, the point
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will then become inactive (while it was previously active) and thus add 1 to the
count of inactive points. This results in k + 2 inactive points. Furthermore,
since the adversary did not place a request at any of the inactive unsaturated
points, we still have at least 2 inactive unsaturated points. We conclude that
by the end of phase k+1 we have k+2 inactive points and at least two of them
must be unsaturated.

On the other hand, if the adversary manages to place the request on an
inactive unsaturated point, this leaves k points inactive (one of which is still
unsaturated). At the end of phase k+ 1, ALG will be forced to match requests
across two distinct points in the metric space again, adding another 2 points to
the set of inactive points. By the end of phase k + 1, there are thus a total of
k + 2 inactive points and at least one of them is unsaturated. It now remains
to prove at least two of the inactive points must be unsaturated. Assume for
the sake of contradiction that this is not the case. Then all remaining k + 1
inactive points must be saturated. Since the points are inactive and saturated
this means that ALG has matched at least 2 · (k+1) points in k+1 phases. In
every phase ALG matches exactly 2 points. By the end of phase k+1, ALG can
thus have matched at most 2 · (k + 1) requests. But the k + 1 saturated and 1
unsaturated points imply at least 2 ·(k+1)+1 requests must have been matched
by the end of this phase. This constitutes a contradiction. We conclude that
there are k + 2 inactive points by the end of iteration k + 1 and that at least 2
of them are unsaturated. By the principle of induction, Claim 3 holds.

The claim implies that at the end of phase i, there exist n−i+1 unsaturated
points which the adversary can place a new request at, and at least two of those
points are inactive. If the adversary manages to place a request at one of the
unsaturated inactive points, this will force ALG to match two distinct points
in the metric space and hence incur a distance cost. We define the random
variable bi to be the number of inactive points among the unsaturated points.
Conditioned on bi, the probability that ALG will need to match across in phase
i can be expressed as bi

n−i+1 . We now use this to lower bound the total expected
cost of ALG. Let Xi be the indicator variable that the algorithm pays a distance
cost of 1 to match requests at distinct points in phase i.
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E[cost(Alg)] =

n−1∑
i=1

E[Xi]

=

n−1∑
i=1

E[E[Xi|bi]]

≥
n−1∑
i=1

E[bi]

n− i+ 1

≥
n−1∑
i=1

2

n− i+ 1

= 2

n∑
k=2

1

k

= Ω(log n).

The second inequality follows from Claim 3, and the last from harmonic series.
Because the adversary only places at most 2 requests at each of the points

and places 2n − 2 requests in total for all inputs in the distribution, this will
result in n − 2 points that receive exactly 2 requests and 2 points that receive
exactly 1 requests. The optimal offline solution is to match the single requests
at the two points that received a single request, and to match all other requests
locally at the same point. The expected cost of the optimal solution over the
distribution of inputs is thus:

E[cost(OPT )] = 1.

From this we conclude the correctness of Theorem 7.
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Chapter 3

Online Matching with
Concave Delay

Allowing an algorithm to delay decisions is an idea that has been applied to
many online problems. For most problems, competitive algorithms have been
designed who’s competitiveness is independent of the type of delay function con-
sidered. For these problems, the delay function is only required to be continu-
ous monotone non-decreasing. In the case of MPMD, however, existing work is
highly tailored to the specific properties of particular delay functions. Previous
work has focused heavily on uniform linear delay (e.g. [1,3,6,12,13,20,21]), and
briefly on convex delay [28], and concave delay in the randomised setting [8].
For each type of delay function, the algorithms are tailored, not only to the
uniformity of the delay, but also the particular properties of the delay function
(linear, convex or concave). This raises the question of whether it is possible to
design deterministic competitive algorithms for MPMD that can produce a solu-
tion for larger classes of delay functions. In this chapter we aim to demonstrate
that the framework underlying some existing techniques, applied by Bienkowski
et al. [12], can be modified to design deterministic competitive algorithms for
MPMD with concave delays. Furthermore, our techniques work for any delay
function that can extend a metric space into a time-augmented metric space
(see Section 3.2 for details on a time-augmented metric space).

3.1 Our Results and Contributions
In this chapter we use the (offline) moat-growing framework (generally used
for constrained connectivity problems) by Goemans and Williamson [23], to
design an online deterministic linear programming-based algorithm for MPMD
with uniform concave delay. Our algorithm is a modification of an existing
linear programming-based algorithm due to Bienkowski et al. [12], who give
a deterministic competitive algorithm for MPMD with uniform linear delay.
Their algorithm heavily relies on the fact that, when the delay function is linear,
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requests accumulate delay cost at the same rate at all times, regardless of their
arrival time. The main challenge in applying the framework to concave delay
is that, unlike in the case of linear delay, the requests can accumulate delay at
different rates at any point in time, depending on their arrival time.

The main result of this chapter is the first deterministic algorithm for MPMD
with concave delay. The algorithm is linear competitive in the number of re-
quests m.

Theorem 1. There exists an O(m)-competitive deterministic algorithm for
MPMD with concave delay.

The correctness and competitiveness of our algorithm only relies on the fact
that the time-augmented space satisfies the properties of a metric space. Similar
to previous deterministic solutions for uniform linear delay, our algorithm does
not need the metric space to be finite, and does not need to know it in advance.

3.2 Notations and Preliminaries
In this section we introduce basic notation that will be used throughout the
chapter. We then explain the (offline) moat-growing framework, introduced
by Goemans and Williamson [23], and address how this framework can be
moved to the online setting with delay. We also explain the concept of a time-
augmented metric space, and extend it by introducing the concept of a concave
time-augmented metric space.

Recall that we define MPMD on a metric space (V, d) where V is a set of n
points. A sequence R of m requests arrive over time in the metric space. We
assume without loss of generality that the requests arrive at unique points in
the metric space. In this chapter, we partially follow the notation of Bienkowski
et al. [12]. Let Rt be the set of requests that have arrived in the metric space
up to time t, and S ⊆ Rt be a subset of these requests. Let sur(S) denote the
surplus of S, which is equal to 1 if the cardinality of the set S is odd, and 0
otherwise. Furthermore, let δ(S) = {(u, v) : u ∈ S, v /∈ S} be the cut of S. For
each request u, we denote its position in the metric space as pos(u), and its
arrival time as atime(u). Let E =

(
R
2

)
be the set of all possible undirected pairs

u, v ∈ R. Each pair u, v ∈ R is represented by an edge e = (u, v), e ∈ E.

3.2.1 The Moat-Growing Framework
For the benefit of the reader, we give a short high-level overview of the moat-
growing framework, by Goemans and Williamson [23], upon which we base our
algorithm and analysis. We explain the framework as applied to the offline
minimum cost perfect matching problem in [23]. Define the metric min-cost
perfect matching problem on a graph G = (R,E) whose edge costs, defined
by c : E → Q+, satisfy triangle inequality. Define a function f : 2R → {0, 1},
where f(S) = 1 if the cardinality of the set is odd, and 0 otherwise. The problem
is first formulated as an integer program (IP), where the objective function
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is a minimisation function of the total cost associated with the chosen edges.
A constraint, representing a connectivity requirement, is associated with each
subset of vertices. The IP is as follows:

minimize:
∑
e∈E

ce · xe

subject to:
∑

e∈δ(S)

xe ≥ f(S), ∀∅ ≠ S ⊂ R

xe ∈ {0, 1}, ∀e ∈ E

Relaxing the IP into a linear program (LP) gives us a lower bound on the cost of
the optimal solution to the IP. By weak duality, any dual solution lower bounds
the primal solution, and hence, the optimal primal IP solution. The dual of the
LP is as follows:

maximise:
∑
S⊆R

yS · f(S)

subject to:
∑

S:e∈δ(S)

yS ≤ ce, ∀e ∈ E

yS ≥ 0, ∀∅ ≠ S ⊂ R

The algorithm maintains a family of active sets, corresponding to primal con-
straints not yet satisfied. For the sake of the analysis, the algorithm maintains
a feasible dual solution while constructing a primal solution to the IP. It does
so by continuously increasing the dual variables associated with the active sets
until at least one of the constraints is tight. A constraints is said to be tight
if it holds with equality. A dual variable associated with a set of requests S
can be visualised as a moat surrounding the set in the metric space. As we
increase the dual variables, the moat surrounding the set grows. When a dual
constraint becomes tight it can be visualised as the boundary of two moats
around the sets S1 and S2 touching and, consequently, the accumulation of all
moats around the sets containing the two endpoints will have covered the edge
(this process is visualised in Figure 3.1). When this happens, the algorithm
adds the corresponding edge to the primal IP solution, deactivates the two sets,
and, if f(S1∪S2) = 1, activates the set that is the union of the previous two sets
S3 = S1 ∪ S2. By deactivating the previous two sets, the algorithm avoids vio-
lating any dual constraints. The primal-dual part of the algorithm terminates
when all primal constraints have been satisfied, resulting in a feasible primal IP
solution.
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Figure 3.1: A visualisation of a tight constraint event.

The IP solution is now a forest, where every connected component consists of
an even number of requests and the degree of every vertex inside each component
is odd. For each connected component, the algorithm then performs a Eulerian
Tour of the component and skips each vertex that has already been visited. The
resulting cycle is at most twice the cost of the original component. As the cycle
is now the union of two perfect matchings of the requests inside the component,
the algorithm chooses the one with the smallest cost. The resulting matching
will have cost at most half the cost of the Eulerian tour, which has cost at most
twice that of the component, whose cost is paid for by the dual solution.

Upon termination of the algorithm, since any feasible dual solution can be
seen as a lower bound to the cost of an optimal primal LP solution, and the
primal LP solution is a lower bound to the optimal IP solution, one can bound
the competitive ratio of the algorithm by relating the resulting IP solution to
the value of the dual solution produced.

Introducing Delay to the Framework When introducing uniform linear
delay to the problem, the progression of time becomes important and the frame-
work requires a way to account for the accumulation of delay cost. To this end,
one can define an instance where the cost of an edge is the sum of the distance
between the requests in the original graph plus the delay cost the first request
would incur from the time it arrives until the second request arrives. This only
works because an optimal offline solution will always match a pair of requests
upon the arrival of the second request. By defining the instance in this way, the
underlying metric space incorporates both the distance cost in the original met-
ric space as well as the delay cost incurred by a matched pair of requests. The
approach can be interpreted as moving the problem to a time-augmented metric
space. This idea is used implicitly, not only by Bienkowski et al. [12], but also in
all other deterministic competitive algorithms for MPMD with uniform linear
delay, such as [6] (who explicitly use a time-augmented metric space) and [13].

Definition 1 (Time-augmented metric space). Given a metric space D =
(W, d) we define the time-augmented metric space as DT = (W × R, dtime)
where dtime is a distance function defined as

dtime(u, v) = d(pos(u),pos(v)) + | atime(u)− atime(v)|.
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Where u, v ∈W ×R. In other words, a time-augmented metric space is a metric
that is the Cartesian product of a metric space D and the time axis, such that
the distance between two points in the original metric space is defined as the
difference in position in the original metric space, in addition to the difference
in arrival times.

One can easily verify that a time-augmented metric space, by the above
definition, is indeed a valid metric space that satisfies triangle inequality.

Moving the Framework to the Online Setting Finally, to move this
framework to the online setting, more challenges need to be overcome.

Firstly, in the online setting, decisions cannot be revoked and hence, the
final pruning of the connected component into a valid matching is no longer a
possibility. In response to this issue, Bienkowski et al. [12] only mark the edges
corresponding to a tight constraint and, in the event of a tight constraint, adds
to the IP solution an edge between free requests in the connected component of
marked edges. the marked paths in the tree are then used to upper bound the
distance cost (in the time-augmented metric space) of the match between the
two endpoints in the tree

Secondly, due to the online nature of the algorithm, one cannot assume two
requests are matched upon the arrival of the second and hence, more delay
cost can be incurred. This additional delay cost is not accounted for by the
time-augmented metric space. By growing the moats at the rate of delay accu-
mulation, Bienkowski et al [12] manage to use the value of the dual to bound
the additional delay cost incurred as well.

Introducing Concave Delay to the Framework As we consider the prob-
lem with a concave delay cost function nevertheless, we need to introduce the
concept of a concave time-augmented metric space.

Definition 2 (Concave Time-Augmented Metric Space). Given a metric space
D = (W, d) we define the concave time-augmented metric space as DCT =
(W × R, dctime) where dctime : 2R → R+ is a distance function defined as

dctime(u, v) = d(pos(u),pos(v)) + f(| atime(u)− atime(v)|).

Where u, v ∈W ×R and f defines a concave monotone non-decreasing function.
In other words, a concave time-augmented metric space is a metric that is
the Cartesian product of a metric space D and a the time axis, such that the
distance between two points is defined as the difference in position in addition
to a concave function of the difference in arrival time of the points.

It remains to prove that the resulting space is a valid metric space. To this
end we show that the new distance function satisfies triangle inequality.

Claim 4. For all u, v, w ∈ R, dctime(u, v) ≤ dctime(u,w)+dctime(w, v). In other
words, the function dctime satisfies triangle inequality.
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Proof. Let f be the concave function associated with dctime . From the subaddi-
tivity of a concave function, we deduce that f satisfies that for all u, v, w ∈ R,

f(| atime(u)− atime(v)|) ≤ f(| atime(u)− atime(w)|) + f(| atime(w)− atime(v)|).
(3.1)

Since D is a valid metric space, it follows that d satisfies triangle inequality.
Therefore, we have

d(pos(u),pos(v)) ≤ d(pos(u),pos(w)) + d(pos(w),pos(v)). (3.2)

From equations (3.1) and (3.2) we conclude that

dctime(u, v) ≤ dctime(u,w) + dctime(w, v).

Solving the offline MPMD with concave delays problem in the metric space
D is equivalent to solving the offline min-cost perfect matching problem without
delay in DCT . This equivalence holds due to the fact that an optimal offline
solution will always match a pair of requests upon the arrival of the second
request. This, however, does not hold for the online version of the problem,
where an additional delay cost may be incurred after the arrival of the second
request.

3.2.2 An Existing Primal-Dual Algorithm for MPMD with
Linear Delays

Bienkowski et al. [12] use the moat-growing framework above to design a linear
competitive primal-dual algorithm for the problem with linear delay. For the
benefit of the reader, we give a brief outline of their algorithm below.

The algorithm maintains a family of active sets such that, at any time, a
request belongs to a single active set. They define a set to be growing if it
is both active and contains an odd number of requests. When a set is both
active and growing, the corresponding dual variable grows at the rate of delay
accumulation of the requests inside the set. Visually, this can be interpreted as
growing moats around the requests in a time-augmented metric space. Because
the delay functions are uniform linear, all requests accumulate delay at the same
rate at all times, regardless of their arrival time. When a constraint becomes
tight, the event can be visualised as the boundary of two moats around the sets
S1 and S2 touching and, consequently, the accumulation of all moats around
the sets containing the two endpoints will have covered the edge. When this
happens, the algorithm marks the edge and performs a maximum cardinality
matching between the unmatched requests in the active sets containing the
endpoints.

Both the proof of correctness and the analysis of [12] heavily relies on the
fact that all requests accumulate delay at the same rate at all times.
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3.3 An Algorithm for MPMD with Concave De-
lay

In this section we briefly address the challenges involved with using the moat-
growing framework to design competitive online algorithms for the problem
with concave delays. We then in introduce the integer and linear programs
used, and formally describe our algorithm. To prove Theorem 1 we give a proof
of correctness and competitive analysis of the algorithm.

Challenges in Moving from Linear to Concave Delay: In Bienkowski
et al.’s approach to the problem with uniform linear delay [12], the rate of delay
cost accumulation at any time is the same for all request (due to the properties
of uniform linear delay). Consequently, the rate of growth of the dual variable
associated with any set of requests is well-defined. However, when the uniform
delay functions are concave, at any time, requests can accumulate delay cost at
different rates (depending on their arrival times). The rate of growth of the dual
variable of a set of requests is thus no longer well-defined. The main challenge is
to grow the dual variables at a rate such that the dual solution remains feasible,
while ensuring one can bound the competitive ratio of the algorithm in terms
of the value of the dual solution produced.

Incorrect Approach 1: An initial approach may be to focus on ensuring
we can bound the additional online delay cost incurred by the requests inside
the set. To this end, one may be tempted to grow the dual variables at the
highest rate of delay accumulation incurred by the requests inside the set. One
can increase the dual variables continuously and freeze the dual variables when
a constraint, associated with existing edges (i.e. between requests that have
already arrived) becomes tight, maintaining the feasibility of dual constraints
associated with existing edges. However, constraints associated with new edges
(i.e. edges between an existing request and a request that just arrived) are no
longer guaranteed to be satisfied upon the arrival of a new request. We give an
example of such a scenario in Figure 3.2.
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Figure 3.2: A visualisation of the violation of the dual in Approach 1.

In the figure above, we assume atime(u) < atime(x) < atime(w). Let
S1 = {u}, S2 = {x}, S3 = {w}, and S4 = {u, x, w}. Since w arrived most re-
cently, it accumulates delay at the highest rate. At time t1, when the boundary
of the moat surrounding the singleton {w} touches that of the moat surround-
ing {u, x}, the moat surrounding {u, x, w} will grow at the rate at which w
accumulates delay. As visualised in the card corresponding to time t2, the dual
variable associated with S4 now grows at a rate that is faster than the requests
u and x would accumulate delay if they had remained unmatched. When a new
request v arrives at time t3 in the time-augmented metric space, at the same
position as that of u in the original metric space, the distance between the two
requests in the time-augmented metric space is just f(t3 − atime(u)), where f
is the concave delay function associated with the instance. However, because
the growth of the dual variable yS4

is determined by a request that accumulates
delay faster than this, the dual constraint associated with the edge (u, v) will
be violated (as visualised in the card corresponding to time t3).

Incorrect Approach 2: An alternative approach, focusing on maintain-
ing a feasible dual solution, would be to grow the dual variable associated with
the active set containing u at the rate of accumulation of delay the oldest
(matched or unmatched) request would incur if still unmatched. The issue
with this approach is that, if this request has been matched, its corresponding
active set may be non-growing for long periods of time. Hence, even after its
active set becomes growing again, the dual variables associated with the sets
it is in may be much smaller than the delay it would have incurred if it had
remained unmatched. Since the dual now only lower bounds the delay incurred,
the integral solution produced is left unbounded. An example of such a scenario
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is visualised in Figure 3.3.

Figure 3.3: A visualisation of Approach 2, resulting in an unbounded IP solution.

In the figure above, we assume atime(u) < atime(x) < atime(w). Let
S1 = {u}, S2 = {x}, S3 = {w}, and S4 = {u, x, w}. Note that the active
set containing u and x remains non-growing until the constraint corresponding
to the edge (u,w) becomes tight. Since u was the first request to arrive, by
time t2, it would have accumulated delay at the slowest rate if left unmatched.
Therefore, the dual variable corresponding to the now active and growing set S4

will have grow at a rate slower than request w accumulates delay. Furthermore,
because the active set containing u and x at time t1 was not growing, one canot
bound the total delay incurred by w.

Our Solution: In order to maintain a feasible dual while ensuring we can
bound the cost of the solution in terms of the value of the dual solution pro-
duced, we grow the dual variable associated with a set S each iteration by the
maximum possible amount such that, if a request v arrived at the same position
in the original metric space (i.e. pos(v) = pos(u)) for any u ∈ S, the dual
constraint associated with the new edge (u, v) would be instantly tight, but not
violated. This allows us to ensure no dual constraints are violated throughout
the execution of the algorithm. Furthermore, at all times, for at least one re-
quest in the set, the sum of dual values, associated with sets that contain the
request, is equal to the total delay this request would have incurred if left un-
matched (i.e. at least one of the equations in Figure 3.3 at time t3 must hold
with equality). In the analysis of our algorithm, we show that the additional
online delay cost incurred by any request inside the set can therefore be upper
bounded by the total growth of the dual variables.
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3.3.1 Primal-Dual Formulation
We adapt the IP, LP and DP from the moat-growing framework to the MPMD
with concave delay setting below. We abuse notation and use R to denote both
the set of requests in the original metric space and the corresponding points
in the concave time-augmented metric space. We also use u to denote both
the request and the corresponding point in the concave time-augmented metric
space. Similar to Bienkowski et al., let the function f be the surplus of a set
S of requests. Recall that the surplus of a set of requests is equal to 1 if the
cardinality of the set S is odd, and 0 otherwise1. Furthermore, we define the
cost function c associated with an edge (u, v) to be the distance between its
two endpoints in the concave time-augmented metric space (i.e. dctime(u, v)).
Similar to Bienkowski et al. we denote this cost as optcost((u, v)).

Integer program (IP):

minimize:
∑
j=1

optcost(e) · xe

subject to:
∑

e∈δ(S)

xe ≥ sur(S), ∀S ⊆ R

xe ∈ {0, 1}, ∀e ∈ E

Linear program (LP):

minimize:
∑
j=1

optcost(e) · xe

subject to:
∑

e∈δ(S)

xe ≥ sur(S), ∀S ⊆ R

xe ≥ 0, ∀e ∈ E

Dual program (DP):

maximise:
∑
S⊆R

yS · sur(S)

subject to:
∑

S:e∈δ(S)

yS ≤ optcost(e), ∀e ∈ E

yS ≥ 0, ∀S ⊆ R

3.3.2 Description of Algorithm
The high-level idea behind our algorithm is to apply the primal-dual algorithm
from the moat-growing framework in a concave time-augmented metric space.

1Note that sur(S) = 1 indicates that at least 1 edge must leave the set in order to have a
perfect matching of all requests.
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Similar to Bienkowski et al. [12], at any time t, the algorithm partitions the
requests that have arrived into active sets by maintaining a mapping A : R→ 2R

such that, at any time, a request u ∈ R belongs to a single active set. If the
surplus of the active set is strictly positive we say the active set is growing, else,
it is non-growing2. For any active growing set S, during each iteration, our
algorithm increases its corresponding dual variable by the maximum amount
such that, for any request u ∈ S, if a new request v arrives at pos(v) = pos(u)
in the original metric space, no dual constraints would be violated.

Let S be an active growing set. During iteration i, we calculate the amount
of growth of a set as follows. For each request u, the minimum distance between
itself and any other point will be the distance to a new request v that arrives
at the same position in the original metric space. In this case, optcost(u, v) =
f(| atime(v) − atime(u)|). Therefore, the sum of all dual variables associated
with sets that contain u must be less than this to maintain the feasibility of the
constraint associated with the edge. We refer to this value as reqGrowth(u).
The value is calculated as follows for any given time t:

reqGrowth(u) = f(|t− atime(u)|)−
∑

S′:u∈S′

yS′

Algorithm 4: Primal-Dual Algorithm for Concave MPMD
Request arrival event:
if a new request u arrives then

A(u) = {u}
end
Tight constraint event:
while there exists a tight dual constraint for (u, v) s.t. A(u) ̸= A(v) do

mark (u, v)
S = A(u) ∪A(v)
for all w ∈ S do

A(w) = S
end
Perform a maximum cardinality matching between unmatched
requests in S.

end
None of the above events occur:
for all active growing sets S do

increase yS by min
x∈S
{reqGrowth(x)}

end

We denote the time at which the algorithm terminates as T . Let yTS be the
value of the dual variable corresponding to the set S upon termination of the
algorithm.

2This notation is not the standard notation in the moat growing framework but rather
builds on the notation introduced in Bienkowski et al. [12]
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Observe that, during each iteration i, (corresponding to the ith timestep),
for any S ⊆ R and u ∈ S, the sum of all dual variables corresponding to sets that
contain u, is at most the total delay incurred by the request if it had remained
unmatched.

Observation 2. For any timestep i and S ⊆ R, for any u ∈ S,
∑

S′:u∈S′ yS′ ≤
f(i− atime(u))

Furthermore, for at least one request x, the sum of the values of the dual
variables of all sets that contain it is equal to the total delay cost it would have
incurred so far if left unmatched.

Observation 3. For any timestep i and S ⊆ R, there exists x ∈ S such that
f(i− atime(x)) =

∑
S:x∈S yS .

Finally, observe that a dual variable will only be non-zero if the set has an
odd number of requests.

Observation 4. Upon termination of the algorithm, for any S ⊆ R, yTS > 0 if
sur(S) ≥ 1.

3.3.3 Correctness
Let ytS denote the value of the dual variable yS at time t. In order to relate the
cost of the matching produced by the algorithm to the value of the dual solution
produced, the dual needs to be feasible. Furthermore, to prove the correctness
of the algorithm, we need to show that, upon termination, it produces a perfect
matching of the requests. We start by proving the dual solution maintained by
the algorithm is feasible.

Lemma 1. At any time i, the values yiS constitute a feasible solution to the
dual.

Proof. We show that no dual constraint is violated throughout the execution
of the algorithm. When the algorithm starts, all dual variables are initialised
to 0, which satisfies all constraints. A dual variable is only increased if the
corresponding set of requests is both active and growing. By definition, it
can only be active and growing if, for all edges that cross the cut of S, the
corresponding dual constraint is not yet tight. When a constraint becomes
tight, the set is deactivated and the edge that corresponds to the tight constraint
becomes an internal edge in the new active set. Since its two endpoints from
now on belong to the same active set, its corresponding dual constraint can no
longer increase.

The only remaining case to consider is when a new request arrives. Upon
arrival of a new request u, all new dual variables associated with sets that contain
u are initialised to 0. For each existing constraint, corresponding to edges not
incident to u, new dual variables may be added to the set. However, since these
variables are initialised with the value 0, they do not contribute towards the
sum, preserving the feasibility of the constraint. For all new edges (edges whose
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endpoint is u), we show the new constraint is feasible, i.e.,
∑

S:(u,v)∈δ(s) y
t
S ≤

optcost
(
(u, v)

)
.∑

S:(u,v)∈δ(S)

ytS =
∑

S:v∈S∧u/∈S

ytS +
∑

S:v/∈S∧u∈S

ytS

=
∑

S:v∈S∧u/∈S

ytS

≤
∑

S:v∈S

ytS

≤ f(t− atime(v)) (by Observation 2)
= f(atime(u)− atime(v))

≤ optcost
(
(u, v)

)
.

Finally, to establish that, upon terminating, the algorithm returns a perfect
matching of all requests, we use the following lemma, which follows standard
arguments in moat-growing algorithms.

Lemma 2. For MPMD with concave delays, the algorithm returns a perfect
matching of all requests.

Proof. Let f be a continuous, monotone non-decreasing, concave function. For
the sake of contradiction, suppose, upon termination of the algorithm, u remains
unmatched. u must at all times belong to some active set A(u). Since u is
unmatched A(u) remains both active and growing. It follows that the dual
variable yA(u) will continue to increase indefinitely. All dual variables have
a positive coefficient in the dual objective function. By Lemma 1, the dual
solution maintained by the algorithm is feasible. It follows the dual must be
unbounded and no bounded feasible primal solution exists. Since all distances in
the metric space are finite, there exists a finite solution to the primal program.
This constitutes a contradiction.

3.3.4 Cost Analysis
Having proven that the algorithm produces a valid matching M and maintains
a feasible dual solution, we now prove Theorem 1 by bounding the cost of the
matching produced by ALG in terms of the value of the dual solution it produces
along the way.

We start by defining the cost of M , which consists of the distance between
matched requests in the original metric space, plus the delay cost incurred by
each request. We denote the cost of M as cost(M), and the cost of a single edge
(u, v) ∈M as cost((u, v)). Let t(u,v) be the time at which u and v are matched.
Without loss of generality, we assume atime(v) ≥ atime(u). For all (u, v) in M
we define the cost of a match as follows.

cost((u, v)) = d(u, v) + f(t(u,v) − atime(u)) + f(t(u,v) − atime(v)).
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In order to bound the cost of a match in terms of the value of the dual solution,
we first express the cost in terms of the distance between the two requests
in the concave time-augmented metric space. We do this by first adding and
subtracting f(atime(v)− atime(u)), and then rearranging the terms.

cost((u, v)) =
(
d(u, v) + f(atime(v)− atime(u))

)
+
(
f(t(u,v) − atime(u))− f(atime(v)− atime(u))

)
+ f(t(u,v) − atime(v))

= dctime(u, v)− f(atime(v)− atime(u)) + 2
(
f(t(u,v) − atime(u)).

Using the subadditive property of a concave function, we note that f(|t(u,v) −
atime(u)|)− f(| atime(v)− atime(u)|) ≤ f(|t(u,v)− atime(v)|). Hence, we upper
bound the cost as follows:

cost((u, v)) ≤ dctime(u, v) + 2 · f(t(u,v) − atime(v))

≤ optcost
(
(u, v)

)
+ 2 · f(t(u,v) − atime(v)).

To analyse the cost of the matching we will, for all (u, v) ∈ M , bound both
optcost

(
(u, v)

)
and f(t(u,v)−atime(v)) in terms of the value of the dual solution.

We start by bounding optcost
(
(u, v)

)
in terms of the cost of the marked edges,

corresponding to tight dual constraints. We prove that, for any edge (u, v) ∈M ,
there exists a path P of marked edges between u and v.

We start by proving the following lemmas, which address the state of the
marked edges throughout the execution of the algorithm (note that these lemmas
follow standard arguments for moat-growing algorithms).

Lemma 3. At any point in time, there exist no marked edges that cross the
cut of an active set.

Proof. When the algorithm commences, all active sets are singletons and are
trivially spanned by the an empty set of marked edges. An edge (u, v) is only
ever marked in the event of a tight constraint. In the event of a tight constraint,
the two active sets A(u) and A(v) containing u and v merge, deactivating A(u)
and A(v), and activating the set of their union. Since u and v from this point
on belong to the same active set, the marked edge will never cross the cut of an
active set.

An edge (u, v) can only be added to M in the event of a tight constraint
where two active sets merge. Hence, to prove there exists a path of marked
edges between u and v we need to argue that there exists a unique path of
marked edges between any two requests inside an active set.

Lemma 4. During any iteration i of the algorithm, the subset of marked edges
that are entirely contained in an active set S form a spanning tree of all the
requests in S.
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Proof. We show the property holds by induction on the number of iterations of
the algorithm. During the first iteration, the empty set forms a valid spanning
tree of the active sets that are singletons. We assume the property holds for
all sets up to some iteration k during the execution of our algorithm. If, at
time k + 1, a tight constraint event occurs, corresponding to some edge (u, v),
the active sets A(u) and A(v) merge. By our inductive hypothesis, the marked
edges entirely contained inside A(u) and A(v) form spanning trees of the requests
inside each respective set. From Lemma 3 we know that there are no marked
edges that cross between the two sets. Therefore, the union of the spanning
trees in A(u) and A(v), along with the marked edge that corresponds to the
tight dual constraint, form a valid spanning tree of the new active set.

We are now ready to argue that, for any (u, v) ∈ M , there exists a path P
of marked edges between them.

Lemma 5. For any (u, v) ∈M , upon termination of the algorithm, there exists
a path P of marked edges between them.

Proof. By construction of the algorithm, if (u, v) ∈M , upon termination of the
algorithm, A(u) = A(v). By Lemma 4 there must exist a path of marked edges
between u and v (which is entirely contained inside A(u)).

Next, we bound the cost of P in terms of the value of the dual solution.
We first note that the dual constraint corresponding to any marked edge must
be tight. Hence, for all marked edges e, optcost(e) =

∑
S:e∈δ(S). In order to

express this in terms of the value of the dual solution, we need to be able to
upper bound the number of times the path P crosses the cut of any set S. For
this purpose, we use the following lemma.

Lemma 6. For any path of marked edges P and active set S ⊆ R, |δ(S)∩P | ≤ 2.

Proof. For the sake of contradiction, assume there exists a path P that crosses
the boundary of a set S more than twice. Let us denote the endpoints of the path
as u and v, We direct the path from u to v3. Since the path crosses the boundary
of S more than twice, there must exists at least one edge (w1, w2) ∈ P such that
w1 ∈ S and w2 /∈ S, and at least one edge (w3, w4) ∈ P such that w3 /∈ S and
w4 ∈ S. By Lemma 4, there must exist a path of marked edges between w1 and
w4 that is entirely contained inside S. This indicates the existence of a cycle of
marked edges. However, from Lemmas 3 and 4 we can deduce that the set of
marked edges constitutes a forest. This is a contradiction.

We are now ready to bound optcost
(
(u, v)

)
for any (u, v) ∈ M in terms of

the value of the dual solution. We do this using the following lemma. We denote
the value of the dual variables upon termination of the algorithm as yTS .

Lemma 7. Upon termination of the algorithm, for any u, v ∈ R, connected by
a path of marked edges P , optcost

(
(u, v)

)
≤ 2 ·

∑
S⊆R yTS · sur(S).

3Note that u may be in S.
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Proof. By triangle inequality, we can upper bound optcost
(
(u, v)

)
by cost of

the edges on the path P between u and v.

optcost
(
(u, v)

)
≤

∑
e∈P

optcost(e)

=
∑
e∈P

∑
S:e∈δ(S)

yTS

=
∑
S

|δ(S) ∩ P | · yTS

≤
∑
S

|δ(S) ∩ P | · yTS · sur(S) (By Observation 4.)

≤ 2 ·
∑
S

·yTS · sur(S) (By Lemma 6.).

The first equality follows from the fact that marked edges correspond to tight
dual constraints.

We have bounded optcost
(
(u, v)

)
in terms of the value of the dual solution.

It remains to bound f(t(u,v)−atime(v)). To this end, we introduce the following
Lemma. We assume without loss of generality that atime(v) ≥ atime(u).

Lemma 8. Let (u, v) ∈ M and let t(u,v) be the time at which u and v are
matched. f(t(u,v) − atime(v)) ≤

∑
S⊆R yTS · sur(S).

Proof. From Observation 3 we know that A(v) contains at least one request x,
for which it holds that, at time t(u,v),

∑
S:x∈S yS = f(t(u,v) − atime(x)). Since

f is a concave function,

f(|t(u,v) − atime(v)|) ≤ f(| atime(v)− atime(x)|) + f(|t(u,v) − atime(x))|).

Since v, x ∈ A(v), we know there exists a path of marked edges, which corre-
spond to tight dual constraints, between v and x. Therefore, by Lemma 7, we
can upper bound optcost((v, x)) by 2 ·

∑
S⊆V yTS · sur(S). We use this to upper

bound f(| atime(v)− atime(x)|) as follows:

f(| atime(v)− atime(x)|) ≤ f(| atime(v)− atime(x)|) + d(pos(v),pos(x))

= optcost((v, x))

≤ 2 ·
∑
S⊆V

yTS · sur(S)

Recall that x is the request for which it holds that, at any time t,
∑

S:x∈S ytS =
f(t − atime(x)). By observation 4 we know that

∑
S⊆V ytS · sur(S) ≥ f(t −

atime(x)). It follows that

f(t(u,v) − atime(v)) ≤ 2 ·
∑
S⊆V

y
t(u,v)

S · sur(S) + ·
∑
S⊆V

y
t(u,v)

S · sur(S)

= 3 ·
∑
S⊆V

y
t(u,v)

S · sur(S)
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Recall that Dvalue is the value of the dual solution, and let OPT be the cost
of the optimal IP solution. From Lemmas 7 and 8 we can now deduce

cost(M) ≤ 8 ·
∑

(u,v)∈M

∑
S⊆V

yTS · sur(S)

= 8 ·
∑

(u,v)∈M

Dvalue

≤ 8 ·
∑

(u,v)∈M

OPT

= 8m ·OPT

, which completes the proof of Theorem 1.
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Chapter 4

Conclusion

In this thesis we introduced the study of online problems with set delay, which
provides both a generalisation of existing online problems with delay, and an
alternative view on the accumulation of delay costs incurred by an online al-
gorithm. We applied this generalisation, in particular, to the min-cost perfect
matching with delays problem, which seems more affected by the type of delay
accumulated than other problems. Emphasizing the dependence on the type of
delay function, as well as knowledge of future delay of previous work, we showed
that in the most general setting, no algorithm is competitive in the number of
points in the metric space, nor the size of the request sequence. In our search to
identify the most general setting for which there exist competitive algorithms,
we introduced a new class of delay functions called size-based delay functions.
For this class of set delay functions, we design both competitive randomised and
deterministic algorithms that are competitive in m, and provide lower bounds.
We also showed that some existing techniques can be generalised to design com-
petitive algorithms for larger classes of delay functions. We do this by using the
moat growing framework, introduced by by Goemans and Williamson [23] for
constrained connectivity problems, to design a competitive online deterministic
algorithm for MPMD with concave delays.

We conclude this thesis with some open questions for future work.

Open Question 1: Can we improve the competitive ratio for online scheduling
algorithms on MTS instances that are reduced from MPMD-Set with size-based
delay?

It may be possible to make better use of the properties of a size-based delay
function. Since the delay only depends on the size of the set of requests, it may
be possible to reduce the set of states to be just the set of even-sized subsets of
requests, i.e. two sets that previously contained the same requests but matched
differently now become the same set.

An alternative approach to the question may be to make use of the structure
of the original online matching problem the instance is reduced from. This ap-
proach draws inspiration from the k-server problem, for which Koutsoupias and
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Papadimitriou [26] give a competitive analysis that results in a lower competi-
tive ratio than the competitive ratio of the Work Function Algorithm on general
MTS instances, by utilising the properties specific to the k-server problem.

Open Question 2: Can we design a reduction to MTS for MPMD-Set with
other classes of delay functions to design online competitive matching algo-
rithms?

The main challenge in solving this question is to translate a given MTS so-
lution back into a valid matching without significantly affecting the competitive
ratio. The challenge arises from the fact that an online scheduling algorithm is
allowed to move between states where matches are undone. An online matching
nevertheless, cannot undo a match.

Open Question 3: Is the offline MPMD-Size problem in P?
Understanding the structure of an optimal offline solution can contribute

significantly to the design of competitive online algorithms for a given problem.
Though much is known about the structure of an optimal offline MPMD solu-
tion, the properties associated with size-based delay make the structure of an
optimal offline MPMD-Size solution significantly more complex. For example, in
offline MPMD, if the delay cost function is continuous monotone non-decreasing,
matching two requests upon the arrival of the second request is always an op-
timal choice. This property allows us to make use of a time-augmented metric
space when designing online competitive deterministic algorithms. This, how-
ever, is not the case in the problem with size-based delay, as the delay cost is
a function of the size of the set of unmatched requests at a particular point in
time.
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