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Abstract

The ubiquitous deployment of IEEE 802.11 based Wireless Local Area Networks

(WLANs) or WiFi networks has resulted in dense deployments of Access Points

(APs) in an effort to provide wireless links with high data rates to users. This,

however, causes APs and users/stations to experience a higher interference level.

This is because of the limited spectrum in which WiFi networks operate, resulting

in multiple APs operating on the same channel. This in turn affects the signal-to-

noise-plus interference ratio (SINR) at APs and users, leading to low data rates that

limit their quality of service (QoS).

To improve QoS, interference management is critical. To this end, a key metric

of interest is spatial reuse. A high spatial reuse means multiple transmissions are

able to transmit concurrently, which leads to a high network capacity. One approach

to optimize spatial reuse is by tuning the clear channel access (CCA) threshold em-

ployed by the carrier sense multiple access with collision avoidance (CSMA/CA)

medium access control (MAC) protocol. Specifically, the CCA threshold of a node

determines whether it is allowed to transmit after sensing the channel. A node may

increase its CCA threshold, causing it to transmit even when there are other on-

going transmissions. Another parameter to be tuned is transmit power. This helps

a transmitting node lower its interference to neighboring cells, and thus allows nodes

in these neighboring cells to transmit as well. Apart from that, channel bonding can
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be applied to improve transmission rate. In particular, by combining/aggregating

multiple channels together, the resulting channel has a proportionally higher data

rate than the case without channel bonding. However, the issue of spatial reuse

remains the same whereby the focus is to maximize the number of concurrent trans-

missions across multiple channels.

Dynamic CCA threshold, transmit power control and channel bonding raise sev-

eral issues. First, although adjusting the CCA threshold of APs may improve spatial

reuse, it may also increase the amount of interference; i.e., this is because there are

more concurrent transmissions. Secondly, although transmit power control helps

reduce interference, it may also result in low received signal strength at receivers

and thereby, causes a low data rate or excessive interference that leads to a de-

coding failure. Lastly, an AP that uses a bonded channel may suffer/generate an

increasing level of interference from/to neighboring APs. Therefore, the use of CCA

threshold adjustment, transmit power control and channel bonding needs to be care-

fully considered in order to balance the trade-off between the gain in spatial reuse,

equivalently network capacity, and interference, which reduces data rates.

Henceforth, this thesis presents Reinforcement Learning (RL) based approaches

to address the said issues. It first studies how to determine the CCA threshold

of each device in densely deployed WiFi networks. This thesis presents a Markov

Decision Process (MDP) formulation. Then, it outlines a Deep Q-Network (DQN)

based approach that runs on each AP independently, where each AP adjusts the

CCA threshold of each associated device. The proposed approach relies only on

historical interference information at each device.

This thesis then presents an RL approach that jointly optimizes the CCA thresh-

old and transmit power of an AP with random traffic arrivals. It presents the

problem as a Semi-Markov Decision Process (Semi-MDP). Then, it shows how an

AP can be equipped with a Hierarchical Reinforcement Learning (HRL) based ap-

proach that adopts DQN. This approach then allows an AP to learn the optimal

CCA threshold and transmit power for different system states. Advantageously, the
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approach learns using only locally observed information, such as interference and

current queue length.

Lastly, this thesis outlines a novel approach to optimize the following quantities

jointly: CCA threshold, transmit power and bonded channels with random traffic

arrivals. Specifically, it considers bonding adjacent and non-adjacent channels. It

formulates a three-layer MDP to jointly optimize the said quantities. Further, it

outlines a three-tier learning approach that is run by an AP to determine a set

of transmission channels, transmit power allocation and CCA threshold on each

selected channel. The aim is to train an AP to adapt to interference and random

traffic arrivals in order to improve spatial reuse on multiple channels and also to

minimize its queue length.
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Chapter 1

Introduction

1.1 Background

IEEE 802.11 based Wireless Local Area Networks (WLANs), aka WiFi networks,

are one of the most popular and essential technologies that permeate almost every

aspect of people’s daily activities. Fig. 1.1 depicts an example WiFi network, where

an Access Point (AP) serves multiple users in a Basic Service Set (BSS) or a cell.

The AP is responsible for delivering/collecting data to/from its associated users. To

date, WiFi networks are widely deployed in places such as offices, shopping centers,

airports and hospitals to provide Internet connectivity to users [7]. As per Cisco’s

annual report [8], there will be more than 628 million public APs in operation by

2023. As a result, WiFi devices generate a significant amount of traffic, where it is

predicted that 51% of the global Internet traffic will traverse WiFi networks by 2022

[9]. This traffic is mainly attributed to the proliferation of emerging applications,

such as online streaming, video sharing, Virtual Reality (VR) and 4K resolution

videos [10, 11]. These new applications require a network that offers high capacity

that meets various Quality of Service (QoS) requirements.

To date, there are a number of approaches and revisions to the IEEE 802.11

standards, aiming to improve the capacity of WiFi networks; see [10, 12, 13]. These
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Figure 1.1: An example WiFi network.

revisions aim to increase bandwidth or data rates. To this end, IEEE 802.11ad

[14] supports the 60 GHz band and has a wide bandwidth of 2.16 GHz for each

channel. In addition, the IEEE has also standardized WiFi for use in spectrum

normally occupied by other communication systems. For example, IEEE 802.11af

[15] operates in the television white space spectrum, and IEEE 802.11ah [16] uses sub

1 GHz bands. Apart from expanding bandwidth resources, WiFi now also supports

channel bonding [17] and channel aggregation [18]. Both of these features allow

devices to combine multiple channels together in order to form a wide bandwidth

for transmissions. In particular, channel bonding aims to bond multiple adjacent

channels, and channel aggregation focuses on non-adjacent channels [17].

Different from improving transmission capacity, a number of works have recently

emphasized the need to improve the performance of densely deployed APs, e.g.,

[10, 12, 19–22]. One reason is that the proliferation of WiFi devices inevitably

creates dense WLANs or deployment scenarios [12]. The second reason is the need

to support high data rates. Reference [23] notes that the performance of WLANs

is limited by the number of users associated with an AP. Therefore, the authors of

[23] suggest that future wireless networks should focus on cells with a small number
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of users or densely deployed APs. This helps reduce the distance between users

and APs [24], which improves the Signal-to-Noise plus Interference Ratio (SINR) of

received signals and hence, leads to increased data rates. Apart from that, dense

deployment of APs also improves the coverage of wireless signals [24].

A key consideration in densely deployed WiFi networks is to improve spatial reuse

[19]. This is because increasing spatial reuse means multiple concurrent transmis-

sions can coexist together [25]. Hence, high spatial reuse improves network capacity

[26]. The level of spatial reuse is determined by the adopted Medium Access Control

(MAC) scheme. In particular, current WiFi standards use Distributed Coordination

Function (DCF) for channel access and interference management [27]. The oper-

ating principle of DCF is based on Carrier Sense Multiple Access with Collision

Avoidance (CSMA/CA). A device is required to sense the channel before initiating

any transmission. Specifically, only when the channel is sensed idle, a device is

allowed to transmit. In this respect, each device uses a Clear Channel Assessment

(CCA) threshold to determine when a channel is deemed idle. If the sensed energy

level of a channel exceeds a predefined CCA threshold, the channel is considered as

busy. Otherwise, the channel is idle. To date, the value of the CCA threshold is

conservative. For example, it is −82 dBm for a 20 MHz channel [27]. This threshold

value is suitable when cells do not overlap as it helps reduce the interference and

probability of collisions. However, in dense WiFi networks, this conservative CCA

threshold degrades network performance. In particular, as there are a high number

of overlapping cells operating on the same channel, a device will receive signals from

nearby cells, i.e., interference from neighboring cells. If the CCA threshold is set to

a low value, devices will always judge the channel to be busy and defer their trans-

missions. This problem is known as the exposed node problem [28], which reduces

the spatial reuse or network capacity of a wireless network.

Various methods can be used to address the exposed node problem. For exam-

ple, equipping senders with a directional antenna [29] helps focus transmitted signals

towards intended receiver(s), and thereby reducing the interference to other devices.
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Apart from that, this thesis emphasizes the use of CCA threshold adjustment and

transmit power control on improving spatial reuse [19]. Adjusting the CCA thresh-

old of devices or stations help increase transmission opportunities, especially when

they experience interference. Advantageously, with a higher CCA threshold, a trans-

mitter is more likely to transmit even though there may be ongoing transmissions

in neighboring cells. In this way, the number of concurrent transmissions can be

increased, which leads to an improvement in network throughput [30, 31]. In terms

of transmit power control, the primary goal is to avoid causing excessive interference

to neighbors. This is because a transmitter’s power level determines the interference

level to its neighbors [32]. Therefore, a transmitter with an effective transmit power

control strategy is able to minimize the interference generated to neighbor cells to

improve spatial reuse [21]. As an example, consider the scenario in Fig. 1.2. When

AP-2 is transmitting to User-2 with a power of 25 dBm, User-1 has to defer its

transmission if it uses a CCA threshold of −82 dBm. This is because the interfer-

ence or received power from AP-2 is −62 dBm. However, User-1 may transmit if

the Signal-to-Interference plus Noise (SINR) ratio at both AP-1 and User-2 exceeds

a given threshold. To allow for this, we can increase the CCA threshold of User-1

to −60 dBm or reduce the transmit power of AP-2 to 20 dBm. As a result, even if

AP-2 transmits, User-1 will conclude the channel is idle and initiate its transmission

to AP-1. This results in two concurrent transmissions; namely, User-1 to AP-1 and

AP-2 to User-2, which improves spatial reuse or network capacity.

Spatial reuse further improves network capacity when incorporated with channel

bonding [33]. This is because a higher spatial reuse means devices are more likely

for a device to access channels, which increases the probability to bond multiple

channels. Consider an example as shown in Fig. 1.3, where an AP serves four users.

The AP is able to bond up to three channels for transmissions, and all users and the

AP experience inter-cell interference on different channels. When the AP has packets

to User-1, assume it experiences high interference on Channel-2, and low interference

on Channel 1 and 3. In addition, consider User-1 experiences high interference on

4



AP-1 AP-2

User-1

User-2

-40 dBm
-62 dBm

Figure 1.2: An example of limited spatial reuse. The coverage of AP-1 and AP-2
overlaps each other. User-2 is associated with AP-2. User-1 is associated with AP-1.
When AP-2 transmits with a power of 25 dBm, the received power or interference
at User-1 is -62 dBm.

Channel-3, and low interference on Channel-1 and Channel-2. In this regard, the

AP can choose to bond Channel-1 and Channel-3, and increase the CCA threshold

on these channels to gain more opportunities to transmit. Moreover, the AP can

allocate a higher transmit power on Channel-3 than on Channel-1 if the Signal to

Interference plus Noise Ratio (SINR) on Channel-1 exceeds a given threshold. This

helps to ensure the SINR on both channels exceeds a given value, and reduce the

interference to neighboring cells. Consequently, the AP is able to transmit packets

to User-1 with a high data rate.

1.2 Problem space and Motivation

The use of CCA threshold adjustment, transmit power control and channel bonding

raises several problems. First, as noted above, an AP can increase its CCA threshold

to gain more transmission opportunities. However, doing so may cause excessive

interference to neighboring cells as the AP will aggressively use the channel. This
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Figure 1.3: An example WLAN where an AP serves four users. The AP is able to
bond up to three channels and use different transmit power on each channel. Both
AP and users experience interference from neighboring cells on each channel.

will degrade the capacity of neighboring cells.

Secondly, although transmit power control helps decrease interference, it may

result in low received signal strength at intended receiver(s). As a result, an AP is

forced to use a robust Modulation Coding Scheme (MCS) that has a low data rate.

Third, although an AP using a bonded channel is able to transmit with a high

data rate, it may also suffer a significant amount of interference from neighboring

cells [34]. This is because the resulting wider bandwidth is more likely to overlap

with channels used by these cells. In addition, an AP using a wider channel leads to

a lower power density [35], which may result in low SINR at users. Further, devices

in neighboring cells may not hear its transmission on some channels and thereby

start to transmit [36]. This may cause severe interference to ongoing transmissions

or even collisions.

Lastly, there are a number of factors when optimizing CCA threshold, transmit

power and channel bonding in WiFi networks. First, the channel condition to each
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AP/user is random and time-varying. This means the channel gain for both trans-

mission and interference varies over time. Secondly, the transmissions and assigned

channels of devices in neighboring cells are also time-varying, which means the pres-

ence of interference on a given channel changes over time. Thirdly, the amount

traffic at each AP is random, which means an AP needs to adapt its channels, CCA

threshold and transmit power to ensure it has sufficient capacity to deliver all queued

packets. Otherwise, it may lead to excessive delays or packet loss.

Consequently, the use of channel bonding, transmit power control and CCA

threshold adjustment of an AP needs to be carefully optimized in a manner that

balances spatial reuse and interference. As discussed in Chapter 2, prior works re-

lated to CCA threshold adjustment and transmit power control mainly focus on

heuristic methods or fixed rules. Most of them assume a fixed relationship between

the CCA threshold and transmit power of a device, e.g., inversely proportional or

linear. By determining a CCA threshold/transmit power, a corresponding transmit

power/CCA threshold is obtained based on the said relationship. They do not con-

sider allowing a device to learn and adapt to its surrounding environment. Moreover,

they do not consider random traffic load. As for channel bonding, most prior works

focus on centralized methods or cooperation among APs and the aim is to avoid

or minimize interference. In addition, they consider bonding adjacent or partially

overlapping channels.

Henceforth, this thesis aims to contribute by applying machine learning based

solutions to optimize CCA threshold, transmit power or channel bonding in order

to improve spatial reuse in WiFi networks. In this respect, this thesis studies the

following research questions:

• How to effectively adjust the CCA threshold of devices? A modified CCA

threshold has a direct impact on network performance. Specifically, an in-

correct CCA threshold leads to severe network performance degradation [30].

Therefore, how to precisely adjust CCA threshold to achieve network perfor-

mance improvement is a critical problem. The main challenge is the afore-
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mentioned random interference and channel gain. Therefore, the first research

question of interest in this thesis is to adjust the CCA threshold for both APs

and users to effectively improve network capacity.

• How to jointly optimize the CCA threshold and transmit power for an AP

with random arrival traffic? Apart from CCA threshold adjustment, effec-

tive transmit power control reduces interference to neighbor cells and hence,

improves spatial reuse and network capacity [23]. However, transmit power

adjustment is a complex problem [32]. In addition, the traffic load of each

AP is random and varies over time. Further, considering random interference

and channel gains, an AP needs to adaptively determine its CCA threshold

and transmit power in order to achieve a high transmission capacity in order

to avoid packet loss or queue overflow. A key challenge is that an AP is only

aware of its local observed information, e.g., interference, current queue length

and arrival traffic, within its managed cell; i.e., it has no such information for

neighboring cells that are managed by a different operator.

• How to improve spatial reuse when channel bonding is considered given ran-

dom arrival traffic? A wide channel provides an increasing data rate for trans-

mission. However, an incorrectly bonded channel may cause an AP to gener-

ate/experience an increasing level of interference [37]. This in turn reduces the

capacity or throughput of all APs and users that share the bonded channel.

A key challenge is the channel condition and interference on each channel is

unknown and random. An AP may bond different channels over time, and

the transmissions in neighboring cells on each channel are also random. This

means the aggregated interference on each channel changes over time. To this

end, one approach is to apply CCA threshold adjustment on each channel. An

AP adapts the interference on each channel and thereby determines an optimal

channel bonding policy. Alternatively, transmit power control helps an AP to

allocate different transmit power level on each bonded channel. This helps to
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minimize interference, or to increase the SINR on some channels. Lastly, an

AP needs to monitor its queue length to determine its capacity by optimizing

the following parameters in order to minimize an AP’s queue length: CCA

threshold, transmit power control and channel bonding policy.

1.3 Contributions

This thesis outlines machine learning based resources allocation algorithms to ad-

dress the aforementioned problems. Specifically, it proposes to use Reinforcement

Learning (RL) [38] to optimize for CCA threshold adjustment, transmit power con-

trol or channel bonding. Briefly, RL is a branch of machine learning algorithms that

aims to optimize for decision-making problems [38]. To date, RL based applications

are widely adopted in wireless networks [39] to optimize for throughput or energy ef-

ficiency; these applications will be elaborated later in Chapter 2.3. In RL, a learning

entity, aka an agent, learns from its surrounding environment and makes decisions

to achieve an objective. Specifically, an agent observes the current state and then

selects an action to obtain a reward. Here, a state includes quantitative values of

a wireless environment, such as interference, channel gain, and experienced delay.

An action corresponds to the allocation of wireless resources such as transmitting

channels or power. The reward is a metric to be optimized, e.g., throughput or

energy efficiency. The goal for an agent is to determine an action selection policy

that maximizes the cumulative long-term reward. In addition, by exploiting deep

learning [40] or Deep Reinforcement Learning (DRL), an agent is able to provide

better performance than conventional RL [41].

This thesis proposes to equip APs with a RL-based solution. This would then

allow an AP to learn a CCA threshold, transmit power control or channel bonding

policy given random channel conditions, interference and arrival traffic. Critically,

the RL-based solution is so called model-free as it relies only on locally measured

information, such as interference level and queue length. That is, it does not require
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any probability distribution for the said parameters. The details of the proposed

solutions are listed below.

1.3.1 Deep Q-Network based spatial reuse optimization

This thesis first addresses the problem of adjusting the CCA threshold of each device

in densely deployed WiFi networks, where each device experiences interference from

neighboring cells. Each AP is responsible for adjusting the CCA threshold of each

associated user, including itself, to maximize spatial reuse. This is in contrast to

prior works that use fixed rules to adjust the CCA threshold of nodes, e.g., [42–50].

A key challenge is that the presence of interference and channel conditions change

over time. Therefore, this thesis models the CCA threshold adjustment problem

as a Markov Decision Process (MDP) [51], and outlines a Deep Q-Network (DQN)

based learning approach running on each AP. The proposed learning approach relies

on historical interference data measured by both APs and users. Note that an AP is

able to obtain the interference data of its associated users using IEEE 802.11k [52].

The approach then learns to adjust the CCA threshold of each device within a cell.

1.3.2 Hierarchical CCA threshold and transmit power op-

timization

This thesis addresses the problem of jointly optimizing the CCA threshold and

transmit power of an AP with DRL. It allows an AP to learn the optimal policy for

setting its CCA threshold and transmit power given its queue length and interference

level. There are three main challenges. First, the channel condition to devices varies

over time. This means the channel gain for data transmission and interference varies

over time. Secondly, the transmission in a neighboring cell is also time-varying,

which means the resulting interference from neighboring cells changes over time.

Lastly, the traffic arrival is random, which means the queue length of an AP also

varies over time. To reduce the learning complexity, this thesis outlines a Semi-
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Markov Decision Process (MDP) for the problem and solves it using a decentralized

deep Hierarchical Reinforcement Learning (HRL) approach. We then evaluate its

performance using traffic generated via a Poisson distribution and from a trace file.

1.3.3 Joint spatial reuse and channel bonding optimization

This thesis addresses a novel problem of learning the optimal channel bonding, CCA

threshold adjustment and transmit power control policy with DRL. Specifically, we

focus on both adjacent and non-adjacent channel bonding in WiFi networks; the

non-adjacent channel bonding is now supported in IEEE 802.11ax [18]. The aim

is to improve spatial reuse on multiple channels and minimize the queue length of

an AP with random arrival traffic. This thesis first formulates the optimization

problem as a three-layer MDP. After that, it outlines a three-tier learning approach

based on DRL algorithms that runs on an AP. The proposed approach learns the

optimal policy for an AP that determines the transmitting channels, transmit power

and CCA threshold on each channel over time.

1.4 Publications

The aforementioned contributions have appeared in the following venues:

1. Y.W Huang, K-W Chin, “A Deep Q-Network Approach to Optimize Spatial

Reuse in WiFi Networks”, IEEE Transactions on Vehicular Technology, vol.

71, no. 6, pp. 6636 - 6646, June 2022.

2. Y.W Huang, K-W Chin, “A Hierarchical Deep Learning Approach for Opti-

mizing CCA Threshold and Transmit Power in WiFi Networks”, IEEE Trans-

actions on Cognitive Communications and Networking, 2022. Under Review

3. Y.W Huang, K-W Chin, “A Three-Tier Deep Learning Based Channel Ac-

cess Method for WiFi Networks”, IEEE Transactions on Machine Learning in

Communications and Networking, 2022. Under Review
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1.5 Thesis Structure

1. Chapter 2. This chapter provides a comprehensive survey on prior works that

consider CCA threshold adjustment, channel bonding, transmit power control

and applications of RL in wireless networks.

2. Chapter 3. This chapter proposes a DQN based approach that adjusts the

CCA threshold of devices to improve spatial reuse in WiFi networks.

3. Chapter 4. This chapter presents an HRL based approach to jointly optimize

the CCA threshold and transmit power of an AP to improve the spatial reuse

in order to minimize its queue length.

4. Chapter 5. This chapter outlines a three-tier learning approach based on DQN

and DDPG to jointly optimize for channel bonding, transmit power and CCA

threshold for an AP to minimize its queue length with random traffic.

5. Chapter 6. This chapter concludes the thesis with its main contributions. It

also outlines potential future research directions.
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Chapter 2

Literature Review

Fig. 2.1 shows the taxonomy of past works summarized in this chapter. Section 2.1

first reviews prior works on CCA threshold adjustment. After that, Section 2.2

discusses related works that focus on channel bonding, and Section 2.3 outlines

previous works that apply reinforcement learning in wireless networks.

Figure 2.1: Categories of summarized prior works
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2.1 CCA threshold adjustment

CCA threshold plays an essential role in improving spatial reuse in networks as it

determines the availability of a channel for each device. A number of works have con-

sidered adjusting the CCA threshold of devices in order to improve the overall net-

work capacity of a WiFi network. A key challenge is to balance the trade-off between

improved spatial reuse and interference [26]. In this regard, Section 2.1.1 reviews

prior works that aim to optimize a fixed and optimal CCA threshold for each device.

Section 2.1.2 discusses works that adapt the CCA threshold of clients/stations.

2.1.1 Fixed CCA Threshold

The default CCA threshold, i.e., -82 dBm for a 20 MHz channel, used in the current

WiFi standard is conservative, which reduces the network performance in a dense

deployment environment [13]. The authors in [30] and [53] prove that varying the

CCA threshold of devices has an impact on the overall network throughput. They

consider optimizing the CCA threshold for APs by iterating through all possible

values and selecting the one that provides the highest aggregated throughput. The

authors of [54] focus on multi-hop mesh networks, and argue that for each station,

its CCA threshold should be set to provide a carrier sensing range that covers its

interference range, where the interference range is calculated based on a certain

SINR threshold. Reference [55] derives an analytical model for optimizing the CCA

threshold for all devices in a wireless ad-hoc network. The model is developed based

on a Markov chain with four states, which is then used to determine the aggregated

network throughput. The authors propose to iterate through all possible CCA

thresholds and select the one that yields the highest aggregated throughput.

2.1.2 Dynamic Sensitivity Control (DSC)

Reference [56] raises a number of issues when devices use a fixed CCA threshold. In

particular, using a fixed CCA threshold causes unfairness to devices that are located
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at the edge of BSSs. These devices may experience high aggregated interference from

neighboring BSSs due to concurrent transmissions and thus are not able to transmit.

To this end, DSC algorithms that adaptively adjust the CCA threshold of devices is

a promising solution to alleviate this problem. These works can be grouped based

on the metric used to adjust the CCA threshold of devices; namely, Received Signal

Strength Indicator (RSSI), Packet Error Rate (PER), and channel status duration.

Table 2.1.2 presents a comparison of these works.

2.1.2.1 Received Signal Strength Indicator (RSSI)

RSSI measures the energy level of a received packet [27]. Works that use RSSI to

adjust the CCA threshold nodes can be classified as users or APs oriented.

For users oriented works, the work in [42] and [43] considers adjusting CCA

threshold in a distributed manner. Each user uses a margin value to determine

its CCA threshold. Specifically, in [42], a user records the average RSSI received

from its associated AP. On the other hand, a user in [43] only records the lowest

detectable RSSI. At the end of each predefined interval, each user subtracts the

margin value from the recorded RSSI; this is to ensure an adequate SINR and allow

for fading. The resulting value is then set as the CCA threshold for the following

interval. The authors in [57] outline an extension, where they use deep learning to

select the margin value. The aim is to reduce interference.

In contrast to focusing only on users, the work in [44, 58] and [59] considers

adjusting the CCA threshold for APs. In reference [44], each AP records the lowest

RSSI received from its associated users as well as the highest RSSI received from

neighboring BSSs. At the end of a predefined interval, each AP subtracts a margin

value from the lowest recorded RSSI, and sets the result as the CCA threshold. In

[58] and [59], a centralized controller first collects all RSSI information recorded by

APs and users. Then, the centralized controller in [58] applies a heuristic search for

each AP such that each AP will use a different CCA threshold when initiating trans-

missions to different users. On the other hand, in [59], for each AP, the centralized
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controller calculates the expected worst SINR to each associated user. Then the AP

is configured to update its CCA threshold based on the lowest SINR.

2.1.2.2 Packet Error Rate

Packet error rate (PER) measures the number of failed transmissions and the number

of total attempted transmissions within a predefined interval. A high PER means

devices are experiencing high interference or collision probability. Existing works

use historical PER with pre-defined rules, e.g., using PER threshold or comparing

PER of adjacent time slots, to determine a CCA threshold for future intervals.

The work in [60] and [45] focuses on the PER of each two adjacent intervals. At

the end of a given interval, each user adjusts its CCA threshold if the PER of the

current interval and previous interval differs. In particular, if the current PER is

higher than the previous PER, a user reduces its CCA threshold with a fixed step

size, and vice-versa. To prevent the CCA threshold from being adjusted frequently,

the authors in [45] adjust the CCA threshold of users only if the difference in PER

exceeds a pre-defined threshold.

References [46] and [47] consider setting a PER threshold for each AP and user,

respectively. If the PER over an interval exceeds a predefined threshold, a device

reduces its CCA threshold by a fixed step size, and vice-versa. In addition, the

work in [47] further considers a fairness ratio for each user that is calculated based

on the number of neighboring users. Then, each user applies this fairness ratio to

determine whether to adjust its CCA threshold.

Lastly, some works consider adjusting the CCA threshold of devices in a multi-

hop mesh network. For example, the authors of [61] and [62] require each device to

measure and report its per-link PER information to a centralized controller. The

centralized controller will then use the highest PER to determine a CCA threshold

for all devices. Apart from that, the authors in [63] propose to use both PER and

the current CCA threshold in a distributed manner. They derive a model that

each device periodically measures its PER. At the end of a predefined interval, the
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authors derive a pricing function and a utility function based on the PER and CCA

threshold. The aim of the penalty function is to prevent a user from aggressively

increasing its CCA threshold. On the other hand, the utility function uses the PER

to indicate the QoS level of each user; the utility function returns a maximized

value when the PER reaches a predefined threshold. Each device then sets its own

CCA threshold that minimizes the penalty function whilst maximizing the utility

function.

2.1.2.3 Channel Occupancy

The works in this section use channel occupancy information to adjust the CCA

threshold of nodes. In particular, channel occupancy information can be character-

ized by different channel statuses, e.g., busy or idle. Prior works use the duration of

these statues to derive function to evaluate throughput or identify the presence of

hidden or exposed devices.

References [48, 49] and [50] share a similar strategy, where they periodically

adjust the CCA threshold of each user. Their method is to derive a penalty function

for a given CCA threshold that quantifies the influence of a user’s transmission to

its neighboring users; the function is derived by each user in a distributed manner

by observing the channel statuses for a given interval. Each user then selects the

CCA threshold that minimizes the penalty function. In addition, the authors in [49]

extended their algorithm in [50] and [64] to consider frame error rate in order to

ensure a certain QoS level. The algorithm maintains a fixed CCA threshold until

the frame error rate reaches a predefined value.

In a different work, reference [74] uses a channel utilization ratio to adjust the

CCA threshold for each user, where the channel utilization ratio represents the

fraction of period when channel status is busy. The authors divide the channel

utilization ratio into three categories, namely low, intermediate and high utilization.

Each user periodically monitors a channel utilization ratio and adjusts its own CCA

threshold accordingly. In particular, a user increases its CCA threshold when the
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channel utilization ratio is low, and vice-versa. Further, the authors propose a

contention window size adjustment scheme to reduce interference and collisions.

In [65] and [66], the authors notice that the presence of hidden and exposed users

leads to different observations of channel occupancy at AP and users. Therefore,

they propose to let each AP periodically broadcast its collected channel occupancy

information to each associated user. Each user then compares this information with

its locally measured channel occupancy information to identify hidden and expose

users, and set a CCA threshold that minimizes the total number of hidden and

exposed devices.

2.1.3 CCA threshold with transmit power control

Some past works consider jointly optimizing the transmit power and CCA thresh-

old of nodes, e.g., [67–73]. This is because transmit power control helps reduce

interference and hence improve spatial reuse [32].

The authors of [67] and [68] assume that there is an inversely proportional re-

lationship between the CCA threshold and transmit power. The work in [67] first

selects a CCA threshold by monitoring the PER of an access point. On the other

hand, the work in [68] first adjusts the CCA threshold of an access point based on

the received signal strength from its associated user. Then, both [67] and [68] derive

a transmit power according to the said inversely proportional relationship with CCA

threshold.

The work in [69] and [70] investigates whether a user with a high transmit power

should use a low CCA threshold, and vice-versa. The approach taken in [69] is to

first set the transmit power of users using the number of successful transmissions

before assigning them an appropriate CCA threshold. In [71], the authors adjust the

transmit power and CCA threshold of users to minimize interference experienced by

neighboring cells. Their aim is to balance the trade-off between spatial reuse and

data rate. The work in [72] assumes both access points and users are able to identify
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the source of interference from neighboring cells. This interference information is

then used to construct a CCA threshold to transmit power table that maps a CCA

threshold to a transmit power for each interfering source.

The authors in [73] use a neural network in a centralized manner to jointly adjust

the CCA threshold and transmit power for each device. Their method requires

labeled data that is periodically collected from networks. The input to the neural

network consists of the CCA threshold and transmit power of each device, and the

output corresponds to the achieved throughput of each device. The authors aim to

find the optimal combination of CCA threshold and transmit power for each device

after efficient training.

2.2 Channel bonding

The key challenge when using channel bonding is to determine a bonding strategy

in a dynamic wireless environment. This is important as the amount of interference

that an AP experiences on each channel varies over time. Moreover, an AP that

bonds multiple channels generates increasing level of interference to neighboring

cells [34]. Further, an AP using a wider channel leads to a lower power density, i.e.,

Watts/Hz [35], which may cause a low data rate. All of these issues impact the

throughput of the wireless networks. Therefore, the level of channel bonding needs

to be carefully considered. As shown in Table 2.2, past works that adopt channel

bonding can be grouped into two categories, namely (i) works that consider traffic,

and (ii) works that do not consider traffic. The former mainly aims to improve the

network capacity or reduce interference [17], and the latter considers arrival traffic

and aims to satisfy the traffic demands of APs or users.

2.2.1 Non-Traffic-Considered channel bonding

A number of prior works use channel bonding to maximize the throughput of APs.

These works assume saturated or fixed traffic at APs or users, meaning they always
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have packets to transmit. Therefore, the primary goal is to maximize the throughput

or minimize interference. For example, the work presented in [75] uses the PER

on each channel to determine a set of channels to use for each AP. The aim is to

maximize the aggregated throughput of all APs. References [76, 77] use game theory

to determine a channel bonding strategy for each AP, where each AP is a player. The

authors of [76, 77] assume each AP monitors the channels used by its neighboring

APs and then determines its channel bonding strategy. The aim is to improve the

overall network throughput. The authors in [36] consider the interference on bonded

channels. They proposed a Post-CCA mechanism, where each AP senses the used

channels again after each transmission. This is to identify the interference on each

bonded channel. Then the authors use reinforcement learning to select a set of

channels for each AP to bond in the following time slot. The goal is to maximize

the throughput of each AP. Reference [78] uses reinforcement learning to bond non-

adjacent channels for a secondary user in cognitive networks. The state is the status

of each channel, and the action is to sense and bond a set of channels. The reward

is a binary value that indicates whether the transmission is successful. The aim is

to maximize the number of successful transmissions over time.

The work in [33, 79] adjust the CCA threshold of APs first. The authors in [79]

assume each user evaluates the signal strength and average level of interference, and

reports theses information to its associated AP, with which each AP determines a

CCA threshold for the primary channel of each user. After that, the CCA threshold

on each secondary channel is obtained by adding a fixed value to the CCA threshold

on the primary channel. The work in [33] adjusts the CCA threshold for secondary

channels only. The CCA threshold on each secondary channel is the same, and is

calculated based on a Signal to Interference plus Noise Ratio (SINR) threshold and

the distance between AP and users. Then, the works in [33, 79] bond channels for

each AP according to the CCA results. Their aim is to maximize the throughput

as well as the fairness of all APs.

Some works aim to use channel bonding to reduce the interference in networks.
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For example, The work presented in [80] aims to maximize the throughput of fem-

tocells as well as minimize the interference experienced by macrocell users. The

authors assume femtocells have knowledge of the interference levels they generate

to both macrocells and neighboring femtocells. Each femtocell uses reinforcement

learning to select a set of channels to transmit. After that, it uses a gradient method

to allocate transmit power on each selected channel. The authors in [81] first use

a Markov chain to model the throughput for bonded channels. Then, they use the

multi-armed bandit algorithm to find a channel bonding level. Another work [82]

first uses OFDMA to bond a number of channels. Then, it uses a heuristic method

to assign a set of sub-channels for each device. The method considers the SINR of

each device on each sub-channel, and it aims to reduce collisions. The work [83] also

uses OFDMA to assign a set of sub-channels and transmit power for each transmit-

ter. However, the goal is to maximize the energy efficiency of each transmitter. In

[84], the authors assume each AP uses the RTS/CTS control packets to measure the

distance to an associated user. This distance is then used to determine the chan-

nels and data rate used for transmissions. The aim is to maximize the throughput

and minimize collisions. The authors in [85] propose that each AP selects a set of

channels to minimize a cost function. The cost function is defined as a function of

experienced interference on each bonded channel and SINR to each associated user.

2.2.2 Traffic aware channel bonding

Another group of works considers random arrival traffic at each AP when designing

a channel bonding strategy. The main challenge is to determine a bandwidth that

satisfies the demand of given arrival traffic. Existing works also consider to minimize

transmission delays, maximize throughput, avoid interference and ensure APs/users

can fairly use channels.

There are works that consider maximizing the throughput of APs/users given

random traffic. The work in [18] uses reinforcement learning to select non-adjacent
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channels for each user in IEEE 802.11ax networks. The authors assume APs ex-

change traffic information on each channel, and learn to set a sensing probability on

each channel for all associated users. Each user then senses each channel with the

said probability, and bond a channel if it is sensed idle. The goal is to maximize the

total aggregated throughput of all users. The authors further consider the fairness

issue among users, i.e., ensuring the throughput of each user exceeds a pre-defined

threshold over time. In a different work [86], the authors jointly consider the SINR,

interference and traffic demand of each AP to build a conflict graph. Then, a cen-

tralized controller uses the conflict graph and a heuristic algorithm to determine the

central frequency and bandwidth used by each AP.

References [87, 88] aim to minimize transmission delay. In [87], the authors

derive an analytical model to evaluate transmission delay, where the model jointly

considers the traffic load on each channel and current delay experienced by users.

They use the analytical model to determine whether to allow users to bond channels.

The goal is to satisfy the delay requirement of delay sensitive users. Reference [88]

uses multi-agent reinforcement learning [95], where each AP is an agent. Each AP

selects a set of channels for transmission by monitoring the arrival traffic, and current

queue length in order to minimize the transmission delay of the network.

Some other works focus on satisfying the traffic demand of APs. Reference [89]

provides an analytical model that considers the effect of SINR, interference and col-

lision probability. The authors propose a heuristic algorithm that groups APs based

on their experienced interference and then determines a set of transmission channels

to satisfy their traffic demand. The authors of [90] derive a greedy algorithm that

considers the traffic demand of each AP and the interference on each sub-channel.

The aim is to schedule the transmission of each AP over a set of non-adjacent sub-

channels. The objective of the work in [91] is to satisfy the traffic demand and avoid

interference among APs. The authors apply integer linear programming to deter-

mine the central frequency and bandwidth used by each AP. Further, the authors

aim to minimize the total bandwidth used by all APs.
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There are works that use channel bonding to ensure each device is able to fairly

use the channels in networks, where the term fairly means the throughput or trans-

mitting bandwidth of each devices is not less than a given threshold. Reference [92]

uses reinforcement learning on a centralized controller to manage all APs. The state

consists of channel configuration, traffic arrival rate and interference relationship

among all APs. The action is to select a set of channels for each AP, and the reward

is calculated based on the experienced interference, achieved throughput and traffic

load. In particular, an AP receives high reward if it experienced high interference or

high throughput, and the authors use reinforcement learning to minimize the cumu-

lative reward of each AP over time. The aim is to reduce interference and balance

the number of channels used by each AP. The authors of [93] build a conflict graph

based on the coverage area of APs. Then, the authors use integer linear program to

assign non-overlapping channels for each AP according to its traffic demand. The

goal is to ensure each AP has a fair share of the channels, i.e., the bandwidth as-

signed to an AP exceeds a threshold that is calculated based on the AP’s traffic

load.

Lastly, the work in [94] outlines a Dynamic Channel Point Process (DCPP) based

on Generative Adversarial Network. The DCPP captures the effects of channel

bonding and interference on the throughput of APs. Then, each AP uses DCPP to

predict the activity of neighboring APs and bond channels if there is a throughput

gain. The goal is to avoid interference and maximize the throughput of each AP.

2.3 Applications of Reinforcement Learning in wire-

less networks

To date, a large number of works have applied reinforcement learning in wireless

networks [41]. Considering their objectives, they can be grouped into two categories,

namely works that do not consider channel access and works that consider channel

25



access. Table 2.3 presents a summary of works that use reinforcement learning in

wireless networks.

2.3.1 Non-Channel Access related

A number of prior works implement reinforcement learning to maximize throughput

and energy efficiency, or minimize interference. These works assume channels are

always available and do not consider channel access issues.

Some works aim to minimize interference in some networks. For example, refer-

ences [96, 98, 99] and [97] focus on adjusting the transmit power of base stations in

femtocell networks. The authors use Q-learning, a reinforcement learning algorithm,

in a distributed manner, and assume macrocell base stations share interference infor-

mation with femtocell base stations. The state is a tuple comprising of the transmit

power of a femtocell base station and the aggregated interference measured at macro

users. The action is to assign a transmit power on each subcarrier. The reward that

a femtocell in [96] and [97] receives is high if the macrocell capacity is close to a

predefined threshold, and low otherwise. Therefore, the work in [96] and [97] only

considers to maintain the capacity of macrocells at a certain level. In contrast,

in [98] and [99], the authors consider to preserve capacity for both macrocells and

femtocells. Thus, they propose a penalty function to further adjust reward. The

reward for a femtocell is low if it achieves a low data rate, and vice-versa. Moreover,

the authors of [96, 98, 99] apply transfer learning, where adjacent femtocell base

stations share their Q-table to accelerate the learning process.

In [100, 101] and [102], the authors propose to apply Q-learning in cognitive radio

networks for transmit power control, where each secondary user runs Q-learning.

The state for a secondary user consists of the interference generated to primary

users, the distance and current transmit power, and the action is to select a power

level. The reward for an agent is the SINR measured at a primary user side. The

goal is to ensure the aggregated interference caused by all secondary users is below
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a certain level.

Other works aim to improve the throughput of a transmitter by adjusting wire-

less transmission parameters such as guard intervals, modulation and coding scheme

and level of frame aggregation [103]. The work in [103] and [104] aims to find the

optimal set of wireless transmission parameters for each transmitter that provides

the highest throughput. The authors use distributed reinforcement learning algo-

rithms on each device to adjust wireless transmission parameters, such as guard

intervals, modulation and coding scheme (MCS) and level of frame aggregation,

based on observed SINR and PER. The objective is to maximize the throughput

of each transmission. Another work presented in [105] uses the contention window

size as the state, with which a device selects a data rate for each transmission.

The reward is the number of successful transmissions measured within a pre-defined

interval.

The authors of [106] apply reinforcement learning to select users for downlink

MU-MIMO transmissions as well as optimize the data rate for each link in MU-

MIMO transmissions. The authors assume a centralized controller periodically mon-

itors channel state information between each user and its associated AP. Based on

collected channel state information, the centralized controller adaptively selects a

group of users to initialize downlink MU-MIMO transmissions. Further, the cen-

tralized controller determines a data rate for each user to maximize aggregated

throughput.

The work in [107] proposes an approach for rate control in a complex satellite

communication system, where a transmitter is an agent. The state observed by

an agent consists of transmission parameters in a previous time slot, such as the

MCS level and bit error rate. The agent learns to select a set of actions, including

symbol rate, MCS and transmit power for the following time slot. The objective is

to maximize the energy efficiency and throughput as well as ensure a low bit error

rate.

The work in [108] and [109] aims to maximize the energy efficiency in networks.
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In [108], the authors focus on a cooperative re-transmission problem where a device

is able to relay packets from its neighbors. Each device learns a transmit probability

that either transmits its own packet or re-transmits/relays a packet heard from a

neighboring device. It also learns a suitable transmit power if it decides to transmit.

The aim is to maximize network energy efficiency. In [109], the authors run a

reinforcement learning algorithm on each user. The state consists of the current

channel status and the queue length of the user itself, and the action is to select an

MCS for transmissions. The aim is to improve the energy efficiency and meet the

delay requirement of each user.

2.3.2 Channel Access Related

There are also works that employ reinforcement learning on channel access. Past

works consider channel assignment, channel bonding, transmission scheduling, trans-

mit power control and contention windows adjustment. The objective is to use rein-

forcement learning to control channel access of devices in order to avoid interference

or maximize throughput and energy efficiency.

In [110], the authors consider channel selection in Vehicle-to-Vehicle (V2V) net-

works in a decentralized manner, meaning each vehicle is an agent. Each agent

observes the channel gain, interference, channels used by neighboring agents and

experienced latency, and learns to select a channel and transmit power for transmis-

sion. The aim is to maximize the reward obtained from a function of throughput

and latency. The work presented in [111, 112] studies the channel access problem

in Internet of Thing (IoT) networks. In[111], the authors assume the channel con-

dition is random and has two states, i.e., good or bad. A sensor runs DQN and

learns to select a channel for uploading data. The aim is to avoid interference and

maximize the number of successful transmissions. The authors further consider to

re-train DQN when the moving average reward obtained by the agent is lower than

a pre-defined threshold. In [112], a sensor that relays data from other sensors runs
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a DQN, and learns to select a set of channels, data rate and the volume of data to

transmit. The aim is to maximize energy efficiency. The work in [117] proposes a

stateless decentralized reinforcement learning algorithm in a wireless network. The

authors assume each AP serves one user, and learn to select a channel and transmit

power. The goal is to maximize the throughput to its associated user. In [118], the

authors formulate a multi-armed bandit model that is used to predict whether a

channel is idle in order for secondary users to transmit.

The authors of [113] consider a centralized method in IoT networks, where a base

station allocates channels and schedules transmissions for multiple sensors. The key

challenge is that the energy level of each sensor is random. Therefore, the authors

propose that a base station runs DQN with multiple Long Short-Term Memory

(LSTM) layers [126], and learns to select a sensor to transmit in each time slot.

The aim is to maximize the total uplink throughput of all sensors. Reference [114]

also runs a DQN with LSTM on a base station in cellular networks, where the aim

is to train the base station to access channels with a probability that maximizes

the throughput of downlink transmissions. Another work in [115] trains each AP to

transmit or defer after having detected a transmission in neighboring cells. If an AP

chooses to transmit, it sets an appropriate data rate. The authors aim to minimize

the channel access service time, i.e., the total elapsed time to successfully transmit

one packet.

The authors of [119, 120] use deep reinforcement learning to determine a set of

channels for transmissions. The authors assume channels are always available. In

[119], the authors use reinforcement learning to learn the optimal channel bonding

policy, whereas the aim is to minimize interference between APs and satisfy the time

varying traffic demands at each AP. In [120], the authors jointly optimize channel

bonding and transmit power for an AP. The goal is to maximize the energy efficiency

of the AP with random arrival traffic.

The authors in [121] use centralized reinforcement learning to dynamically select

an optimal CCA threshold for all devices in WiFi networks. The authors assume
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that the deployment of access points and stations follows a Poisson point process.

A device that intends to transmit is an active device. The number of active devices

varies over time in order to simulate realistic network scenarios. A centralized con-

troller observes the number of active devices and selects a CCA threshold. The aim

is to maximize the normalized network throughput. In [116], the work assumes each

secondary user observes the queue length of a primary user and learns the optimal

energy detection threshold for primary channel access. Their aim is to minimize the

queue length of a primary user. The work in [125] uses multi-armed bandit to assign

a transmitting channel, transmit power and CCA threshold to each AP. Their aim

is to maximize the throughput of each AP.

The work in [122–124] considers to use reinforcement learning to adjust the

contention windows size for each device. The approach proposed in [122] is decen-

tralized. Each device observes the arrival traffic and PER after each transmission,

and determines whether to double or halve current contention window size or keep

it unchanged. The goal is to reduce collision. In [124], the authors propose a cen-

tralized method, where they assume each AP optimizes the contention window size

of its associated users, including the AP itself. The state is the PER of all devices

within a cell, and the action is to set a value for the contention window size. The

aim is to maximize the whole network throughput. In [123], the authors consider

different priorities for different types of traffic. The contention window size for ser-

vices, e.g., video and audio, is smaller than other services. The aim is to ensure

services with a high priority have high throughput.

2.4 Summary

In summary, this chapter reviews prior works that focus on CCA threshold adjust-

ment, channel bonding and reinforcement learning in wireless networks. Prior works

show following gaps:

• Past works on dynamic CCA threshold adjustment mainly focus on heuris-
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tic methods, and they do not have the learning ability, e.g., [42, 43, 45–50].

An AP/user or a centralized controller monitors the metrics of the network

and adjusts CCA threshold following predefined rules. These methods provide

optimal solutions as presented in literature. However, one drawback is that

these rule-based algorithms lack of robustness. A minor modification on the

topology can significantly degrade the performances of methods. Moreover,

these works only monitor the network metrics such as RSSI, PER and channel

occupancy to maximize throughput of energy efficiency. They ignore the influ-

ence of random traffic load. In addition, some works such as [42, 57, 115] does

not consider the impact of random channel gains, and assume the data rate on

a given channel is fixed. Some other jointly optimize the CCA threshold and

transmit power for devices, e.g., [67–73, 125]. They assume the CCA threshold

and transmit power have a fixed relationship, i.e., inversely proportional or lin-

ear. Therefore, by determining the CCA threshold/transmit power, a device

obtains a corresponding value for transmit power/CCA threshold. The work

in[73] uses deep supervised learning for CCA threshold adjustment or transmit

power control. However, this work requires data from multiple APs. In other

words, the authors assume APs managed by a centralized controller. In ad-

dition, the work in [125] only consider a fixed combination of CCA threshold

and transmit power for each AP to choose, which means the RL agent may

not be able to find the optimal combination of CCA threshold and transmit

power if it is not included in the action space. Different from prior works, this

thesis considers the impact of random channel conditions and random arrival

traffic, and independently and adaptively adjusts the CCA threshold/transmit

power for each device using reinforcement learning. Each agent only uses its

locally observed metrics and do not cooperate with each other.

• Prior works on channel bonding aim to improve capacity or avoid interference

in WiFi networks, e.g., [18, 36, 75–77, 81, 82, 84–88, 91, 93, 94]. They do
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not consider to adjust CCA threshold on each channel to improve spatial

reuse of channels. Works such as [86, 91, 93] use a centralized method to

optimize channel bonding. These methods require global information and

cooperation between APs. In addition, previous works, such as [84, 89–91,

93], only bond adjacent channels. However, non-adjacent channels have the

potential to provide more flexibility than bonding adjacent channels and is

now supported in IEEE 802.11ax [21]. Although works in [33, 79] adjust the

CCA threshold of channels for channel bonding, they consider to set a same

CCA threshold for all bonded channels. Further, they do not consider random

traffic.

• A large number of past works apply reinforcement learning in WiFi networks to

optimize the throughput and energy efficiency, e.g., [96–109]. These works do

not consider channel access and assume channels are always available. Other

works, such as [110–115, 117–120, 122–124] investigate channel access. How-

ever, they consider to set an appropriate data rate, contention window, trans-

mit power or channel to avoid interference, and do not consider to optimize

CCA threshold to improve spatial reuse. Although the work [121] uses Q-

learning to adjust the CCA threshold, it assumes all devices are managed

by a a centralized controller and share the same CCA threshold. Lastly, no

prior works consider to use reinforcement learning to improve spatial reuse on

multiple channels.
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Chapter 3

Maximizing Spatial Reuse Using Deep

Q-Network

As discussed in Chapter 2, a number of prior works aim to improve spatial reuse

through CCA threshold adjustment. Specifically, the majority of these works peri-

odically monitor network metrics and use heuristic methods or pre-defined rules to

adapt the CCA threshold of APs or users. They do not consider learning and adapt-

ing the wireless environment of APs or users. In addition, some prior works require

global information which may cause overhead issue. In contrast, this thesis first

formulates the problem for optimizing CCA threshold as an MDP. It then proposes

a DQN based learning approach running on each AP. Each AP is responsible to

assign the optimal CCA threshold for each device within its cell given the historical

locally measured interference data.

The rest of this chapter is organized as follows. Section 3.1 presents the system

model. In Section 3.2, it models the CCA threshold adjustment problem as a Markov

Decision Process (MDP). Section 3.3 and Section 3.4 outline a DQN-based approach

and results, respectively. Finally, Section 3.5 concludes this chapter.
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Table 3.1: Notations and Explanation

Notations Explanation

A The set of APs

U The set of users

M Area for placing APs and users

λu User density

di,j Distance between node-i to node-j

Ai AP of user-i

Cj Cell j

γt
x CCA threshold of transmitter-x in time slot t

Γt A vector of CCA thresholds used by all transmitters

in time slot t

lx,y A directed link from transmitter-x to receiver-y

P t
x Transmit power of transmitter-x

P t
x,y Received power from transmitter-x to receiver-y (dBm)

P̂ t
x,y Received power from transmitter-x to receiver-y (Watts)

PL(dx,y) Path-loss from transmitter-x to receiver-y

PL(d0) Path-loss at reference distance d0

ω Path-loss exponent

βt
x,y SINR of link lx,y in time slot t

rx,y(β
t
x,y) Data rate of link lx,y with SINR βt

x,y

Zt The set of active transmitters in time slot t

I ty Interference at node y in Watts

I(x, t) Indicator function for transmitting

3.1 System Model and Problem

This chapter considers a set of APs, denoted as A, and a set of users, denoted as

U , that operate over the same wireless channel. For practical reasons, APs do not

cooperate with one another; see Section 3.3.5 for more information. Each user is

indexed by i and each AP is indexed by j. APs are placed on an area with size M

(in m2). In this area, users are distributed as per a Poisson Point Process (PPP)

with density λu. The Euclidean distance between user i and an AP j is di,j. Each

user i is associated to the closest AP j, which is denoted by Ai = arg minj∈A di,j.

Let {C1, C2, C3, . . . , C|A|} be a set of cells. Each cell j contains users associated to

AP j. Specifically, a cell j is given by Cj = {i | i ∈ U ∧Ai = j}. All devices operate
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over discrete time slots indexed by t; each time slot has fixed duration.

Nodes use CSMA/CA for channel access. Each AP is responsible for adjust-

ing the CCA threshold and transmit power of its own and its associated users

via the beacon frames over time. Denote the CCA threshold for transmitter x

in time slot t as γt
x, where x ∈ A ∪ U . Each γt

x has range [γmin, γmax]. Let

Γt = {γt
1, γ

t
2, γ

t
3, . . . , γ

t
M} ∈ [γmin, γmax]M , where M = |A ∪ U |, be a vector that

records the CCA threshold of all nodes at time slot t.

A directed link is denoted as lx,y, where x is the transmitter and y is the re-

ceiver. This chapter considers both uplink and downlink transmissions. Therefore,

a transmitter can be an AP or a user, and the corresponding receiver can be a user

and an AP within the same cell. All devices always have data to transmit.

Denote Zt as the set of transmitters in time slot t, where Zt will be defined for-

mally later. The received power Px,y from a transmitter x ∈ Zt with transmit power

P t
x to a receiver y is calculated using the Log-distance path loss model. Formally,

the received power (in dBm) is

P t
x,y = P t

x − PL(dx,y), (3.1)

where

PL(dx,y) = 10ωlog10

(
dx,y
d0

)
+ PL(d0) + Xg. (3.2)

Here, PL(d0) is the path loss at reference distance is d0, ω is the path loss exponent,

and Xg (in dB) is a random variable drawn from a zero-mean Gaussian distribution,

which models shadowing effects.

Denote the Signal-to-Interference-plus-Noise Ratio (SINR) of a link lx,y in time

slot t as βt
x,y. Formally, for transmitter x, the SINR at its receiver y is represented

as

βt
x,y =

P̂ t
x,y

I ty + N0

, (3.3)

where P̂ t
x,y is the received power in Watts, i.e., P̂x,y = 10(P t

x,y/10)/1000, N0 is the
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ambient background noise, and I ty represents the aggregated interference at node y

in time slot t. Here, I ty is equal to the sum of received power from all neighboring

active transmissions, which is given by

I ty =
∑

z∈Zt,Az ̸=Ay

P̂ t
z,y. (3.4)

Let rx,y(β
t
x,y) denote the data rate for SINR βt

x,y. In practice, the corresponding

data rate for SINR βt
x,y can be obtained from the datasheet of a radio; e.g., [4]. If

the SINR βt
x,y exceeds the SINR threshold of a given MCS index, node x is able to

transmit with the corresponding data rate of the MCS index.

Now, to formally define Zt, recall that node x is using the CCA threshold γt
x.

Let Vx denote the set CAx ∪ {Ax} \ {x}; this set contains the users in cell CAx plus

its AP minus transmitter x. Let I(x, t) indicate whether node x transmits at the

beginning of a time slot t. Formally,

I(x, t) =


1, if I tx < γt

x ∧
∑

u∈Vx
I(u, t) = 0,

0, otherwise.

(3.5)

In other words, a user/AP can transmit at time t if I tx is less than its CCA threshold

and it is the only transmitting node. Hence, the set of transmitters Zt in given by

Zt = {x | x ∈ A ∪ U ∧ I(x, t) = 1}. Observe that the size of Zt, i.e., |Zt|, is

affected by γt
x or Γt and also the transmit power P t

x of transmitter x, which has an

impact on I tx.

The sum rate of all transmitters in Zt is denoted as

D(Γt) =
∑
x∈Zt

rx,y(β
t
x,y). (3.6)

The problem is to find the optimal CCA threshold Γt∗ ∈ [γmin, γmax]M for each
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time t that maximizes the following expected sum-rate:

R = lim
T→∞

1

T
E
[ ∞∑

t=1

D(Γt∗)

]
, (3.7)

where the expectation is taken with respect to the joint probability distribution of

received power or interference over T time slots.

3.2 A Markov Decision Process Model

To solve (3.7), this chapter formulates a Markov Decision Process (MDP). An MDP

provides a mathematical framework for optimizing decision-making problems [127].

An MDP is denoted as a tuple of [S,A,P(st+1|st, at),R(st, at)], where S is a set

of states and A is a set of actions, P(st+1|st, at) is a transition probability function

that yields the probability of transitioning from state st ∈ S to state st+1 ∈ S after

taking an action of at ∈ A, and R(st, at) is the reward for taking action at at state

st. Denote π as a policy that maps a state to an action, represented as at = π(st).

Let V π(s) be a value function that measures the expected long-term reward for

a state s. This expected long-term reward is obtained by calculating the cumulative

discounted reward if a decision-maker or an agent starts from the state s and chooses

its actions based on policy π in subsequent states. Formally,it is defined as,

V π(s) = Eπ

[ ∞∑
k=0

γkR(st+k, π(st+k))|st = s

]
, (3.8)

where γ ∈ [0, 1] is the discount factor that weighs the importance of future rewards.

The goal of an MDP is to find the optimal policy π∗ that maximizes the value

function for each state s. This optimal policy π∗ can be obtained by first solving

the optimal value of Equ. (3.8), denoted as V ∗, via the Bellman equation. Formally,
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for a given state st ∈ S, its optimal value is given by

V ∗(st) = max
at∈A

[
R(st, at)

+ γ
∑

st+1∈S

P(st+1|st, at)V ∗(st+1)

]
, (3.9)

where at = π(st). Then, the optimal policy π∗ for each state st ∈ S can be obtained

as

π∗(st) = arg max
at∈A

[
R(st, at)

+ γ
∑

st+1∈S

P(st+1|st, at)V ∗(st+1)

]
. (3.10)

For the proposed problem, let state sxt be a vector, where its elements repre-

sent the interference observed by a transmitter x at time step t in the past T time

slots, i.e., sxt = [I t−T
x , I t−T+1

x , I t−T+2
x , . . . , , I t−1

x ]. The action axt for a given state

sxt corresponds to a CCA threshold γx ∈ [γmin, γmax]. The transition probabil-

ity function P(sxt+1 | sxt , axt ) is unknown as this chapter considers a model-free

approach. This means the proposed solutions are practical because they do not as-

sume any specific channel gain model between nodes. In addition, the solutions need

to be trained in an online manner where agents/APs interact with the environment

to learn the best action for each state. The reward R(sxt , a
x
t ) for a transmitter is

the throughput over the next T time slot that is calculated as,

R(sxt , a
x
t ) =

1

T

T∑
k=1

rx,y(β
t
x,y)I(x, t). (3.11)

Recall that the proposed approach is model-free, the transition probability function

P(.) is unknown. Hence, the MDP cannot be solved using standard algorithms

such as Value Iteration [128]. In addition, the interference Ix in each time slot

is a continuous number, which results in a large state space |S|. Therefore, this

chapter proposes to use a model-free reinforcement learning algorithm to solve the
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formulated MDP. Specifically, it will employ Deep Q-Network (DQN) [129].

3.3 Deep Q-Network based approaches

The DQN algorithm aims to solve MDP problems by combining the Q-learning

algorithm [130] with neural networks. This section introduces the key concepts

leveraged by DQN.

3.3.1 Q-learning

Q-learning is a model-free algorithm as it does not require the transition probability

between states [130]. It maintains and updates a Q-table that records the Q-value

of each state-action pair, denoted as Q(st, at). For a given state, a high Q-value for

an action represents a high potential reward. The Q-learning algorithm updates the

Q-value of each state-action pair (st, at) as follows:

Q(st, at) = Q(st, at) + α [R(st, at)

+ γ ×maxQ(st+1, at+1)−Q(st, at)] , (3.12)

where α is the learning rate. To balance the relationship between exploitation and

exploration, Q-learning follows an ϵ-greedy policy, which is for a given probability,

the agent will choose the action with highest Q-value; otherwise, the agent will

randomly choose an action. Q-learning has been proven to converge to the optimal

Q-table when each state-action pair is visited infinitely often [130]. This means after

adequate training, an agent is able to select the optimal action for each encountered

state by simply checking the Q-value for each action.

3.3.2 DQN

Traditional Q-learning algorithm works effectively when the state-action space |S|×

|A| is small. However, it becomes impractical when the Q-table size is large. The
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reason is that each state is visited less frequently when the size of Q-table is large,

meaning the Q-value is updated rarely. Hence, it will take a much longer time

for Q-values to converge to the optimal Q-value. In addition, recall that the state

defined in the proposed problem contains continuous numbers, traditional Q-learning

algorithm is, thus, not practical.

DQN alleviates the said convergence problems by combining Deep Neural Net-

works (DNN) with the traditional Q-learning algorithm. It uses a DNN to approxi-

mate the Q-table, aka a Q-network [129], denoted as Q(st, at, θ), where θ is a weight

that maps the input to the output of a DNN. The input to the Q-network is the

state, and the output corresponds to the Q-value for each action. Specifically, a

DQN consists of two Q-networks with the same topology, namely the prediction Q-

network Q(st, at, θ) and the target Q-network Q(st, at, θ
′). For each iteration, DQN

updates the prediction Q-network weight θ to minimize the following loss function:

L(θ) = E[(y−Q(st, at, θ))2], (3.13)

where

y = R(st, at) + γ max
a∈A
Q(st+1, a, θ

′). (3.14)

On the other hand, the target Q-network weight θ′ is replaced with θ every K

iterations, where K is a pre-defined integer.

DQN adopts experience replay [131]. Each combination of (st, at,R(st, at), st+1)

is called experience and stored as an element in the dataset called memory. When

updating the weight θ, DQN randomly samples a mini-batch from memory and uses

it to update θ. In this way, DQN mitigates the correlation among observed states

and alleviates instabilities during training [129].
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3.3.3 DQN based approaches

This chapter solves the proposed problem with DQN in a distributed manner, i.e.,

each AP runs a DQN and learns its optimal policy independently. In particular, it

considers a multi-agent RL approach whereby APs/agents are independent learn-

ers [132]; i.e., an AP sees other APs as part of the environment. The definition of

state space S, action space A and reward function R are specified in Section 3.2.

Each AP uses the ϵ-greedy to select an action. Briefly, an agent randomly selects an

action at ∈ A with probability ϵ. Otherwise, the agent selects an action with highest

Q-value at = arg maxaQ(st, a, θ). The value of ϵ decays during learning process to

ensure convergence. Two DQN based learning patterns are studied in this chapter,

namely Episodic-Learning (EpL) and Instant-Learning (InstL). The details of both

learning patterns are as follows:

• Episodic-Learning (EpL). As shown in Algorithm-1, aims to train a DQN after

the completion of an episode. Here, an episode is defined as a round in which an

AP adjusts the CCA threshold of devices in its cell one by one. To be specific,

as shown in Algorithm-1, an AP first initializes the DQN with weights θ and

θ′. Next, for each transmitter x in the AP’s cell, the AP selects an action

axt based on the observed state sxt as per ϵ-greedy. The corresponding reward

R(sxt , a
x
t ) and next state sxt+1 are then stored together with sxt and axt into

memory. Upon the completion of one episode, the AP samples a mini-batch

from memory and uses it to updates network weights, see Section 3.3.2.

• Instant-Learning (InstL). It first initializes DQN with weights θ and θ′. The

process of selecting action and storing experience into memory is the same

as EpL. However, InstL updates the neural network weights instantly after a

reward is obtained, as shown in Algorithm-2.
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Algorithm 1: Pseudocode for Episodic-Learning

Initialize: A, U ,{C1, C2, C3, . . . , C|A|}, θ, θ′

1 for episode=1,M do
2 for each transmitter x do
3 Observe a state sxt
4 Select an action at as per ϵ-greedy
5 Get reward R(sxt , a

x
t ), and observe next state sxt+1

6 Store data (sxt , a
x
t , R(sxt , a

x
t ), sxt+1) into memory

7 end
8 Sample a mini-batch of data from memory
9 Use mini-batch data to update θ of DQN as per Equ. 3.13

10 Decrease ϵ
11 Replace θ′ with θ every K iterations

12 end

Algorithm 2: Pseudocode for Instant-Learning

Initialize: A, U ,{C1, C2, C3, . . . , C|A|}, θ, θ′

1 for episode=1,M do
2 for each transmitter x do
3 Observe a state sxt
4 Select an action at as per ϵ-greedy
5 Get reward R(sxt , a

x
t ), and observe next state sxt+1

6 Store data (sxt , a
x
t , R(sxt , a

x
t ), sxt+1) into memory

7 Sample a mini-batch of data from memory
8 Use mini-batch data to update θ of DQN as per Equ. 3.13
9 Decrease ϵ

10 Replace θ′ with θ every K iterations

11 end

12 end

3.3.4 Extension with Transmit Power Control (TPC)

This chapter further considers combining Transmit Power Control (TPC) with CCA

threshold adjustment. This accomplished by modifying the action selection of an

agent. Specifically, upon seeing a state s of transmitter x, an agent will assign a CCA

threshold γx and a value of transmit power P t
x simultaneously to the transmitter x.

In this respect, a change in the definition of reward is needed, see Section 3.4.3.1 for

reasons. Here, this chapter introduces a penalty coefficient η, which balances the

weighting between throughput and transmit power in the reward. As a result, the
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reward for a transmitter x that adopts TPC with penalty is given as

Rp(s
x
t , a

x
t ) = ηR(sxt , a

x
t )− (1− η)P t

x. (3.15)

3.3.5 Discussion

The proposed solutions have a number of practical advantages. First, they do not

require cooperation between APs, which helps save on signaling overheads. Specif-

ically, they do not require information from neighboring APs. Instead, they use

information local to an AP, which can be obtained using IEEE 802.11k1. Note

also that cooperation between APs is impossible if APs are operated by different

organizations. Second, they are model-free, meaning they do not require as input

the probability distribution of interference experienced by an AP and its associated

users. Consequently, they are able to operate in any WiFi environment without

first conducting an extensive measurement campaign. Instead, an AP learns over

time the optimal policy or CCA threshold that maximizes its throughput for a given

WiFi network.

There are several improved deep Q-learning algorithms such as Double Deep Q-

Learning (Double-DQL) [133] and Dueling Deep Q-Learning (Dueling-DQL) [134].

Both of them provide the same results as traditional DQN. Therefore, in the follow-

ing section, this chapter only reports the results obtained using traditional DQN.

3.4 Evaluation

The experiments are conducted using Python 3.7.7. Multiple APs and users are

placed on a square area of dimension 100 m× 100 m. The number and location of

APs are fixed in each experiment; the number and location of users are randomly

generated using a Poisson Point Process (PPP) with a density of λu. Note that the

1IEEE 802.11k standardizes radio resource measurement interfaces, through which devices
are able to measure their link quality to neighboring devices, interference level and channel load
statistics [52]. This amendment also allows devices to share measured radio information.
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Table 3.2: Parameter values used for experiment

Parameter Value(s)

Area size (m2) 100 x 100

|A| Number of AP 2,4,6,8,10

λu user density (user/m2) 0.001,0.002,0.003,0.004

Default transmit power for AP (dBm) 20 [135]

Default transmit power for user (dBm) 15 [135]

Path loss exponent 2 [136]

Pn Environment Noise (dBm) -90

Default CCA threshold (dBm) -82 [135]

γmin (dBm) -82

γmax (dBm) -10

Available transmit power (dBm) -20 to 20

Number of evaluation time slot T 100

Table 3.3: Data rate look-up table [4]

SINR (dB) Data Rate (Mbps) SINR (dB) Data Rate (Mbps)

2 7.2 18 57.8

5 14.4 20 65

9 21.7 25 72.2

11 28.9 29 86.7

15 43.3

proposed learning approach is able to be generalized to other deployments as it only

relies on the locally obtained information, i.e., the historical data of interference.

Therefore, the learning approach is independent of the deployment of APs and

users or the size of networks. All devices operate over a 20 MHz channel, and the

achievable data rate of a link with a given SINR is as per Table 3.3. Note that if

the SINR of a transmission falls below two dB or a required SINR threshold, it is

considered as failed and receives a data rate of zero. Table 3.2 lists all parameter

values. The path loss is set to two to ensure the transmission range of each device

covers the whole area. Therefore, each device is able to hear the transmission of

all other devices, which creates a dense network. The neural network used by a

DQN agent is constructed using Tensorflow 1.14.0 [138] and Keras 2.2.5 [139] with
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Table 3.4: parameters for DQN agent

Parameter Value(s)

|S| 100

|A|
36 (DSC only)

324 (DSC with TPC)

Number of hidden-layers 2

Hidden-layer size
40 (DSC only)

330 (DSC with TPC)

Optimizer Adam [137]

α Learning rate 0.001

γ Discount factor 0.95

ε initial value 1

ε decay factor 0.004

Minimal ε 0.001

Batch size for training 32

Memory buffer size 200

Activation function ReLU

Target network update frequency 100

parameters listed in Table 3.4. Specifically, a neural network has two hidden-layers,

which is sufficient to approximate Q-values [140]. Each AP runs a DQN agent that

assigns a CCA threshold for each device in its cell. The RTS/CTS mechanism is

disabled as APs are within carrier sense range of one another; i.e., there are no

hidden terminals.

The proposed solutions are compared with the legacy Dynamic Sensitivity Con-

trol (DSC) algorithm reported in [42], which is denoted as Le-DSC. Briefly, Le-DSC

adjusts its CCA threshold of users based on the received power from their associated

AP. For each AP, its CCA threshold is based on the received power of neighboring

APs as well as its associated users. The network environment used to compare the

performance of InstL, EpL and Le-DSC is the same for each experiment. The num-

ber and locations of APs are fixed. In addition, the channel model and transmit

power of each device is also identical. The distribution of users is generated with the

same seed to ensure the number and location of users are identical. Two metrics are
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collected at receiver side: aggregated throughput and average throughput. The ag-

gregated throughput is the total throughput of all cells, and the average throughput

specifies the average throughput per device. For each experiment in Section 3.4.2

and Section 3.4.3.3, The agent running on each AP is trained until its performance

converges; this stage is called the Training stage. Then, the well-trained agents are

tested to record the performance. The following factors are studied:

1. User density λu. This parameter impacts the number of users. It increases λu

from 0.001 to 0.004 with an interval of 0.001. Note that this simulation does

not include user density higher than 0.004 as the intra-cell competition among

devices will be exacerbated.

2. Number of APs. This parameter impacts the number of cells and the number

of concurrent transmissions. The number of APs varies from two to fourteen

with an interval of two.

3. Transmit Power Control (TPC). It considers to combine TPC with CCA

threshold selection for each device. To this end, the action of a DQN agent

is redefined as assigning a CCA threshold and transmit power to a device

simultaneously.

3.4.1 Learning phase

EpL and InstL are first trained, and compared against Le-DSC. The network under

consideration has four APs and a user density of λu = 0.001. Training is carried out

for 500 episodes.

From Fig. 3.1, both InstL and EpL have better performance than Le-DSC. Le-

DSC has an average throughput of 3.61 Mbps, while InstL and EpL reach a through-

put of 5.86 Mbps, i.e., InstL and EpL outperform Le-DSC by 62.40%. The reason is

that the reward of proposed solutions corresponds to the throughput of a device. If

a device cannot transmit, it receives a reward of zero. Therefore, DQN agents will
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ensure each device can access the channel in each time slot such that devices have

the highest throughput over time. However, on the other hand, Le-DSC adjusts the

CCA threshold of a device based on the received power of associated devices. For

users that are close to their associated AP, the CCA threshold is high. Therefore,

these users have a high probability to transmit in each time slot. However, for users

that are far away from their associated AP, their CCA threshold is low, which means

they cannot always transmit. Consequently, devices that are controlled by Le-DSC

have a lower average throughput.

It is also noticed that the average throughput of InstL and EpL is lower than the

minimum data rate of 7.2 Mbps. This is because although InstL and EpL are able to

ensure a device transmitting in each time slot, a device may receive an SINR lower

than 2 dB due to the dynamic wireless environment. This means the transmission is

failed and thus has a data rate of zero. Consequently, the average throughput falls

below the minimum data rate of 7.2 Mbps over time.

It also shows in Fig. 3.1 that InstL converges significantly faster, i.e., it converges

to 5.86 Mbps within 20 episodes while EpL converges at around 250 episodes. This is

because the value of ε reduces at a different rate in InstL and EpL. The probability

that an agent explores the action space is controlled by ε, where a high ε value

means a high probability of random exploration. In InstL, a DQN agent updates its

neural network after assigning a CCA threshold, while in EpL, a DQN agent only

updates its neural network at the end of an episode. As a result, the ε value of InstL

and EpL reduces at a different rate, which results in different convergence speed.

3.4.2 Network environment

3.4.2.1 User density

In this section, the number of APs is fixed to four and the user density λu increases

from 0.001 to 0.004 with an interval of 0.001. Referring to Fig. 3.2 and Fig. 3.3,

one can find that both InstL and EpL have better performance than Le-DSC. This
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Figure 3.1: Results for Instant-Learning, Episodic-Learning and Le-DSC in fixed
network environment.

is because both DQN based algorithms have developed a CCA threshold selection

policy that selects CCA threshold with the maximum Q-value. One can also find

that both of the aggregated throughput and the average throughput decrease as

user density increases. This is because with increasing user density, the number

of users in each cell increases. As there is only one transmission allowed in each

cell, each user has decreasing probability to transmit along with increasing number

of users in each cell. Furthermore, with increasing user density, it is more likely

that there are many users that are placed in the overlapping area of adjacent cells.

These users experience high interference and will have a low throughput when they

are receiving data from their associated AP. These users also produce significant

interference to neighboring cells. Therefore, both of the aggregated throughput and

average throughput degrade.
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Figure 3.2: Results for aggregated throughput with different user density.

3.4.2.2 AP Numbers

This section studies the impact of different number of APs when the number and

location of users are fixed. The user density λu is fixed to 0.004 and the number of

APs increases from four to fourteen with an interval of two.

In Fig. 3.4 and Fig. 3.5, the aggregated throughput and average throughput

have the same trend. The reason is that with an increasing number of APs, the

distance between an AP and the number of associated users decreases. As a re-

sult, the received signal is high, which means devices are able to receive a high

SINR and thus, have high throughput. In addition, with an increasing number

of APs, the maximum number of concurrent transmissions increases. With more

links activated simultaneously, both of the average throughput and the aggregated

throughput increases. However, when the number of APs continues to increase,

the increasing number of concurrent transmissions produces significant amount of

interference. Therefore, both of the aggregated throughput and average throughput

decrease when the number of APs is larger than eight.
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Figure 3.3: Results for average throughput with different user density.

3.4.3 Transmit power control

This section evaluates the impact of TPC. The number of APs is set to four and the

user density λu is set to 0.001. TPC with and without penalty are both considered.

The result is compared with those obtained in Section 3.4.1. After that, this section

further studies the impact of distance between APs when using TPC.

3.4.3.1 TPC without penalty

The performance of TPC without penalty is first studied. Fig. 3.6 shows the average

throughput of InstL and EpL with TPC has no significant difference with those

without TPC. All algorithms converge to 5.85 Mbps. The reason is that the reward

is set as the throughput of a device. This means the best option for a DQN agent is

to transmit with the highest transmit power. As a result, devices are able to transmit

with the highest data rate and thus, have the highest throughput. However, for TPC,

the highest transmit power that a DQN agent can choose is 20 dBm. This value is

equal to the transmit power of devices when TPC is not leveraged. Therefore, the
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Figure 3.4: Results for aggregated throughput with different AP numbers.

average throughput of TPC and non-TPC converges to same value, which means

using TPC without penalty on reward has negligible improvement on the average

throughput. The convergence time for TPC is much slower than that of Non-TPC.

The reason is that the action size for TPC and Non-TPC is different. The action

size for Non-TPC is 36, while that of TPC is 324. The large action space requires

a DQN agent to explore more at each state which increases convergence time.

3.4.3.2 TPC with penalty

To study TPC with penalty, this section sets all other parameters to the same value

as Section 3.4.3.1. Fig. 3.7 shows that the average throughput of η = 90% is 41.8%

higher than that of Non-TPC. This is because a DQN agent receives high penalty on

reward if it chooses to transmit with high transmit power. As a result, a DQN agent

will choose low transmit power if it can still provide high data rate. In this respect,

a device produces less interference to neighboring cells, which means all devices can

transmit with high data rates and have a high throughput.
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Figure 3.5: Results for average throughput with different AP numbers.

When η = 10%, the average throughput of TPC is worse than that of Non-TPC,

i.e., the average throughput of TPC with η = 10% is 92.5% of that of Non-TPC.

This is because when η = 10%, throughput occupies 10% in reward whereas transmit

power occupies 90% in reward as penalty. This high percentage of penalty leads

to significant degradation on reward. As a result, a DQN agent will choose the

lowest transmit power for each device, which degrades the SINR of transmissions.

Consequently, the average throughput is low.

3.4.3.3 Distance between APs

This experiment studies the impact of distance between APs. Further, DQN agents

use TPC with penalty. Two APs are considered, and each AP has five users within

the range of five meters. The distance between the two APs increases from five to

40 meters to simulate different levels of interference. The value of η is respectively

set to 10% and 90% to train DQN agents with InstL and EpL separately. Then the

results are compared against DQN algorithm with Non-TPC, i.e., the DQN agent
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Figure 3.6: Results for TPC without penalty.

only assigns the CCA threshold and will not adjust the transmit power for each

device.

Fig. 3.8 shows the average throughput per device for different inter-AP distance.

The average throughput of all algorithms increases with increasing inter-AP dis-

tance. The average throughput of TPC with η = 10% and η = 90% increases from

0.73 Mbps to 4.35 Mbps and 2.19 Mbps to 7.08 Mbps as the AP distance increases

from 5 m to 40 m. Also, the performance of Non-TPC increased from 1.25 Mbps to

7.36 Mbps. This is because the interference from a neighboring cell decreases as the

distance between APs increases. Therefore, all devices are able to transmit with a

high data rate and thus, have a high throughput. Further, TPC with η = 90% has

better performance than Non-TPC when the distance is small. DQN agents that use

TPC with η = 90% outperform Non-TPC by 76.3% and 37.1% when the distance

between APs is 5 m and 10 m, respectively. This is because devices that use TPC

with η = 90% learn to use a low transmit power. To be specific, when APs are close

to each other, devices experience excessive amount of interference from neighboring
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Figure 3.7: Non-TPC and TPC with η = 10% and η = 90%.

cells. If a device uses a low transmit power to transmit, it significantly reduces

interference to a neighboring cell. This means all devices are able to transmit with

a high data rate. In this respect, the average throughput is high. In addition, as

the distance between APs increases, TPC with η = 90% has a similar performance

with Non-TPC. The average throughput of TPC with η = 90% is 4.40 Mbps and

7.05 Mbps when the AP distance is 20 m and 40 m, respectively. By contrast, the

performance of Non-TPC is 4.23 Mbps and 7.36 Mbps. In other words, the differ-

ence between TPC with η = 90% and Non-TPC is only 4.15% on average. This is

because TPC with η = 90% learns to increase the transmit power to achieve a high

data rate when the distance between APs is large. On the other hand, Non-TPC

agents are only able to adjust their CCA threshold to a value in Table 3.2. More-

over, they use the highest transmit power of 20 dBm. Also, agents using TPC with

η = 90% use the same transmit power as Non-TPC agents. Consequently, they have

similar performance. Moreover, TPC with η = 10% has the worst performance. The

average throughput of TPC with η = 10% is inferior to both TPC with η = 10%

55



5 10 20 40
Distance between APs (m)

0

1

2

3

4

5

6

7
Av
er
ag

e 
th
ro
ug

hp
ut
 (M

bp
s)

η=10% InstL
η=90% InstL
η=10% EpL
η=90% EpL
non-TPC

Figure 3.8: A comparison between Non-TPC and TPC with η = 10% and η = 90%
under different AP distances.

and Non-TPC. The average throughput for TPC with η = 10% is 49.22% of the

throughput of TPC with η = 90% and 59.93% of the throughput of Non-TPC for

all tested AP distances, respectively. This is because when η = 10%, the transmit

power degrades the reward by 90% of its value, see Equ. 3.15. Therefore, an agent

will consider using the lowest transmit power to get a high reward over time. As a

result, the average throughput is low.

3.5 Conclusion

This chapter considers a dense WiFi network where a number of APs are closely

placed in a given area. Each AP runs a DQN to learn assign the optimal CCA

threshold for each device in its cell. It proposes two learning patterns, namely EpL

and InstL. The simulation results indicate that with sufficient learning, both EpL

and InstL converge to the same optimal value. InstL converges faster than EpL in a

fixed network topology, i.e., 20 episodes versus 250 episodes, as it has more times of
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learning within one episode. In addition, both EpL and InstL outperform Le-DSC

by 62.4%. After that, it also finds that the average throughput is further improved

when TPC is enabled. With penalty coefficient η = 90%, the average throughput is

41.8% higher than that of non-TPC.

A problem with jointly optimizing CCA threshold and transmit power is that it

incurs a long training time. This is because the action space size increases signifi-

cantly when transmit power control is considered. As a result, a DQN agent needs

increasing time to learn the optimal action and achieves performance convergence.

To this end, next chapter considers to use a hierarchical control of CCA threshold

and transmit power to address this issue.
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Chapter 4

Hierarchical CCA threshold and transmit

power optimization

This chapter address the problem of jointly optimizing CCA threshold and transmit

power, which is a future research direction mentioned in Chapter 3. Naively jointly

optimizing CCA threshold and transmit power takes extra training time as shown

in Chapter 3. This is because the action size increases dramatically, and thus a

DQN agent needs long time to explore in order to learn the optimal policy. In

addition, considering the traffic arrives at an AP may vary over time, an AP needs

to carefully select its transmit power and CCA threshold to ensure it has sufficient

capacity to avoid queue overflow. To this end, this chapter proposes a hierarchical

approach to address the said issue when jointly optimizing the CCA threshold and

transmit power. It first formulates the joint optimization problem at hand as a

Semi-Markov Decision Process (Semi-MDP) [141]. Then, it proposes a Hierarchical

Reinforcement Learning (HRL) based approach, using DQN as learning algorithm,

to solve the Semi-MDP. The aim is to minimize the queue length of an AP given

random traffic arrival.

The rest of this chapter is organized as follows. Section 4.1 presents the system
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Table 4.1: Notations and explanation.

Notations Explanation

Ā The set of APs

Ui The set of users served by AP i

dij The Euclidean between AP i and user j

γt
i The CCA threshold of AP i

P t
i The transmit power of AP i

qti The length of queue of AP i

L Packet size (in bits)

δ Time slot duration

ω The path-loss exponent

βt
ij The SINR from i to j

rij(β
t
ij) Data rate given SINR βij

I ti The aggregated interference to i

N t
i The set of interfering APs of i

λt
i Number of packets that arrive at queue qi

γ A discount factor

model. Section 4.2 presents a brief background of Semi-MDP and HRL. After that,

Section 4.3 provides details of the proposed HRL approach. Lastly, Section 4.4

presents the simulation results, and Section 4.5 concludes the chapter.

4.1 System Model and Problem

Time is divided into a set T of time slots; each time slot has a fixed duration of δ

and is indexed by t. The set of APs is denoted as Ā, and the set of users served

by AP i ∈ Ā is denoted as Ui. The Euclidean distance between AP i and user j is

dij. Each AP i has a queue of packets to transmit, and the length of the queue at

the end of time slot t is qti , where 0 ≤ qti ≤ qmax. Let λt
i be the number of packets

that arrive at the queue of AP i at the beginning of time slot t. The value of λt
i is

randomly sampled from a probability distribution. Further, each packet has a fixed

size of L bits.

All APs operate over the same wireless channel, and they use CSMA/CA for
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channel access. An AP i uses the CCA threshold γt
i to determine whether it is

allowed to transmit at the beginning of a given time slot t. Denote by Āt the set of

APs that are able to transmit in time slot t. Therefore, the set of neighboring APs

of AP i that are transmitting in time slot t is given by N t
i = {k | k ∈ Āt, k ̸= i}.

Block fading channels are considered. The channel gain remains fixed within one

time slot, and varies across different time slots. The channel gain from AP i to user

j in time slot t is gtij. The radio propagation between APs and users is modeled

using the well-known Log-distance path loss model [142]:

PL(dij)[dB] = PL(d0) + 10ωlog10

(
dij
d0

)
+ Xg, (4.1)

where the first two terms on the right hand side model large-scale fading, and the

last term models random attenuation. Specifically, the term PL(d0) (in dB) is the

path loss at reference distance d0, and ω is the path loss exponent. The last term

Xg (in dB) is a random variable drawn from a zero-mean Gaussian distribution that

represents shadowing effect. Denote gtij = 1

10PL(dij)/10
.

The Signal-to-Interference-plus-Noise ratio (SINR) of a transmission from AP i

to user j in time slot t is denoted as βt
ij, which is calculated as

βt
ij =

P t
i g

t
ij

I tj + N0

, (4.2)

where P t
i is the transmit power (in Watts) of AP i in time slot t, and N0 is the

ambient noise power (in Watts). The term I tj denotes the aggregated interference

to user j in time slot t, which is given by

I tj =
∑
k∈N t

i

P t
kg

t
kj. (4.3)

The SINR determines the data rate of a transmission. In particular, each value

of SINR βt
ij corresponds to a data rate, denoted as rij(β

t
ij). Note that the proposed

solution does not require interference information from interfering APs.

60



Recall that each AP has a queue of packets. As a result, the length of its queue

(in packets), at the end of a given time slot t, evolves as per

qti =


min(max(0, qt−1

i + λt
i −

rij(β
t
ij)δ

L
), qmax), if i ∈ Āt

min(qt−1
i + λt

i, qmax), Otherwise.

(4.4)

Let Γ and P be the set of valid CCA thresholds and transmit powers, respectively.

Denote by π a policy, which is used by an AP to select a CCA threshold γt ∈ Γ and

transmit power P t ∈ P for each time slot t. Let Ω be a collection of policies. The

AP’s goal is to optimize its reward or minimize its average queue length. Formally,

for a given policy π running on an AP i, the expected reward is

R(π) = lim
|T |→∞

1

|T |
Eπ

 |T |∑
t=1

qti

 . (4.5)

The problem is to find the optimal policy π∗ that minimizes the objective R(π).

Mathematically,

π∗ = arg min
π∈Ω

R(π). (4.6)

4.2 A Semi-Markov Decision Process Model

This section first presents a brief background on Markov Decision Process (MDP) [51]

and Semi-Markov Decision Process (Semi-MDP) [143]. Then, it will introduce

the Hierarchical Reinforcement Learning (HRL) framework [141] and the Deep Q-

Network algorithm [129].

4.2.1 MDP and Semi-MDP

An MDP provides a mathematical framework for decision making problems [51]. At

a given time step t, a controller/agent observes its environment to obtain the current

state st ∈ S, where S is the set of states. Then, the agent chooses an action at from

61



the set of available actions A following a policy π, denoted as at = π(st). The agent

executes the action at to receive an instant reward R(st, at). Action at also causes a

transition from state st to st+1 according to the transition probability P(st+1|st, at).

Define V π(s) as the value function that measures the expected long-term reward for

a state s under policy π. It represents the cumulative discounted reward obtained

by an agent that starts from state s and chooses actions as per policy π thereafter.

Formally, V π(s) is given by

V π(s) = Eπ

[ ∞∑
k=0

γkR(st+k, π(st+k)) | st = s

]
, (4.7)

where γ ∈ [0, 1] is a discount factor.

An agent’s objective is to find the optimal policy π∗ that maximizes the value

function for all states, denoted as V ∗. This optimal policy π∗ can be obtained by

first solving to optimality Eq. (4.7) using Bellman equation [51]. For a given state

st ∈ S, V ∗ is given by

V ∗(st) = max
at∈A

[
R(st, at)

+ γ
∑

st+1∈S

P(st+1|st, at)V ∗(st+1)

]
. (4.8)

Then, the optimal policy π∗ for each state st ∈ S is given as

π∗(st) = arg max
at∈A

[
R(st, at)

+ γ
∑

st+1∈S

P(st+1|st, at)V ∗(st+1)

]
. (4.9)

A key assumption of MDP is that the elapsed time to transition from the cur-

rent to the next state is negligible [143]. However, for some problem instances,

the transition time between states is a random variable. These problems can be

represented as a Semi-MDP [143]. Specifically, Semi-MDP captures the fact that

the current state st transitions to the next state st+τ after τ time steps. Then, the
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transition probability is re-written as P(st+τ , τ |st, at), and the reward R(st, at, τ) is

the cumulative discounted reward over the transition time, which is given by

R(st, at, τ) =
t+τ−1∑
k=t

γk−tR(sk, ak). (4.10)

As a result, the Bellman equation for solving optimal value function of Semi-MDP

is

V ∗(st) = max
at∈A

[
R(st, at, τ)

+
∑

τ,st+τ∈S

γτP(st+τ , τ |st, at)V ∗(st+τ )

]
, (4.11)

The optimal policy for Semi-MDP is thus, given by

π∗(st) = arg max
at∈A

[
R(st, at, τ)

+
∑

τ,st+τ∈S

γτP(st+τ , τ |st, at)V ∗(st+τ )

]
. (4.12)

4.2.2 Hierarchical Reinforcement Learning

The concept of Option, denoted as o, is introduced in [141] as a type of HRL frame-

work to solve Semi-MDP problems. An Option o consists of a tuple < Io, πo, βo(s) >,

where Io ⊆ S is a set of states in which an agent has available to an Option if its

state s belongs to Io, i.e., s ∈ Io. Define πo as the policy used for choosing actions

if Option o is taken, and βo(s) is an indicator function that determines if an Option

o is terminated in state s. An agent selects an Option o in a given state st, and

after entering Option o, it selects an action following the policy πo until Option o

terminates according to βo(st+τ ) after τ time steps. Next, the agent selects the next

Option and continues until the Semi-MDP terminates.
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The total reward for Option o is given by

R(st, o) = Eπo

[ t+τ−1∑
k=t

γk−tR(sk, ak)

]
. (4.13)

Denote by P(st+τ |st, o) the state transition probability from state st to st+τ after

taking Option o. This probability is formally defined as

P(st+τ |st, o) =
∞∑
τ=1

γτp(st+τ , τ), (4.14)

where the p(st+τ , τ) is the probability that the Option o initiated at state st and

terminates at st+τ after τ time steps.

Let µ be the policy that selects an Option for an agent in a given state, denoted

as o = µ(st). Let V ∗
O be the optimal value function over a set of available Options

O. This optimal value function is solved via Bellman equation as

V ∗
O(st) = max

o∈O

[
R(st, o) +

∑
st+τ∈S

P(st+τ |st, o)V ∗
O(st+τ )

]
. (4.15)

The objective is to find the optimal policy µ∗(st) over O for each state, which is

formalized as

µ∗(st) = arg max
o∈O

[
R(st, o) +

∑
st+τ∈S

P(st+τ |st, o)V ∗
O(st+τ )

]
. (4.16)

4.2.3 Deep Q-Network

Recall that the transition probability between states is unknown. Therefore, the

Deep Q-Network (DQN) [129] is used to learn both the optimal policy over Option

µ and the policy of each Option πo.

A DQN is able to learn the optimal policy by approximating the optimal state-

action value (also known as the Q-value) by interacting with the environment [129].

Specifically, define Q-network Q(st, at, θ), where θ represents the parameter of a
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Deep Neural Network (DNN). The input to a Q-network is the state, and the output

corresponds the Q-value of each action. A DQN consists of two Q-networks, namely

the evaluation Q-network Q(st, at, θ) and the target Q-network Q(st, at, θ
′). The

data used for updating the said Q-networks is randomly sampled from a memory

bufferM that stores the historical pairs of state, action, reward and next state. For

each iteration, a DQN uses the Bellman equation to update its θ to minimize a loss

function as per

L(θ) = E[(y −Q(st, at, θ)2], (4.17)

where

y = R(st, at) + γ max
a∈A
Q(st+1, a, θ

′). (4.18)

For every K iterations, a DQN replaces θ′ with θ, where K is a pre-defined integer.

4.3 An HRL based approach

This section first instantiates a Semi-MDP model based on the Option framework

[141]. Next, it proposes an HRL based approach that learns to optimize the transmit

power and CCA threshold of an AP. The use of an HRL based approach is critical,

especially when there is a large action space, i.e., |A| = |Γ| · |P| where Γ and P is

the set of CCA thresholds and transmit powers, respectively. Therefore, standard

DRL algorithm, such as DQN, may have a poor performance as it cannot efficiently

learn the optimal policy from a large action space [144]. To this end, an HRL based

approach improves the learning efficiency of an agent or AP by dividing the said

optimization problem into two layers and learning the optimal policy for each layer

[143].

4.3.1 A Semi-MDP model

The following Semi-MDP model considers an AP i as an HRL agent. As per Fig. 4.1,

AP i observes the state st from the environment, and chooses an HRL action. The
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Figure 4.1: A flowchart of the proposed HRL model. In each time slot, the envi-
ronment state is fed to both Layer-1 and Layer-2. In Layer-1, the HRL agent uses
policy µ to select an Option o for the input state if there is currently no selected
Option. Otherwise, the previously selected Option remains until terminated. Next
in Layer-2, the HRL agent uses policy πo, which is provided by the selected Option
o, to select an action for the input state. The selected Option action are then exe-
cuted, which then yields a reward and a new state.

HRL action corresponds to Option o and action at. Specifically, AP i will first use

policy µ to select and initiate Option o in Layer-1. Option o remains fixed until it

is terminated according to βo(.). Then, AP i uses policy πo to select action at in

Layer-2. Note, policy πo is provided by Option o as specified in Section 4.2.2. The

selected Option o and action at are the output of an HRL action, which are then

executed to obtain a new state and reward.

For AP i and user j in time slot t, the state, option, action, reward and transition

probability are defined as follows:

• State: The state st is a tuple that contains the queue length and the in-
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terference experienced by AP i and user j in the last time slot, i.e., st =

(qt−1
i , I t−1

i , I t−1
j ). Note, the interference I t−1

j experienced by user j can be

collected using IEEE 802.11k [52].

• Option: An Option o represents a transmit power P t
i ∈ [Pmin, Pmax] for AP i.

Each Option o terminates when the AP has transmitted P packets since the

Option is initiated, where P is an integer that is used to terminate Option o.

The value of P is obtained through experimentation. The indicator function

βo(.) is given by

βo(st+τ ) =


1, if

∑t+τ−1
k=t

rij(β
k
ij)δ

L
≥ P,

0, Otherwise,

(4.19)

where τ is the number of time slots that have elapsed since the initiation of

Option o.

• Action: An action at corresponds to a value of CCA threshold γt
i ∈ [γmin, γmax].

Each action at terminates at the end of time slot t.

• Reward: The reward for an action R(st, at) is the number of packets trans-

mitted in time slot t. Further, the reward is set to −10 if the queue overflows,

i.e., qti ≥ qmax. The reward for an Option R(st, o) corresponds to the cumula-

tive discounted reward recorded during the execution of the Option o, and is

calculated as per Eq. (4.13).

• Transition probability function:The transition probability function P(st+1|st, at)

is unknown, which means the proposed approach is model-free. This is because

the packets arrival and the interference experience by an AP and users are not

available in practice.
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4.3.2 HRL based approach

This chapter proposes to use DQNs to learn the optimal policy for both Layer-1

and Layer-2. Algorithm-3 shows the steps of the proposed HRL approach. First, in

Layer-1, an AP observes the state st and selects an Option by calling the function

EpsilonGreedy(.). Here, the function EpsilonGreedy(.) chooses an Option fol-

lowing the ϵ − greedy strategy. That is, AP i randomly chooses an Option o ∈ O

with an exploration probability ϵµ. Otherwise, the Option with the highest Q-value

arg maxo∈OQ(st, o, θµ) is taken. Further, to ensure convergence, the value of ϵµ de-

creases after each time of calling EpsilonGreedy(.), see line 7, where ϵdec is the

decay rate, and ϵmin is the minimum exploration probability. AP i then enters Layer-

2. In Layer-2, AP i observes state st+τ and calls the function EpsilonGreedy(.) to

select an action at+τ . Here, the symbol τ represents the number of time slots that

have elapsed since an Option is initiated. The action at+τ is then executed to obtain

the rewardR(st+τ , at+τ ) and next state st+τ+1. AP i collects the state-action-reward

pair (st+τ , at+τ ,R(st+τ , at+τ ), st+τ+1) and uses it to update θo. AP i then goes back

to line 10 and selects next action in Layer-2 until Option o terminates according

to βo(.), where it returns a value of one if Option o is to be terminated. Upon the

termination of Option o, AP i calculates the reward R(st, o) for Option o, and uses

it to update θµ for policy µ. Then, AP i executes line 4 and selects another Option

until the learning process ends.

4.4 Evaluation

Simulations are conducted using Python 3.7.7, and Keras 2.2.5 [139] with Tensor-

Flow 1.14 [138] on an Intel i7-8700 computer with 16 GB RAM. All parameter values

are listed in Table 4.2 and 4.3. The simulations consider a single AP, labeled as AP

i, that runs the proposed HRL based approach. AP i has four associated users, and

they are placed uniformly within 5 m range. Both AP i and its associated users ex-

perience interference from neighboring cells that is measured using Eq. (4.3), where
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Algorithm 3: An HRL based learning approach.

Initialize: θµ, θ
′
µ,Mµ, ϵµ for policy µ in Layer-1

Initialize: {(θo, θ′o,Mo, ϵo | o ∈ O} for each policy πo in Layer-2
1 t = 1
2 while not terminated do
3 /**************** Layer-1 ****************/
4 τ = 0
5 Observe st
6 o = EpsilonGreedy(st,O, θµ, ϵµ)
7 ϵµ = max[ϵµϵdec, ϵmin]
8 Execute o
9 /**************** Layer-2 ****************/

10 while o not terminated do
11 Observe st+τ

12 at+τ = EpsilonGreedy(st+τ ,A, θo, ϵo)
13 ϵo = max[ϵoϵdec, ϵmin]
14 Execute at+τ

15 Observe R(st+τ , at+τ ) and st+τ+1

16 Store (st+τ , at+τ , R(st+τ , at+τ ), st+τ+1) into Mo

17 Update θo as per Eq. (4.17)
18 Every K iterations, θ′o = θo
19 τ = τ + 1

20 end
21 /************ End of Layer-2 ************/
22 Calculate R(st, o) as per Eq. (4.13)
23 Observe st+τ

24 Store (st, o,R(st, o), st+τ ) into Mµ

25 Update θµ as per Eq. (4.17)
26 Every K iterations, θ′µ = θµ
27 t = t + τ
28 /************ End of Layer-1 ************/

29 end

I use another AP to simulate and induce the said interference. The neighboring AP

is able to induce the aggregated amount of interference from a dense network due

to shadowing effect. The achievable data rate for a transmission with a given SINR

is discretized into nine levels as per Table 4.4.

The following algorithms/rules are implemented and compared:

• HRL-TPCCCA: An HRL based algorithm. For AP i, the set of Options at

Layer-1 corresponds to different transmit power levels, and the set of actions

at Layer-2 corresponds to the set of CCA thresholds.
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Table 4.2: Parameter values.

Environment Parameters Value(s)

Number of APs 2

Number of users per AP 4

Distance between APs (meter) 20

Available CCA threshold (dBm) -80 to -20

Available transmit power (dBm) 0 to 25

Carrier frequency (GHz) 2.4

Channel bandwidth (MHz) 20

Path loss exponent 3.5

Path loss reference distance d0 (meter) 1 (dB) [136]

Path loss at reference distance PL(d0) 40.05 (dB) [136]

Environment noise (dBm) -90

Initial queue length of each AP (packets) 2000

Maximum queue length of each AP (packets) 16000

Packet size (byte) 2304

Duration of each time slot (seconds) 0.0045

RTS/CTS mechanism Disabled

• Fix Layer One (HRL-FLO): AP i adopts HRL-TPCCCA, but fixes the

transmit power to 25 dBm at Layer-1, and only learns to select CCA threshold

at Layer-2.

• Fix Layer Two (HRL-FLT): AP i adopts HRL-TPCCCA, but fixes the

CCA threshold to -82 dBm at Layer-2, and only learns to select transmit

power at Layer-1.

• HRL-CCATPC: An HRL based algorithm. For AP i, the set of Options at

Layer-1 corresponds to the set of CCA thresholds, and the set of actions at

Layer-2 corresponds to the set of transmit power levels.

• Dynamic Sensitivity Control (DSC) [46]: AP i periodically monitors the

successful transmission rate. If the successful transmission rate falls below a

pre-defined threshold, AP i increases its CCA threshold with a pre-defined step

size of 5 dB. Otherwise, it decreases its CCA threshold with the pre-defined

step size.
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Table 4.3: Parameter values used by HRL agents.

Parameters Value(s)

Policy network Deep Q-Network

Neural network Fully connected

Number of hidden layers 2

Number of neurons in each layer 32

Learning rate α 10−3

Reward discount factor γ 0.95

Initial exploration rate ϵ 1

Final exploration rate ϵmin 0.01

Decay factor ϵdec 0.999

Memory size (samples) 1024

Batch size for training (samples) 32

Target network replacing frequency (time slots) 100

Option termination threshold (packets) 100

Activation function ReLU

Optimizer Adam [137]

• Legacy: AP i uses a fixed transmit power of 25 dBm and CCA threshold of

-82 dBm.

The conducted simulation has three parts: Training, Test and Multiple APs. In

Training, HRL agents are trained over a fixed network environment where each AP

has saturated traffic, i.e., the queue length of an AP never drops to zero. Each

episode is set to have 3000 time slots. For each episode, the following metrics are

collected:

• Average number of transmitted packets: This is the average number of

packets that are transmitted successfully per time slot.

• Average success ratio: This is defined as the average ratio of time slots

where the AP successfully accesses the channel over the total number of time

slots. This metric is measured when the queue of the AP is not empty.

In Test, the well-trained HRL agents are tested to study two factors: traffic model

and interference intensity. For the traffic model, the number of packets arriving at
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Table 4.4: Data rate as per SINR datasheet [5, 6]. The datasheet in [5] outlines the
relationship between SNR and MCS index, while the author in [6] provides a table
that maps a data rate to a given MCS index. By jointly using [5] and [6], the data
rate in this table is obtained.

SINR (dB) Data Rate (Mbps) SINR (dB) Data Rate (Mbps)

2 7.2 18 57.8

5 14.4 20 65

9 21.7 25 72.2

11 28.9 29 86.7

15 43.3

each time slot is sampled from a Poisson distribution, where the arrival rate varies

from five to 40. Then in Section 4.4.2.3, a traffic trace data from [145] is used. To

study the impact of interference intensity, the distance between APs varies from ten

to 30. The aim is to study the impact of varying amount of cumulative interference

to AP i, which is equivalent to varying number of neighboring APs. The average

queue length of AP i is collected for a test period with T time slots, and it is

calculated as 1
T

∑T
t=1 q

t
i .

Lastly, in Multiple APs, two interfering APs are placed 20 m apart; each runs

the proposed HRL approach and has four associated users. The two APs are trained

to compare their average throughput and success ratios.

The neural network used in each simulation consists of two fully connected hidden

layer. Each layer has 32 neurons with ReLU as activation function; see Table 4.3

for parameter values.

4.4.1 Training stage

Referring to Fig. 4.2 and 4.3, HRL-TPCCCA, HRL-CCATPC and HRL-FLO have

the best performance. From Fig. 4.2, the average number of transmitted packets for

HRL-TPCCCA, HRL-CCATPC and HRL-FLO increases and converges to 20.98.

These three algorithms are able to learn the optimal CCA threshold over time and

transmit a high average number of packets. Indeed, the optimal CCA threshold
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Figure 4.2: Elapsed time versus the number of transmitted packets.

allows APs to transmit in each time slot. This can be observed in Fig. 4.3, where the

average success ratio for HRL-TPCCCA, HRL-CCATPC and HRL-FLO converges

to one. In addition, HRL-FLO converges faster than HRL-TPCCCA and HRL-

CCATPC, whereby it converges to 20.98 within 10 episodes while HRL-TPCCCA

and HRL-CCATPC converge at around 40 episodes. The reason is because HRL-

FLO uses a fixed transmit power of 25 dBm, and it only needs to learn to assign CCA

thresholds. To this end, the optimal policy is to set a high CCA threshold in order

to transmit in each time slot. By contrast, HRL-TPCCCA and HRL-CCATPC need

to learn both the CCA threshold and transmit power of an AP, which require more

episodes to converge.

The second best algorithm is DSC, where it transmits 18.91 packets on aver-

age, meaning HRL-TPCCCA, HRL-CCATPC and HRL-FLO outperform DSC by

17.14%. This is because HRL-TPCCCA and HRL-CCATPC assign the best trans-
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Figure 4.3: Elapsed time versus channel access success.

mit power and CCA threshold, and HRL-FLO uses the best CCA threshold. In

contrast, DSC adjusts the CCA threshold of an AP based on historical channel

access data. It will only increase an AP’s CCA threshold when the ratio of suc-

cessful channel access drops below a pre-defined threshold. Therefore, DSC has a

lower average success ratio than HRL-TPCCCA, HRL-CCATPC and HRL-FLO.

As shown in Fig. 4.3, HRL-TPCCCA, HRL-CCATPC and HRL-FLO have value of

1.0 for average success ratio and DSC has a value of 0.85. As a result, DSC has

a lower number of transmitted packets than HRL-TPCCCA, HRL-CCATPC and

HRL-FLO.

HRL-FLT and Legacy have the worst performance. Legacy has a performance

of 10.51 packets per time slot. This is because Legacy has a fixed transmit power

of 25 dBm and CCA threshold of -82 dBm. This CCA threshold is conservative

and prevents AP i transmitting parallelly with its neighbor. This can be observed
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Figure 4.4: Impact of arrival rate on average queue length.

in Fig. 4.3 where the average success ratio of Legacy is 0.51. Consequently, the

average number of transmitted packets is low. However, it shows that HRL-FLT

has the same performance as Legacy. This is because HRL-FLT only learns to

adjust transmit power, and it has a fixed CCA threshold of -82 dBm. Therefore, it

is not able to increase its opportunity to transmit. Therefore, the optimal option

for HRL-FLT is to transmit with the highest transmit power when it is able to

transmit, which means HRL-FLT uses the same CCA threshold and transmit power

as Legacy. Therefore, both HRL-FLT and Legacy have the lowest throughput.

4.4.2 Test stage

4.4.2.1 Poisson Traffic Model

In this experiment, Poisson traffic model is considered with arrival rate that increases

from five to 40; it runs 10000 time slots for each arrival rate to collect the results.
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Figure 4.5: Impact of arrival rate on channel access success.

Fig. 4.4 and 4.5 show the impact of arrival rates. From Fig. 4.4, the average queue

length for HRL-TPCCCA, HRL-CCATPC and HRL-FLO is around zero when the

arrival rate is not larger than 20. As shown in Fig. 4.2, these three algorithms are

able to achieve a throughput of 20.98 packets over time. Therefore, they are able

to empty the queue of an AP when the traffic is low. However, as the arrival rate

increases, APs do not have sufficient throughput to deliver arriving packets, which

leads to a significant increase in queue length. This can be observed in Fig. 4.4, where

the average queue length increases from 220 to 15490 when the arrival rate increases

from 20 to 40. A similar trend for DSC is observed, where it has a throughput of

17.91 in Fig. 4.2. The average queue length for DSC reduces to zero when the arrival

rate is below 17.91. On the other hand, for HRL-FLT and Legacy, they have a low

throughput of 10.51. Therefore, they are not able to reduce their queue length when

arrival rate exceeds 10.51. From Fig. 4.5, the average success ratio does not change
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Figure 4.6: Increasing AP distance versus average queue length.

with different arrival rate. This is because the arrival rate has no impact on the

interference intensity at APs, and thus, has no impact on spatial reuse.

4.4.2.2 Varying AP distance

This section studies the impact of interference intensity. The arrival rate is fixed to

20 packets, and the distance between APs varies. For each AP distance, all compared

algorithms/rules run 10000 time slots to collect the average results. From Fig. 4.6

and 4.7, the average queue length decreases as the distance between APs increases.

The average queue length for HRL-TPCCCA, HRL-FLO and HRL-CCATPC is

around 8000 when the AP distance is 10 m. This is because the interference from the

neighboring AP is high when the distance between APs is small. High interference

leads to low SINR for each transmission, and causes a low data rate for the AP.

In addition, high interference may exceed the CCA threshold on the AP, therefore
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Figure 4.7: Increasing AP distance versus channel access success.

preventing the AP from transmitting. Hence, APs do not have sufficient capacity to

transmit arriving packets, which results in a high average queue length. In Fig. 4.6,

the queue length of HRL-TPCCCA, HRL-FLO and HRL-CCATPC decreases to

around 200 packets when distance between APs increases to 20 m. The reason is

because there is less mutual interference between APs as the distance between them

becomes larger. Therefore, APs are able to transmit with a high data rate to empty

their queue. From Fig. 4.7, the average success ratio for HRL-TPCCCA, HRL-

FLO and HRL-CCATPC remains fixed. They all have a value of 1.0 for average

success ratio, meaning they are always able to transmit. This is because these three

algorithms learn to adjust the CCA threshold to increase transmission opportunity.

HRL-TPCCCA, HRL-CCATPC and HRL-FLO have better performance than

DSC. The average queue length of DSC declines from 13134 packets to 10223 packets

as the distance between APs increases from 10 m to 30 m. The average queue length
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Figure 4.8: Average queue length with different trace data.

of the three HRL based algorithms is 9240 packets lower than DSC, which means

the three HRL based algorithms outperform DSC by 85% on average. Therefore, an

AP using an HRL based algorithm experiences lower queuing delays than DSC.

Fig. 4.6 further shows that the average queue length for Legacy and HRL-FLT

is not affected by the distance between APs. The average queue length for both of

them is near 16000. This is because these two algorithms are not able to adjust CCA

threshold to improve spatial reuse. Although the distance between APs increases

from 10 to 30 m, the resulting interference from a neighboring AP, with 25 dBm

transmit power, decreases from -50.05 to -66.75 dBm, which is higher than -82 dBm.

This means AP i is not able to transmit concurrently with a neighboring AP to

improve spatial reuse. This can be observed from Fig. 4.7 where Legacy and HRL-

FLT both have the lowest average success ratio of 0.5. Consequently, APs using

Legacy and HRL-FLT are not able to efficiently deliver packets, which results in

queue overflow.

4.4.2.3 Trace Data

This section considers the trace data obtained from [145]. Fig. 4.8 shows the aver-

age queue length of each algorithm with different traffic trace data. HRL-TPCCCA,

HRL-CCATPC and HRL-FLO always have the lowest queue length. i.e., their aver-

age queue length is 8.9. The second-best algorithm is DSC, with an average queue

length of 11.78; i.e., the three HRL-based algorithms outperform DSC by 24.4% on
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Figure 4.9: Elapsed time versus average number of transmitted packets of two APs.

average. HRL-FLT has a similar performance with Legacy. They all have an aver-

age queue length of 18.7. As shown in Fig. 4.8, HRL-TPCCCA and HRL-CCATPC

always have similar performance. There is significant performance difference be-

tween HRL-FLO and HRL-FLT. Referring to Fig. 4.8, the average queue length of

HRL-FLO is shorter than that of HRL-FLT by 52.4%. This means optimizing the

CCA threshold of an AP as opposed to its transmit power delivers more packets.

4.4.3 Multiple APs

Here, a multi-agent scenario with interfering APs is studied. Note that the two

APs do not cooperate with each other and learn their optimal policy independently

using the proposed HRL based approach. Fig. 4.9 and 4.10 show the average num-

ber of transmitted packets and average success ratio of the two APs, respectively.

From Fig. 4.9 and 4.10, HRL-TPCCCA, HRL-CCATPC and HRL-FLO are able to
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Figure 4.10: Elapsed time versus average success ratio of two APs.

achieve the highest success ratio and throughput over time. In Fig. 4.10, the average

success ratio for HRL-TPCCCA, HRL-CCATPC and HRL-FLO converges to one

after training. In Fig. 4.9, the average number of transmitted packets for HRL-

TPCCCA, HRL-CCATPC and HRL-FLO increases and converges to 20.66 packets

per time slot. Note that this value is the average number of transmitted packets

for two APs, meaning both of them are able to transmit 20.66 packets on average

in each time slot. This shows that an AP that runs the proposed HRL approach is

able to learn the optimal policy in a multi-agent non-cooperative environment. The

second best algorithm is DSC; it is able to transmit 18.08 packets per time slot and

has a average success ratio of 0.86. Further, HRL-FLT has a decreasing throughput.

The average number of transmitted packets for HRL-FLT decreases from 13.01 to

9.58 packets per time slot, and average access ratio decreases from around 0.7 to

0.5. Lastly, Legacy is able to transmit 10.58 packets per time slot and has a value of
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0.5 for the average success ratio. This is because with a transmit power of 25 dBm

and a CCA threshold of -82 dBm, only one AP is allowed to transmit in each time

slot.

4.5 Conclusion

This chapter aims to improve spatial reuse and minimize the queue length of APs

with random traffic arrival. Each AP runs an HRL agent that learns the optimal

transmit power and CCA threshold. Advantageously, each AP only requires local

information such as interference and queue length. The simulation results indicate

that the proposed HRL based approach is able to learn the optimal transmit power

and CCA threshold. Experiments over traffic trace data indicate that the average

queue length of an HRL-equipped AP is shorter than DSC and Legacy by 24.4%

and 52.4%, respectively.

Both Chapter 3 and 4 consider methods to improve spatial reuse. However, they

only consider optimizing over one single channel. Current WiFi networks support

channel bonding to improve the per transmission capacity. To this end, the next

chapter considers optimizing spatial reuse over multiple channels.
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Chapter 5

Joint spatial reuse and channel bonding

optimization

As discussed in Chapter 1 and 2, current WiFi networks support channel bonding

to boost per transmission capacity. A number of prior works have considered devel-

oping channel bonding policies to increase network capacity. However, the majority

of them require global information and aim to reduce or avoid interference. Further,

they only consider bonding adjacent channels. To this end, this chapter addresses

the problem of optimizing channel bonding with the assistant of spatial reuse. It

considers adjusting the CCA threshold and transmit power used on each bonded

channel to improve the spatial reuse on multiple channels. Further, it considers

bonding both adjacent and non-adjacent channel bonding for an AP; this is now

supported in IEEE 802.11ax [18]. Lastly, it considers random traffic arrival.

This chapter outlines a distributed RL approach that runs on an AP. The AP is

only aware of is local information and learns to select a set of channels, accompa-

nied with the transmit power and CCA threshold allocated on each selected channel.

The AP has random traffic arrival and its aim hence, is to maximize its throughput

and minimize its queue length. The challenge is that the traffic arrival and inter-
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ference from neighboring cells are both random, which impacts the queue length

and throughput. Therefore, this chapter formulates the optimization problem as a

three-layer MDP, which is solved by a three-tier learning approach.

The rest of this chapter is organized as follows. Section 5.1 presents the system

model and problem, and Section 5.2 outlines a brief background of MDP, DQN

and Deep Deterministic Policy Gradient (DDPG). After that, Section 5.3 provides

details about the proposed three-tier learning approach. Lastly, Section 5.4 presents

simulation results, and Section 5.5 concludes this chapter.

5.1 System Model

Table 5.1 lists the notations. Time is divided into T time slots; each time slot has a

fixed length of δ seconds and it is indexed by t. An AP i has a set of users U . The

Euclidean distance between AP i and a user u ∈ U is diu. There are N channels and

the set of channels is denoted as C; each channel has a fixed bandwidth of B MHz.

In each time slot t, AP i transmits to a user u over a set of channels Cti ⊆ C. The

interference experienced by AP i and user u is caused by a set of neighboring APs,

denoted as Ni. Further, let Ctj be the set of channels used by a neighboring AP

j ∈ Ni in time slot t.

All APs use CSMA/CA for channel access. Specifically, AP i uses its CCA

threshold γt
c to determine whether it is allowed to transmit on channel c in time slot t.

Moreover, denote by N t
i ⊆ Ni as the set of neighboring APs that are transmitting at

the beginning of time slot t. Therefore, on channel c, the set of neighboring APs that

are transmitting at the beginning of time slot t is given by N t
c = {j|j ∈ N t

i ∧c ∈ Ctj}.

This chapter considers block fading where the channel gain is fixed within one

time slot and differs across time slots. The channel gain from AP i to user u in time

slot t is denoted as gtiu, and it is calculated through the well-known Log-distance
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Table 5.1: Parameter values.

Notation Explanation

i AP i

U The set of users associated with AP i

C The set of channels

Cti The set of channels used by AP i in time slot t

Ni The set of neighboring APs of AP i

N t
c The set of neighboring APs that are transmitting

on channel c in time slot t

B The bandwidth of a single channel (in MHz)

T Total number of time slots

δ Length of each time slot (in seconds)

diu The Euclidean between AP i and user u

gtiu The channel gain from AP i to user u in time slot t

I tuc The interference experienced by user u on channel c

in time slot t

Nb The ambient noise power density (in Watt/Hz)

βt
uc SINR from AP i to user u on channel c in time slot t

rtc The data rate of AP i on channel c in time slot t

rti The aggregated data rate of AP i in time slot t

γt
c The CCA threshold of AP i on channel c in time slot t

P t
ic The transmit power of AP i on channel c in time slot t

qti The queue length of AP i in time slot t

λt
i The number of packets arriving at AP i in time slot t

L Packet size (in bits)

path loss model (in dB) [142], that is given by

PL(diu) = PL(d0) + 10ω log10

(
diu
d0

)
+ Xg, (5.1)

where PL(d0) is the reference path loss (in dB) measured at reference distance d0,

and ω is the path loss exponent. The term Xg (in dB) is a random variable drawn

from a zero-mean Gaussian distribution N (0, σ2), representing the shadowing effect.

Then, the channel gain is obtained as per gtiu = 1
10PL(diu)/10 .

Let βt
uc be the Signal to Interference plus Noise Ratio (SINR) of a transmission

from AP i to user u over channel c in time slot t. Formally, the SINR is calculated
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as

βt
uc =

P t
icg

t
iu

I tuc + NbB
, (5.2)

where Nb is the ambient noise power density (in Watt/Hz), and P t
ic is the transmit

power (in Watt) used by AP i on channel c in time slot t. Note that the transmit

power satisfies 0 ≤ P t
ic ≤ Pmax and

∑
c∈Ct

i
P t
ic = Pmax. The term I tuc is the aggregated

interference experienced by user u on channel c in time slot t, which is calculated as

I tuc =
∑
j∈N t

c

P t
jcg

t
ju. (5.3)

Denote by rtc the theoretical data rate of AP i on channel c in time slot t. This

data rate is calculated using the Shannon-Hartley formula, which is given by

rtc = B log2(1 + βt
uc). (5.4)

Then, the aggregated data rate rti of AP i over Cti channels in time slot t is given by,

rti =
∑
c∈Ct

i

rtc. (5.5)

AP i has a queue of packets to transmit. The length of the queue at the end of

time slot t is qti , where 0 ≤ qti ≤ qmax. At the beginning of each time slot t, denote

by λt
i the number of packets arriving at AP i, where the value of λt

i is sampled from

a probability distribution. Further, each packet has a fixed size of L bits. Therefore,

the queue length of AP i evolves as per

qti = min

(
max

(
qt−1
i + λt

i −
rtiδ

L
, 0

)
, qmax

)
. (5.6)

Let π be a policy used by AP i that selects a set of channels Cti , and assigns

transmit power P t
ic on each channel c ∈ Cti at the beginning of time slot t. Moreover,

the policy π also adjusts the CCA threshold γt
c ∈ [γmin, γmax] on each channel c ∈ Cti .
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Define by R(π) an objective function for policy π. Formally,

R(π) = lim
T→∞

1

T
Eπ

[
T∑
t=1

(
η1r

t
i − η2q

t
i

)]
, (5.7)

where η1 and η2 are two weights that balance the data rate and queue length of AP

i, and the term Eπ[.] refers to the expectation over the objective value when using

policy π.

Let Ω be a collection of policy π. The problem at hand is to find the opti-

mal policy, denoted as π∗, that maximizes the objective function R(π) over time.

Mathematically, the optimal policy π∗ is given by

π∗ = arg max
π∈Ω

R(π). (5.8)

5.2 A Markov Decision Process Model

This section first discusses Markov Decision Process (MDP) [51]. After that, it

introduces Deep Q-Network (DQN) [129] and Deep Deterministic Policy Gradient

(DDPG) [146] algorithms. Lastly, it introduces the simplex sampling method [1]

that is used to determine the possible transmit power allocation over one or more

channels.

5.2.1 Markov Decision Process

An MDP is defined as a tuple with four elements (S,A,R(st, at),P(st+1|st, at)),

where S and A denote the set of states and actions, respectively. In each time slot

t, an agent, i.e., AP i, observes a state st ∈ S and selects an action at ∈ A. The

environment then returns a reward R(st, at), and moves from state st to st+1 ∈ S

with probability P(st+1|st, at). Let π(st) be a policy used by an agent, where the

policy outputs an action at given state st, i.e., at = π(st). Let V π(s) be a value

function that measures the expected long-term reward that starts from state s using
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policy π thereafter. Mathematically, it is given by

V π(s) = Eπ

[
∞∑
k=0

γt+kR(st+k, π(st+k))|st = s

]
, (5.9)

where γ ∈ (0, 1] is the discount factor.

The goal of an agent is to find the optimal policy π∗ that maximizes the value

function for all states, denoted by V ∗. This optimal value function V ∗ can be

computed using Bellman’s equation [51] as

V ∗(st) = max
at∈A

[
R(st, at)

+ γ
∑

st+1∈S

P(st+1|st, at)V ∗(st+1)

]
, (5.10)

where γ is the discount factor. The optimal policy π∗ is then given by

π∗(st) = arg max
at∈A

[
R(st, at)

+ γ
∑

st+1∈S

P(st+1|st, at)V ∗(st+1)

]
. (5.11)

5.2.2 Deep Q-Network

DQN is a value based reinforcement learning algorithm [129]. It learns the optimal

policy by approximating the optimal Q-value for each state-action pair [129]. DQN

consists of two neural networks, an evaluation network θ and a target network θ′.

The two networks have the same structure, where the evaluation network θ outputs a

Q-value for a given state-action pair, denoted as Q(st, at; θ), and the target network

θ′ outputs the corresponding target Q-value Q(st, at; θ
′).

DQN uses experience replay to update the weights of its neural networks. Specifi-

cally, each combination of state, action, reward and next state (st, at,R(st, at), st+1)

is called an experience. DQN will store an experience in each time slot into its

memory buffer M, which stores up to |M| experiences. For every K time slots,
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DQN uniformly samples a batch of experiences fromM to update the weights of its

evaluation network θ. The goal is to minimize a loss function which is given by

L(θ) = E[(y −Q(st, at; θ))2], (5.12)

where

y = R(st, at) + γ max
a∈A
Q(st+1, a; θ′). (5.13)

In addition, to ensure stability, for every K ′ time slots, the weights of the target

network θ′ are replaced by the weights of the evaluation network θ.

5.2.3 Deep Deterministic Policy Gradient

A drawback of DQN is that it is not able to learn the optimal policy when the

action space is continuous [146], e.g., the transmit power and CCA threshold of AP

i. Therefore, this chapter proposes to use DDPG, an actor-critic based algorithm,

to address the said issue [146]. DDPG has four neural networks, namely an actor

network θµ, a target actor network θµ
′
, a critic network θQ and a target critic network

θQ
′
. The structure of a target actor network and target critic network is the same as

the corresponding actor and critic network, respectively. The actor network chooses

a deterministic action at at each state st, denoted as at = µ(st; θ
µ), and the critic

network evaluates the Q-value Q(st, at; θ
Q) for each selected action at at state st.

Similarly, the target actor network selects a target action µ(st; θ
µ′

), and the target

critic network outputs a target Q-value Q(st, at; θ
Q′

).

DDPG also uses experience replay to update the weights of its networks. In

particular, for every K time slots, DDPG first samples a batch of experiences from

its memory buffer M to update the weights of its critic network θQ. The update

follows a similar process as DQN, which aims to minimize the loss function as per

L(θQ) = E[(yQ −Q(st, at; θ
Q))2], (5.14)
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where

yQ = R(st, at) + γQ(st+1, µ(st+1; θ
µ′

); θQ
′
). (5.15)

Next, the weights of the actor network are updated using the Q-values evaluated

by the critic network. Specifically, DDPG first calculates the gradient of Q-values

with respect to all actions in sampled batch, denoted as ∇aQ(s, a; θQ)|s=st,a=µ(st;θµ).

Further, DDPG calculates the gradient of all actions with respect to the weights of

the actor network θµ, denoted as ∇θµµ(s; θµ)|s=st . Then, by applying the chain rule,

the weights of the actor network are updated using a policy gradient method [147]

with the following approximation

∇θµQ ≈ E
[
∇aQ(s, a; θQ)|s=st,a=µ(st;θµ)∇θµµ(s; θµ)|s=st

]
. (5.16)

Finally, DDPG applies a soft update on target networks. For every K time slots,

the weights of corresponding target networks are updated as per

θQ
′

= τθQ + (1− τ)θQ′, (5.17)

θµ
′

= τθµ + (1− τ)θµ
′
, (5.18)

where τ is a small positive number, representing the target network update rate.

5.2.4 Simplex sampling

A key issue for DDPG is that it needs to randomly select an action to explore the

action space. Recall that for the set of channels Cti used by AP i in time slot t, the

transmit power allocation is a |Cti |-dimensional space. Further, any transmit power

allocation must satisfy 0 ≤ P t
ic ≤ Pmax and Pmax =

∑
c∈Ct

i
P t
ic. To this end, the

simplex sampling method from [1] is used to determine a transmit power allocation

over the set of channels Cti .

Let Simplex(.) return a vector v with |Cti | elements, i.e., v = Simplex(|Cti |). Each

element in v is in the range [0, 1], representing a fraction of the maximum transmit
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Figure 5.1: An example with 10,000 points that are sampled from a 3D space using
simplex [1].

power Pmax that is used on a certain channel. The function Simplex(.) first randomly

generates a sequence of values, which it records in the vector x = {x1, x2, . . . , x|Ct
i |−1};

each element in x is uniformly sampled from the range [0, 1]. Then, it sorts the

elements in x in an increasing order, and adds x0 = 0 and x|Ct
i | = 1 to the beginning

and the end of x, respectively. After that, the vector v is obtained based on x, where

the i-th value vi in vector v is calculated as vi = xi − xi−1. As an example, assume

there are three bonded channels. Then the corresponding vector v = [v1, v2, v3]

is sampled from a three-dimensional simplex space, i.e., v = Simplex(3). Fig. 5.1

shows the results of 10,000 samples generated by Simplex(3), where each red point

(v1, v2) represents a sampled vector v. Note that value v3 is not shown as it can be

calculated via v3 = 1− v1 − v2 [1].
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5.3 A Three-Tier Learning Approach

This section first model the optimization problem as a three-layer MDP. After that,

show how an AP or agent uses a three-tier learning approach to determine its policy.

5.3.1 Three-layer MDP

An AP i is an agent, operating in an environment with three layers as shown in

Fig. 5.2; each layer corresponds to a task for AP i, and it is modeled as an MDP.

Briefly, AP i first selects a set of channels Cti in Layer-1. Then, it assigns a transmit

power P t
ic for each channel c ∈ Cti in Layer-2. After that, in Layer-3, AP i selects a

CCA threshold γt
c for each channel c ∈ Cti .

As per Fig. 5.2, AP i interacts with its environment as follows. In each time slot

t, AP i observes a state in each layer. Specifically, the state of Layer-1 is observed

from the environment, and the state of Layer-2 and Layer-3 is obtained from Layer-

1 and Layer-2, respectively. Based on the observed states, the agent at each layer

outputs an action. The AP executes the action of each layer, which yields a reward

and a new state for Layer-1.

5.3.1.1 Definitions

In each time slot t, the state, action and reward in each layer are defined as follows:

• Channel Selection (Layer-1):

– State s1t : The Layer-1 state s1t consists of the current queue length qt−1
i ,

and the interference experienced by AP i on each channel {I tic|c ∈ C}.

Formally, s1t = {I tic|c ∈ C} ∪ {qt−1
i }.

– Action a1t : The action for Layer-1 is to select a set of channels for AP i

to transmit, i.e., a1t = Cti , where Cti ⊆ C. For simplicity, let a1t represent

the set of selected channels Cti in the rest of this section.
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Figure 5.2: A flowchart of the proposed three-layer MDP model. In each time slot t,
an agent observes a state in each layer. Specifically, the Layer-1 state s1t is observed
from the environment, and the Layer-2 state s2t and Layer-3 state s3t are obtained
from their corresponding upper layer, i.e., Layer-1 and Layer-2, respectively. Based
on the observed states, the agent outputs an action a1t , a

2
t and a3t in Layer-1, Layer-2

and Layer-3, respectively. The three actions a1t , a
2
t and a3t are then executed by the

agent or AP, which yields the reward and a new state.

– Reward R1
t : The reward for Layer-1 is calculated based on the data rate

rti and queue length qti of AP i, and is defined as R1
t = η1r

t
i − η2q

t
i , where

η1 and η2 are two weights. Note that rti is in Mbps and qti is in number

of packets.

• Transmit Power Allocation (Layer-2):

– State s2t : The state for Layer-2 includes the interference on each channel

and the set of channels Cti selected by Layer-1. Here, a binary indicator

function bct ∈ {0, 1} is used to track whether channel c is selected in time

slot t. That is, the binary indicator function bct returns a value of one if

channel c is selected by Layer-1; otherwise it returns zero. Formally, it is

defined as

bct =


1, if c ∈ a1t ,

0, Otherwise.

(5.19)
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The state for Layer-2 is thus defined as s2t = {I tic|c ∈ C} ∪ {bct |c ∈ C}.

– Action a2t : The action for Layer-2 is to assign a transmit power on each

selected channel. Formally, a2t = {P t
ic|c ∈ a1t}. Note that the transmit

power P t
ic on each channel satisfies 0 ≤ P t

ic ≤ Pmax and Pmax =
∑

c∈a1t
P t
ic.

– Reward R2
t : The reward for Layer-2 is the same as Layer-1. Formally,

R2
t = η1r

t
i − η2.q

t
i .

• CCA Threshold (Layer-3):

– State s3t : The state for Layer-3 is the transmit power assigned on each

channel c ∈ a1t . Formally, s3t = a2t .

– Action a3t : The corresponding action for Layer-3 is to select a CCA

threshold for each channel. Formally, a3t = {γt
c|c ∈ a1t}.

– Reward R3
t : The reward for Layer-3 is the achieved data rate of AP i,

i.e., R3
t = rti .

Lastly, as the propose approach is model-free for practicality reason, the transition

probability P(.) in each layer is unknown.

5.3.2 Three-tier learning approach

AP i runs a three-tier learning approach. Specifically, it uses DQN to select a set

of channels in Layer-1, and uses DDPG to assign transmit power over each selected

channel in Layer-2. For Layer-3, each channel is managed by an agent using DDPG,

where the agent on channel c assigns a CCA threshold for the channel. Note that

these agents do not cooperate with each other as channels are orthogonal and the

data rate achieved on a given channel has no impact on other channels.

Algorithm-4 shows the steps of the proposed approach. Initially, in Layer-1, AP

i observes the state s1t from its environment, and calls Layer1SelectChannels(.) to

select an action a1t ; see line 3. The algorithm Layer1SelectChannels(.) selects an

action a1t using the function ϵ-greedy(.), where it randomly selects an action with
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Algorithm 4: Three-tier learning approach.

Initialize: θ1, θ
′
1,M1, ϵ1 for DQN in Layer-1.

Initialize: θµ2 , θ
µ′

2 , θQ2 , θ
Q′

2 ,M2, ϵ2 for DDPG in Layer-2.
Initialize: {θµc , θµ

′
c , θQc , θ

Q′
c ,Mc, ϵc|c ∈ C} for DDPG in Layer-3.

1 while t = 1,2,. . . ,T do
2 Observe s1t
3 [a1t , s

2
t ] = Layer1SelectChannels(s1t , θ1, ϵ1)

4 [a2t , s
3
t ] = Layer2AssignPower(s2t , θ

µ
2 , ϵ2)

5 for each c ∈ a1t do
6 Get transmit power P t

ic on channel c
7 act = Layer3AdjustCCA(P t

ic, θ
µ
c , ϵc)

8 end
9 a3t = {act | c ∈ a1t}

10 Execute a1t , a
2
t , a

3
t and observe R1

t , R
2
t , R

3
t

11 if t ≥ 2 then
12 Store (s1t−1, a

1
t−1, R

1
t−1, s

1
t ) into M1

13 Store (s2t−1, a
2
t−1, R

2
t−1, s

2
t ) into M2

14 for c ∈ a1t−1 do
15 Store (P t−1

ic , act−1, R
c
t−1, P

t
ic) into Mc

16 end

17 end
18 if t mod K == 0 then
19 Update θ1 as per Eq. (5.12)

20 Update θQ2 , θµ2 and θQc , θµc , ∀c ∈ C as per Eq. (5.14) and (5.16)

21 Update θQ
′

2 , θµ
′

2 and θQ
′

c , θµ
′

c , ∀c ∈ C as per Eq. (5.17) and (5.18)
22 Decrease ϵ1, ϵ2 and ϵc, ∀c ∈ C
23 end
24 if t mod K ′ == 0 then
25 θ′1 ← θ1
26 end

27 end

probability ϵ1. Otherwise, it selects the action with the highest Q-value; see line 1

in Algorithm-5. The value of ϵ1 is reduced over time until a minimum value of ϵmin.

This is to ensure convergence. In addition, the algorithm Layer1SelectChannels(.)

also outputs the Layer-2 state s2t .

Next, AP i enters Layer-2 with state s2t , and calls Layer2AssignPower(.); see

line 4 in Algorithm-4. The algorithm first uses the function ϵ-greedy(.) to output

a vector v, where each element in vector v represents a certain fraction of the

maximum transmit power Pmax. Specifically, the function ϵ-greedy(.) in Layer-2
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Algorithm 5: Layer1SelectChannels.

Input: s1t , θ1, ϵ1
Output: a1t , s

2
t

1 a1t = ϵ-greedy(s1t , θ1, ϵ1)
2 s2t = {I tic|c ∈ C} ∪ {bct | c ∈ C}
3 Return a1t , s

2
t

Algorithm 6: Layer2AssignPower.

Input: s2t , θ
µ
2 , ϵ2

Output: a2t , s
3
t

1 v = ϵ-greedy(s2t , θ
µ
2 , ϵ2)

2 a2t = Pmaxv
3 s3t = a2t
4 Return a2t , s

3
t

will use Simplex(|a1t |) to sample a random vector v with probability ϵ2, where |a1t |

is the number of selected channels. Otherwise, it uses the output of µ(s2t , θ
µ
2 ) as

vector v. Note that the Softmax function is used as the activation function for the

output layer of DDPG. This is to ensure the constraints for Layer-2 actions hold,

i.e., 0 ≤ P t
ic ≤ Pmax and Pmax =

∑
c∈Ct

i
P t
ic. Then, Layer2AssignPower(.) scales the

output vector v with the maximum transmit power Pmax to obtain a Layer-2 action

a2t , see line 2 in Algorithm-6. Lastly, the algorithm Layer2AssignPower(.) outputs

the state s3t for Layer-3.

In Layer-3, for each channel c ∈ a1t , the agent on channel c observes a state, i.e.,

transmit power P t
ic ∈ s3t and calls Layer3AdjustCCA(.); see line 5 to 8 in Algorithm-

4. The algorithm first calls ϵ-greedy(.), where it uniformly samples a value v from

the range [0, 1] with probability ϵc. Otherwise, it uses the output of µ(P t
ic; θ

µ
c ) as

value v. Note that each DDPG agent in Layer-3 uses the Sigmoid function as the

activation function in the output layer as the CCA threshold on each channel c is a

one-dimensional parameter. The value v is then scaled into the range of [γmin, γmax]

to obtain the action act on channel c; see line 2 in Algorithm-7. Finally, the action

of Layer-3 is obtained as a3t = {act | c ∈ a1t}.

Lastly, the three actions a1t , a
2
t and a3t are executed by AP i to obtain reward R1

t ,

R2
t and R3

t . Then, the agent at each layer stores its experience into its memory buffer
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Algorithm 7: Layer3AdjustCCA.

Input: P t
ic, θ

µ
c , ϵc

Output: act
1 v = ϵ-greedy(P t

ic, θ
µ
c , ϵc)

2 act = v(γmax − γmin) + γmin

3 Return act

Table 5.2: Parameter values.

Environment Parameters Value(s)

Number of users per AP 4

Number of channels |C| 3

Number of neighboring APs |Ni| 3

Traffic arrival rate 180 packets per time slot

Available CCA threshold -80 to -20 dBm

Total transmit power of each AP 20 dBm

Carrier frequency 5 GHz

Channel bandwidth B 20 MHz

Path loss exponent 3.5

Path loss reference distance d0 [136] 1 m

Path loss at reference distance PL(d0) [136] 46.42 dB

Variance for Shadowing effect σ2 3 dB

Environment noise power density Nb 5× 10−17 mW/Hz

Initial queue length 8000 packets

Maximum queue length 16000 packets

Packet size L [148] 2304 Bytes

Length of each time slot δ [115] 4.5 ms

RTS/CTS mechanism Disabled

starting from the second time slot; see line 11 to 16 in Algorithm-4. This is because

the state for Layer-2 and Layer-3 depends on the action from their respective upper

layer. Therefore, Layer-2 and Layer-3 obtain their respective next state s2t+1 and s3t+1

only after Layer-1 and Layer-2 select the action a1t+1 and a2t+1 in the following time

slot. The stored experiences are then used by AP i to update the neural networks

in each layer as shown in line 18 to 21 in Algorithm-4.
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Table 5.3: Parameter values used by learning agents.

Parameters Value(s)

Number of hidden layers 2

Number of neurons in each layer 32

Activation function for hidden layers ReLU

Learning rate α 10−3

Optimizer Adam [137]

Reward discount factor γ 0.95

Initial exploration rate ϵ 1

Final exploration rate ϵmin 0.1

Decay factor ϵd 0.9995

Memory size (samples) 5000

Batch size for training (samples) 32

Interval K to update θ Every five time slots

Interval K ′ to replace DQN θ′ Every 500 time slots

DDPG target network update rate τ 0.005

Number of learning time slots NL 40000

5.4 Evaluation

A simulator is implemented using Python 3.7 on a computer with i7-8700 CPU

operating at 4.3 GHz and 16 GB RAM. It uses TensorFlow 1.14 [138] and Keras

2.2.5 [139] to build neural networks for learning agents. For the set of interfering

APs Ni; each AP is placed 20 m away from AP i, acting as the interference source

to induce different interference states at AP i. There is at least one interfering

AP operating on each channel. Each AP is associated with four users that are

uniformly placed within 5 m distance. Unless otherwise stated, the parameters and

values listed in Table 5.2 and 5.3 are used for each simulation run. The following

algorithms/rules are implemented and compared:

• DDPG: AP i uses DQN to select a set of channels, and uses DDPG for both

transmit power distribution and CCA threshold adjustment on each channel.

This algorithm is the algorithm described in Section 5.3.2.

• Mixed DDPG and DQN (MixDD): AP i uses DQN to select a set of
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channels, and uses DDPG for transmit power distribution and uses DQN for

CCA threshold adjustment on each channel. The CCA threshold is discretized

into eleven levels, ranging from -80 to -30 dBm.

• DQN: AP i uses DQN to select a set of channels, and uses DQN for both

transmit power distribution and CCA threshold adjustment on each channel.

The transmit power is discretized into eight levels, ranging from zero to 100

Watts. The CCA threshold is discretized into 11 levels, ranging from -80 to

-30 dBm.

• All channels bonded (ACB): AP i will always use all channels for trans-

missions. The transmit power on each channel is evenly distributed. The CCA

threshold for each channel is set to -82 dBm.

• Random: AP i will randomly select a set of channels for transmissions. The

transmit power on each selected channel is evenly distributed. The CCA

threshold for each channel is set to -82 dBm.

• Primary channel only (PCO): AP i will randomly select a channel as its

primary channel, and only use the primary channel for transmissions with the

maximum transmit power. The CCA threshold for the primary channel is set

to -82 dBm.

Each episode consists of 500 time slots. For each episode, the simulator collects

the following metrics:

• Average number of transmitted packets: This is the average number of

packets transmitted per time slot by AP i in an episode.

• Average queue length of an AP: This is the average queue length of AP

i collected at the end of each time slot in each episode.

There are three stages in simulations, namely Training, Test and Supplementary.

In the Training stage, AP i has three available channels; there is one interfering AP
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on each channel and is placed 20 m away from AP i. AP i has saturated traffic,

meaning it always has packets to transmit, where its queue has at least 200 packets

in all time slots. Each packet has a fixed size of 2304 Bytes which is the maximum

transmission unit specified in [148]. The simulation studies to follow first study

the impact of ϵ decay rules on the performance of learning algorithms, i.e., DDPG,

MixDD and DQN. Apart from that, learning agents are trained over a fixed network

environment. Specifically, for the first 5000 time slots, each agent randomly selects

actions; this ensures they collect sufficient data. Next, agents are trained for 40000

time slots. After that, their ϵ value is set to zero and they are run for another 5000

time slots to compare their convergence performance.

The Test stage considers three channels, and uses the trained agents from the

Training stage to evaluate their performance under different network scenarios.

Specifically, this stage studies the impact of traffic model, number of interfering

APs and channel gain variance. There are two traffic models. The first is a Poisson

traffic model, which is used to determine the number of packets arriving at AP i

in each time slot. Its arrival rate increases from 30 to 240 packets per time slot.

The second traffic model uses the tracefile or measurements from [145]. To study

the impact of interfering APs on each channel, the number of APs interfering on

each channel increases from one to six, which makes the total number of interfer-

ing APs increases from three to 18. Then, the impact of channel gain variance is

evaluated.The variance of shadowing σ2 increases from zero to 80 dB2.

Next, in the Supplementary stage, this chapter studies the performance of DDPG,

MixDD and DQN with different numbers of channels. The number of channels in-

creases from two to eight, and there is one interfering AP on each channel. Lastly,

this chapter evaluates the proposed algorithms using the topology and channel model

provided by the IEEE 802.11ax task group [2].
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Figure 5.3: Elapsed time versus value of Epsilon.

5.4.1 Training Stage

5.4.1.1 ϵ decay rules

Three ϵ decay rules are evaluated, and the value of ϵ at each time slot t is calculated

as follows:

• Exponential: ϵt = max(ϵ
t/K
d , ϵmin).

• Linear: ϵt = max(1− (1−ϵmin)t
NL/K

, ϵmin).

• Quartic:ϵt = max(1− ( t
NL/K

)4, ϵmin).

The term K and NL refer respectively to the learning frequency, and number of time

slots for learning. Fig. 5.3 shows the evolution of ϵ over time. In the Exponential

rule, the value of ϵ reduces at the fastest rate before 15000 time slots, and then it

reduces at a slower rate than the Quartic and Linear rule. By contrast, the value
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Figure 5.4: Converged throughput versus Epsilon decay pattern.

of ϵ for the Quartic rule decreases at the lowest rate at the beginning and starts

to decrease faster after 10000 time slots. Note that the value of ϵ will not decrease

below the minimum value of ϵmin.

Referring to Fig. 5.4, DDPG, MixDD and DQN all converge to around 190

packets per time slot. In addition, Fig. 5.4 shows that different ϵ decay rules have

no significant impact on the converged throughput for all testing algorithms. The

largest difference of 4.5 packets per time slot is observed between DDPG with the

Linear rule and DQN with the Quartic rule, which only differs by 2.39%. Fig. 5.5

shows the average throughput for different ϵ decay rules. The Exponential rule

has the highest average throughput for all three learning algorithms. The average

number of transmitted packets per time slots for DDPG, MixDD and DQN is 165.5,

156.1 and 153.2, respectively, which means the Exponential rule outperforms the

Linear rule by 11.18% and the Quartic rule by 24.32%, on average. This is because
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Figure 5.5: Average throughput versus Epsilon decay pattern.

when ϵ reduces to a low value, an agent will exploit its learned policy with a high

probability. The Exponential rule reduces ϵ to the minimum value ϵmin with the

fastest rate. In addition, in Fig. 5.4, all three ϵ decay rules converge to 190 packets

per time slot. Consequently, the Exponential rule has the highest average throughput

among all ϵ decay rules. Hence, in all subsequent simulations, the Exponential rule

is used as the ϵ decay rule when training agents.

5.4.1.2 Convergence

Referring to Fig. 5.6, the average number of transmitted packets for DDPG, MixDD

and DQN increases over time. The average number of transmitted packets for

DDPG, MixDD and DQN increases from 102.9, 97.8 and 88.8, and converges to

190.2, 189.6 and 186.0 packets per time slot, respectively. This is because these

three learning algorithms are able to learn the optimal policies for channel selection,
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Figure 5.6: Elapsed time versus the number of transmitted packets.

power distribution and CCA threshold adjustment over time. Further, the perfor-

mance for DDPG is better than the other two learning algorithms. For example,

the number of transmitted packets per time slot for DDPG is 4.43% and 6.84%

higher than that of MixDD and DQN on average. This is because DDPG is able to

learn the power distribution and CCA threshold selection in a continuous manner.

This allows DDPG to learn the optimal action from the action space. By contrast,

MixDD learns discrete CCA thresholds on each channel; DQN learns both discrete

power distribution and CCA threshold on each channel. Thus, MixDD and DQN

are not able to learn the optimal action if the action is not discretized into their

action spaces. Therefore, DDPG outperforms the other two learning algorithms. In

addition, the average number of transmitted packets for ACB, Random and PCO is

the same over time, where they are able to transmit 118.6, 70.6 and 42.8 packets per

time slot, respectively. This is because these three algorithms are deterministic and
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Figure 5.7: Impact of traffic arrival rate on throughput.

they do not learn to select channels, and assign transmit power and CCA threshold

on each channel to improve their throughput.

5.4.2 Test Stage

5.4.2.1 Poisson traffic

Three channels and Poisson traffic models are considered. Specifically, the traffic

arrival rate increases from 30 to 240 packets per time slot; the average result is

collected by running 5000 time slots for each traffic arrival rate. Fig. 5.7 and 5.8

show the impact of arrival rates. From Fig. 5.7, DDPG, MixDD and DQN show an

increasing throughput trend. They are able to transmit 31.56 packets per time slot

when the traffic arrival rate is 30 packets per time slot. This number then increases

to 190.8 for DDPG, 188.8 for MixDD and 186.6 for DQN when the traffic arrival

rate is 240 packet per time slot. This is because these three learning algorithms
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Figure 5.8: Impact of traffic arrival rate on average queue length.

are able to transmit more than 186 packets per time slot after training as shown in

Fig. 5.6. Therefore, when the traffic arrival rate is lower than 180 packets per time

slot, DDPG, MixDD and DQN are able to empty the queue of AP i, and thereby

deliver all arriving packets in each time slot. As a result, the throughput is limited

by the low arriving traffic and it is approximately the same as the traffic arrival rate.

This is also shown in Fig. 5.8 where the average queue length of DDPG, MixDD and

DQN is lower than 1100 packets when the traffic arrival rate is no larger than 180

packets per time slot. However, as the traffic arrival rate exceeds 180 packets per

time slots, DDPG, MixDD and DQN do not have sufficient throughput to deliver

all arriving packets, which increases the queue length of AP i. From Fig. 5.8, the

average queue length of these three learning algorithms increases significantly from

1500 to 15968 packets when the traffic arrival rate increases from 180 to 210 packets

per time slot. Similar trends are observed for ACB, Random and PCO, where they
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Figure 5.9: Number of interfering APs versus throughput.

have an average throughput of 117.2, 71.8 and 42.4 packets per time slot as shown

in Fig. 5.6. Therefore, they are only able to reduce the queue length of AP i when

the traffic arrival rate is lower than their average throughput.

5.4.2.2 Interfering APs

This simulation concerns Poisson traffic with an arrival rate of 180 packets per time

slot. The network has three channels, and the number of interfering APs on each

channel increases from one to six, which means the total number of interfering APs

increases from three to 18. Interfering APs are uniformly placed within the range

of 40 m around AP i. For each number of interfering APs, the simulation runs ten

times, with 5000 time slots in each run, to collect the average result.

Fig. 5.9 and 5.10 show the average throughput and queue length of AP i. From

Fig. 5.9, the throughput decreases as the number of interfering APs increases.
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Figure 5.10: Number of interfering APs versus the average queue length.

DDPG, MixDD and DQN are able to transmit 181 packets per time slot when

the number of interfering APs is three. This number decreases to 160.6 for DDPG,

158.6 for MixDD and 156.2 for DQN when the number of interfering APs increases

to 18. As a comparison, the average number of transmitted packets per time slot for

ACB, Random and PCO decreases from 136.7, 81.7 and 49.4 to 38.8, 23.3 and 14.3,

respectively. This is because the level of interference on each channel increases as

the number of interfering APs increases, which causes throughput degradation on

all algorithms/rules. However, DDPG, MixDD and DQN continue to have better

performance against increasing level of interference as compared to ACB, Random

and PCO. The throughput of DDPG, MixDD and DQN reduces by 12.74% on av-

erage as the number of interfering APs increases from three to 18. In contrast,

the performance of ACB, Random and PCO drops by 71.37% on average under

the same circumstance. From Fig. 5.9, DDPG, MixDD and DQN always have the
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highest throughput. In particular, these three learning algorithms achieve 137.72%,

296.67% and 548.5% higher throughput than ACB, Random and PCO on average,

respectively. This is because these three learning algorithms learn the optimal chan-

nel selection, transmit power distribution and CCA threshold adjustment when in-

terference level from interfering APs varies. From Fig. 5.9, the throughput of DDPG

outperforms MixDD by 1.21% and DQN by 2.65% when the number of interfering

APs is larger than six. The difference in throughput leads to different performance

on average queue length. Referring to Fig. 5.10, the average queue length for DDPG

is 5.88% and 10.51% shorter than MixDD and DQN. This reveals that continuous

control of transmit power and CCA threshold has better performance than discrete

control. In contrast, the average queue length for ACB, Random and PCO is always

around 16000 packets. These three rules are not able to transmit more than 180

packets per time slot. Therefore, they are not able to reduce the queue length of

AP i and thus, experience queue overflow.

5.4.2.3 Channel gain variance

In this simulation, the Poisson traffic with an arrival rate of 180 packets per time

slot is considered. The network has three channels, and the channel gain variance

σ2 increases from zero to 80 dB2. Referring to Fig. 5.11 and 5.12, the performance

of DDPG, MixDD and DQN is not affected by the changing channel gain variance.

In Fig. 5.11, DDPG, MixDD and DQN are able to transmit 181 packets per time

slots for all values of channel gain variance. The average queue length of these three

algorithms is lower than 2000 packets. The reason is that DDPG, MixDD and DQN

learn to optimally assign transmit power and CCA threshold on each channel to gain

high throughput against various levels of interference. In contrast, the throughput

of ACB, Random and PCO increases with increasing channel gain variance. The

average number of transmitted packets per time slot for ACB, Random and PCO

increases from 117.8 to 127.0, 70.2 to 75.7 and 42.8 to 46.8, respectively. Their

throughput improves by 8.25% on average as the channel gain variance increases
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Figure 5.11: Impact of channel gain variance on throughput.

from zero to 80. This is because as the variance increases, the corresponding Cumu-

lative Distribution Function (CDF) changes, which increases the probability that the

interference on each channel is lower than CCA threshold, i.e., -82 dBm. Therefore,

when channel gain variance is high, ACB, Random and PCO have more opportuni-

ties to transmit than when channel gain variance is low. Consequently, the average

number of transmitted packets increases. However, the increased in throughput is

lower than the traffic arrival rate. Hence, ACB, Random and PCO are not able

to reduce the queue length of AP i, and suffer from queue overflow. Referring to

Fig. 5.12, the average queue length for ACB, Random and PCO is always at the

maximum queue length of 16000 packets for all channel gain variances.
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Figure 5.12: Impact of channel gain variance on the average queue length.

5.4.2.4 Trace-based study

Next, the performance of all compared algorithms/rules are evaluated using the

traffic trace file provided in [145]. Eight days of traffic are extracted, from 19

October 2014 to 26 October 2014, see Fig. 5.13, and they are used as the traffic

arriving at AP i. Fig 5.14 and 5.15 show the average number of transmitted packets

and queue length with different date of traffic trace data.

From Fig 5.14 and 5.15, DDPG, MixDD and DQN always have the highest

throughput and lowest queue length. In Fig 5.14, the average number of transmitted

packets per time slot for DDPG, MixDD and DQN is around 39.4. As a comparison,

ACB, Random and PCO are able to transmit 38.8, 37.5 and 32.8 packets per time

slot. The average throughput of DDPG, MixDD and DQN is only 1.4%, 4.87% and

20.13% higher than ACB, Random and PCO, respectively. The reason is that the

arriving traffic is not high throughout a day. From Fig. 5.13, the average number of
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Figure 5.13: Arriving traffic for AP i throughout eight days. The X-axis represents
the time across a day, and Y-axis represents the number of packets arriving in each
time slot, respectively.

arriving packets in each time slot is around 30.6 across the eight days. Therefore,

DDPG, MixDD and DQN are able to empty the queue of APs quickly. This can

also be seen from Fig. 5.15, where DDPG, MixDD and DQN have the smallest

average queue length of 3.05 packets. As a result, DDPG, MixDD and DQN do

not have a large number of packets to transmit in each time slot, which results in a

low average number of transmitted packets per time slot. In contrast, the average

queue length for ACB, Random and PCO is 4.64, 6.52 and 8.24. The average queue

length of DDPG, MixDD and DQN is 32.94%, 50.99% and 62.52% shorter than

ACB, Random and PCO.
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Figure 5.14: Average throughput with difference trace data.
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Figure 5.15: Average queue length with difference trace data. Note that the loga-
rithmic value of the original queue length (in packets) is taken to have a better view.

5.4.3 Supplementary Stage

5.4.3.1 Number of channels

Here, different numbers of channels are studied. For each channel, there is one

interfering AP placed 20 m away from AP i. As the number of channels differs, the

action space for the learning agents is different. Therefore, for each channel number,

the learning agents will be re-built and trained until convergence. Fig. 5.16 shows

the converged throughput of each algorithm with different channel numbers. The

performance of DDPG, MixDD and DQN have no difference when the number of

channels is no larger than four. The average number of transmitted packets per

time slot for DDPG, MixDD and DQN increases from 130 to 245 when the channel

number increases from two to four. This means all three learning agents are able to

learn the optimal policy when the channel number is low. However, as the number
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Figure 5.16: Converged throughput verses number of channels.

of channels increases, DDPG achieves the highest throughput. The average number

of transmitted packets per time slot for DDPG increases from 351 to 451 when the

number of channels increases from six to eight, which is 14.67% and 65.51% higher

than MixDD and DQN on average, respectively. This means DDPG is able to learn

the optimal policy with different number of channels. In contrast, the throughput

of MixDD and DQN shows less improvement than DDPG when the number of

channels is larger than four. The throughput of MixDD increases from 245 to 400

as the number of channels increases from four to eight. This is because MixDD uses

DQN for CCA threshold adjustment. Considering DQN works based on discretized

action space, MixDD is not able to learn the optimal CCA threshold if it is not

included in the action space, which results in lower performance than DDPG. The

converged throughput for DQN remains at around 243 packets per time slot as the

number of channels increases from four to eight. This is because the action space
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Figure 5.17: The topology of IEEE simulation scenario for apartment [2], where
each apartment has a dimension of 10 m × 10 m. Each AP is placed in the center
of an apartment. The target AP i (red triangle) is located at the center bottom
apartment and all other APs (black triangles) act as the interference sources. The
penetration loss of each wall is set to 5 dB [3].

for DQN increases significantly with increasing number of channels. For example,

the number of actions for distributing transmit power over six and eight channels

is 1287 and 6435. As a result, agents are not able to explore and learn each action

efficiently during training. Therefore, agents are not able to learn the optimal policy,

which results in poor performance.

5.4.3.2 IEEE scenarios

In this simulation, it considers IEEE scenario and channel model proposed in [2]

and [3]. Referring to Fig. 5.17, it considers an apartment with ten cells; each cell

has a dimension of 10 m × 10 m. In each cell, an AP is placed at the center; the AP

in the center bottom cell is selected as AP i that runs the learning algorithm. Each

AP has four associated users that are uniformly placed within its cell. The indoor

channel model provided in [3] is considered, and the wall penetration loss is set to

5 dB.

Fig. 5.18 shows the evolution of the average number of transmitted packets for

different algorithms/rules. DDPG, MixDD and DQN are able to achieve the highest

throughput over time. The average number of transmitted packets per time slot for
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Figure 5.18: Elapsed time versus average number of transmitted packets with IEEE
simulation scenario.

DDPG, MixDD and DQN increases from 61.2, 59.3 and 56.8 to 135.0, 133.0 and

130.6, respectively. These three learning algorithms are still able to learn the op-

timal policy with IEEE scenario and channel model. DDPG achieves the highest

throughput among all three learning algorithms, where its average number of trans-

mitted packets per time slot is 4.01% and 5.83% higher than that of MixDD and

DQN. In contrast, ACB, Random and PCO have a stable throughput. The average

number of transmitted packets for ACB, Random and PCO is 58.5, 36.6 and 23.5

per time slot.

5.5 Conclusion

This chapter aims to improve the multi channel utilization and minimize the queue

length of an AP in a WiFi network. The proposed three-tier learning approach runs
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on an AP and learns to select a set of channels and allocate transmit power and

CCA threshold for each selected channel. Advantageously, an AP only require local

measured information, such as queue length and interference to learn the optimal

policy. Simulation results show that the proposed learning approach is able to

learn the optimal policy, and achieve the best performance under multiple scenarios.

Numerical results show that the proposed three-tier learning approach is able to

reduce the average queue length of an AP by up to 62.52% when compared to an

AP using a fixed strategy over realistic traffic trace data.
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Chapter 6

Conclusion

Future WiFi networks are required to provide transmissions with high capacity and

low latencies to satisfy users demands. This results in increasing level of interference

due to the presence of densely deployed APs. To this end, improving spatial reuse

and transmission capacity are two promising solutions. This thesis conducts research

into improving spatial reuse and transmission capacity. Specifically, it studies how

to optimize the CCA threshold, transmit power or channel bonding policy in order

to improve network capacity. A challenging issue is that the traffic arrival, amount of

interference and channel conditions are random over time. This means any methods

used to determine an optimal policy must be able to adapt to changing wireless

network conditions.

Henceforth, this thesis outlines a number of reinforcement learning based solu-

tions. These solutions run on each AP and allow each AP to independently learn

the optimal CCA threshold, transmit power or channel bonding policy. Critically,

these solutions are model-free and only rely on locally observed information, such

as interference and current queue length. Briefly, this thesis makes the following

contributions:

• In Chapter 3, this thesis considers a dense WiFi network where a number of

APs are closely placed together. Each AP runs a DQN agent to learn to the
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optimal CCA threshold for each device in its cell. It proposes two learning

models, namely EpL and InstL, that rely on locally measured historical in-

terference data. The simulation results indicate that with sufficient learning,

both EpL and InstL converge to the same optimal value. InstL converges faster

than EpL in a fixed network topology, i.e., 20 episodes versus 250 episodes, as

it has more times of learning within one episode. In addition, both EpL and

InstL outperform Le-DSC by 62.4%.

• In Chapter 4, this thesis aims to improve spatial reuse and minimize the queue

length of APs with random traffic arrivals. Each AP runs a hierarchical rein-

forcement learning (HRL) agent that learns the optimal transmit power and

CCA threshold. Advantageously, each AP only requires local information such

as interference and queue length. The simulation results indicate that the pro-

posed HRL based approach is able to learn the optimal transmit power and

CCA threshold. Experiments over traffic trace data indicate that the average

queue length of an HRL-equipped AP is shorter than DSC and Legacy by

24.4% and 52.4%, respectively.

• Lastly in Chapter 5, this thesis jointly optimizes the CCA threshold, transmit

power and bonded channels of an AP with random traffic arrivals. The aim is

to minimize the queue length and maximize the throughput of an AP. Unlike

prior works that only consider to bond adjacent channels in WiFi networks,

this thesis considers both adjacent and non-adjacent channel bonding. The

joint optimization problem is first formulated as a three-layer MDP. Then,

this thesis outlines a three-tier RL approach that runs on an AP to determine

a set of channels, transmit power and CCA threshold. Specifically, for a precise

control of the CCA threshold and transmit power, it uses DDPG for continuous

control of the said parameters. Numerical results show that the proposed

three-tier RL approach is able to reduce the average queue length of an AP

by up to 62.52% when compared to an AP using a fixed strategy.
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There are a number of potential future research directions. First of all, in this

thesis, all APs treat other APs/Cells as part of environment and compete with each

other for channel resources, which will inevitably generate a significant amount of

interference in networks. Therefore, an interesting future work is to consider coop-

erative APs. Specifically, APs use a cooperative multi-agent reinforcement learning

algorithm [149] to cooperatively optimize their CCA threshold, transmit power or

channel bonding policies based on their current queue length or interference. The

aim is to further improve network capacity. In addition, another future work is to

consider traffic with different priorities when a cooperative scheme is considered.

For example, services such as video meetings or online streaming require both high

capacity and low latency and hence need high priority to ensure Quality of Service

(QoS). Therefore, an AP needs to adaptively adjust its CCA threshold, transmit

power and channel bonding policies to satisfy the demands of different types of

traffic. Moreover, as discussed in Chapter 2, directional antenna also helps to im-

prove spatial reuse. In particular, by using directional antenna, an AP transmitting

packets to its associated user may not generate interference to neighboring cells.

However, the transmitting AP may suffer from hidden terminal/channel problem

as devices in a neighboring cell may not hear its transmission. Therefore, a future

work is to apply intelligent and cooperative control of directional antenna on each

AP to further improve spatial reuse. Another research direction is to consider power

consumption. As noted in [12], WiFi users have finite energy to transmit or receive

data. Therefore, effective power management for transmission is critical as it deter-

mines the lifetime of WiFi users. To this end, a future study can be conducted to

focus on energy efficiency optimization with spatial reuse in WiFi networks. Lastly,

one possible research direction is to study the performance of the proposed RL ap-

proach in settings with mobile users. This is because the channel condition changes

significantly when users move within a cell. Therefore, an AP needs to predict the

movement pattern of users and learn the optimal control policy on CCA threshold,

transmit power and channel bonding to address the varying location of users.
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