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Abstract

Deep learning (DL) is a class of machine learning algorithms that relies on deep

neural networks (DNNs) for computations. Unlike traditional machine learning

algorithms, DL can learn from raw data directly and effectively. Hence, DL has

been successfully applied to tackle many real-world problems. When applying

DL to a given problem, the primary task is designing the optimum DNN. This

task relies heavily on human expertise, is time-consuming, and requires many

trial-and-error experiments.

This thesis aims to automate the laborious task of designing the optimum

DNN by exploring the neural architecture search (NAS) approach. Here, we

propose two new NAS algorithms for two real-world problems: pedestrian lane

detection for assistive navigation and hyperspectral image segmentation for biose-

curity scanning. Additionally, we also introduce a new dataset-agnostic predictor

of neural network performance, which can be used to speed-up NAS algorithms

that require the evaluation of candidate DNNs.

The new methods from this thesis are summarized as follows. The first

proposed method, named MSD-NAS, is applied for pedestrian lane detection.

MSD-NAS can automatically design a DNN with multi-scale input branches,

which allows the derived network to utilize both local and global contexts for

predictions. Our experiments show that the deep network found by MSD-NAS

achieves state-of-the-art accuracy, processing speed, and model size in pedestrian

iv



lane detection.

The second proposed method, named AdaptorNAS, is applied for hyperspec-

tral image segmentation. AdaptorNAS aims to design the optimum decoder for

any given encoder. Our experiments demonstrate that AdaptorNAS can design

high-speed decoders that are significantly better than six common hand-crafted

decoders. Additionally, with the EfficientNet-B2 encoder, AdaptorNAS achieves

state-of-the-art performance on the hyperspectral image segmentation task.

The third proposed method, named DAP, is used to investigate the feasibility

of two tasks: i) predicting a DNN’s performance accurately given only its ar-

chitectural descriptor, and ii) generalizing the predictor across different datasets

without re-training. Our experiments on image classification datasets show that

both tasks are indeed feasible.
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Introduction
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1.1 Research motivation and objectives . . . . . . . . . . . . . . . . . 1

1.2 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Research contributions . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1 Research motivation and objectives

Machine learning (ML) is the study of computer algorithms that can perform com-

plex tasks by learning from data and without needing explicit instructions. Both

domain knowledge and ML expertise are traditionally needed for a successful ML

project. In the ML pipeline, as depicted in Fig. 1.1, domain knowledge is needed

for the data preparation and feature engineering steps, whereas ML expertise is

needed for the model selection, training, evaluation, and deployment steps. For

example, traditional ML algorithms (e.g., k-nearest neighbors and support vector

machine) need domain-specific heuristic and hand-crafted features. However,

domain knowledge requires extensive study to obtain and is often not transfer-

able between domains (e.g., color image and medical image). Hence, applying

ML algorithms to a particular task rapidly and successfully is challenging.

Deep learning (DL) is a sub-field of ML that relies on deep neural networks
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Data preparation Feature
engineering Model selection Model training Model evaluation Model deployment

Domain knowledge ML expertise

Figure 1.1: An illustration of the ML pipeline. Both domain knowledge and ML expertise
are required for a successful ML project.

(DNNs) for computations. The main advantage of DL is that it can learn from raw

data directly and effectively, hence circumventing the need for feature engineering.

Therefore, DL has been widely applied and achieved tremendous success in many

application areas, such as semantic segmentation [1], drug discovery [2], and

natural language processing [3]. In fact, DL is now the primary approach for

most tasks in computer vision [4]. Several DL-based methods have even managed

to exceed human performance on several tasks, such as ImageNet classification

[5] and freehand sketch recognition [6].

A common challenge when applying DL to a given problem is designing the

optimum DNN. Building a DNN involves making many design decisions, which

include the number of layers, the connection between layers, and the operation and

corresponding hyperparameters for each layer. Making different design decisions

(e.g., changing the number of layers or the connection between layers) will result

in a new DNN, which in turn requires training and evaluation to determine its

performance. Therefore, the DNN development process is a repetitive cycle of

the model selection, training, and evaluation steps. Hence, the task of designing

the optimum DNN relies heavily on human expertise, is time-consuming, and

requires many trial-and-error experiments.

Normally, an ML project also has many constraints, such as time, money,

and resources. With only human efforts, designing a good DNN is possible, but

finding the best DNN for a given problem is often infeasible. For example, a

DL model may need to be developed within a certain amount of days or budget.

Therefore, ML practitioners often cannot explore the entire design space manually

and may need to utilize a non-optimal solution.
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This research project aims to automate the laborious task of designing the

optimum DNN for a given problem. To this end, we explore the neural architec-

ture search (NAS) approach, which is a sub-field of automated machine learning

(AutoML). This thesis will develop new algorithms for two real-world applications

with different imaging modalities and one feasibility study. The first real-world ap-

plication is pedestrian lane detection with color imaging for assistive navigation.

An essential criterion for vision-impaired people to navigate freely and safely is

accurately detecting the walkable path, i.e., the pedestrian lane. Most of the ex-

isting DL works for pedestrian lane detection rely on hand-crafted DNNs, which

can be large, slow, or inaccurate, making them difficult to be deployed in edge

devices. Instead of a hand-crafted solution, our proposed NAS algorithm will

automatically design the optimal DNN that is accurate, fast, and compact.

The second real-world application is hyperspectral image segmentation with

hyperspectral imaging for biosecurity scanning. Biosecurity scanning is vital in

preventing pests and contaminants from entering a country via shipping contain-

ers. An important requirement for biosecurity scanning is accurately segmenting

the different objects in a shipping container. As hyperspectral imaging differs

from color imaging, the existing state-of-the-art hand-crafted DNNs may not be

optimized for hyperspectral images. Our proposed NAS algorithm will auto-

matically design the optimal DNN for hyperspectral image segmentation. The

feasibility study investigates the possibility of predicting a DNN performance

without training. The main computation complexity of a NAS algorithm is the

evaluation of every candidate DNN. Hence, the search time of a NAS algorithm

can be greatly reduced by not needing to train every candidate DNN to conver-

gence for performance approximation. This feasibility study will be conducted

using image classification datasets.

The successful completion of this project can aid ML practitioners in develop-

ing high-performance and problem-specific DL algorithms, and make DL more

accessible to the general public. The aims of this research project can be high-
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lighted as follows:

• Review the related DL works on image classification, image segmentation,

and neural architecture search.

• Propose a NAS algorithm to find the optimum DNN for pedestrian lane

segmentation.

• Develop a NAS algorithm to design the optimum DNN for hyperspectral

image segmentation.

• Investigate the feasibility of predicting DNNs’ performance without train-

ing.

1.2 Thesis organization

This thesis is structured into six chapters:

• Chapter 1 outlines the project motivations and objectives. This chapter also

highlights the research contributions and the related publications.

• Chapter 2 provides a historical account of deep learning and reviews the

prominent DL works for image classification and segmentation. This chapter

also provides a concise discussion on NAS.

• Chapter 3 presents a new NAS algorithm that can design a DNN with multi-

scale input branches, which allows the derived DNN to utilize both local

and global contexts for predictions. The proposed NAS method is applied

to solve the pedestrian lane detection task. This chapter also briefly reviews

the traditional methods for pedestrian lane detection and DL methods for

semantic segmentation.

• Chapter 4 presents a new NAS algorithm that aims to design the optimum

decoder for any given encoder. The proposed NAS method is applied to
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solve the hyperspectral image segmentation task. This chapter also reviews

the existing work on hyperspectral image segmentation and NAS for image

segmentation.

• Chapter 5 investigates the feasibility of two tasks: i) predicting a DNN’s per-

formance accurately given only its architectural descriptor, and ii) generaliz-

ing the performance predictor across different datasets without re-training.

This investigation is carried out using image classification datasets. This

chapter also reviews the related work on the performance prediction of

DNNs.

• Chapter 6 summarizes the research findings and discusses future work.

1.3 Research contributions

The main contributions of this thesis are highlighted as follows:

• A comprehensive review of deep learning in the areas of image classification,

semantic segmentation, and neural architecture search is provided.

• A novel gradient descent-based NAS algorithm is proposed to automatically

find a DNN that is capable of processing multi-scale inputs for image seg-

mentation. The proposed method searches in a novel search space, which

contains many candidates that are state-of-the-art hand-crafted deep mod-

els. The experimental results show that the proposed method can automat-

ically design DNNs that outperform many existing hand-crafted DNNs.

• A novel perturbation-based NAS algorithm is proposed to automatically de-

sign the optimum decoder for any given encoder. The proposed method

uses a new perturbation-based pruning strategy that does not rely on any ar-

chitectural parameters. Verified on three popular encoders, i.e., ResNet-34,

MobileNet-V2, and EfficientNet-B2, the proposed NAS method can design
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high-speed decoders that are significantly better than six commonly used

hand-crafted decoders.

• A novel dataset-agnostic predictor of neural network performance is intro-

duced. The proposed predictor uses a novel dual-LSTM model and a new

dataset difficulty feature. The experimental results show that the proposed

method can accurately predict the performance of DNNs on multiple image

classification datasets, including datasets unknown to the predictor. Addi-

tionally, several practical use cases of the proposed predictor in the context

of NAS and from a researcher’s perspective are also demonstrated.

• The proposed NAS algorithms are applied to tackle two real-world prob-

lems: 1) pedestrian lane detection for assistive navigation, and 2) hyperspec-

tral image segmentation for biosecurity scanning.

1.4 Publications

Publications directly related to the thesis chapters:

1. S. P. Ang, S. L. Phung, A. Bouzerdoum, T. N. A. Nguyen, S. T. M. Duong, and

M. M. Schira, “Real-time pedestrian lane detection for assistive navigation

using neural architecture search,” in Proceedings of the International Conference

on Pattern Recognition, 2020, pp. 1–8.

2. S. P. Ang, S. L. Phung, L. Bui, and A. Bouzerdoum, “AdaptorNAS: A new

perturbation-based neural architecture search for hyperspectral image seg-

mentation,” IEEE Transactions on Circuits and Systems for Video Technology,

pp.1-13, 2022. (under peer-review)

3. S. P. Ang, S. T. M. Duong, S. L. Phung, and A. Bouzerdoum, “DAP: A dataset-

agnostic predictor of neural network performance,” Neurocomputing, pp 1-11,

2022. (under peer-review)
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4. S. P. Ang, S. L. Phung, S. T. M. Duong, and A. Bouzerdoum, “MSD-NAS:

Multi-scale dense neural architecture search for real-time pedestrian lane

detection,” Applied Intelligence, pp 1-13, 2022. (under peer-review)

Other publications produced during the PhD research:

1. S. T. M. Duong, S. L. Phung, A. Bouzerdoum, S. P. Ang, and M. M. Schira,

"Correcting susceptibility artifacts of MRI sensors in brain scanning: A 3D

anatomy-guided deep learning approach," Sensors, vol. 21, no. 7, pp 1-16,

2021.

2. S. P. Ang, S. L. Phung, M. Field, and M. M. Schira, “An improved deep learn-

ing framework for MR-to-CT image synthesis with a new hybrid objective

function,” in Proceedings of the International Symposium on Biomedical Imaging,

2022, pp. 1-5.
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2.1 Deep learning: A historical account

The origin of deep learning can be traced back to 1943 when McCulloch and Pitts

modeled the activities of biological neurons with propositional calculus [7]. The

artificial neuron model, known as the McCulloch-Pitts neuron, can represent a

few boolean functions (e.g., the AND and OR logic functions). However, it has no

learning capability. In 1957, extending the McCulloch-Pitts neuron, Rosenblatt

proposed the first artificial neuron, named the perceptron, that has learning ca-

pability [8]. The perceptron (one neuron) contains trainable weights and a bias
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2.1. Deep learning: A historical account

that are trained with its own learning algorithm (not backpropagation).

In 1960, Kelley proposed the first backpropagation (BP) by steepest descent al-

gorithm for flight path optimization [9]. The proposed algorithm is computation-

intensive because it relies on both chain rule and dynamic programming. In 1962,

Dreyfus simplified the BP algorithm to using chain rule only [10]. However, the

BP algorithm is still inefficient and incomplete, and its application for neural net-

work (NN) training is also not known yet. In 1969, Minsky and Papert showed

that the perceptron fails to model non-linearly separable problems (e.g., the XOR

logic function) [11]. Although a multi-layer perceptron (MLP) can overcome this

limitation, the perceptron learning algorithm cannot train an MLP.

In 1970, Linnainmaa derived the modern form of BP in his Master’s thesis. The

thesis also includes code implementation of the BP algorithm in the FORTRAN

programming language [12]. In 1971, Ivakhnenko developed an 8-layer MLP,

which is trained using the Group Method of Data Handling algorithm [13]. This

model is considered the first deep neural network (DNN) because it comprises

more than one hidden layer. In 1980, Fukushima introduced a hierarchical and

multi-layer NN, named neocognitron [14]. Neocognitron consists of convolu-

tion and subsampling layers, which are placed in a cascade pattern. Hence, the

neocognitron can be considered the first convolutional neural network (CNN).

However, the weights of neocognitron are trained with local learning rules in-

stead of BP.

The first application of BP for NN training was described by Werbos in 1982

[15]. In 1986, Rumelhart et al. demonstrated experimentally that BP can yield

useful internal representations in the hidden layers [16]. This finding has signif-

icantly contributed to the adoption of BP for NN training [17]. In 1989, LeCun et

al. successfully used BP to train a CNN for handwritten zip code recognition [18].

This achievement is significant because the authors demonstrated a successful

real-world application of a BP-trained NN.

Training a NN with many hidden layers using BP at the time was challeng-
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ing and slow. Hence, many practitioners only focused on shallow NNs [17]. In

1991, Hochreiter formally identified the reason why DNNs are hard to train by

BP: the problem of vanishing gradient [19]. The backpropagated error gradients

either shrink or grow rapidly after each layer, which complicates the training of a

DNN. In 1997, Hochreiter and Schmidhuber proposed the long short-term mem-

ory (LSTM) architecture to alleviate the vanishing gradient problem in recurrent

neural networks [20]. LSTM can encode intermediate outputs in its cell state,

therefore the gradients can be backpropagated better. The LSTM architecture

is still widely used today. Despite that, the vanishing gradient problem slowed

down NN research at the time.

The next resurgence of NN research was fueled by new techniques to alle-

viate the vanishing gradient problem, the advancement in computer processing

capability, and the availability of large datasets. In 2006, Hinton et al. derived a

fast and greedy learning algorithm that trains a deep belief network (DBN) layer-

by-layer. The learned weights are then further fine-tuned using a slower learning

procedure [21]. In 2009, Raina et al. suggested that GPU can be used to accelerate

the training of a DNN [22]. They demonstrated that the DBN learning algorithm

can achieve around 70 times speed-up using a GPU compared to a dual-core CPU,

thus reducing the learning time of a 4-layer DBN from several weeks to around a

single day. In the same year, Deng et al. introduced the ImageNet dataset, which

is a large image classification dataset consisting of 3.2 million images [23]. This

large dataset provided researchers with sufficient data to train a large DNN.

In 2011, Glorot et al. proposed the rectified linear unit (ReLU) activation func-

tion, which can reduce the effects of vanishing gradient and makes the training

of a DNN easier [24]. Using the latest techniques, such as GPU-based training

and ReLU activation functions, Krizhevsky et al. developed a deep CNN, named

AlexNet [25]. AlexNet won the ImageNet Large Scale Visual Recognition Chal-

lenge (ILSVRC) 2012 with a top-5 error of 15.3%, which is 10.9% lower than the

second-best entry. This achievement has demonstrated the capability of DL to the
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world.

Since then, developments in DL have accelerated rapidly. In 2014, two deep

CNNs were developed and submitted to ILSVRC 2014, i.e.,VGGNet [26] and

Inception-v1 [27]. Inception-v1 won first place with a top-5 error of 6.7% and

VGGNet was runner-up with a top-5 error of 7.3%. In the same year, Goodfellow

et al. proposed the generative adversarial nets (GAN) framework, which is the

current state-of-the-art approach for many image generation tasks (e.g., image-to-

image translation and image synthesis) [28]. In 2015, a deep CNN, named ResNet,

won ILSVRC 2015 with a top-5 error of 3.6% [29]. In 2016, Silver et al. introduced

AlphaGo, which is a Go computer player that is powered by DL. AlphaGo is

the first computer program to defeat a human world champion in the full-sized

game of Go [30]. The key milestones described above are summarized in Table

2.1. Many more DL developments have been made since 2016, some of which are

discussed in the following sections.

Table 2.1: Key events in the history of deep learning from 1943 to 2016.

Year Milestone Contributors

1943 Formulated the biological neuron mathematically. McCulloch and Pitts [7]
1957 Invented the perceptron. Rosenblatt [8]
1960 Proposed the first BP by steepest descent algorithm. Kelley [9]
1962 Simplified the BP algorithm with chain rule only. Dreyfus [10]
1969 Showed that the perceptron cannot solve complex problems. Minsky and Papert [11]
1970 Derived the modern BP algorithm. Linnainmaa [12]
1971 Developed the first MLP. Ivakhnenko [13]
1980 Proposed the first CNN. Fukushima [14]
1982 Described NN training using BP. Werbos [15].
1986 Showed that BP can yield useful representations in DNNs. Rumelhart et al. [16]
1989 Trained a CNN with BP for a real-world application. LeCun et al. [18]
1991 Identified the vanishing gradient problem in DNNs’ training. Hochreiter [19]
1997 Proposed the LSTM architecture. Hochreiter and Schmidhuber [20]
2006 Proposed DBN. Hinton et al. [21]
2009 Used GPU to accelerate DNNs’ training. Raina et al. [22]
2009 Introduced the large ImageNet dataset. Deng et al. [23]
2011 Proposed the ReLU activation function. Glorot et al. [24]
2012 Won ILSVRC 2012. Krizhevsky et al. [25]
2014 Achieved runner-up in ILSVRC 2014. Simonyan and Zisserman [26]
2014 Won ILSVRC 2014. Szegedy et al. [27]
2014 Proposed the GAN framework. Goodfellow et al. [28]
2015 Won ILSVRC 2015. He et al. [29]
2016 Developed AlphaGo. Silver et al. [30]
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2.2 Deep learning in computer vision

To develop NAS algorithms that can outperform hand-designed solutions, it is

important to understand the main novelty of relevant DL works. In this section,

we review the representative methods for image classification and segmentation.

2.2.1 Image classification

For image classification, CNN is the dominant approach in DL. CNN is also the

backbone of many DL-based methods for image segmentation. Here, we review

the key architectural design elements of various popular CNNs.

AlexNet (proposed by Krizhevsky et al. [25]): AlexNet is a simple feed-

forward CNN that comprises eight layers with trainable weights, where the first

five layers are convolutional, and the last three layers are fully-connected. The

output of every convolutional and fully-connected layer is fed through a ReLU

activation function. Additionally, local response normalization is applied to the

output of the first and second convolutional layers. The first, second, and fifth

convolutional layers are also followed by a max-pooling layer.

VGGNet (proposed by Simonyan and Zisserman [26]): VGGNet aims to

increase accuracy by increasing the number of convolutional layers (i.e., increas-

ing the network depth). The VGG-16 and VGG-19, which are the two common

VGGNet variants, contain 16 trainable layers (13 convolutional layers) and 19

trainable layers (16 convolutional layers), respectively. These convolutional layers

are grouped into several computation blocks, and each block is followed by a

max-pooling layer. Furthermore, the output feature maps’ channels also double

after each block. Another unique attribute is that VGGNet stacks several smaller

convolutional layers together to increase the receptive field without incurring high

computation costs. For example, stacking two 3× 3 convolutional layers together

produces the same receptive field as a 5 × 5 convolutional layer, but with fewer

parameters.
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Inception-v1 (proposed by Szegedy et al. [27]): Instead of just increasing

the network depth, Inception-v1 increases the network width too. Inception-v1

increases the network depth and width by stacking multiple inception modules.

As shown in Fig. 2.1, an inception module consists of four parallel processing

branches, where the first branch performs 1 × 1 convolution, the second branch

performs 3× 3 convolution, the third branch performs 5× 5 convolution, and the

fourth branch performs 3 × 3 max-pooling. To reduce computation costs, 1 × 1

convolution is used to reduce the number of channels before performing the 3× 3

and 5 × 5 convolutions. Additionally, 1 × 1 convolution is performed after the

max-pooling operation to align the number of channels with the other branches.

The Inception-v1 variant that was submitted to the ILSVRC 2014 competition,

named GoogLeNet, consists of nine inception modules. In total, GoogLeNet has

22 trainable layers.

1x1 convolution 1x1 convolution 1x1 convolution 3x3 max-pooling

3x3 convolution 5x5 convolution 1x1 convolution

Input

Output  
(channel concatenation)

Figure 2.1: The inception module used in Inception-v1 [27].

ResNet (proposed by He et al. [29]): Deeper neural networks are more

challenging to train than shallower neural networks. Consider a simple shallow

feed-forward NN, Net A, and its deeper counterpart, Net B. Net B can be consid-

ered equivalent to Net A if the extra layers perform an identity function, i.e., a

comparable solution exists. However, He et al. showed that Net B achieves lower

performance than Net A under the same experimental settings.
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Figure 2.2: The building block of ResNet.

To combat this problem, they proposed a residual learning framework, where

skip-connections are added between layers. The skip-connection is essentially

an identity function. That is, given an input x, the original operation of a layer

f(x) becomes f(x) + x if there is an input skip-connection. See Fig. 2.2 for an

illustration. Using this framework, the authors successfully trained a DNN with

152 trainable layers, which is eight times deeper than VGG-19.

DenseNet (proposed by Huang et al. [31]): A standard feed-forward CNN

with L layers typically only have L connections, where each layer is only con-

nected to the next layer. In contrast, DenseNet has L(L+1)
2

connections, where

the l-th layer is connected to the l − 1 preceding layers. At Layer l, the input

feature map is the concatenation of all feature maps from the preceding layers.

As a result, DenseNet can have narrow layers (fewer output feature maps’ chan-

nels). DenseNet architectural design can prevent the vanishing gradient problem,

enforce feature reuse, strengthen feature propagation, and lower the number of

trainable parameters.

MobileNet-V1 (proposed by Howard et al. [32]): Although the existing

DNNs can achieve high accuracy, they have many trainable parameters. Hence,

they are difficult to be deployed on edge devices. MobileNet-V1 reduces the

number of trainable parameters by using the depthwise separable convolution,

which is a factorized version of the standard convolution. A depthwise separable
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convolution is implemented using a depthwise convolution followed by a point-

wise convolution. Given an input feature map with n channels, the depthwise

convolution applies a 2D filter of k × k to each of the n channels separately. The

output of every 2D filter is concatenated to form the intermediate feature map

with n channels. Then, the pointwise convolution applies a 1× 1 filter to project

the intermediate feature map with n channels to C channels. Refer to Fig. 2.3

for an illustration. Compared to a standard 3 × 3 convolution operation, a 3 × 3

depthwise separable convolution requires 8 to 9 times fewer computations.

3x3  
convolution

3x3  
convolution

3x3  
convolution

3x3  
convolution

1x1  
convolution

Depthwise convolution Pointwise convolution

Figure 2.3: An illustration of a 3× 3 depthwise separable convolution with C = 6 output
channels.

EfficientNet (proposed by Tan and Le [33]): EfficientNet uses neural archi-

tecture search (NAS) to automatically design an optimum baseline CNN model,

named EfficientNet-B0. The objective function of the NAS optimizes both accuracy

and floating-point operations per second. To increase the model size, a compound

scaling method is used to uniformly scale the EfficientNet-B0’s depth, width, and

resolution. Given the scaling factor N , the EfficientNet-B0’s depth is increased

by αN , width is increased by βN , and image resolution is increased by γN . The

fixed coefficients α, β, γ are determined using a grid search on EfficientNet-B0. By

varying the scaling factor N , different CNN model sizes can be obtained.
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2.2.2 Image segmentation

In this section, we review the existing DL-based models for image segmentation.

Many of the existing methods’ approaches overlap, hence we group them based

on their key novelty.

Fully convolutional network. Most DL-based methods adopt a fully con-

volutional network (FCN) for image segmentation [1, 34]. That is, there are no

fully-connected layers in the network. FCN is favored because of its efficiency.

With a single forward-pass, FCN can generate the output segmentation map of

the same size as the input image, see Fig. 2.4.

Figure 2.4: An FCN can generate the dense segmentation map in a single forward-pass.
Figure is from [35].

The idea of using an FCN for image segmentation is first introduced by

Long et al. [35]. They converted the existing CNNs (i.e., AlexNet, VGGNet, and

GoogLeNet) into an FCN by discarding the final classifier layer and replacing

all fully-connected layers with convolutional layers. To generate the output seg-

mentation map, they appended a 1 × 1 convolutional layer and a transposed

convolutional layer to the CNNs. The 1×1 convolutional layer produces the same

number of channels as the number of semantic classes, and the transposed convo-

lutional layer bilinearly upsamples the final feature map to a pixel-dense output.

However, Long et al. found that this simple strategy causes coarse segmentation

outputs. To address this, they added skip-connections to combine the feature
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maps of earlier layers and the penultimate layer.

Encoder-decoder framework. The recent FCN models follow a more system-

atic structure: the encoder-decoder framework [36, 37, 38, 39]. The encoder and

decoder can be viewed as two separate DNNs, where the encoder extracts salient

features from the input images and the decoder generates the output segmentation

maps from the extracted features.

To reduce the development efforts, an existing top-performing CNN is com-

monly used as the encoder, e.g., [36, 37]. Noh et al. proposed an encoder-decoder

FCN, named DeconvNet [36]. The encoder of DeconvNet is the VGG-16 without

the final classification layer. The decoder of DeconvNet is a mirrored design of the

encoder, which comprises deconvolutional and unpooling layers instead of con-

volutional and pooling layers. The unpooling operation uses the pooled indices

from the encoder for upsampling. The overall architecture of DeconvNet is shown

in Fig. 2.5. In a similar approach, Badrinarayanan et al. proposed SegNet, which

follows the same architectural design as the DeconvNet [37]. The main difference

is that the encoder only uses the first 13 convolutional layers of the VGG-16 (no

fully-connected layers). Hence, it has fewer trainable parameters.

Figure 2.5: The architecture of DeconvNet. Figure is from [36].

A popular and widely used encoder-decoder FCN in the medical field is the

U-Net [38]. The authors custom-designed the encoder and decoder of U-Net, and

they are symmetrical to each other. A unique attribute of U-Net is that there

are skip-connections that transfer the feature maps from the encoder to their

counterparts in the decoder, see Fig. 2.6. There are also several extensions of
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U-Net, e.g., [40, 41, 42]. Cicek et al. replaced all 2D operations in the U-Net with

their 3D counterparts for volumetric segmentation [41]. Zhang et al. built a U-Net

with residual units for road extraction [42].

Figure 2.6: The architecture of U-Net. Figure is from [38].

In the encoder-decoder framework, the feature maps transform from high-

resolution to low-resolution (encoding stage), and then from low-resolution to

high-resolution again (decoding stage). Hence, the fine-grained information may

be lost while encoding and fail to be recovered while decoding. The methods dis-

cussed above tackle this problem by relying on high-resolution feature maps from

the encoder (U-Net) or recording the pooled indices while encoding (DeconvNet

and SegNet).

In contrast to the encoder-decoder framework, Wang et al. proposed the

HRNet architecture, which maintains high-resolution feature maps throughout

the process [43]. HRNet incrementally adds a high-to-low resolution stream, but

at the same time, all the different resolution streams exchange feature maps in

parallel. Therefore, every resolution stream has access to the different resolution

feature maps, see Fig. 2.7. The image segmentation variant of HRNet, named
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HRNetV2, produces the dense segmentation map by bilinear upsampling all

resolution streams’ output to the largest resolution, concatenating them, and

feeding the concatenated feature maps through a 1× 1 convolutional layer.

Figure 2.7: The architecture of HRNet. Figure is from [43].

Multi-scale processing. Both local and global contextual information is useful

for accurate segmentation outputs. This can be exploited by processing feature

maps at different scales. Lin et al. proposed the feature pyramid network (FPN) for

object detection, and later extended it to image segmentation [44]. Since different

depths in the decoder process feature maps of different scales, FPN exploits this

pyramidal characteristic by performing predictions at every depth.

Zhao et al. developed the Pyramid Scene Parsing Network (PSPNet) that con-

sists of a pyramid pooling module [45]. The pyramid pooling module uses pooling

operations with four different kernel sizes to downsample the input feature map

into four different scales. Then, a 1× 1 convolutional layer is applied at each scale

level to reduce the channel dimension. The feature maps of different scales are

then upsampled to the same size as the input feature map, and then concatenated

with the input feature map to form the final feature map for the output layer. The

overall architecture of PSPNet is shown in Fig. 2.8.

Figure 2.8: The architecture of PSPNet. Figure is from [45].

Dilated convolution. Dilated convolution (also known as atrous convolution)
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manipulates the receptive field by using a sparse kernel. For example, a 3 × 3

convolution with a dilation rate of 2 can be visualized as a 5×5 convolution kernel

with every second row and column emptied. Hence, the dilated convolution can

enlarge the receptive field without incurring additional parameters.

A popular segmentation model that uses dilated convolution is the DeepLab

family, namely DeepLabv1 [46], DeepLabv2 [47], DeepLabv3 [48], and DeepLabv3+

[49]. DeepLabv1 converts the VGG-16 CNN into an FCN and replaces the last few

convolutional layers with atrous convolutional layers to maintain higher resolu-

tion feature maps. Additionally, a fully-connected pairwise conditional random

field (CRF) is used to refine the segmentation output. Subsequently, DeepLabv2

introduces the atrous spatial pyramid pooling (ASPP) module. The ASPP module

uses several atrous convolutional layers with different dilation rates in parallel,

effectively processing the feature maps at multiple scales. The output feature

maps of the different atrous convolutional layers are then combined to form the

final output.

DeepLabv3 removes the fully-connected CRF and comprises modules with

atrous convolution that are placed in a cascade pattern. The ASPP is also improved

by adding 1×1 convolutions, batch normalizations, and image-level features. Re-

fer to Fig. 2.9 for an overview of DeepLabv3. The latest version, DeepLabv3+,

adopts the encoder-decoder framework, see Fig. 2.10. The encoder resembles the

DeepLabv3 framework, and the decoder is a simple custom-designed DNN. Ad-

ditionally, the decoder and ASPP use the atrous separable convolution to reduce

the number of trainable parameters.

Attention mechanism. Attention is a technique used in DNNs to place larger

emphasis (weights) on more important features. Chen et al. developed an atten-

tion model that is trained to produce soft weight maps [50]. The soft weight maps

denote the importance of every pixel in a feature map of a given scale. The final

logits are obtained by performing a weighted sum using the weight maps and the

multi-scale feature maps, see Fig. 2.11. Li et al. proposed the pyramid attention
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Figure 2.9: An overview of DeepLabv3. Figure is from [48].

Figure 2.10: An overview of DeepLabv3+. Figure is from [49].

network (PAN), which combines attention mechanism with spatial pyramid [51].

Specifically, the attention weights are computed from multi-scale feature maps

using the concept of a spatial pyramid.

Figure 2.11: An illustration of the attention model proposed by Chen et al. Figure is from
[50].

There are also papers that utilize the self-attention mechanism. Unlike the

traditional attention mechanism, the self-attention mechanism is a self-contained

module that computes the attention weights based on the input feature maps it
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operates on only. Yuan et al. proposed OCNet, which uses an interlaced sparse

self-attention scheme to model the dense relation between pixels [52]. Fu et al.

introduced a dual attention network based on the self-attention mechanism [53].

In their proposed network, a position attention module and a channel attention

module are used to model the long-range contextual information in the spatial

and channel dimensions, respectively.

Vision transformer. Transformers are the current state-of-the-art algorithms

for natural language processing (NLP). They rely solely on the self-attention mech-

anism for computations [54]. Due to their success in NLP, transformers are also

gaining popularity in the field of computer vision. Vision Transformer (ViT) is con-

sidered the first work to demonstrate that a transformer can obtain state-of-the-art

performance in image classification [55]. In ViT, an input image is converted into

a sequence of tokens, which are then fed into a transformer for feature extraction.

Recently, several transformer-based methods have also been proposed for

image segmentation [56]. Zheng et al. proposed the SEgmentation TRansformer

(SETR), which uses the ViT as an encoder for feature extraction and a convolution-

based decoder for feature aggregation [57]. Similarly, Ranftl et al. proposed the

dense prediction transformer (DPT), which also utilizes the ViT as an encoder

[58]. In contrast, Chen et al. proposed TransUNet, which combines both trans-

former and CNN in a hybrid setting [59]. The TransUNet resembles the classic

U-Net architecture, with an additional transformer placed between the CNN-

based encoder and decoder.

2.3 Neural architecture search

Neural architecture search (NAS) is a sub-field of automated machine learning

(AutoML). NAS aims to automate the labor-intensive process of engineering a

DNN. The research field of NAS is still at its infancy stage, with pioneering works

[60, 61] just appeared in the year 2017. Despite that, various NAS-designed

22



2.3. Neural architecture search

DNNs have already outperformed hand-designed DNNs in image classification,

object detection, and semantic segmentation [62]. Several state-of-the-art CNNs,

e.g., EfficientNet [33] and MobileNetV3 [63], were also designed using NAS.

A NAS algorithm can be described by its three components: search space,

search method, and model evaluation strategy. The search space defines the ar-

chitecture design paradigm that can be explored. It may have some heuristics or

constraints to reduce the search complexity (e.g., only allowing one-to-one connec-

tion between layers). Different tasks (e.g., image classification or segmentation)

also require different search spaces.

The search method is the technique used to sample the candidate DNNs from the

search space. Popular techniques include reinforcement learning, evolutionary

algorithm, gradient descent, and random search. The model evaluation strategy is

the procedure used to evaluate the sampled candidate architectures. Having a

good strategy is important because it can reduce search time significantly.

The remainder of this section is organized as follows. Section 2.3.1 discusses

the NAS search spaces. Section 2.3.2 reviews the existing search methods, and

finally Section 2.3.3 presents the model evaluation strategies.

2.3.1 Search spaces

The search space of NAS can be represented as a directed acyclic graph (DAG).

The exact definition of nodes and edges can differ between NAS methods. Within

the DAG, there are available options that will be selected by the search method.

For example, the operation to be performed at each node, the connection between

nodes, or the hyperparameters of the operation to be performed. Different com-

binations of the selected options will produce a different DNN. Hence, the size

of the search space correlates to the number of possible configurations within the

DAG. In the current literature, the existing NAS search spaces can be categorized

as entire-network or cell-based.
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2.3.1.1 Entire-network search space

This type of search space contains candidates for a complete DNN. It is the most

straightforward and intuitive approach, but it can also be computation-intensive

to search in a large entire-network search space.

An early NAS work by Baker et al. uses a simple entire-network search space

that is queue-structured [60]. They searched for the optimum operation to be

performed at each node (i.e., convolution, pooling, fully-connected, or output) and

the corresponding operation hyperparameters. Since the connections between

nodes are fixed, the candidate DNNs in this search space are simple feed-forward

networks like the LeNet-5 [64], see Fig. 2.12. Another early NAS paper by

Zoph and Le uses a similar search space [61]. They fixed each node to perform

convolution only and searched for the optimum skip-connections between nodes

and hyperparameters of the convolution operations. This search space design

results in more complex candidate DNNs like the ResNet [29], see Fig. 2.13.

Softmax

Convolution

Max-pooling

Convolution

Figure 2.12: A queue-structured search space used by [60]. For simplicity, we set the
number of nodes to be 4. The candidate DNNs are simple feed-forward networks.

Since an entire-network search space can be computation-demanding, some

authors only searched for parts of a DNN [65] or searched using downsampled
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Figure 2.13: A complex DNN discovered by [61]. Figure is from [61]

input images [66, 67]. Nekrasov et al. only searched for the optimal decoder, which

is a part of an FCN [65]. Chen et al. searched for the whole FCN using input images

with 1
8

of their original resolution [66]. Similarly, Zhang et al. searched using input

images with 1
4

of their original resolution [67].

In the current literature, the entire-network search space is less widely used

than the cell-based search space for two reasons. First, the current trend to obtain

high accuracy is using a very deep CNN, e.g., VGGNet [26] and ResNet [29].

However, searching for a very deep CNN in an entire-network search space is

very computation-intensive. Second, DNNs derived from entire-network search

spaces lack transferability. For example, a DNN derived from an entire-network

search space can not be easily hand-modified for another task (e.g., increase or

reduce the network depth).

2.3.1.2 Cell-based search space

Cell-based search space is the most common in the current literature, e.g., [68,

69, 70, 71, 72, 73, 74]. The concept of cell-based search space is inspired by

the repetition of identical processing blocks in the top-performing hand-crafted
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CNNs, e.g., repeated inception modules in GoogLeNet and repeated residual

blocks in ResNet. A cell-based search space contains candidates for an arbitrary

amount of cells, which are the building blocks of a DNN.

In a cell-based search space, the design of the overall network architecture

is known as macro-architecture, and the internal design of a cell is known as

micro-architecture. The macro-architecture is built by stacking the cells repeat-

edly. This step is usually performed manually before the search begins. Cells of

the same kind (e.g., Cell 1 or Cell 2) generally share the same micro-architecture

after the search is finished, i.e., the search is conducted on unique cell types only.

Refer to Fig. 2.14 for an illustration.

Input

Output

Input

Output

Cell 1

Cell 2

(a) The micro-architecture

Input

Output

Cell 1

Cell 2

Cell 1

Cell 2

Cell 1

(b) The macro-
architecture

Figure 2.14: An example of a cell-based search space. There are two discovered cells: Cell
1 and Cell 2. These cells are stacked to form a deep network.
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The idea of cell-based search space is first introduced by Zoph et al. [75]. They

proposed a cell-based search space, named NASNet, that consists of two types of

cells: Normal cell and Reduction cell. The Normal cell returns feature maps of

the same dimension, whereas the Reduction cell returns feature maps with height

and width reduced by half. Before the search starts, the macro-architecture is

hand-designed using the Normal and Reduction cells as building blocks.

The search space for the Normal cell is described as follows. A cell contains

B blocks. Each block contains two nodes, and each node represents an operation.

For each block, the search method will select the input for each node, which can

be the outputs of the two previous cells or the output of the previous blocks; the

operation to be performed at each node; and the method to combine the outputs

of the two nodes (concatenation or summation). The unused blocks’ output will

be concatenated along with the last block’s output as the cell’s output. The search

space for the Reduction cell is identical, except that the first operation applied to

the cell’s input has a stride of 2. See Fig. 2.15 for an illustration of the NASNet

search space. Most of the existing cell-based NAS studies follow the NASNet

search space [76].

Generally, the macro-architecture is hand-designed based on the task specifi-

cations (e.g., the dataset size). For example, Zoph et al. used a smaller macro-

architecture for the CIFAR10 dataset and a larger macro-architecture for the

ImageNet dataset [75]. Some authors used popular hand-crafted architectures

as the macro-architecture. For example, Cai et al. used MobileNetV2 [77] as the

macro-architecture [78], and Weng et al. used U-Net [38] as the macro-architecture

[79].

Searching in a cell-based search space has a lower computational cost and

better transferability than searching in an entire-network search space. The size

of a cell-based search space is constrained by the number of unique cell types and

the size of each cell. Cells derived from a cell-based search space also have high

transferability because the derived cells can be used to hand-engineer a new DNN

27



2.3. Neural architecture search

Block 1

conv
3x3 identity

add

Block 2

conv
3x3

conv
5x5

Concat

Block 3

conv
3x3

conv
5x5

add

Concat
Cell k

Cell k-1

Cell k-2

Cell k+1

Figure 2.15: A discovered cell in the NASNet search space. Here, we set the number of
blocks B to be 3.

after the search process. Several papers, e.g., [75, 80], have achieved competitive

performance on the ImageNet classification task by re-using the cells found on

the CIFAR10 dataset.

2.3.2 Search methods

In this section, we discuss the existing NAS search methods, which include re-

inforcement learning (Section 2.3.2.1), evolutionary algorithm (Section 2.3.2.2),

gradient descent (Section 2.3.2.3), and random search (Section 2.3.2.4).

2.3.2.1 Reinforcement learning

NAS methods based on reinforcement learning (RL) use an agent to design the

optimal DNN. The agent is typically modeled by a NN such as MLP or recurrent

neural network (RNN). During the search process, the agent will repeatedly sam-
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ple the candidate DNNs from the search space, and subsequently, the trainable

parameters of the agent will be updated using rewards, which are performance

estimates of the sampled DNNs (e.g., validation accuracy). Hence, as the search

goes on, the agent will get better at finding high-performance DNNs. This itera-

tive process is similar to how humans get better at doing a task with experience

gain.

The existing RL-based NAS algorithms mainly differ in the agent’s policy and

the optimization of the agent. Baker et al. trained an agent using the Q-learning

algorithm with the ϵ-greedy and experience replay strategies for NAS [60]. The

agent samples a candidate DNN by selecting the layer type and its corresponding

hyperparameters at every layer sequentially. Zoph and Le trained an agent, which

is modeled by an RNN, to generate strings that represent network architectures

[61]. For example, the string “3 256 5 128” can describe a neural network that

comprises a 3 × 3 convolutional layer with 256 filters, and a 5 × 5 convolutional

layer with 128 filters. The RNN agent is trained with the REINFORCE policy

gradient algorithm [81] using the reward signal.

Several existing RL-based NAS methods have extended Zoph and Le’s ap-

proach due to its simplicity, e.g., [75, 82, 83]. Instead of the REINFORCE algorithm,

Zoph et al. used the proximal policy optimization (PPO) algorithm [84] to update

the agent’s parameters [75]. To optimize model speed, Tan et al. incorporated

model latency into the reward signal so that the agent can find a network archi-

tecture with a good trade-off between accuracy and speed [83].

A challenge of RL-based NAS methods is that every sampled DNN has to be

trained and evaluated for the reward signal, which is very time-consuming. For

example, the search took 8 to 10 days with 10 GPUs in [60], 28 days with 800

GPUs in [61], and 4 days with 500 GPUs in [75]. As most people do not have large

computing power, RL-based methods were not feasible then.

A breakthrough came when Pham et al. proposed to share the trained pa-

rameters among the candidate DNNs [82]. Each candidate DNN is viewed as a
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sub-graph of a supernet, hence only the supernet needs to be trained. Once the

supernet is trained, every candidate DNN can re-use the weights of the supernet.

As a result of this strategy, the search took less than 16 hours to complete on a

single GPU, which is 1000 times faster than [61].

2.3.2.2 Evolutionary algorithm

The evolutionary algorithm (EA) is a population-based method that simulates the

evolution of species. It can solve complicated non-convex optimization problems

without needing the mathematical form of the objective function [85]. Given an

initial population of network architectures, EA-based NAS methods iteratively

evolve the population, until the stopping criteria are met. To reduce human bias,

many methods randomly sample the initial population from the search space [86].

The existing EA-based NAS methods mainly differ in population update (evo-

lution). The population update consists of two main components: selection

strategy and genetic operator. Selection strategy is the procedure for choosing

individuals (i.e., network architectures) from the population as survivors for the

next iteration or as parents of new offspring. Most strategies rely on a measure of

fitness for every individual, e.g., validation accuracy.

The selection strategies used by the existing EA-based NAS methods can be

grouped into four main categories: elitism [87, 88, 89, 90], age-based [69, 91],

roulette wheel selection [92, 93, 94, 95], and tournament selection [96, 97, 98,

99]. The elitism strategy keeps individuals with a high fitness value. Kang

and Ahn selected the n fittest individuals as survivors for the next iteration [87].

Kwasigroch et al. chose the fittest offspring as the parent for the next iteration [90].

Although this strategy is the simplest, it can cause the population to fall into local

optima. The age-based strategy removes old individuals from the population.

Real et al. removed the individual that was created the earliest (oldest) [69]. This

strategy allows the search space to be explored more.

The roulette wheel selection strategy assigns a survival probability to every
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individual based on its fitness value among the whole population, i.e., the fittest

individual has the highest survival probability. Gibb et al. assigned a survival

probability for each individual that is computed by dividing its fitness value by

the total fitness value of the population [93]. The tournament selection strategy

selects the fittest individual among a set of individuals that are randomly sampled

from the population. Real et al. randomly picked two individuals, where the

fitter model is selected as the parent and the other model is removed from the

population [96].

Genetic operator is the technique for generating new individuals. The two

commonly used operators are mutation and crossover. Mutation creates a new

offspring by modifying parts of an existing individual. Real et al. randomly ap-

plied a mutation from a set of 11 mutation choices, which includes adding a

skip-connection between two random layers and changing the number of chan-

nels of a random convolutional layer [96]. Real et al. used two kinds of mutations

that are chosen randomly: hidden state mutation and operation mutation [69].

Crossover produces an offspring by involving two individuals. The single-

point crossover is the most widely used crossover operator due to its simplicity

[86]. Gibb et al. performed a single-point crossover by first selecting a point in a

parent. Then, the first offspring is generated by copying everything left of that

point in the first parent and everything right of that point in the second parent.

The second offspring is generated by reversing the order [93].

A disadvantage of single-point crossover is that it can only be applied to

individuals with equal lengths. To alleviate this issue, Sun et al. split each parent

into two parts based on a random point. Then, the first offspring is generated by

merging Part 1 of the first parent with Part 2 of the second parent. The second

offspring is generated by merging the remaining parts of the parents [99].
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2.3.2.3 Gradient descent

Neural architecture search (NAS) is a discrete and non-differentiable problem in

nature, where the existing approaches (e.g., RL-based and EA-based) search over

a discrete set of candidate DNNs. Instead, Liu et al. proposed the differentiable

architecture search (DARTS) method [80], which has become the foundation of all

gradient descent-based NAS methods. In DARTS, the search space is formulated

as a continuous space so that gradient descent can be used for searching. The

DARTS method is described as follows.

Consider a DAG with an arbitrary number of nodes. A node xi is a latent

representation (e.g., a feature map) and an edge (i, j) is associated with an opera-

tion o (e.g., identity or convolution) that transforms xi into xj . To cast the discrete

search space into a continuous space, Liu et al. over-parameterized the DAG by

performing a mixed operation ô instead of a definite operation o at every edge.

A mixed operation is a weighted sum of multiple operations. Let O =

{O1, O2, . . . } be a set of candidate operations. A mixed operation at edge (i, j) is

defined as

ôi,j(xi) =

|O|∑
z

αi,j
z Oz(x

i), (2.1)

where αi,j = {αi,j
1 , αi,j

2 , . . . , αi,j
|O|} are the trainable architectural parameters that

determine the importance of each operation. The parameters αi,j are normalized

with the softmax function so that their sum is equal to 1. After the search is

completed, the best architecture is derived by choosing the candidate operation

O that is associated with the highest α at every edge, i.e., replacing ôi,j with

Oz = argmaxz α
i,j
z .

The formulation above changes the discrete problem of NAS into finding the

optimal set of continuous parameters α. Hence, the gradient descent algorithm

can be used for searching. DARTS performs a bi-level optimization, where it

jointly optimizes the network weights w (parameters of the candidate operations

O) with the training loss Ltrain (i.e., ∇w Ltrain) and the architectural parameters α
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with the validation loss Lval (i.e., ∇α Lval). Therefore, DARTS does not require

training and evaluating every candidate DNN. As a result, DARTS only took 1.5

days to complete the search on CIFAR10.

Although DARTS has a fast search time, it has two weaknesses. First, DARTS

has a high GPU memory requirement because each mixed operation consists

of |O| candidate operations. Several studies attempt to alleviate this problem

by activating only parts of the over-parameterized network during the search,

e.g., [70, 72, 78, 100]. Cai et al. treated the architectural parameters α as prob-

abilities of the candidate operations being active [78]. Each mixed operation is

controlled by a binary gate that only allows a candidate operation to be active

for a forward-pass. Dong and Yang used the Gumbel-Max trick [101] to sample

discrete choices from the continuous space of α [100]. Xu et al. computed the

mixed operation using only a part of the input feature map [72].

Second, DARTS can be unstable during the search. There are cases where

DARTS designed DNNs that are dominated by skip-connections. As a result,

these DNNs perform poorly on the test set. Different studies have proposed

different solutions [102, 103, 104, 105]. Chu et al. claimed that the skip-connection

operation has an unfair advantage because it greatly benefits the training of the

large over-parameterized network (like the residual module in ResNet) and does

not harm performance (complementary to the convolution operation). However,

the architectural parameters α are normalized using softmax, hence increasing

the parameterα associated with the skip-connection operation will affect the other

operations. To alleviate this issue, Chu et al. replaced the softmax with sigmoid,

so each operation is independent of the others [102]. In their subsequent work,

Chu et al. manually added an auxiliary skip-connection between every two nodes

to reduce the unfair advantage of the candidate skip-connection operation [104].

Zela et al. proposed an early stopping strategy based on the largest eigenvalue

of the Hessian matrix. The Hessian matrix is computed based on the valida-

tion loss with respect to the architectural parameters α. The search is stopped
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early when the largest eigenvalue increases too much [103]. Wang et al. indicated

that the architectural parameters α are not a good indicator of the operations’

strength. Instead, the strength of each operation is better measured by the valida-

tion accuracy degradation of the over-parameterized network when the operation

is removed. The larger the accuracy drop, the more important the operation is

[105].

2.3.2.4 Random search

Random search (RS) is the simplest method. Each candidate DNN is randomly

sampled from the search space. RS has been shown to be a strong comparison

baseline by Yu et al. [106], Liu et al. [107], and Li and Talwalker [108]. Hence, a

common way to evaluate the effectiveness of a NAS algorithm is to compare it

against RS.

Yu et al. reported that many state-of-the-art NAS algorithms perform similarly

to RS [106]. Liu et al. also showed that their proposed EA-based approach only

outperforms RS slightly, with a top-1 error of 20.3% versus 21.0% and a top-5 error

of 5.2% versus 5.5% on the ImageNet validation set, and an error of 3.75% versus

3.91% on the CIFAR10 test set [107]. Li and Talwalkar demonstrated that RS

with an early stopping strategy performs similarly to ENAS [82] (a state-of-the-art

RL-based NAS method) [108].

A possible reason that a simple RS can achieve comparable results to the more

advanced NAS techniques is the use of resource-saving techniques. Many NAS al-

gorithms use a cell-based search space to reduce the computation cost. Hence, RS

has a higher probability of sampling a good candidate DNN within a small search

space. Furthermore, Yu et al. indicated that the widely-adopted weight-sharing

technique can influence the true performance ranking of the candidate DNNs

[106]. They showed that NAS algorithms without weight-sharing outperform RS

by a wide margin.

34



2.3. Neural architecture search

2.3.3 Model evaluation strategies

Many NAS techniques require the evaluation of every sampled candidate DNN.

For example, computing the reward signal for RL-based NAS methods and the

fitness measure for EA-based NAS methods. The simplest way is to train every

sampled candidate DNN and obtain the validation performance. However, this

is very time-consuming and computation-intensive. The NAS methods that use

this simple approach have a long search time, e.g., NASNet took 4 days with 500

NVIDIA P100 GPUs for searching [75], and AmoebaNet took around 7 days with

450 NVIDIA K40 GPUs for searching [69]. The existing strategies for accelerating

the model evaluation process can be grouped into three main categories: low

fidelity evaluation, surrogate modeling, and weight sharing.

The low fidelity evaluation strategy aims to obtain a rough approximation of the

model’s performance. There are multiple ways to perform low fidelity evaluation.

The first way is by training on lower resolution input images. Chrabaszcz et al.

showed that the optimal hyperparameters for the original and downsampled vari-

ants of ImageNet are similar [109]. The second way is by training on a smaller

subset of data, e.g., [110]. The third way is by reducing the model size for search-

ing. Real et al. used a smaller macro-architecture (fewer number of cells and

convolutions’ output channels) during the cell-based search [69]. Although low

fidelity evaluation has a lower computation cost, the ranking of the candidate

DNNs may not be accurate [111].

The surrogate modeling strategy uses an external model to predict the candi-

date DNNs’ performance. Some authors performed learning curve extrapolation.

For example, Baker et al. employed a sequential regression framework to extrap-

olate the partial learning curve. The candidate’s training is stopped early if the

performance is predicted to be poor [112]. Some authors performed single-value

performance prediction. For example, Liu et al. trained a performance predictor

to select the promising candidates for actual training during the search [68].
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The weight sharing strategy re-uses the trained parameters so that they are

not wastefully discarded. Typically, the candidates’ weights are discarded once

they are trained and evaluated. Realizing this, Pham et al. shared the candidates’

weights among each other by viewing each candidate as a sub-graph of a larger

parent graph. Hence, only the parent graph needs to be trained, and the candidate

architectures can directly re-use the weights of the parent graph for evaluation

[82]. There are also NAS methods that use the network morphism technique [113]

so that the new candidates can re-use the trained weights of the old candidates,

e.g., [114, 115]. In another approach, Wong et al. transferred a pre-trained RL

agent to a new task [116].

2.4 Chapter summary

Deep learning is an established field whose origin can be traced back almost eight

decades ago. Currently, it is the most popular approach for many applications,

especially in computer vision. A key objective of this project is to design auto-

mated solutions that can outperform hand-engineered DL solutions for image

classification and segmentation. To this end, it is crucial to understand the rele-

vant and important works. In this chapter, we first provide a historical account

of deep learning. Then, we review the prominent works for image classification

and segmentation. Finally, we provide a concise discussion on neural architecture

search.
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3.1. Introduction

3.1 Introduction

There were around 36 million people globally who suffered from blindness in the

year 2015. This figure is estimated to reach 115 million by the year 2050 [117].

An essential criterion for vision-impaired people to navigate freely and safely is

accurately detecting the pedestrian lane. This task is currently performed using

manual aids that are prone to errors, such as white canes and guide dogs [118].

Hence, there is a need for automatic pedestrian lane detection methods.

The existing methods for pedestrian lane detection have limited usability.

Some methods rely on white markers surrounding the pedestrian lanes, e.g., [119,

120]. However, most pedestrian lanes are unmarked, and have arbitrary shapes

and surfaces. Other existing methods rely on manually-extracted features, e.g.,

[121, 122], and vanishing point estimation, e.g., [123]. However, these methods

are unreliable as they are sensitive to scene variations.

Deep learning has been gaining a lot of attention lately. It can extract salient

features automatically using a deep neural network (DNN). Recently, Nguyen

et al. proposed a deep learning-based method for pedestrian lane detection [124].

They demonstrated that deep learning can achieve high accuracy in the pedes-

trian lane detection task. However, their proposed DNN is large and has a high

processing time, making it difficult to be deployed in edge devices.

Designing a suitable DNN for pedestrian lane detection is challenging. There

are many design considerations, including the number of layers, the connection

between layers, and the operation at every layer. A poorly designed network will

lead to low performance. Additionally, the DNN has to be accurate, fast, and

compact for practicality. Therefore, hand-designing a DNN for pedestrian lane

Our publication arise from Chapter 3:
S. P. Ang, S. L. Phung, A. Bouzerdoum, T. N. A. Nguyen, S. T. M. Duong, and M. M. Schira,
“Real-time pedestrian lane detection for assistive navigation using neural architecture search,” in
Proceedings of International Conference on Pattern Recognition, 2020, pp. 1–8.

Chapter 3 is under peer-review in:
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architecture search for real-time pedestrian lane detection,” Applied Intelligence, pp 1-13, 2022.
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detection is a laborious task.

In this chapter, we propose a neural architecture search (NAS) algorithm

to automate the laborious task. Here, the pedestrian lane detection problem

is cast as a segmentation task, where every pixel is labeled as pedestrian-lane

or background categories. The proposed NAS algorithm, named Multi-scale

Dense NAS (MSD-NAS), searches in a dense search space that also contains

many existing hand-crafted DNNs as candidates. The network designed by the

proposed NAS method supports multi-scale inputs, allowing it to utilize both

local and global contexts for predictions. To further improve the segmentation

performance, we introduce a novel Short-term Visual Memory mechanism to

improve information facilitation in the derived network. The contributions of this

chapter can be highlighted as follows:

1. We propose a new neural architecture search algorithm, called MSD-NAS,

to automatically find the optimum DNN with multi-scale input branches for

pedestrian lane segmentation. The capability of MSD-NAS is demonstrated

via extensive analysis and experiments.

2. We introduce a novel NAS search space that is generic and large. The search

space is represented as a Generalized Segmentation Network (GSN). GSN

has multi-scale input branches, allowing the search algorithm to select the

best input scale. In fact, many state-of-the-art hand-crafted DNNs for image

segmentation are special cases of the GSN.

3. We propose a new Short-term Visual Memory (STVM) mechanism for the

derived network of MSD-NAS. It helps information-sharing within the

derived network. Our experiments show that the STVM mechanism further

improves the segmentation accuracy.

The remainder of this chapter is organized as follows. Section 3.2 reviews the

related work, Section 3.3 describes the proposed method, Section 3.4 presents the

experimental results and analysis, and Section 3.5 concludes our work.

39



3.2. Related work

3.2 Related work

3.2.1 Traditional methods for unmarked lane detection

The traditional methods for unmarked lane detection can be divided into two cate-

gories: (i) lane segmentation, and (ii) lane-border detection. The lane segmentation

approach utilizes color models, which are trained offline, to classify each pixel

as lane or background [125, 126, 127]. These methods differ in the types of color

space and classifier used. Tan et al. classified each pixel using color histograms in

the red-green-blue (RGB) space [125]. Using the hue-saturation-intensity space,

Sotelo et al. classified achromatic pixels (i.e., with low saturations or extreme in-

tensities) based on intensity alone, and classified other pixels by thresholding

their chromatic distance to the training colors [126]. Ramstrom and Christensen

derived three feature maps from the RGB and YUV color spaces to reduce the

effect of illumination variations; they then built the Gaussian mixture models for

classification [127]. Because these methods are trained offline, they do not cope

well with the appearance variations of lane surfaces, e.g., different shapes, colors,

or textures.

To address this problem, several techniques model the lane pixels directly

from sample regions in the input image [128, 129, 130]. These techniques choose

the sample lane regions in different ways. Miksik et al. initialized the sample lane

region as a trapezoid that is centered at the bottom of the image, and then refined

the region using the vanishing point [128]. Alvarez and Lopez randomly selected

small areas at the bottom of the input image as they assumed that the bottom area

of a road image shows the road surface [129]. These methods are sensitive to the

sample regions’ quality, hence domain expertise is required.

The lane-border detection approach determines the lane boundaries via the

vanishing point [131, 132] or templates of the lane boundaries [133]. Kong

et al. detected the lane borders from the edges pointing to the vanishing point

[132]. In another approach, Crisman and Thorpe identified the lane boundaries
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from the edges of homogeneous color regions by matching the lane templates

[133]. These methods with the lane-border detection approach are sensitive to

background edges and vanishing point estimation.

To tackle this issue, Chang et al. combined the lane-border detection and the

lane segmentation approaches [134]. In their method, the vanishing point is used

to detect the lane borders, and a color model is used to segment the lane region.

In another method, Phung et al. used the vanishing point to construct the sample

lane region. The final lane region is then determined using: 1) a color model

learned from the sample lane region; and 2) the matching scores between the

edges of the homogeneous color regions and the lane templates [123].

3.2.2 Deep learning-based methods for image segmentation

To justify the design of our NAS search space, we review the prominent network

architectures for semantic segmentation.

Fully convolutional network. Most of the current deep learning methods

for image segmentation adopt a fully convolutional network (FCN) for image

segmentation [1, 135]. FCN is very efficient. With a single forward-pass, FCN can

generate the output segmentation map of the same size as the input image. The

idea of using an FCN for image segmentation is first introduced by Long et al. [35].

They converted a standard convolutional neural network (CNN) into an FCN by

replacing all fully-connected layers with convolutional layers.

Now, FCN commonly follows a more systematic structure: the encoder-

decoder framework. The encoder extracts salient features from the input images

and the decoder generates the output segmentation maps from the extracted fea-

tures. For the encoder, many authors adopted a top-performing CNN [39, 51]. For

the decoder, some authors designed their own decoder network [49, 136], while

other authors used a mirrored design of their encoder network [38, 124].

Skip-connection. Long et al. found that combining the feature maps of the

earlier layers and the penultimate layer via skip-connections can improve seg-
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mentation performance [35]. Ronneberger et al. proposed a network architecture,

named U-Net [38]. The encoder and decoder of U-Net are symmetrical to each

other. A unique attribute of U-Net is that there are skip-connections that transfer

the feature maps from the encoder to their counterparts in the decoder. Sim-

ilarly, Badrinarayanan et al. proposed a symmetrical encoder-decoder network,

called SegNet, except that the skip-connections are used to transfer the stored

max-pooling indices only [37]. This strategy results in a more memory-efficient

network.

Local and global contextual information. Both local and global contextual

information is useful for accurate segmentation outputs. This can be exploited by

extracting feature maps of different scales or manipulating the field-of-view of the

convolution kernels. Lin et al. proposed the feature pyramid network (FPN) for

object detection, and later extended it to image segmentation [44]. Since different

depths in the decoder process feature maps of different scales, FPN exploits this

pyramidal characteristic by performing predictions at every depth.

Zhao et al. developed the Pyramid Scene Parsing Network (PSPNet) that con-

sists of a pyramid pooling module [45]. The pyramid pooling module uses pooling

operations of different sizes to downsample the input feature map into different

scales. Chen et al. proposed the DeepLab network that consists of an atrous spatial

pyramid pooling (ASPP) module [47]. Instead of using the pooling operation, the

ASPP module uses the atrous convolution to manipulate the field-of-view of the

convolutional kernels, effectively changing the scale at which the feature maps

are processed.

Inspired by these findings, we incorporate these design elements into our pro-

posed search space. The candidates in our search space are fully convolutional,

have access to low-resolution feature maps, and can utilize multi-contextual in-

formation.
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3.3 Methodology

We introduce a new neural architecture search (NAS) algorithm to design the best

DNN for pedestrian lane segmentation. The proposed method, named MSD-NAS,

can design a network architecture with multiple input branches. Therefore, the

derived network can utilize multi-scale information effectively. MSD-NAS finds

the optimum architecture from a dense search space, called the Generalized Seg-

mentation Network. Additionally, we propose a novel Short-term Visual Memory

mechanism to better facilitate information sharing within the derived network.

This section is organized as follows. Section 3.3.1 introduces the Generalized

Segmentation Network (GSN). Section 3.3.2 describes the architectural parameters

of the GSN. Section 3.3.3 explains the algorithm to optimize the GSN, and Section

3.3.4 shows the procedure to derive the optimum network from the optimized

GSN. Lastly, Section 3.3.5 presents the Short-term Visual Memory mechanism.

3.3.1 Generalized Segmentation Network

The Generalized Segmentation Network (GSN) is a large DNN that is repre-

sented by a group of nodes and edges. Each node performs an operation (e.g., a

3 × 3 convolution operation or an identity operation), and each edge represents

the information flow between two nodes. The nodes are organized into a two-

dimensional grid, where the horizontal axis represents the processing layer, and

the vertical axis represents the scale, see Fig. 3.1.

The GSN has an input layer, an output layer, and L processing layers. Process-

ing is done at multiple image scales: 0, 1, . . . , S. At image scale s, the input layer

downsamples the input image by a factor of 2s, before passing it to the processing

nodes in Layer 1. Each processing node at Scales 1 to (S-1) will produce feature

maps of three different scales, while, the nodes at Scales 0 and S will produce

feature maps of two different scales. Let H ×W be the size of the input image. At

scale s, each node produces feature maps with a spatial size of H
2s−1 × W

2s−1 , H
2s
× W

2s
,
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Figure 3.1: The proposed Generalized Segmentation Network (GSN) for image segmen-
tation.

and H
2s+1 × W

2s+1 . For the receiving node at scale z, the channel size of the feature

maps is C × 2z, where C is a user-defined hyperparameter.

A processing node (l, s) at layer l and scale s can receive feature maps from

nodes at layer (l − 1) and three adjacent scales (s − 1, s, s + 1). This is in sharp

contrast with many existing networks, where each node receives inputs from only

one adjacent scale (except for the ad-hoc skip connections). At the output layer, a

convolution along the third dimension of the feature map (i.e., 1× 1 convolution)

is performed to predict a segmentation map of size H
2s

× W
2s

pixels for scale s. To

generate the final output, we convert the segmentation map at a selected scale to

the same size as the input image via bilinear interpolation.

The proposed GSN has a generalized architecture in that not all processing

nodes and edges are activated, and typically only a few nodes in the input layer

and the output layer are necessary. Fig. 3.2 shows that many high-performing

deep network architectures for image segmentation can be considered as special

cases of the GSN.

3.3.2 Architectural parameters of the GSN

GSN can be considered a parent model containing all possible candidate opera-

tions and paths. From the GSN, our goal is to find the optimum child network.
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Figure 3.2: Many hand-engineered state-of-the-art deep networks for image segmentation
are special cases of the proposed GSN (best viewed in color). Green node: filtering
operation. Purple node: identity operation.
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To achieve this, we use the differentiable architecture search (DARTS) [80], which

is explained next.

We incorporate three types of architectural parameters into the GSN that

control the relative importance of i) the input image at each scale, ii) the operations

at each node, and iii) the paths to nodes in the next layer. First, the GSN has S

input nodes, one for each image scale. The input node (0, s) at scale s will

downsample the original input image size by a factor of 1
2s

before sending it to the

next layer. Each input node (0, s) is associated with an architectural parameter γs

that determines the importance of the input at scale s. Hence, the input to node

(1, s) is defined as

I1,s = γs fs(X), (3.1)

where X is the input image, and fs is the downsampling operation by a factor of
1
2s

. The parameters γ = {γ0, γ1, . . . , γS} are normalized with softmax function to

represent the importance probabilities.

Second, each node now computes a mixed operation, which is a weighted sum

of multiple single operations. Let Il,s be the input of node (l, s). Here, Il,s is the

sum of all the feature maps received from the connected nodes in the previous

layer. Let O = {O1, O2, . . .} be the candidate operations. At node (l, s), the

intermediate feature map is computed as

Fl,s =

|O|∑
j

αj
l,sO

j(Il,s). (3.2)

Here, the architectural parameters αl,s = {α1
l,s, . . . , α

|O|
l,s } denote the importance

of each operation. The parameters αl,s are also normalized with softmax function

to represent the importance probabilities.

Third, each node at Scales 1 to (S-1) will produce three feature maps of various
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scales. At node (l, s), the output feature maps are defined as

yl,s = βl,sFl,s,

y+l,s = β+
l,s f

+(Fl,s),

y−l,s = β−
l,s f

−(Fl,s),

(3.3)

where f+ and f− are the functions that upsample and downsample the feature

map’s size by 2, respectively. Note that the nodes at Scale 0 will not produce y+l,s

and the nodes at Scale S will not produce y−l,s. Here, the architectural parameters

βl,s = {βl,s, β
+
l,s, β

−
l,s} denote the importance of each path. The parameters βl,s are

also normalized with softmax function to represent the importance probabilities.

The architectural parameters γ,α, β can be optimized using gradient descent

since they are in a continuous space. However, the memory overhead for com-

puting all the mixed operations is large because each node now consists of |O|

candidate operations. To overcome this problem, we only compute the mixed

operation using part of the input feature map Il,s, i.e., the mixed operation only

processes k input channels; this reduces the memory overhead by k times. This

method is known as the partially-connected DARTS [72]. To apply partially-

connected DARTS, we modify Eq. (3.2) to

Fl,s =

|O|∑
j

αj
l,sO

j(Bl,s × Il,s) + (1−Bl,s) Il,s, (3.4)

where Bl,s is the sampled channel mask.

3.3.3 Optimizing the GSN

The final network is determined by the architectural parameters γ,α, and β.

During the training phase of the GSN, the architectural parameters γ,α, β and

network weights w are optimized alternately using gradient descent. The opti-

mization procedure is described as follows.

The training set is split into two equal subsets, A and B. For each training
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epoch, first, the network weights w are updated with the training loss LA, which

is computed on the training subset A. Then, the architectural parameters γ,α,β

are updated with the training lossLB, which is computed on the training subset B.

The architectural parameters and network weights are optimized alternately and

repeatedly until convergence. Note that the network weights w are pre-trained

for n epochs before begin optimizing the architectural parameters γ,α,β to avoid

local optima.

3.3.4 Deriving the final network from the optimized GSN

MSD-NAS can deriveK unique networks (K ≤ S), where each network processes

the input image at a different scale. After the architectural parameters are op-

timized, we derive the networks as follows. We sort the γ = {γ0, γ1, . . . , γS} in

descending order. The input node with the largest γ determines the first selected

node in Layer 1. At the first selected node, the output path with the largest β and

the operation with the largest α are selected. We repeat this process for every

active node until Layer L. For prediction, only the output node connected to the

last active node is used. We repeat the above steps using the input node with

the next largest γ until K unique networks are obtained, see Figs. 3.3(a)-3.3(c) for

some illustrations.

After the K unique networks are derived, we combine them into one final

deep neural network with multiple input branches, with each branch handling

the input image at a different scale. The networks will share the nodes if they have

common segments, see Fig. 3.3(d) for an illustration. If the combined network has

more than one output node, we only use the output node that predicts at the

smallest scale (closest to the original image resolution). Note that we will train

the final network from scratch using the full training set.
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(b) This network is derived using the input
node with the second largest γ as the starting
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(c) This network is derived using the input
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(d) The three different networks combined
to form a deep neural network that accepts
multi-scale inputs

Figure 3.3: An illustration of the network derivation procedure when K = 3.

3.3.5 Short-term visual memory mechanism

Several papers have shown that the skip-connection scheme has many benefits.

For segmentation neural networks, skip-connections can improve performance

by transferring the high-resolution feature maps from the shallow to deep layers

[35]. For very large networks, skip-connections can reduce the effects of vanishing

gradients [29].

There are three main challenges in using the skip-connection scheme with

MSD-NAS. First, the skip-connection scheme is not efficient for MSD-NAS. The

network derived by MSD-NAS can consist of multiple input branches; these input

branches are processed sequentially, i.e., not in parallel. Hence, we need to store

the intermediate feature maps if the skip-connections are between different input

branches. Moreover, the processing time will be delayed if a node relies on

the feature map from another input branch. Second, in segmentation networks,

skip-connections are primarily used to transfer high-resolution feature maps to
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aid the upsampling operations. Therefore, other types of nodes can not share

information intra-branch and inter-branch. Third, in the skip-connection scheme,

feature maps are unweighted, i.e., all pixels are treated as equally important. It

is beneficial to let the network learn the importance of each pixel to the overall

segmentation performance.

To overcome these problems, we propose the Short-term Visual Memory

(STVM) mechanism for the nodes. The phrase short-term arises from the fact that

the memory only contains information about the current input image. Note that

we only apply the STVM mechanism on the derived network, i.e., after completing

the search phase. Next, we describe the STVM mechanism in detail.

In the derived network, there are at most S STVM modules. The nodes at

scale s share the same STVM module ms. Each STVM module ms has the same

dimensions as the output feature map of a node at scale s. Note that a feature

map is a 3-D matrix, where each channel is the 2-D output of a convolution filter.

Hence, the STVM module ms can be represented as [m1
s,m

2
s, . . .]. Each node

interacts with its STVM module through input and update gates. The input gate

determines what information to use from the STVM module, and the update gate

inserts new information into the STVM module.

Here, we describe the input gate in detail. At node (l, s), we perform a

channel-wise 2-D convolution on the STVM module ms to obtain the matrix

al,s = [a1l,s, a
2
l,s, . . .]. Each element ajl,s is computed as

ajl,s = Ij
l,s ∗m

j
s, (3.5)

where ∗ is the convolution operator, and Ij
l,s is a 2-D learnable weight. The input

gate of node (l, s) is then defined as

il,s = σ(al,s), (3.6)

where σ denotes the sigmoid activation function. Now, the input gate il,s represents
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the weight of every pixel in the STVM module ms. The input to node (l, s) is then

given as

Il,s = Il,s +ms × il,s. (3.7)

Next, we describe the update gate in detail. Let F l,s = [F1
l,s,F2

l,s, . . .] be the

output of node (l, s). We perform a channel-wise 2-D convolution on the output

Fl,s to obtain the matrix bl,s = [b1l,s, b
2
l,s, . . .]. The element bjl,s is computed as

bjl,s = U j
l,s ∗ F

j
l,s, (3.8)

where U j
l,s is a 2-D learnable weight. The update gate of node (l, s) is then defined

as

ul,s = σ(bl,s). (3.9)

Now, the update gate ul,s represents the weight of every pixel in the output Fl,s.

We update the STVM module as follows:

ms = ul,s ×F l,s + (1− ul,s)×ms. (3.10)

The interaction between a node and its STVM module is illustrated in Fig. 3.4.

Figure 3.4: The interaction between a node (l, s) and its STVM module ms.
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3.4 Experiments and analysis

In this section, we present the experiments and analysis of MSD-NAS. Section

3.4.1 describes the pedestrian lane dataset. Section 3.4.2 presents the experimental

steps, and Section 3.4.3 describes the search configurations. Section 3.4.4 analyzes

the proposed MSD-NAS method, and Section 3.4.5 compares MSD-NAS with

other hand-crafted deep learning models on the pedestrian lane segmentation

task.

3.4.1 Pedestrian lane dataset

In this chapter, we conducted the experiments using the Pedestrian Lane Detection

and Vanishing Point Estimation Version 3.0 (PLVP3) dataset [123]. The PLVP3

dataset comprises 10,000 color images with their corresponding ground-truth

annotations. The ground-truth masks were manually annotated, where every

pixel is labeled as pedestrian-lane (1) or background (0) classes.

Figure 3.5: Several examples from the PLVP3 dataset.

The images in PLVP3 were acquired from real indoor and outdoor scenes

in various weather conditions and at different times of the day. The pedestrian

paths in these images are diverse in shapes, colors, and textures. The cameras

used to acquire these images are also different, resulting in images with varying

widths and heights (ranging from 1224 to 1632 pixels). The overall statistics of this

dataset are given in Table 3.1. Several images and their ground-truth masks from
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the PLVP3 dataset are shown in Fig. 3.5. The PLVP3 dataset can be downloaded

from http://documents.uow.edu.au/~phung/plvp3.html.

Table 3.1: Statistics of the PLVP3 dataset.

Condition Description Number of images

Surfaces

Brick (outdoor) 2,917
Concrete (outdoor) 4,860
Pavement (outdoor) 1,164
Indoor 734
Other (mixed indoor/outdoor) 325

Lighting Normal 7,845
Shadows and extreme 2,155

3.4.2 Experimental steps

The pedestrian lane detection methods were evaluated using accuracy, mean

intersection over union, and frames per second metrics. Accuracy is the percentage

of image pixels that are correctly classified. Mean intersection over union (mIoU) is

the average IoU score over each class. IoU is defined as the area of the intersection

divided by the area of the union between the predicted output and the ground-

truth mask: IoU = Area of intersection
Area of union . Frames per second (FPS) is the number of

predictions that a given method can produce in a second. The FPS was measured

using a system that has a 2.4 GHz Intel Xero Gold 5115 CPU and a 12 GB NVIDIA

GeForce GTX Titan Xp GPU.

The experiments were conducted using 5-fold cross-validation. The PLVP3

dataset was divided into five partitions of equal sizes. For each fold, one partition

was used as the test set, and the remaining partitions were used as the training set.

This process was repeated five times for different choices of the test set. Note that

each training set was further divided into 90% images for training and 10% images

for validation. The images were resized to 320× 320 pixels for the experiments.

3.4.3 Search settings

The search was conducted using a GSN with 14 layers (L = 14) and 6 scales

(S = 6). We ran the search algorithm for 30 epochs. For each node, the candidate
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operations O consisted of:

1. Identity.

2. 3× 3 convolution (conv3).

3. 3× 3 convolution ×2 (conv3t2).

4. 3× 3 convolution with a dilation of 2 (conv3d2).

5. 5× 5 convolution (conv5).

6. 3× 3 depthwise separable convolution (dconv3).

7. 3× 3 depthwise separable convolution ×2 (dconv3t2).

8. 5× 5 depthwise separable convolution (dconv5).

9. 3× 3 convolution with residual connection (res3).

10. 3× 3 convolution ×2 with residual connection (res3t2).

The downsampling function f− was implemented as a conv3 operation with

a stride of 2. The upsampling function f+ was implemented as a bilinear upsam-

pling operation with a scale of 2, followed by a conv3 operation. The downsam-

pling function fs was implemented as a conv3 operation with a stride of 2s. Every

convolution operation was followed by a batch normalization operation and a

ReLU activation function.

The search phase of the proposed NAS method was conducted using two

optimizers. The Adam optimizer was used to update the architectural parameters

γ,α,β with the following settings: learning rate of 0.0003, weight decay of 0.0005,

and exponential decay rates β1 of 0.9 and β2 of 0.999. The SGD optimizer with

momentum was used to update the network weightswwith the following settings:

learning rate of 0.01, momentum of 0.9, and weight decay rate of 0.0005.

The optimization of the architectural parameters γ,α,β only begun after the

network weightsw were trained for 20 epochs (n = 20). With these configurations,
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the search running on a 12GB NVIDIA GTX Titan Xp GPU took roughly 20 hours

using a GSN with a base channel size of 8 (C = 8), and roughly 37 hours using a

GSN with a base channel size of 16 (C = 16).

3.4.4 Ablation study

In this section, we performed an ablation study to:

• determine the optimum number of search epochs,

• find the best number of layers and scales for the GSN,

• analyze the effects of using different numbers of input branches K,

• determine the effectiveness of the STVM mechanism, and

• compare the different numbers of base channel size C.

This ablation study was conducted using fold-1 of the dataset.

Optimum number of search epochs. We ran the search five times, and each

time with a different number of search epochs: i) 10 epochs; ii) 20 epochs; iii) 30

epochs; iv) 40 epochs; and v) 50 epochs. The higher the number of epochs, the

longer the search will take. The derived network from each search was trained

from scratch, and then the mIoU score was computed for the test set. Fig. 3.6

shows the results of this comparison. The network found by searching for 50

epochs achieved the lowest mIoU. We believe this is due to overfitting. The

network found by searching for 30 epochs achieved the highest mIoU; the search

time was also the average among all other configurations. Hence, we chose to

search for 30 epochs in this chapter.

Optimum number of layers and scales for the GSN. We performed a 3 × 3

grid search with the following choices: 12, 14, and 16 layers; and 4, 5, and 6

scales. Fig. 3.7 presents the results of the grid search. For the number of scales,

the mIoU increased as the number of scales increased, except for configurations

with 16 layers. For the number of layers, the mIoU increased as the number
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Figure 3.6: The test mIoU of the networks found by searching for different numbers of
epochs.

of layers increased. However, it stopped improving after 14 layers, except on

configurations with 4 scales. For the smallest GSN (12 layers and 4 scales), the

derived network obtained the lowest mIoU. Among all the tested combinations,

the network derived from the GSN with 14 layers and 6 scales achieved the highest

mIoU. Therefore, we adopted 14 layers and 6 scales for the GSN in this chapter.
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Figure 3.7: Results of the grid search for finding the optimum number of GSN layers and
scales. Value inside the box: test mIoU.

Effects of using different numbers of input branches K. We tested three
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configurations on the same derived network: i) one input branch (K = 1); ii) three

input branches (K = 3); and iii) six input branches (K = 6). Table 3.2 shows the

results of this experiment. For all configurations, the network’s mIoU, inference

time, and trainable parameters increased as the number of input branches in-

creased. The network with six input branches obtained the highest mIoU (0.9534),

whereas the network with one input branch had the lowest mIoU (0.9423). We

adopted the configuration with six input branches (K = 6) because it achieved

the best performance, while still being able to support real-time performance.

Table 3.2: The effects of using different numbers of input branches.

No. input branches mIoU FPS Trainable parameters (M)
One branch (K = 1) 0.9423 142.86 5.754
Three branches (K = 3) 0.9533 76.92 8.690
Six branches (K = 6) 0.9534 58.82 10.998

Effectiveness of the STVM mechanism. We tested two settings on the same

derived network: i) with STVM; and ii) without STVM. Table 3.3 presents the

results of this study. The derived network with STVM (mIoU of 0.9534) outper-

formed the network without STVM (mIoU of 0.9462). This improvement of 0.0072

in mIoU by including STVM is significant because as seen in Table 3.5, the top

and bottom of the 9 evaluated methods (≤ 27M parameters) differ only 0.0050 in

mIoU. However, the network with STVM had more parameters than the network

without STVM (10.998M versus 10.922M). This slight increment of parameters

is expected because the STVM mechanism requires additional computations in

every node, i.e., the input and output gates.

Table 3.3: The effects of using the STVM mechanism in the derived network.

Setting mIoU Trainable parameters (M)
With STVM 0.9534 10.998
Without STVM 0.9462 10.922

Fig. 3.8 illustrates the STVM module at scales 1, 3, and 5. For simplicity, we

only visualize the channel with the highest activation. The figure shows that the

STVM mechanism stores different salient information about the input image at
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Figure 3.8: A visualization of STVM at various scales (1, 3, and 5). At each scale, we only
show the STVM’s channel with the highest activation. This figure is best viewed in color.

different scales. At scale 1, high activation values were concentrated on the grass

regions. At scale 3, high activation values included the sky too. At scale 5, the

memory became very coarse to be understood. These results and illustrations

justify the use of the STVM mechanism in the derived network.

Effects of using different numbers of base channel size C. We searched on

three different GSNs, each with a different base channel size: i) C = 4; ii) C = 8;

and C = 16. Table 3.4 presents the results of this comparison. The network

derived with C = 16 (mIoU of 0.9545) had the highest mIoU; it also had the most

trainable parameters (29.961M). The network derived with C = 4 (mIoU of 0.9503)

had the lowest mIoU; it also had the least trainable parameters (1.880M). The

network derived with C = 8 was 0.0011 lower in terms of mIoU than the network

derived with C = 16, but with 18.963M fewer trainable parameters (10.998M

versus 29.961M). In this chapter, we used both C = 8 and C = 16 configurations as

they yield networks of different sizes.

Table 3.4: The comparison between the different numbers of base channel size C.

Base channel C mIoU Trainable parameters (M)
4 0.9503 1.880
8 0.9534 10.998
16 0.9545 29.961
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3.4.5 Comparison with existing hand-crafted architectures

In this section, we compared the proposed method with 16 hand-designed deep

learning architectures using 5-fold cross-validation. The evaluated models were

grouped into two sizes: i) networks with ≤ 27M trainable parameters, and ii)

networks with > 27M trainable parameters. The traditional approaches were ex-

cluded from this analysis because the previous studies have shown that pedestrian

lane detection methods based on deep learning are superior [124, 137].

For a robust evaluation, we ran the proposed search algorithm on every fold.

This resulted in five unique deep networks designed by MSD-NAS. We then

trained these networks from scratch and tested their performances on their re-

spective test sets. The performance of the MSD-NAS is defined as the test results

averaged from these five networks. To search for two network sizes that fit the two

groups, we set the C = 8 for a smaller network and C = 16 for a larger network.

Table 3.5 presents the results of this analysis. Overall, MSD-NAS outper-

formed all evaluated methods significantly (P < 0.0001). In the group of equal

or fewer than 27M trainable parameters, MSD-NAS (accuracy of 0.9769, mIoU

of 0.9517) outperformed all other networks with the least trainable parameters

(8.228M). In the group of more than 27M trainable parameters, MSD-NAS (accu-

racy of 0.9781, mIoU of 0.9542) outperformed all other networks with the fastest

FPS (52.63) and least trainable parameters (28.175M). The MSD-NAS (58.82 FPS

for C = 8 and 52.63 FPS for C = 16) also can support real-time pedestrian lane de-

tection as most video cameras capture at 30 to 50 FPS. See Fig. 3.9 for a network ar-

chitecture designed by MSD-NAS. This experiment demonstrates that MSD-NAS

can design networks that outperform hand-crafted network architectures.

Fig. 3.10 shows some visual results of MSD-NAS (C = 16) and the top-1 exist-

ing method, PSPNet (ResNet-101). We selected representative results that consist

of different environments (indoor versus outdoor), lighting conditions (bright ver-

sus dark), and lane shapes (straight versus curve). Across these samples, we can
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Table 3.5: The mean performance of different lane segmentation methods over five folds.
We also computed two-tailed tests between MSD-NAS and other methods in its group.
The results are sorted based on the trainable parameters in descending order.

Network size Method Accuracy mIoU FPS Trainable
params. (M)

> 27M trainable
parameters

PSPNet (ResNet-101) [45] 0.9776 0.9540 30.30 68.059
DeepLabV3+ (ResNet-101) [49] 0.9772∗ 0.9523∗ 47.62 59.339
Bayesian DeepLabv3+ [138] 0.9737∗ 0.9486∗ 37.88 54.750
DeepLabV3+ (Xception) [49] 0.9764∗ 0.9508∗ 41.67 54.700
DeepLabV3 (ResNet-50) [48] 0.9780 0.9539 41.67 39.634
Hybrid DL-GP [124] 0.9640∗ 0.9262∗ 1.01 29.469
Bayesian SegNet [139] 0.9681∗ 0.9344∗ 16.13 29.443
SegNet [37] 0.9645∗ 0.9258∗ 14.49 29.443
MSD-NAS (C = 16) 0.9781 0.9542 52.63 28.175

≤ 27M trainable
parameters

Unet (ResNet-34) [38] 0.9754∗ 0.9488∗ 142.86 24.437
FPN (ResNet-34) [140] 0.9758∗ 0.9497∗ 142.86 23.156
DeepLabV3+ (ResNet-34) [49] 0.9765 0.9509 125.00 22.438
LinkNet (ResNet-34) [39] 0.9760∗ 0.9499∗ 142.86 21.772
PAN (ResNet-34) [51] 0.9767 0.9513 125.00 21.476
PSPNet (ResNet-34) [45] 0.9768 0.9512 250.00 21.443
FCN (VGG-16) [35] 0.9720∗ 0.9488∗ 27.78 14.720
HRNetv2-W32 [43] 0.9744∗ 0.9467∗ 40.74 9.980
MSD-NAS (C = 8) 0.9769 0.9517 58.82 8.228

(*): We reject the null hypothesis H0 : mMSD-NAS = mother at a confidence level of 99.99%.
That is, there is a significant difference compared to MSD-NAS.

see that the segmentation outputs of MSD-NAS were more precise than PSPNet

(ResNet-101).

The experimental results also show that a DNN can achieve high efficiency by

customizing the architecture according to the task. For example, MSD-NAS (C =

8) outperformed U-Net (ResNet-34) despite having 2.97 times fewer parameters

(8.228M versus 24.437M), and MSD-NAS (C = 16) outperformed PSPNet (ResNet-

101) despite having 2.42 times fewer parameters (28.175M versus 68.059M). How-

ever, customizing a network architecture by hand is challenging because it involves

many design considerations. In this aspect, NAS methods have a significant ad-

vantage as they can automatically derive the optimum network design given the

criteria (loss function).
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Figure 3.9: The MSD-NAS (C = 16) derived from fold-1 of the dataset. The input and
output nodes are omitted for conciseness. White circle: node. Blue text: operation. Solid
black line: data flow between nodes.

3.5 Chapter summary

This chapter introduces a novel neural architecture search algorithm, called

MSD-NAS, for pedestrian lane segmentation. The proposed method finds the op-

timum network configuration from a dense search space, called the Generalized

Segmentation Network. We also show that many high-performing deep models

are special cases of the Generalized Segmentation Network, so the search space of

MSD-NAS is sufficiently large and generic. Furthermore, MSD-NAS can design

a deep model that is capable of processing multi-scale inputs. To further boost

the performance of the derived network, we introduce a novel Short-term Visual

Memory mechanism. The experiments show that MSD-NAS can find compact

and fast neural networks that achieve state-of-the-art results in pedestrian lane

segmentation. These advantages allow the NAS-based pedestrian lane detection

method to be deployed on edge devices for assistive navigation.
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Figure 3.10: The visual results of MSD-NAS (C = 16) and PSPNet (ResNet-101) on the
test images (best viewed in color). The notable differences are marked with red arrows.
Column 1: input image; Column 2: MSD-NAS (C = 16); Column 3: PSPNet (ResNet-101).
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4.1 Introduction

Hyperspectral imaging (HSI) is an emerging sensing tool that has been employed

in many areas, such as agriculture [141], mineral exploration [142], environmental

science [143], and security surveillance [144]. HSI measures the electromagnetic

spectrum at every pixel location. Given a scene, HSI uses a hyperspectral sensor

to capture a set of images at different wavelengths instead of just red, green, and

blue wavelengths captured by a standard color camera. Then, the images are

combined to form a 3-D hyperspectral image, where the first two dimensions

contain spatial information, and the last dimension contains spectral information.

An important step for automatic scene understanding is semantic segmen-

tation. Currently, the dominant approach for semantic segmentation is deep

learning [4, 145, 146]. Most of the recent deep learning methods adopt a fully

convolutional network (FCN) for image segmentation [1, 39, 147, 148, 149, 150].

FCN is favored in the literature because of its efficiency. With a single-forward

pass, FCN can generate the output segmentation map of the same size as the input

image.

There are two obstacles to directly applying the existing deep learning tech-

niques for hyperspectral image segmentation. The first obstacle is the lack

of data. FCN treats each image as a training sample. However, most pub-

licly available HSI datasets (e.g., Salinas Valley, Indian Pines, and Pavia Uni-

versity) only contain a single image [151, 152]. This makes the training in-

feasible because the networks will overfit easily. To address this obstacle, we

manually collected and annotated a large dataset of 4,625 hyperspectral im-

Chapter 4 is under peer-review in:
S. P. Ang, S. L. Phung, L. Bui, and A. Bouzerdoum, “AdaptorNAS: A new perturbation-based
neural architecture search for hyperspectral image segmentation,” IEEE Transactions on Circuits
and Systems for Video Technology, pp.1-13, 2022.

64



4.1. Introduction

ages, named UOW-HSI, for applications in biosecurity scanning (the labels in-

clude creature and plant). The UOW-HSI dataset can be downloaded from

https://documents.uow.edu.au/~phung/UOW-HSI.html.

The second obstacle is that the existing FCNs may not be optimized for hy-

perspectral images. The top-performing FCNs were designed and tested for

greyscale or red-green-blue (RGB) images only, so they may not perform opti-

mally on hyperspectral images. For example, the popular U-Net was developed

for grayscale medical images [38], and the popular DeepLabV3+ was designed for

RGB color scene images [49]. Hence, there is a need for a custom deep network

for hyperspectral image segmentation.

There are two main components to consider when designing a custom FCN

for hyperspectral image segmentation: the encoder network and the decoder net-

work. The encoder network is responsible for extracting salient features from

the input hyperspectral images, whereas the decoder network is responsible for

generating the output segmentation maps from the extracted features. As con-

volutional neural networks (CNNs) are powerful feature extractors, we employ

an existing state-of-the-art CNN as the encoder network. The choice of CNN

architecture can be decided according to the runtime requirements, e.g., small

size, fast speed, or high accuracy.

For the best performance, the decoder network has to be customized based

on the selected encoder architecture. The same decoder network may not work

optimally with every encoder network. We support this claim with our exper-

iment presented in Table 4.2: For the ResNet-34 encoder, the DeepLabV3 de-

coder obtained higher accuracy than the DeepLabV3+ decoder. However, for the

MobileNet-V2 encoder, the DeepLabV3 decoder obtained lower accuracy than

the DeepLabV3+ decoder. Hence, the design of the decoder network should be

customized to suit a given encoder network.

Designing a decoder network from scratch is time-consuming, needs many

trial-and-error experiments, and requires significant experience. For the best per-
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formance, the design effort will need to be repeated for different encoder choices

too. In this chapter, we propose a neural architecture search (NAS) algorithm

to automate this laborious task. The proposed NAS algorithm, named Adaptor-

NAS, can automatically design the optimum decoder for any given encoder, see

Fig. 4.1. The optimum decoder is found via pruning. That is, the search space is

a very large deep neural network (DNN) that comprises all candidate decoders,

and the optimum decoder is found after removing the other candidates iteratively.

To demonstrate its capability, we compare AdaptorNAS to state-of-the-art NAS

algorithms and hand-crafted network architectures.

AdaptorNAS

Encoder  
(...) 

Decoder

Encoder  
(ResNet-34) 

Decoder

Encoder  
(VGG-16) 

Decoder

Figure 4.1: AdaptorNAS aims to find the best decoder network for any given encoder
network.

This chapter has two major contributions. The first contribution is intro-

ducing a new NAS algorithm, named AdaptorNAS, that can find high-quality

decoders for any given encoders, e.g., VGGNet [26], MobileNet-V2 [77], ResNet

[29], and EfficientNet [33]. The capability of AdaptorNAS is demonstrated via

extensive analysis and experiments. The second contribution is applying a new

perturbation-based pruning search strategy that does not rely on any architectural

parameters. To the extent of our knowledge, this work is also the first to apply

such a strategy for the hyperspectral image segmentation task.

The remainder of this chapter is organized as follows. Section 4.2 reviews

the related work. Section 4.3 introduces the proposed AdaptorNAS algorithm.
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Section 4.4 presents the experimental results and analysis, and Section 4.5 provides

a discussion. Finally, Section 4.6 gives the concluding remarks.

4.2 Related work

4.2.1 Existing work on hyperspectral image segmentation

Due to limited training data, most of the existing deep learning methods for

hyperspectral image segmentation perform patch-wise classification [153, 154,

155, 156, 157, 158, 159]. That is, each pixel is labeled by classifying a rectangular

region (i.e., a patch) centered on the pixel. These methods generally rely on

CNNs for patch-wise classification. Xie et al. extracted image patches of different

spatial resolutions and passed them through a densely connected network to learn

multi-scale feature representations [159]. Lee et al. extracted multi-scale features

using different kernel sizes (e.g., 3 × 3 and 5 × 5), followed by 1-D convolutions

embedded in the residual network to effectively increase the width and depth

of the model [155]. Song et al. proposed a residual feature fusion network that

aggregates features from multiple levels of the network [158].

Several methods also apply 3-D convolutions to extract spatial-spectral infor-

mation simultaneously. For example, Zhang et al. proposed a residual network

and a densely connected network with 3-D convolutions, and aggregated the

features extracted from multiple levels [160]. Other approaches combine 3-D

convolutions with 1-D convolutions [161, 162] or 2-D convolutions [163, 164] in

their networks to obtain complementary information from different convolution

types while keeping the computational cost low. Zhong et al. firstly used 1-D

convolutions to utilize the rich spectral information, followed by 3-D convolu-

tions to extract more discriminative features in the hyperspectral images [162].

Roy et al. proposed a hybrid 2-D and 3-D CNN model to learn discriminative

spatial-spectral features simultaneously and reduce the model complexity [164].

Because hyperspectral images with hundreds of bands may contain redundant
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information, several recent methods also incorporate an attention mechanism to

enhance the segmentation performance [165, 166, 167, 168, 169, 170, 171, 172, 173].

The attention mechanism emphasizes discriminative features and suppresses ir-

relevant features by learning adaptive weights. Some methods, e.g., [168, 173],

directly process the input image through the spatial and spectral attention mod-

ules to re-calibrate the spectral and spatial information. In [173], the output

features of the attention modules are passed into a residual CNN with spectral

attention module to strengthen the discriminative spectral information further.

Other popular approaches employ two separate branches to extract spectral

and spatial information with their respective attention modules [167, 169, 171,

172]. For example, Hang et al. trained a spectral and spatial attention branch sep-

arately and fused the outputs by weighted summation [167]. Xue et al. proposed

a hierarchical residual network to extract multi-scale features. The hierarchi-

cal residual network uses a spectral attention branch to model the dependency

between spectral bands and a spatial attention branch to model the correlation

between spatial pixels [172].

In summary, due to the limited training data, most of the existing methods

adopt the patch-wise classification approach. This approach has some limitations:

(i) the performance varies based on the patch size [164], (ii) it might lead to overly

optimistic results if the training and testing image patches are overlapped [174],

and (iii) it has a high computational cost [175]. In another approach, Zheng et al.

adopted a patch-free hyperspectral image classification framework; however, a

data sampling strategy was proposed to cope with the limitation of training data,

which leads to extra computational cost [175]. Jiang et al. proposed a refinement

strategy to improve the coarse segmentation outputs of the 3-D FCN [176].

Unlike the existing methods, we do not follow the patch-wise classification

approach. Our work utilizes an FCN to segment the entire hyperspectral image.

This approach has three main benefits. First, the spatial information is not con-

strained by the patch size. Second, our approach is more efficient because the
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entire image can be segmented with one forward-pass. Third, the training is sim-

plified because extra data preparation steps become unnecessary (e.g., extracting

non-overlapping patches).

4.2.2 Neural architecture search for image segmentation

The goal of neural architecture search (NAS) is to automate the laborious process

of designing a DNN. There are several NAS algorithms developed for the seman-

tic image segmentation task, e.g., [65, 66, 67, 79, 137, 177, 178, 179, 180, 181, 182].

Majority of these works, i.e., [66, 67, 79, 137, 177, 178, 179, 180], use gradient-

based search. In gradient-based search, a large DNN, which represents the search

space, is trained via gradient descent. After the training is completed, the op-

timum DNN is derived from the large DNN via an algorithm. Gradient-based

search is generally faster than the other search techniques (like random search,

reinforcement-learning, and evolutionary algorithm) because it does not require

the evaluation of every candidate DNN. Hence, gradient-based search is favored

in the current literature.

The search space used by the existing gradient-based NAS methods can be

categorized as cell-based [79, 177, 179] or entire-network [66, 67, 137, 178, 180]. The

cell-based search space constraints the search within a modular unit, known as

a cell. A combination of cells then forms the skeleton of an architecture, which

is predefined before the search begins. For example, Weng et al. searched for

a downsampling cell and an upsampling cell. These two cells are then used to

build an U-Net architecture [79]. Zhang et al. searched for a normal cell and a

reduction cell. These two cells are then stacked in an alternating order to form

the encoder network [177]. Because the search is constrained within a modular

space, a cell-based search space requires fewer resources to search compared to an

entire-network search space. However, a cell-based search space has more human

biases than an entire-network search space because the overall architecture has to

be designed manually.
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The entire-network search space contains the candidates for a complete DNN.

For example, the authors of [66, 67, 137] searched for the whole network archi-

tecture in an entire-network space. Searching in an entire-network space has the

least human bias and is the most straightforward approach. However, it is also

the most computation-intensive. The NAS method takes up to 48 GPU hours for

searching in [66], and takes up to 134.4 GPU hours for searching in [67].

Our work uses the gradient-based search approach. Unlike the existing

gradient-based NAS methods, we do not incorporate any architectural param-

eters. The existing gradient-based methods incorporate additional architectural

parameters (weights) to represent the importance of each choice. Then, the choices

associated with the highest weight are often selected for the final DNN. For ex-

ample, Wu et al. assigned a trainable coefficient to every candidate connection

between the encoder and decoder, and also within the decoder [178]. Ang et al.

assigned a trainable coefficient to every candidate operation and every candidate

connection between layers [137].

We do not incorporate any architectural parameters for three reasons. First,

architecture parameters may not indicate the importance of each choice well. Re-

cent research has shown that an operation’s strength could be better measured by

its contribution to the overall network performance [105]. Second, this simplifies

the training process of the large DNN (the search space). Having both network

parameters (i.e., weights associated with the operations) and architectural param-

eters implies a bi-level optimization problem, with architectural parameters as the

upper-level variables and network parameters as the lower-level variables. So, the

large DNN will take a longer time to train. Additionally, the bi-level optimiza-

tion problem requires two sets of training data, one set for training the network

parameters and another set for training the architectural parameters. This can be

impractical if the labeled data are scarce.

Third, having architectural parameters can cause an imbalance in training

the large DNN because the candidates are not treated equally during training
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[183]. The architectural parameters scale the gradients with respect to the network

parameters. So, operations associated with higher architectural weights will be

“trained more often”. Hence, the operations with a better initial performance are

likely to maintain higher architectural weights throughout the training, and other

better operations might be depreciated.

Our work uses an entire-network search space. To reduce the computation

requirement, we only search for the optimal decoder. The existing works that

have a similar approach to ours are [177, 178, 179]. Shaw et al. [179] and Zhang et

al. [177] searched for the optimal encoder in a cell-based space, whereas we search

for the optimal decoder in an entire-network space. Wu et al. searched for the

optimal connections between the encoder and decoder, and within the decoder

[178]. In contrast, we search for the optimal operations and connections within

the decoder, and the connections between the encoder and decoder. In summary,

compared to the related NAS methods, our search space caters to a broader range

of decoder designs.

4.3 Methodology

We propose a neural architecture search (NAS) algorithm, named AdaptorNAS,

for hyperspectral image segmentation. AdaptorNAS aims to find the optimal

decoder for a given encoder, and it is compatible with all convolution-based

encoders. The search space of AdaptorNAS is represented by a large DNN, called

supernet, which comprises all candidate decoders. To derive the optimal decoder,

we employ a perturbation-based pruning strategy to remove the poor candidates

from the supernet iteratively. Refer to Fig. 4.2 for an overview of the proposed

AdaptorNAS algorithm.

This section is organized as follows. Section 4.3.1 introduces the components

in AdaptorNAS. Section 4.3.2 explains the process of adding the candidate op-

erations into the supernet. Lastly, Section 4.3.3 describes the perturbation-based
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Figure 4.2: An overview of the proposed AdaptorNAS algorithm. AdaptorNAS com-
prises three main components: encoder, decoder supernet, and staggered output layer.
The encoder can be any generic CNN. The decoder supernet is the search space of Adap-
torNAS. It is a large DNN that will be iteratively pruned via a perturbation-based strategy
during the search. The staggered output layer combines the decoder’s multi-scale outputs
sequentially and generates the segmentation map.

pruning strategy.

4.3.1 Components of AdaptorNAS

The encoder. An encoder aims to extract relevant features from the input image.

Hence, a DNN designed for the image classification task can be used as the

encoder. Our proposed AdaptorNAS is compatible with all convolution-based

encoders, i.e., any convolutional neural network (CNN) can be used.

A CNN consists of S computation blocks and an output layer. We discard the

output layer as it is not needed. A computation block is a group of operations

that processes feature maps of the same scale, and the last operation (e.g., max-

pooling) inside the block will produce feature maps of a lower scale. The flow of

feature maps in the encoder is illustrated in Fig. 4.2. We denote the output feature

map of each computation block as {E0, E1, E2, . . . , ES}. Note that E0 is the raw

input image. The output feature maps of the encoder are passed to the decoder

supernet, which we will discuss next.

The decoder supernet. The supernet is represented as a collection of nodes

and edges. Each node represents a feature map, and each edge is associated
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with an operation (e.g., 1 × 1 convolution, 3 × 3 convolution, or identity) that

transforms its starting node to its ending node. The nodes are organized into

a two-dimensional grid, where the horizontal axis represents the layer, and the

vertical axis represents the scale, see Fig. 4.2. The multi-scale outputs of the

encoder are represented by the nodes at Layer 1. At scale s, every node has the

same spatial resolution and number of channels as the encoder output Es.

At layer l and scale s, every node vl,s, except at Scales 0 and S, has three

input edges from the nodes at the previous layer and its three adjacent scales:

Ol,s
l−1,s−1, O

l,s
l−1,s, and Ol,s

l−1,s+1. Hence, the feature map represented by each node is

the sum of all feature maps from the connected edges. Let I l,s be the set of indices

connected to the node vl,s. The node vl,s is defined as

vl,s =
∑
j∈Il,s

finterp(O
l,s
j (vj) ), (4.1)

where finterp is a function that interpolates the feature maps to scale s using the

nearest neighbor algorithm. Note that the operation Ol,s
j will generate a feature

map with the same number of channels as Es.

The nodes at the last layer (i.e., Layer L) will produce the output feature maps

at their respective scales, which we denote as {D0, D1, D2, . . . , DS}. The decoder

outputs are then passed to the staggered output layer, which is described next.

The staggered output layer. The staggered output layer combines the multi-

scale outputs of the decoder sequentially. This is to prevent information loss from

drastic upsampling (e.g., Scale S to Scale 0 directly). Starting from the lowest scale

(i.e., Scale S), a 3 × 3 convolution operation is performed on the decoder output

DS , and then the resulting feature map is added together with the decoder output

DS−1. These steps are repeated until Scale 0. See Fig. 4.2 for an illustration. Next,

we describe the staggered output layer mathematically.

At Scale S, the feature map yS is defined as

yS = f
DS−1

conv3 (DS), (4.2)
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where f
DS−1

conv3 is a 3 × 3 convolution operation that produces the same number of

channels as DS−1. For other scales, the feature map ys at scale s is computed as

ys = f
Ds−1

conv3 (Ds + finterp(ys+1)), (4.3)

where f
Ds−1

conv3 is a 3 × 3 convolution operation that produces the same number of

channels as Ds−1. At Scale 0, the 3 × 3 convolution operation fconv3 will produce

the same number of channels as the number of semantic classes.

4.3.2 Searching for the optimum operations

Currently, the supernet allows us to find the optimum connections between differ-

ent layers via pruning, i.e., removing the unnecessary edges. To also search for the

optimum operations at every edge, we modify Eq. (4.1) to include all candidate

operations.

Instead of performing an operation at every edge, we now perform a mixed

operation. A mixed operation is the sum of multiple candidate operations. Let

O = {O1,O2, . . . } be the set of candidate operations. The operation at every edge

becomes

Ol,s
j (vj) =

∑
O∈O

O(vj). (4.4)

See Fig. 4.3 for an illustration.

Node  Node 

(a) A specific operation

Node  Node 

(b) A mixed operation

Figure 4.3: Each edge now performs a mixed operation rather than a specific operation.
Different colors denote different operations, and the dotted line denotes skip-connection.

AdaptorNAS uses a set of five candidate operations O:
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1. Identity: This is equivalent to having no operation:

O1(v) = v. (4.5)

2. Conv3: This operation performs a 3×3 convolution. Letw3×3 be the learnable

weights of the 3× 3 convolution kernels:

O2(v) = ReLU(BatchNorm(v ∗w3×3)), (4.6)

where ∗ is the convolution operator.

3. Conv3t2: This operation performs two 3× 3 convolutions sequentially:

O3(v) = O2(O2(v)). (4.7)

This operation has the same receptive field as a 5× 5 convolution.

4. Conv3d2: This operation performs a 3 × 3 convolution with a dilation of 2.

Let w3×3d2 be the learnable weights of the 3× 3 convolution with dilation of

2 kernels:

O4(v) = ReLU(BatchNorm(v ∗w3×3d2)). (4.8)

5. Zeroize: This operation performs multiplication of zero (equivalent to no

connection):

O5(v) = v × 0. (4.9)

This selection of candidate operations is motivated by the fact that more complex

operations can be built using these simple operations. For example, stacking

three conv3 operations produces the same receptive field as a 7 × 7 convolution

operation.
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4.3.3 Perturbation-based pruning strategy

We propose a perturbation-based pruning strategy to find the optimal DNN from

the decoder supernet. The perturbation-based pruning algorithm retains only the

edges and operations that cause the largest drop in validation accuracy if they are

removed. Our approach is inspired by [105], where the authors showed that the

accuracy drop after removing an operation is a good indicator of its importance.

There are two stages in our pruning strategy: 1) operation pruning and 2) edge

pruning. After the supernet has been trained until convergence on the training

set, we will begin Stage 1 of pruning. This stage involves randomly selecting an

edge. Then, for each operation in the mixed operation set, we mask the operation

and obtain the validation accuracy. Finally, we only retain the operation that

causes the largest drop in validation accuracy when masked. The supernet is

then trained for n epochs to accommodate the changes. These steps in Stage 1 are

repeated until all mixed operations have been pruned into a specific operation,

see Fig. 4.4(a).

1 2 LL-1L-2

Encoder

Layer

0

1

Scale

S

S-1

(a) The supernet after Stage 1 of the
perturbation-based pruning

1 2 LL-1L-2

Encoder

Layer

(b) The supernet after Stage 2 of the
perturbation-based pruning

Figure 4.4: Illustration of the perturbation-based pruning strategy on the supernet using
p = 2.

Stage 2 of the pruning process involves randomly selecting a node. Then,

for each outgoing edge of the node, we mask the edge and obtain the validation

accuracy. Finally, we only retain the first p outgoing edges based on the ascending

order of validation accuracy obtained when masked. The supernet is then trained
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for n epochs to accommodate the removal of edges. These steps in Stage 2 are

repeated until all nodes have at most p outgoing edges only, see Fig. 4.4(b). This

pruning strategy is outlined in Algorithm 1.

Algorithm 1 Perturbation-based Pruning Strategy
Input: A pre-trained supernet S

1: initialize E to be the set of edges in S;
2: initialize V to be the set of nodes in S;
3:
4: // Stage 1: Operation pruning
5: while |E| > 0 do
6: randomly select and remove an edge e ∈ E ;
7: for all operation O ∈ O at e do
8: mask the operation O;
9: obtain the validation accuracy acc;

10: unmask the operation O;
11: end for
12: retain only the operation O in e that cause the largest drop in acc when

masked;
13: train S for n epochs;
14: end while
15:
16: // Stage 2: Edge pruning
17: while |V | > 0 do
18: randomly select and remove a node v ∈ V ;
19: for all outgoing edges e of v do
20: mask the edge e;
21: obtain the validation accuracy acc;
22: unmask the edge e;
23: end for
24: retain only the first p outgoing edges in v based on the ascending order of

acc when the edge is masked;
25: train S for n epochs;
26: end while
27: return the candidate network (the pruned supernet S).

4.4 Experiments and analysis

This section presents the experiments and analysis, including the hyperspectral

image dataset (Section 4.4.1), performance evaluation measures (Section 4.4.2),

ablation study (Section 4.4.3), comparison with existing NAS algorithms (Section
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4.4.4), and comparison with recent deep learning methods (Section 4.4.5).

4.4.1 Hyperspectral image dataset

Data acquisition. We acquired a new hyperspectral image segmentation dataset,

named UOW-HSI. UOW-HSI is specifically designed for biosecurity scanning

of shipping containers arriving at seaports. Hence, each image may contain

biosecurity risks like plants, soil, and creatures. For quantitative evaluation, we

created the ground-truth masks by manually annotating each pixel as one of the

five classes: (0) background, (1) plant, (2) soil, (3) creature, and (4) metal.

The images were captured using the XIMEA xiQ hyperspectral sensor (part

number: MQ022HG-IM-SM5X5-NIR). The sensor is capable of capturing 25 spec-

tral bands ranging from 665nm to 975nm with a full width at half maximum of

6-16nm. The hyperspectral images have a height of 217 pixels, a width of 409

pixels, and 25 spectral bands, i.e., 217× 409× 25 pixels. Several images and their

ground-truth masks from the UOW-HSI dataset are shown in Fig. 4.5.

Background Plant Soil Creature Metal

Figure 4.5: Several examples from the UOW-HSI dataset. For this visualization, the input
hyperspectral images were converted to pseudo-color images.

Dataset statistics. The UOW-HSI dataset consists of 4,625 hyperspectral im-

ages with their corresponding ground-truth masks. The images were collected

in various scenes and lighting conditions. Some images were taken in average

daylight, while others were exposed to extreme brightness or darkness. The num-

ber of objects, the objects’ size, and the position of the objects were also varied in

every image. The statistics of this dataset are given in Table 4.1.
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Table 4.1: Statistics of the UOW-HSI dataset.

Class name #pixels Percentages

Background 105,166,088 25.62
Plant 25,760,674 6.28
Soil 20,286,808 4.94

Creature 4,441,233 1.08
Metal 254,827,822 62.08
Total 410,482,625 100.00

Experimental setup. The experiments were conducted using 5-fold cross-

validation. The UOW-HSI dataset was divided into five partitions of equal sizes.

For each fold, one partition was used as the test set, and the remaining partitions

were used as the training set. This process was repeated five times for differ-

ent choices of the test set. Note that each training set was further divided into

90% images for training and 10% images for validation. Collectively, each cross-

validation fold consisted of 3,330 train images, 370 validation images, and 925 test

images.

For a fair comparison, all deep learning-based methods were trained in a

similar setting. The trainable parameters were optimized using Adam with a

learning rate of 0.0001 and the cross-entropy loss function. Every method was

trained until its validation performance (i.e., mean intersection over union) had

stopped improving for 100 epochs. For testing, we used the model weights that

obtained the highest validation performance. We also modified the input layer of

the existing methods to accept 25-channel hyperspectral images.

4.4.2 Performance measures

Segmentation evaluation. For evaluating the segmentation performance, we

adopted two commonly used metrics: 1) mean intersection over union, and 2)

mean dice score.

1) Mean intersection over union (mIoU) computes the average intersection over

union over the five semantic classes. For a given semantic class, the intersection
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over union (IoU) is defined as the area of intersection between the predicted

segmentation map A and the ground-truth map B, divided by the area of union

between A and B:

IoU =
|A ∩ B|
|A ∪ B|

=
TP

TP + FP + FN , (4.10)

where TP is the number of true positives, FP is the number of false positives, and

FN is the number of false negatives.

2) Mean dice score (mDice) computes the average dice score over the five seman-

tic classes. For a given semantic class, the dice score is defined as the harmonic

mean of precision and recall:

Dice =
2× precision × recall

precision + recall =
2TP

2TP + FP + FN . (4.11)

Runtime evaluation. For evaluating the runtime performance, we used three

metrics: 1) frames per second, 2) number of trainable parameters, and 3) GPU

hours.

1) Frames per second (FPS) is defined as the number of predictions that a given

method can produce in a second. The FPS was measured on a system that has

an Intel Xero Gold 5115 CPU at 2.4 GHz, and an NVIDIA GeForce GTX Titan Xp

with 12 GB memory.

2) Number of trainable parameters (NTP) is the total number of parameters that

an optimizer can tune during training. This metric indicates the model size. The

unit of NTP is in millions.

3) GPU hours (GH) measures the total time needed for searching in terms of

GPU processing time. This is used to evaluate NAS techniques only. Here, an

NVIDIA GeForce GTX Titan Xp with 12 GB memory was used for the searches.

4.4.3 Ablation study of AdaptorNAS

In this section, we analyzed AdaptorNAS by conducting four studies. First, we

experimented with the effects of using different numbers of layers L. Second, we
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evaluated the effects of using different numbers of outgoing edges p. Third, we

compared the decoders designed by AdaptorNAS to the common hand-crafted

decoders in the literature. Fourth, we compared perturbation-based pruning to

random pruning. The first, second, and third analysis was performed using three

different encoders: ResNet-34 [29], MobileNet-V2 [77], and EfficientNet-B2 [33].

The encoders were initialized with the weights pre-trained on ImageNet.

4.4.3.1 Number of layers

For this study, we performed the search using AdaptorNAS with three different

numbers of layers: L = 2, L = 3, and L = 4. The number of edges p was set as 3,

and the supernet was trained for n = 5 epochs after each pruning iteration. Then,

the derived architectures were trained from scratch, and the mIoU was obtained

on the test set. This analysis was performed on Fold-1 only.

Fig. 4.6 presents the results of this study. The optimum number of layersLwas

different for each encoder. For ResNet-34 and MobileNet-V2, the architecture de-

rived by using AdaptorNAS (L = 2) achieved the best mIoU. For EfficientNet-B2,

the architecture found by using AdaptorNAS (L = 3) obtained the best mIoU.

Hence, we chose L = 2 for the ResNet-34 and MobileNet-V2 encoders, and L = 3

for the EfficientNet-B2 encoder in the following sections.

4.4.3.2 Number of edges

For this study, we performed the search using AdaptorNAS with three different

numbers of edges: p = 1, p = 2, and p = 3. The supernet was trained for

n = 5 epochs after each pruning iteration. Then, the derived architectures were

trained from scratch, and the mIoU was obtained on the test set. This analysis

was performed on Fold-1 only.

Fig. 4.7 shows the results of this study. For all encoders, the architec-

tures derived using AdaptorNAS (p = 2) performed the best. Hence, we used

AdaptorNAS with p = 2 in the following sections. Surprisingly, the architectures
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Figure 4.6: The mIoUs of the architectures found by AdaptorNAS using different numbers
of layers L.

derived using AdaptorNAS (p = 3) performed worse than AdaptorNAS (p = 1)

for the MobileNet-V2 and EfficientNet-B2 encoders. This study shows that a large

network does not always outperform a smaller network.
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Figure 4.7: The mIoUs of the architectures found by AdaptorNAS using different numbers
of edges p.
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4.4.3.3 AdaptorNAS versus hand-crafted DNNs

For this study, we compared the decoder architectures found by AdaptorNAS with

six common hand-crafted decoders in the current literature. The existing decoders

evaluated were U-Net [38], FPN [44], PSPNet [45], Linknet [39], DeepLabV3 [48],

and DeepLabV3+ [49]. We used the PyTorch library [184] for the implementation

of existing decoders. Additionally, the two-tailed test was performed to evaluate

the statistical significance of mIoU and mDice obtained by AdaptorNAS.

For conciseness, the {encoder name}_L{number of layers}_p{number of edges} nota-

tion is used to denote AdaptorNAS’s configurations. For example, the EfficientNet-

B2_L3_p2 notation means that EfficientNet-B2 was used as the encoder withL = 3

layers and p = 2 outgoing edges.

Table 4.2: Comparison between the decoders found by AdaptorNAS and the common
hand-crafted decoders on three different encoders. Number of trainable parameters (NTP)
is measured in million.

Encoder Decoder mIoU mDice FPS NTP

ResNet-34

U-Net [38] 89.72 ± 0.77∗ 92.48 ± 0.77∗ 66.6 24.5
FPN [44] 87.84 ± 1.48∗ 91.06 ± 1.41∗ 65.7 23.2

PSPNet [45] 86.10 ± 1.73∗ 89.77 ± 1.68∗ 97.1 21.5
Linknet [39] 84.81 ± 1.73∗ 87.78 ± 1.64∗ 43.3 21.8

DeepLabV3 [48] 87.62 ± 0.52∗ 91.18 ± 0.50∗ 38.3 26.0
DeepLabV3+ [49] 86.86 ± 1.75∗ 89.94 ± 1.74∗ 58.5 22.5

AdaptorNAS (L2_p2) 91.41 ± 0.24 94.17 ± 0.22 92.1 27.7

MobileNet-V2

U-Net [38] 90.62 ± 1.15ns 92.74 ± 1.14ns 64.9 6.6
FPN [44] 90.26 ± 0.26ns 93.21 ± 0.13ns 69.9 4.2

PSPNet [45] 84.74 ± 1.72∗ 88.47 ± 1.57∗ 95.2 2.2
Linknet [39] 79.79 ± 2.83∗ 82.82 ± 2.86∗ 42.0 4.3

DeepLabV3 [48] 88.52 ± 0.67∗ 91.99 ± 0.60∗ 46.9 12.6
DeepLabV3+ [49] 89.81 ± 0.88ns 92.81 ± 0.80ns 71.4 4.3

AdaptorNAS (L2_p2) 90.09 ± 0.39 93.06 ± 0.36 97.0 20.8

EfficientNet-B2

U-Net [38] 91.81 ± 0.29∗ 94.86 ± 0.30∗ 36.5 10.0
FPN [44] 91.67 ± 0.22∗ 94.47 ± 0.15∗ 37.1 9.4

PSPNet [45] 85.44 ± 0.93∗ 89.35 ± 0.89∗ 69.4 7.7
Linknet [39] 80.78 ± 0.68∗ 83.52 ± 0.66∗ 27.2 7.8

DeepLabV3 [48] 90.81 ± 1.05∗ 92.72 ± 2.03∗ 33.1 11.2
DeepLabV3+ [49] 91.57 ± 0.59∗ 94.36 ± 0.48∗ 39.0 8.6

AdaptorNAS (L3_p2) 92.47 ± 0.35 95.15 ± 0.28 44.7 9.3
(*): We reject the null hypothesis H0 : mAdaptorNAS = mother at a confidence
level of 95%. That is, there is a significant difference compared to AdaptorNAS.
(ns): We accept the null hypothesis. That is, there is no statistically significant
difference compared to AdaptorNAS.
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Table 4.2 presents the results of this analysis. For the ResNet-34 encoder,

AdaptorNAS (mIoU of 91.41% and mDice of 94.17%) outperformed all the existing

decoder networks significantly. AdaptorNAS was also faster than all the existing

methods, except PSPNet. It was only 5 FPS slower than PSPNet (92.1 versus 97.1),

but with a significant improvement in mIoU (91.41% versus 86.10%) and mDice

(94.17% versus 89.77%). The average NTP of AdaptorNAS (27.7M) was similar to

the other methods.

For the MobileNet-V2 encoder, AdaptorNAS (mIoU of 90.09% and mDice

of 93.06%) outperformed all the existing decoder networks significantly, except

U-Net, FPN, and DeepLabV3+. In terms of mIoU, AdaptorNAS was only 0.53%

lower than U-Net (90.09% versus 90.62%) and 0.17% lower than FPN (90.09%

versus 90.26%). In terms of mDice, AdaptorNAS was only 0.15% lower than

FPN (93.06% versus 93.21%). The two-tailed test showed no significant difference

between AdaptorNAS, U-Net, and FPN. AdaptorNAS, with 97.0 FPS, was also the

fastest among the evaluated methods. The average NTP of AdaptorNAS (20.8M)

was larger than the other methods. We believe this is caused by the large number

of channels (1280) at the last scale of MobileNet-V2.

For the EfficientNet-B2 encoder, AdaptorNAS (mIoU of 92.47% and mDice

of 95.15%) outperformed all the evaluated decoders significantly. AdaptorNAS

was also faster than all the evaluated methods, except PSPNet. It was 24.7 FPS

slower than PSPNet (44.7 versus 69.4), but with a significant improvement in

mIoU (92.47% versus 85.44%) and mDice (95.15% versus 89.35%). Note that for

hyperspectral image segmentation, a real-time processing speed of 25 to 30 FPS is

sufficient for most practical applications. The average NTP of AdaptorNAS (9.3M)

was comparable to the other methods.

Overall, AdaptorNAS outperformed all the evaluated methods with signif-

icant differences. The networks derived by AdaptorNAS were also among the

fastest. This analysis shows that AdaptorNAS can automatically find high-speed

decoder networks that outperform hand-crafted decoder architectures. Refer to
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Fig. 4.8 for the architectures designed by AdaptorNAS.

Conv3t2

Conv3

Conv3d2

Identity

Figure 4.8: The decoder architectures designed by AdaptorNAS for three different en-
coders.

4.4.3.4 Perturbation-based pruning versus random pruning

To evaluate the effectiveness of the proposed perturbation-based pruning, we

tested a variant of AdaptorNAS that uses random pruning. That is, the operations

and edges are randomly pruned. Here, we used the EfficientNet-B2 encoder.

Table 4.3: The performance of AdaptorNAS when using two different pruning strategies.

Method mIoU mDice NTP GH

Random pruning 91.79 ± 0.53 94.56 ± 0.41 11.2 11.2
Perturbation-based pruning 92.47 ± 0.35 95.15 ± 0.28 9.3 29.7

Table 4.3 presents the results of this experiment. AdaptorNAS (perturbation-

based pruning) obtained better mIoU (92.47% versus 91.79%) and mDice (95.15%

versus 94.56%) than AdaptorNAS (random pruning). The networks found by

AdaptorNAS (perturbation-based pruning) were also more compact (NTP of

9.3M versus 11.2M). Because of the pruning stage, the search of AdaptorNAS

(perturbation-based pruning) took on average 18.5 hours longer than AdaptorNAS

(random pruning) to complete. This experiment demonstrates the effectiveness

of the proposed perturbation-based pruning.

4.4.4 Comparison with NAS-based methods for image segmen-
tation

In this experiment, AdaptorNAS is compared to four existing NAS algorithms for

image segmentation:
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1. NAS-RL [65]: This NAS algorithm searches for the optimal decoder in a

cell-based search space. The search algorithm is based on reinforcement-

learning. Following the authors, we used the MobileNet-v2 encoder. Due to

computation limitations, we reduced the number of search epochs to 1000.

2. NAS-Unet [79]: NAS-Unet performs a gradient-based search on a cell-based

search space. It searches for a downsampling cell and an upsampling cell.

Then, the derived cells are used to build an U-Net architecture.

3. Fast-NAS [137]: This NAS algorithm performs a gradient-based search on

an entire-network space. It aims to find a DNN for real-time image segmen-

tation.

4. FasterSeg [66]: FasterSeg performs a gradient-based search on an entire-

network space. It aims to find a high-speed and high-performance image

segmentation network. We had difficulty in running the search algorithm

on UOW-HSI, hence we directly tested the derived architecture (searched

on the Cityscapes dataset) that its authors provided.

We used the implementation of the existing NAS algorithms provided by their re-

spective authors. For AdaptorNAS, we included the results on the EfficientNet-B2

encoder (best performance) and ResNet-34 encoder (balanced between perfor-

mance and speed).

Table 4.4: Comparison between AdaptorNAS and the existing NAS methods. NTP is
measured in million.

Method mIoU mDice FPS NTP GH

NAS-RL [65] 82.97 ± 1.79 87.50 ± 1.69 75.5 2.5 30.3
NAS-Unet [79] 86.96 ± 1.55 89.96 ± 1.49 38.1 1.2 55.8
Fast-NAS [137] 70.47 ± 4.59 75.76 ± 4.31 318.7 4.2 3.9
FasterSeg [66] 81.14 ± 1.77 85.62 ± 1.64 170.2 4.4 -

AdaptorNAS (ResNet-34_L2_p2) 91.41 ± 0.24 94.17 ± 0.22 92.1 27.7 21.1
AdaptorNAS (EfficientNet-B2_L3_p2) 92.47 ± 0.35 95.15 ± 0.28 44.7 9.3 29.7

Table 4.4 presents the results of this study. Several observations can be made.

First, the AdaptorNAS algorithm performs the best. AdaptorNAS (EfficientNet-
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B2_L3_p2) achieved the highest mIoU (92.47%) and mDice (95.15%). In contrast,

the existing methods performed poorly on the UOW-HSI dataset; they obtained

mIoU lower than 87% and mDice lower than 90%. A possible explanation for

this finding is that the search space size of the existing NAS methods may not be

sufficiently large for the UOW-HSI dataset. All models found by the existing NAS

methods had an NTP lower than 4.4M. However, increasing the search space size

of the existing NAS methods is impractical due to their computation constraints.

Second, AdaptorNAS has a short search time. The search time of AdaptorNAS

is shorter than all evaluated methods, except Fast-NAS. Depending on the encoder,

AdaptorNAS (EfficientNet-B2_L3_p2) took on average 29.7 GH, and AdaptorNAS

(ResNet-34_L2_p2) took on average 21.1 GH to complete the search. Third,

AdaptorNAS is more stable than the other NAS methods. AdaptorNAS had

lower standard deviations than the existing methods, which indicates that it is

less sensitive to initialization. Fourth, AdaptorNAS can find high-speed decoders.

Using the ResNet-34 encoder, AdaptorNAS achieved 92.1 FPS, which is sufficient

for real-time applications. Compared to Fast-NAS, the existing NAS method that

found the fastest network, AdaptorNAS (ResNet-34_L2_p2) obtained much higher

results (mIoU of 91.41% versus 70.47%, and mDice of 94.17% versus 75.76%).

4.4.5 Comparison with deep learning-based methods for image
segmentation

In this section, AdaptorNAS is compared to five state-of-the-art deep learning

methods of diverse methodologies:

1. DPT [58]: DPT converts the tokens from different stages of the vision trans-

former (ViT) into image-like representations of various resolutions. Then,

the multi-resolution image representations are progressively combined into

the final segmentation map using a convolution-based decoder. Following

the authors, we used DPT with ViT-Base [55] as the encoder. The ViT-Base

encoder was initialized with weights that were pre-trained on ImageNet-21k.
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2. SegFormer [185]: SegFormer uses a novel hierarchically structured trans-

former encoder that generates multi-scale features and a multi-layer percep-

tron decoder to combine the multi-scale features for the final segmentation

map. Here, we tested the SegFormer-B5 variant. The encoder was initialized

with weights that were pre-trained on ImageNet-1K.

3. OCRNet [149]: OCRNet uses a novel object-contextual representation scheme

for semantic segmentation. We tested the OCRNet variant with the dilated

ResNet-101 encoder (output stride of 8). The dilated ResNet-101 encoder

was initialized with weights that were pre-trained on ImageNet.

4. CGNet [186] : CGNet is a light-weight DNN that performs semantic seg-

mentation on edge devices. Here, we tested the CGNet_M3N21 variant.

5. OCNet [52]: OCNet uses an interlaced sparse self-attention scheme to model

the dense relation between pixels. We tested the OCNet(w Base-OC) variant

with dilated ResNet-101 encoder (output stride of 8). The dilated ResNet-101

encoder was initialized with weights that were pre-trained on ImageNet.

We used the PyTorch library [187] for the implementation of existing methods.

Table 4.5: Comparison between AdaptorNAS and the existing deep learning-based meth-
ods. NTP is measured in million.

Method mIoU mDice FPS NTP

DPT [58] 89.60 ± 0.40 93.11 ± 0.36 30.3 114.0
SegFormer [185] 91.68 ± 0.32 94.46 ± 0.23 21.1 82.0
OCRNet [149] 92.22 ± 0.23 95.14 ± 0.16 35.0 55.5
CGNet [186] 88.93 ± 0.64 92.48 ± 0.58 86.4 0.5
OCNet [52] 91.87 ± 0.30 94.81 ± 0.22 33.4 56.7

AdaptorNAS
(ResNet-34_L2_p2) 91.41 ± 0.24 94.17 ± 0.22 92.1 27.7

AdaptorNAS
(EfficientNet-B2_L3_p2) 92.47 ± 0.35 95.15 ± 0.28 44.7 9.3

Table 4.5 presents the results of this experiment. Overall, AdaptorNAS out-

performed all the evaluated methods. AdaptorNAS (EfficientNet-B2_L3_p2) ob-
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tained the highest mIoU (92.47%) and mDice (95.15%). It also had the smallest

model size compared to the evaluated methods, except CGNet. The existing

CNN-based method that obtained the best mIoU and mDice was OCRNet (mIoU

of 92.22% and mDice of 95.14%). Compared to OCRNet, AdaptorNAS was 6 times

smaller (NTP of 9.3M versus 55.5M). The existing transformer-based method that

obtained the best mIoU and mDice was SegFormer (mIoU of 91.68% and mDice

of 94.46%). Compared to SegFormer, AdaptorNAS was 8.8 times smaller (NTP of

9.3M versus 82.0M).

The recent transformer-based methods, i.e., DPT and SegFormer, produced

slightly lower performances (less than 3% difference in mIoU and mDice) than the

recent CNN-based methods, i.e., OCRNet and OCNet. The CNN-based methods

also had smaller model sizes compared to the transformer-based methods. The

OCRNet was 2.1 times smaller than the DPT and 1.5 times smaller than the

SegFormer. The OCNet was 2.0 times smaller than the DPT and 1.4 times smaller

than the SegFormer. An advantage of vision transformers is their capability to

scale. With large model sizes, they may scale better than CNNs in a big data

setting. However, with the UOW-HSI dataset, the CNN-based methods were able

to be fine-tuned more effectively than the transformer-based methods.

AdaptorNAS (EfficientNet-B2_L3_p2) was also faster than all the evaluated

methods (44.7 FPS), except CGNet. By switching the encoder to ResNet-34,

AdaptorNAS (ResNet-34_L2_p2) was 5.7 FPS faster than CGNet (92.1 versus 86.4).

It also had a considerable gain in mIoU and mDice over CGNet (mIoU of 91.41%

versus 88.93%, and mDice of 94.17% versus 92.48%).

Fig. 4.9 shows the confusion matrix of every method. Several observations can

be made. First, the creature class is the most challenging to detect. All the methods

confused creature pixels as background or metal pixels. Second, AdaptorNAS can

detect the five semantic classes accurately. AdaptorNAS (EfficientNet-B2_L3_p2)

managed to predict every class better than the other methods. These observations

are also reflected in the visual results given in Fig. 4.10.
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AdaptorNAS (EfficientNet-B2_L3_p2) DPT SegFormer

OCRNet CGNet OCNet

Figure 4.9: The confusion matrices of AdaptorNAS and the evaluated deep learning
methods. The confusion matrices were normalized over the true labels.

4.5 Discussion

In this work, AdaptorNAS only aims to find the optimal DNN that yields the

best accuracy. Hence, the models designed by AdaptorNAS may have a higher

number of trainable parameters than some of the existing methods. For example,

AdaptorNAS designed a decoder for the MobileNet-V2 encoder that was larger

than the other existing decoders. Additionally, the search space of AdaptorNAS

only includes candidates for the decoder. By including the entire network archi-

tecture in the search space, AdaptorNAS can have more control over the design

choices, which can result in more optimized architectures.

Despite the limitations, our experimental results show that AdaptorNAS out-

performs the existing methods in various settings. The compared methods include

six hand-crafted decoders on three different encoders, four NAS methods, and

five recent deep learning-based methods. For robustness, we conducted these

evaluations using the five-fold cross-validation, which required more than 135
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Figure 4.10: The visual results of AdaptorNAS and the evaluated deep learning methods.
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separate experiments. The capability of AdaptorNAS demonstrates that NAS is a

promising research direction.

In the future, we plan to explore three directions for AdaptorNAS. The

first direction is to evaluate the performance of AdaptorNAS on other image

segmentation datasets (e.g., Cityscape and PASCAL VOC) and other tasks (e.g.,

object detection and depth estimation). The second direction is to expand the

search space of AdaptorNAS to include the encoder too. The third direction is to

consider the inference speed and model size in the search process.

4.6 Chapter summary

This chapter presents a novel neural architecture search (NAS) algorithm, named

AdaptorNAS, for hyperspectral image segmentation. AdaptorNAS aims to design

the optimal decoder for any given encoder. The search space of AdaptorNAS is

represented as a large DNN, and the optimal decoder is found after pruning

the large DNN. The proposed pruning strategy retains only the operations and

connections that contribute the most to the large DNN’s overall performance.

Because AdaptorNAS do not rely on any architectural parameters, the training

process is significantly simplified compared to the existing gradient-based NAS

methods. Our extensive experiments show that AdaptorNAS outperforms the

existing NAS algorithms and hand-crafted network architectures.
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5.1 Introduction

Deep learning is now the dominant approach for many computer vision prob-

lems [4]. It has been successfully applied for image classification [25, 29], depth

estimation [188, 189], object detection [190, 191], image segmentation [49, 192],

and image synthesis [193]. The type of applications may vary, but the key factor

determining the performance of these algorithms is the same, i.e., the architec-

tural design of the neural network. Designing a deep neural network (DNN) is a

time-demanding task. It involves choosing the number and type of layers, decid-

ing the connections between the layers, and determining the hyperparameters of

each layer. A poorly designed DNN will lead to low performance. To save time,

researchers often adopt a top-performing DNN from other areas as the starting

point. This leads to a key question when developing a deep learning algorithm:

“Will this neural network perform well on our problem?” Currently, this question is

answered by training the network to convergence, which is very time-consuming.

Neural architecture search (NAS) is a rapid-growing research topic in recent

years. It aims to automate the laborious task of designing a DNN. NAS algorithms

are very computation-intensive because evaluating each candidate DNN requires

training from scratch. For example, the early NAS methods took 28 days on 800

GPUs in [61], and 4 days on 500 GPUs in [75]. To reduce the computation time,

many recent NAS papers resort to memory-saving techniques such as sharing

weights among the candidate networks [80, 82], or searching on a smaller proxy

task [68, 69]. However, using these memory-saving techniques may lead to sub-

optimal results [194]. In some cases, a simple random search may even achieve

results comparable to the NAS methods that utilize memory-saving techniques

[62, 108].

The issues described above can be mitigated if the performance of a DNN can

Chapter 5 is under peer-review in:
S. P. Ang, S. T. M. Duong, S. L. Phung, and A. Bouzerdoum, “DAP: A dataset-agnostic predictor
of neural network performance,” Neurocomputing, pp 1-11, 2022.
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be estimated without actually training it. In this work, we propose a regression

framework, named Dataset-agnostic Predictor (DAP), to approximate a DNN’s

performance given only its architectural descriptor. The term “dataset-agnostic”

means that the predictor can work for different datasets without re-training. Using

the DAP, this work addresses one key question: How well can we predict a DNN’s

performance for a target dataset under the three following cases?

A. We only know other DNNs’ performance on the same target dataset.

B. We only know the DNN’s performance on other datasets.

C. We do not know the DNN’s performance on any datasets and other DNNs’

performance on the same target dataset.

See Fig. 5.1 for an illustration of the three cases. This chapter also demonstrates a

few use cases of DAP in the context of NAS and from a researcher’s perspective.

The main contributions of this chapter can be highlighted as follows:

1. We introduce a new dataset-agnostic predictor of neural network perfor-

mance, named DAP. The capability of DAP is demonstrated via extensive

analysis and experiments.

2. We answer the key question depicted in Fig. 5.1. To the extent of our

knowledge, this work is among the first to address the challenging question.

3. We demonstrate a few practical use cases of DAP in the context of NAS and

from a researcher’s perspective.

The remainder of this chapter is organized as follows. Section 5.2 reviews the

related work. Section 5.3 introduces the proposed DAP algorithm. Section 5.4

presents the experimental results and analysis. Section 5.5 provides a discussion,

and finally Section 5.6 concludes our work.

95



5.2. Related work

DNN 1 
DNN 2 
DNN 3 

MNIST 
93% 
53% 
86% 

DNN 4 
DNN 5 
DNN 6 

77% 
88% 
23% 

CIFAR10 
? 
? 
? 
? 
? 
? 

DNN 1 
DNN 2 
DNN 3 
DNN 4 
DNN 5 
DNN 6 

MNIST 
93% 
53% 
86% 

- 
- 
- 

CIFAR10 
- 
- 
- 
? 
? 
? 

DNN 1 
DNN 2 
DNN 3 

MNIST 
93% 
53% 
86% 

DNN 4 
DNN 5 
DNN 6 

? 
? 
? 

Case A Case B Case C

Figure 5.1: An illustration of the three test cases. This chapter aims to determine how
well we can predict a DNN’s performance under the three cases.

5.2 Related work

In the current literature, there are two approaches for predicting a DNN’s perfor-

mance: learning curve extrapolation and single-value performance prediction.

Learning curve extrapolation approach aims to extrapolate the performance

based on the partial learning curve, e.g., the first 20 epochs. Methods that use

this approach are typically designed to stop the training of low-quality networks

early. Domhan et al. used a weighted probabilistic model that combines eleven

parametric curve models to extrapolate the learning curve [195]. Klein et al.

used Bayesian Neural Networks to extrapolate the partial learning curve [196].

These methods rely on the Markov Chain Monte Carlo sampling, which is very

computation-intensive. Baker et al. employed a sequential regression framework

with v-support vector machine regression to extrapolate the partial learning curve

[112]. The learning curve extrapolation approach is inefficient as it still requires a

partial learning curve, which is time-consuming to obtain.

Single-value performance prediction approach aims to approximate the perfor-

mance of a DNN directly given only its architectural descriptor, i.e., f : V → ŷ,

where V is the architectural features, and ŷ is the approximated performance

score. Our work in this chapter belongs to this approach. The existing methods

vary in obtaining the architectural features V . Some methods use a Long Short-

term memory (LSTM) to extract V from a sequence of tokens that describes an
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architecture, such as Peephole [197] and NAO [198]. Other methods use Graph

Convolutional Networks (GCN) to model a DNN as V , such as GCN-Pred [199]

and BRP-NAS [200]. There are also methods that use the path-based encoding

[201] to express a DNN as V , such as BANANAS [202]. However, these meth-

ods are not dataset-agnostic because the predictor must be re-trained for every

different dataset.

For the predictor to be dataset-agnostic, attributes of the target datasets

(dataset features) must be considered. Istrate et al. extended Peephole by in-

corporating a single-value dataset difficulty score, thus the predictor can gener-

alize across different datasets better [203]. Note that Peephole can only predict

the performance of a sequential DNN, i.e., a network with no skip-connections.

Hence, they are not applicable to many newly proposed DNNs or NAS algorithms.

Moreover, a single value cannot capture the full picture of the dataset well.

Concurrent with our work, Lee et al. proposed a NAS algorithm, called

MetaD2A, which comprises a performance predictor that is dataset-agnostic [204].

The predictor is trained via meta-learning, where it aims to generalize over a

distribution of tasks. The predictor employs a D-VAE encoder [205] to extract

the architectural features and a set encoder to capture the distribution of the

target datasets. The authors demonstrated that the predictor can estimate DNNs’

performance on different datasets without re-training. However, the predictor is

memory-intensive and slow because access to the target datasets is required for

accurate modeling of the distribution; these effects can be more severe on a big

dataset with a large number of classes. Additionally, capturing the distribution

of a big dataset is also non-trivial.

5.3 Methodology of DAP

The Dataset-agnostic Predictor (DAP) framework consists of four key components:

network architecture encoding, dual-LSTM feature extractor, dataset difficulty
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approximator, and performance score predictor. An overview of the proposed

framework is shown in Fig. 5.2. In this section, we describe each component of

the framework.

Neural
network

Dual-LSTM
feature
extractor

Dataset
Dataset
difficulty

approximator

Performance
score

predictor

Network
architecture
encoding

Score

Figure 5.2: An overview of the DAP framework.

5.3.1 Network architecture encoding

A network architecture is treated as a directed acyclic graph G, which consists

of nodes and edges. Each node represents a feature map F , and each edge is

associated with an operation O that transforms its starting node to its ending

node. If a node has multiple input edges, then the feature map F is the sum of all

the connected operations’ results.

Next, we describe the process of encoding this graph. A node can be charac-

terized by its input edges. Let Oj,i denote the operation (edge) connecting node

Nj to node Ni. Here, Oj,i is represented by a vector of three elements, i.e., [oper-

ation_id, kernel_height, kernel_width]. We list the available operation_ids in Section

5.4.1. Let J be the set of edges connected to node Ni. The encoding of the node

Ni is then defined as

Ni = [Oj,i, . . . ],where j ∈ J. (5.1)

To prevent sequential ambiguity, J is sorted in ascending order of the node index.

Finally, graph G is encoded as

G = [N1,N2, . . . ,NN ], (5.2)
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where N is the total number of nodes with input edges. See Fig. 5.3 for an

illustration.

Feature map Feature map Feature map

Node Node Node

Figure 5.3: A neural network can be represented as a directed acyclic graph. This network
can be encoded as G = [N1, N2], where N1 = [O0,1], and N2 = [O0,2, O1,2]. Here, N0 is
considered as the input node since it has no input edges, so it is not included in the graph
encoding.

5.3.2 Dual-LSTM feature extractor

In this work, we propose to extract salient features from the network architecture

encoding by using two LSTMs: fnode and fnet. The first LSTM fnode is used to

extract a fixed-sized feature vector, called a node-level feature, from each of the

node encoding N . This is motivated by the fact that a node (feature map) is

characterized by its input edges (operations), i.e., a feature map is an output of

one or many operations. The second LSTM fnet is used to extract a fixed-sized

feature vector, called a network-level feature, from the node-level features. This

is to model the sequential relationship of a directed acyclic graph, where the

information flows from the first node to the last node.

We now describe the operation of the first LSTM fnode. From Eq. (5.1), node

Ni is a vector of |J | elements. Let N t
i represent the t-th element or operation of

node Ni. The node encoding is fed to the first LSTM fnode. At time step t, the

node-level feature of Ni is expressed as

xNi
t = fnode(N t

i , x
Ni
t−1),where t ∈ {0, . . . , |J |}. (5.3)
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We only use the output at the last time step as the node-level feature for Ni, i.e.,

xNi = xNi

|J |. Hence, the node-level features for the entire network are given as

x = [xNi , . . . , xNN ]. See Fig. 5.4 for an illustration.

Figure 5.4: The node-level feature extractor.

Next, we describe the operation of the second LSTM fnet. As explained above,

node-level features x is a vector of N elements. Let xt represent the t-th element

of node-level features x. The node-level features are fed to the second LSTM fnet.

At time step t, the network-level feature is expressed as

Vt = fnet(x
t,Vt−1),where t ∈ {0, . . . , N}. (5.4)

We only use the output at the last time step as the network-level feature for a given

architecture, i.e., V = VN . See Fig. 5.5 for an illustration.

Figure 5.5: The network-level feature extractor.
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5.3.3 Dataset difficulty approximator

For the DAP to be dataset-agnostic, unique attributes about the dataset are needed.

Inspired by [206], we use the measure of difficulty as the dataset attribute. To mea-

sure the difficulty of a dataset, we propose to use a series of validation accuracies

obtained by a dataset difficulty approximator.

There are two justifications for our approach instead of using only the final

validation accuracy (single value). First, the validation accuracy obtained at Epoch

1 also indicates roughly the dataset difficulty. A harder dataset will have a lower

initial accuracy, and vice-versa. Second, the steepness of the increment between

epochs also reflects the difficulty posed by the dataset. A harder dataset will have

a lower increment of accuracy, and vice-versa.

Next, we describe the proposed dataset difficulty approximator. The dataset

difficulty approximator is a small convolutional neural network that comprises

four convolution blocks, followed by a global average pooling and a fully-connected

layer. Each convolution block consists of a 3×3 convolutional layer, a batch normal-

ization layer, and a 2× 2 max-pooling layer. The first convolution block produces

a feature map with 32 channels, and the remaining blocks will each produce a

feature map with twice the number of channels compared to the previous block.

For each dataset, the dataset difficulty approximator is trained (rapidly) from

scratch using the same training configurations (e.g., the same number of epochs

and same learning rate). Then, the difficulty score values (DSV), which are the

validation accuracy at n epochs, are obtained. That is, DSV = [acc1, . . . , accn]. See

Fig. 5.6 for the DSV of various image classification datasets.

5.3.4 Performance score predictor

The performance score predictor aims to approximate a value ŷ in the range of

[0, 1] using the network-level feature V . For the predictor to be dataset-agnostic, it

also considers the difficulty score values DSV. That is, the predictor approximates
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Figure 5.6: The DSV of several image classification datasets (best viewed in color). Based
on the DSVs, we can rank the difficulty of the datasets as: ImageNet16-120 > CIFAR100
> CIFAR10 > SVHN > MNIST.

the performance of V on a dataset with a specific DSV attribute.

The performance score predictor fpred can be implemented as a multi-layer

perceptron (MLP) or a fully-connected layer. Let z be the input, z = [V ,DSV]. The

output score is computed as

ŷ = σ
(
fpred(z)

)
, (5.5)

where σ is the sigmoid activation function.

5.4 Experimental results and analysis

This section presents the experiments and analysis, including the dataset descrip-

tion (Section 5.4.1), experimental setup (Section 5.4.2), results on the three test

cases (Section 5.4.3), ablation study (Section 5.4.4), and use cases of DAP (Sec-

tion 5.4.5).
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5.4.1 Dataset acquisition and description

The data used in this chapter are extracted from a recent NAS benchmark, called

NATS-Bench, that is distributed under the MIT license [194]. NATS-Bench is

designed to serve as a unified benchmark for NAS algorithms in the context of the

image classification problem. It provides a search space where all the candidate

architectures’ accuracy is known after the authors trained them from scratch for

200 epochs.

NATS-Bench uses a cell-based search space where a large network is con-

structed by stacking a custom cell in a predefined structure. Hence, a different

design of the custom cell leads to a different network. This search space is inspired

by popular cell-based NAS algorithms like DARTS [80], NASNet [75], and GDAS

[100].

In this work, we treat each custom cell essentially as a network. In total, NATS-

Bench consists of 15,625 unique networks. For each candidate network (architec-

ture), the validation accuracy is known for three datasets: CIFAR10, CIFAR100,

and ImageNet16-120 (a downsampled variant of ImageNet). For simplicity, in this

chapter, we define each dataset (i.e., CIFAR10, CIFAR100, or ImageNet16-120) as

the set of {architectural descriptor, validation accuracy} pairs on that dataset, i.e.,

we have three datasets in total.

There are five operations included in the search space: zeroize, skip-connect,

1 × 1 convolution, 3 × 3 convolution, and 3 × 3 average pooling. Accordingly,

the operation_ids are set as follows: 1 = zeroize, 2 = skip-connect, 3 = convolution,

4 = average pooling.

5.4.2 Experimental setup and evaluation methods

For comparison with existing methods, we tested several learning curve extrapolation-

based and single-value performance prediction-based methods. Among the ex-

isting learning curve extrapolation-based methods, we tested LCE [195] and BNN
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[196]. Among the existing single-value performance prediction-based meth-

ods, we tested the predictors in NAO [198], BRP-NAS [200], GCN-Pred [199],

BANANAS [202], and MetaD2A [204]. These methods have been described in

Section 5.2. For BRP-NAS, we replaced the binary classifier with a regressor. For

LCE and BNN, we used 25% of the validation learning curve as the input (the

first 50 epochs). For MetaD2A, we used the weights that were meta-trained by the

authors on subsets of ImageNet16-120.

For the deep learning-based methods that require training, we used the

ADAM optimizer with a learning rate of 0.001, and the mean absolute error

as the loss function. The training was conducted for 600 epochs with a batch size

of 128. We also stopped the training early if the validation loss did not improve

for more than 100 epochs. For the dataset difficulty approximator, we trained it

separately on the three image datasets (i.e., CIFAR10, CIFAR100, ImageNet16-120)

using the same hyperparameters and training configurations. The images from

each of the three datasets were partitioned into train, validation, and test splits

using the same ratios as Dong et al. [194]. For each dataset, the approximator was

trained for 10 epochs with a batch size of 128. We used the ADAM optimizer with

a learning rate of 0.001, and cross-entropy as the loss function. Hence, the DSV

for each image dataset is a 10-dimensional vector.

For the proposed DAP, we used two different sets of hyperparameters. In the

experiments that do not involve any unseen datasets (e.g., Case A), we selected 64

as the hidden state size in fnode, 128 as the hidden state size in fnet, and a 4-layer

MLP with 200 hidden units and 10% dropout regularization in each layer as the

fpred. The input vector z of fpred was the architectural features V only because

the DSV feature was not needed in this setting. With these configurations, the

proposed DAP had 263k trainable parameters. In the experiments that involve

unseen datasets (e.g., Cases B and C), we selected 50 as the hidden state size in

fnode, and 100 as the hidden state size in fnet, and a fully-connected layer as the

fpred. The input vector z of fpred was the architectural features V and DSV. With
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these configurations, the proposed DAP had 71.9k trainable parameters.

For the evaluation of performance predictors, we adopted three commonly-

used performance metrics: i) mean squared error (MSE), ii) Kendall’s Tau (Tau),

and iii) the coefficient of determination (R2). MSE measures the difference be-

tween the predicted and the actual validation accuracies (lower is better). Tau

measures the ranking similarities between the predicted and the actual validation

accuracies (higher is better). R2 measures how well the model fits the data (higher

is better).

5.4.3 Experimental test cases

This section analyzes the proposed DAP on the three test cases depicted in Fig. 5.1.

The section is organized as follows. Section 5.4.3.1 evaluates the proposed DAP

on Case A (seen dataset but unseen network architectures), Section 5.4.3.2 studies

the proposed DAP on Case B (unseen dataset but seen network architectures), and

Section 5.4.3.3 analyzes the proposed DAP on Case C (unseen dataset and unseen

network architectures).

5.4.3.1 Case A: Seen dataset but unseen network architectures

Case A aims to evaluate how well the predictor can approximate a DNN’s perfor-

mance on a dataset if the predictor only knows other DNNs’ performance for that

dataset. For each benchmark dataset, we performed five-fold cross-validation.

Using CIFAR10 as an example, we divided the dataset into five approximately

equal partitions. For each fold, one partition was used as the test set, and the

remaining partitions were used as the training set. This process was repeated five

times for different choices of the test set.

Table 5.1 presents the results of this experiment. Overall, the single-value per-

formance prediction-based methods (i.e., DAP, GCN-Pred, and BANANAS) out-

performed the learning curve extrapolation-based methods (i.e., LCE and BNN).

Among the evaluated methods, the proposed DAP achieved the best performance
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for all three datasets. See Fig. 5.7(a) for a predicted versus actual accuracy plot

of the DAP. This analysis shows that DAP can accurately predict a DNN’s perfor-

mance based on only its architectural descriptor.

Table 5.1: Results of the performance predictors on Case A - Seen dataset but unseen
network architectures.

Methods CIFAR10 CIFAR100 ImageNet16-120
MSE↓ Tau↑ R2 ↑ MSE↓ Tau↑ R2 ↑ MSE↓ Tau↑ R2 ↑

LCE 2.6810 0.6455 -162.6058 5.6528 0.6124 -382.4490 3.8985 0.5958 -455.8829
BNN 0.0271 0.6400 -0.6535 0.0628 0.5746 -3.2599 0.0318 0.6174 -2.7324
GCN-Pred 0.0001 0.8480 0.9928 0.0001 0.8931 0.9939 0.0001 0.9172 0.9856
BANANAS 0.0000 0.9248 0.9971 0.0001 0.9138 0.9944 0.0001 0.9211 0.9879
DAP 0.0000 0.9370 0.9982 0.0000 0.9226 0.9973 0.0001 0.9281 0.9906

5.4.3.2 Case B: Unseen dataset but seen network architectures

Case B aims to evaluate how well the predictor can approximate a DNN’s perfor-

mance on a target dataset if the predictor only knows its performance on other

datasets. In this experiment, we performed a leave-one-out cross-validation,

where one dataset was selected as the test set, and the remaining two datasets

were selected as the train set. We repeated the experiments three times with a

different test set in each time.

Table 5.2 presents the results of this experiment. The proposed DAP achieved

the best performance for all three datasets. Overall, DAP achieved MSE of 0.0006,

Tau of 0.8540, and R2 of 0.9520. See Fig. 5.7(b) for a predicted versus actual

accuracy plot of the DAP. Unsurprisingly, the methods without any dataset feature

(i.e., GCN-Pred, NAO, BANANAS, and BRP-NAS) failed to generalize across

the different datasets. This study demonstrates that the DAP predictor can be

generalized across different datasets without re-training.

Table 5.2: Results of the performance predictors on Case B - Unseen dataset but seen
network architectures.

Methods CIFAR10 CIFAR100 ImageNet16-120
MSE↓ Tau↑ R2 ↑ MSE↓ Tau↑ R2 ↑ MSE↓ Tau↑ R2 ↑

GCN-Pred 0.1405 0.5180 -7.4433 0.0159 0.5865 -0.0635 0.1062 0.5972 -11.4007
NAO 0.1542 0.6279 -8.2676 0.0285 0.1252 -0.9127 0.1105 0.6627 -11.9045
BANANAS 0.1550 0.6165 -8.3136 0.0299 0.2719 -1.0063 0.1060 0.7083 -11.3797
BRP-NAS 0.0965 0.5532 -4.8007 0.0046 0.5570 0.6939 0.0888 0.5481 -9.3644
DAP 0.0003 0.8737 0.9811 0.0007 0.8575 0.9556 0.0007 0.8308 0.9193
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5.4.3.3 Case C: Unseen dataset and unseen network architectures

Case C aims to evaluate how well the predictor can approximate a DNN’s perfor-

mance on a target dataset if the predictor has no knowledge of its performance

on any datasets and other DNNs’ performance on the target dataset. Case C is

more difficult than all other cases (A and B). In this experiment, similar to Case B,

we performed a leave-one-out cross-validation. The difference is that we selected

50% of the samples (pairs of network descriptor and accuracy) from the original

test set for testing. At the same time, we removed the same network descriptors

from the original train set for training. Hence, the DNNs in the test set were never

seen by the predictor on any datasets.

Table 5.3 presents the results of this experiment. The proposed DAP out-

performed all evaluated methods substantially, including the dataset-agnostic

MetaD2A. Overall, DAP achieved MSE of 0.0006, Tau of 0.8365, and R2 of 0.9449.

Surprisingly, MetaD2A performed worse than the predictors without any dataset

feature. This shows that it is difficult to accurately model the distribution of com-

plex image datasets. This experiment also demonstrates that the proposed DAP

can generalize reliably to different datasets (unseen datasets) without knowing

every DNN in the search space (unseen network architectures). Based on this

observation, DAP can potentially reach high accuracy with a small number of

samples. We further analyzed this attribute of DAP in Section 5.4.4.3. See Fig.

5.7(c) for a predicted versus actual accuracy plot of the DAP.

Table 5.3: Results of the performance predictors on Case C - Unseen dataset and unseen
network architectures.

Methods CIFAR10 CIFAR100 ImageNet16-120
MSE↓ Tau↑ R2 ↑ MSE↓ Tau↑ R2 ↑ MSE↓ Tau↑ R2 ↑

GCN-Pred 0.1444 0.3378 -7.9790 0.0206 0.5806 -0.4135 0.1098 0.6535 -12.0131
NAO 0.1543 0.6463 -8.5992 0.0288 0.3354 -0.9751 0.1105 0.6566 -12.0912
BANANAS 0.1568 0.6317 -8.7517 0.0343 0.1964 -1.3522 0.1103 0.6652 -12.0703
BRP-NAS 0.1079 0.5652 -5.7125 0.0029 0.5677 0.8021 0.0853 0.5779 -9.1076
MetaD2A 0.1323 0.4276 -7.2293 0.0280 0.4148 -0.9221 - - -
DAP 0.0005 0.8359 0.9675 0.0006 0.8436 0.9584 0.0008 0.8300 0.9089
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(a) Case A (b) Case B (c) Case C

Figure 5.7: The predicted versus actual accuracy plot of DAP.

5.4.4 Ablation study

This section analyzes the different aspects of the proposed DAP, including the

network encoding (Section 5.4.4.1), search space size (Section 5.4.4.2), training

sample size (Section 5.4.4.3), and difficulty score values (Section 5.4.4.4).

5.4.4.1 Analysis of the proposed network encoding

To evaluate the effectiveness of the proposed network encoding, i.e., dual-LSTM-

based, we compared the DAP with GCN-based [199], LSTM-based [198], and

MLP-based [202] performance predictors. Here, we excluded the DSV from the

proposed DAP so that dataset features do not influence the results. The experi-

ments were conducted using fold-1 of CIFAR10 on Case A. The results, presented

in Table 5.4, show that the proposed method outperformed the other evaluated

methods.

Table 5.4: Comparison between the proposed method and performance predictors of
diverse approaches.

Methods MSE↓ Tau↑ R2 ↑
GCN 0.0001 0.8781 0.9918
LSTM 0.0000 0.9360 0.9973
MLP 0.0001 0.9243 0.9952
Proposed dual-LSTM 0.0000 0.9381 0.9974

To analyze the scalability of DAP, we also compared BANANAS and DAP

methods in terms of their network encoding. BANANAS uses the path-based en-

coding vector as input to the predictor, where each element in the vector represents

a possible path from the input node to the output node in an architecture. The
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element is set to 1 if the path is present in the architecture, otherwise it remains as

0. As an architecture grows in complexity (more possible paths), the vector will

grow larger too. Additionally, path-based encoding assumes every DNN has the

same number of possible paths. It cannot cope well with architectures of different

sizes because the semantic information of the vector will be different. Hence,

path-based encoding cannot scale well.

In contrast, two components of the DAP that determine the size of the encoding

vector are the input connections of nodes (Eq. (5.1)), and the number of nodes

(Eq. (5.2)). To scale efficiently, we propose a dual-LSTM feature extractor, which

can work with inputs of variable sizes. The first LSTM extracts a fixed-sized

feature to model the relationship between the input connections of each node

(node-level), and the second LSTM extracts a fixed-sized feature to model the

relationship between nodes of the network (network-level). As a result, the input

of our performance score predictor fpred always has a constant size regardless

of the architecture complexity. Thus, DAP can scale better than BANANAS. In

summary, this section shows that the use of the proposed network encoding

(dual-LSTM-based) is justified both experimentally and conceptually.

5.4.4.2 Analysis of DAP on a larger search space

We conducted a study using NAS-Bench-101 [207] to evaluate the performance of

DAP on a much larger search space. The NAS-Bench-101 search space is approxi-

mately 27.1 times larger than the NATS-Bench search space (423,624 versus 15,625

models). The 423,624 {architectural descriptor, validation accuracy} samples were

split into 80% for training (338,900 samples), 10% for validation (42,362 samples),

and 10% for testing (42,362 samples). NAS-Bench-101 only provides the accu-

racy of each network on CIFAR10. Hence, this extra experiment is conducted for

Case A only. We compared the proposed DAP with two representative methods,

BANANAS and GCN-Pred. The results, presented in Table 5.5, show that the

DAP outperformed the other evaluated methods substantially. Most importantly,
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the high Tau measure of the DAP (0.8960) indicates that it can accurately predict

architectures’ ranking, even for a significantly larger search space.

Table 5.5: Results of the performance predictors on CIFAR10 using the NAS-Bench-101
search space.

Methods MSE↓ Tau↑ R2 ↑
BANANAS 0.0022 0.8203 0.4110
GCN-Pred 0.0028 0.7521 0.2345
DAP 0.0014 0.8960 0.6278

5.4.4.3 The effects of training sample size

We conducted an in-depth study on the number of training samples required for

the DAP to reach high accuracy. This study was conducted using NAS-Bench-101,

and the total number of training, validation, and testing samples were the same

as Section 5.4.4.2. However, the percentage of training samples used was varied.

In total, we conducted six experiments, each experiment was allocated one of the

following training sample percentages: 1%, 5%, 10%, 15%, 20%, or 25%. After

training, the Tau measure was computed on the test set.

Fig. 5.8 shows that DAP does not require many train samples to reach high

accuracy. With only 1% of the 338,900 training samples, DAP achieved a Tau

measure of 0.8037, which was already higher than the GCN-Pred. With only 5%

of the 338,900 training samples, DAP achieved a Tau measure of 0.8536, which was

already higher than the BANANAS. Therefore, depending on the computation

budget, training the DAP with 1% of the available training samples is a good

starting point.

5.4.4.4 Effectiveness of the proposed difficulty score values

We analyzed the proposed difficulty score values (DSV) by comparing three kinds

of dataset features as input for the DAP: i) no dataset feature; ii) the difficulty

approximator’s validation accuracy at the last epoch only (DCN) [206]; and iii)

the proposed DSV. This study was conducted using the same experimental setup
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Figure 5.8: Tau measure of DAP computed on the test set versus the number of training
samples on NAS-Bench-101.

as Case B.

Table 5.6 presents the results of this study. Several observations can be made.

First, having a dataset feature as input is crucial in generalizing across different

datasets without re-training. DAP (no dataset feature) performed the worst.

Second, the proposed DSV feature is more effective than the DCN feature. DAP

(DSV) outperformed DAP (DCN) substantially.

Table 5.6: Performance of DAP when using different kinds of dataset feature on Case B.

Methods CIFAR10 CIFAR100 ImageNet16-120
MSE↓ Tau↑ R2 ↑ MSE↓ Tau↑ R2 ↑ MSE↓ Tau↑ R2 ↑

No dataset feature 0.1390 0.2480 -7.3600 0.0273 0.0460 -0.8270 0.1210 0.4230 -13.0910
DCN 0.0018 0.8437 0.8929 0.0031 0.6560 0.7951 0.0013 0.7082 0.8539
Proposed DSV 0.0003 0.8737 0.9811 0.0007 0.8575 0.9556 0.0007 0.8308 0.9193

5.4.5 Use cases of DAP

This section demonstrates practical use cases of DAP in the context of NAS (Section

5.4.5.1) and from the perspective of a researcher (Section 5.4.5.2).

5.4.5.1 Neural architecture search using DAP

DAP can be easily integrated into NAS algorithms that require the evaluation of

each candidate DNN, e.g., evolutionary and reinforcement-learning NAS algo-
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rithms. Here, our goal is to evaluate the effectiveness of DAP alone, hence no

optimization techniques or heuristics were used for searching. Our NAS pro-

cedure, called DAP-NAS, is described as follows. We explore the NATS-Bench

search space exhaustively by sampling all the unique DNNs. Then, a pretrained

DAP model is used to predict the accuracy of each network. Finally, we choose

the DNN with the highest predicted accuracy.

NATS-Bench. We conducted a NAS experiment using the NATS-Bench

benchmark and pretrained DAP models from Cases B and C, i.e., the DAP is

predicting the network’s accuracy on unseen datasets. We only tested Cases B

and C because they fit our motivation of not having to re-train the predictor on

every unseen dataset. The DAP-NAS was compared with 10 other NAS methods

reported in [194], namely REA [69], REINFORCE [81], RANDOM [208], BOHB

[209], RSPS [108], DARTS 1st and 2nd orders [80], GDAS [100], SETN [210], and

ENAS [82]. We also integrated the MetaD2A’s predictor into our DAP-NAS search

procedure.

The results, presented in Table 5.7, show that the DAP-NAS found network

architectures with higher test accuracy than all other evaluated methods. These

results demonstrate that the DAP predictor is highly effective even when com-

pared to specialized NAS methods. Furthermore, the DAP-NAS (Case B) and

DAP-NAS (Case C) found networks with higher test accuracy than the DAP-NAS

version with MetaD2A’s performance predictor. Hence, it is reasonable to expect

that the performance of the MetaD2A system can be improved by incorporating

it with our proposed DAP instead of using the current MetaD2A’s performance

predictor.

MNIST, Fashion-MNIST, and SVHN. We also conducted a NAS experiment

using the MNIST [211], Fashion-MNIST [212], and SVHN [213] image classifica-

tion datasets. Here, the DAP-NAS (Case C) trained on CIFAR10 and CIFAR100

was employed. For each dataset, the DAP-NAS was used to select the optimum

architecture from the NATS-Bench search space. Then, the selected DNN was
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Table 5.7: The NAS results on CIFAR10, CIFAR100, and ImageNet-16-120 using the
NATS-Bench search space.

Methods CIFAR10 CIFAR100 ImageNet16-120
Validation Test Validation Test Validation Test

REA 91.25±0.31 94.02±0.31 72.28±0.95 72.23±0.84 45.71±0.77 45.77±0.80
REINFORCE 91.12±0.25 93.90±0.26 71.80±0.94 71.86±0.89 45.37±0.74 45.64±0.78
RANDOM 91.07±0.26 93.86±0.23 71.46±0.97 71.55±0.97 45.03±0.91 45.28±0.97
BOHB 91.17±0.27 93.94±0.28 72.04±0.93 72.00±0.86 45.55±0.79 45.70±0.86
RSPS 87.60±0.61 91.05±0.66 68.27±0.72 68.26±0.96 39.73±0.34 40.69±0.36
DARTS (1st) 49.27±13.44 59.84±7.84 61.08±4.37 61.26±4.43 38.07±2.90 37.88±2.91
DARTS (2nd) 58.78±13.44 65.38±7.84 59.48±5.13 60.49±4.95 37.56±7.10 36.79±7.59
GDAS 89.68±0.72 93.23±0.58 68.35±2.71 68.17±2.50 39.55±0.00 39.40±0.00
SETN 90.00±0.97 92.72±0.73 69.19±1.42 69.36±1.72 39.77±0.33 39.51±0.33
ENAS 90.20±0.00 93.76±0.00 70.21±0.71 70.67±0.62 40.78±0.00 41.44±0.00
DAP-NAS (MetaD2A) 89.79±0.00 93.27±0.00 70.94±0.00 70.49±0.00 - -
DAP-NAS (Case B) 91.42±0.00 94.22±0.00 72.51±0.00 73.14±0.00 45.59±0.00 46.33±0.00
DAP-NAS (Case C) 91.45±0.00 94.30±0.00 72.51±0.00 73.14±0.00 46.37±0.00 46.34±0.00

trained from scratch.

The DNNs selected by DAP-NAS are compared with eight state-of-the-art

deep learning models: MobileNet-V2 [77], MixNet-XL [214], EfficientNet-B2 [33],

ResNet-34 [29], MobileNetV3-Large [63], RegNetX032 [215], MnasNet-A1 [83],

SK-ResNeXt-50 [216]. The implementation of these methods is provided by the

popular PyTorch library [217].

Every model was trained using the same setup for a fair comparison. The SGD

optimizer was used with an initial learning rate of 0.001, Nesterov momentum

of 0.9, and weight decay of 0.0005. The learning rate was decayed exponentially

with a gamma of 0.98 during the training. Additionally, the training images were

augmented with the RandAugment algorithm [218]. For each image dataset,

we split the original test set into 50% samples for validation and 50% samples

for testing. All models were trained until the validation accuracy had stopped

improving for 50 epochs. For testing, we loaded the model weights that achieved

the highest validation accuracy.

Table 5.8 presents the results of this experiment. DAP-NAS (Case C) found

DNNs that achieved higher test accuracy than every evaluated method in all three

datasets. This shows that the DAP predictor can accurately predict the DNNs’

ranking for unseen datasets without re-training, i.e., DAP is dataset-agnostic.
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Table 5.8: The test accuracy obtained by the different methods on the MNIST, Fashion-
MNIST, and SVHN datasets.

Methods MNIST Fashion-
MNIST SVHN

MobileNet-V2 98.58 89.04 89.44
MixNet-XL 98.78 89.56 91.24
EfficientNet-B2 98.84 89.20 89.13
ResNet-34 99.26 91.90 93.19
MobileNetV3 (Large) 98.94 89.44 90.44
RegNetX032 99.12 91.26 93.06
MnasNet-A1 98.92 89.82 89.71
SK-ResNeXt-50 99.28 90.64 92.66
DAP-NAS (Case C) 99.68 93.82 95.96

5.4.5.2 Gaining dataset insights using DAP

The proposed DAP can be used to gain additional insights into a given dataset.

For example, the DAP can find the optimum DNN hyperparameters for a dataset.

Fig. 5.9 shows a scatter plot of the predicted accuracy versus the number of

trainable parameters in the CIFAR10 dataset. From this plot, we can see that the

optimum number of trainable parameters for CIFAR10 is around 0.85 million.

This information can guide a researcher when designing a DNN for CIFAR10.

Using a similar approach, we can use the DAP to predict a DNN’s performance

versus any architectural hyperparameters, thereby rapidly finding the optimum

hyperparameters for a DNN.

Figure 5.9: Accuracy versus number of trainable parameters in the CIFAR10 dataset (best
viewed in color).

Another usage of the proposed DAP is finding a group of DNNs that perform
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well on several datasets. This is useful for multi-task learning or ensemble learn-

ing. Fig. 5.10 (left) presents a Venn diagram that comprises the top-100 DNN IDs

with the highest predicted accuracy from CIFAR10, CIFAR100, and ImageNet16-

120. There are 44 DNNs that are common to the three datasets, i.e., within the

intersection of the three sets. Fig. 5.10 (right) shows a scatter plot of the 44 DNNs’

predicted accuracy on the three datasets. Using this information, a researcher can

select a collection of DNNs that perform well on the three datasets.

Figure 5.10: (Left) A Venn diagram comprising the top-100 DNNs from each of the three
datasets; (Right) Predicted accuracy versus the ID of the 44 DNNs in common among the
three datasets.

5.5 Discussion

This chapter proposes a dataset-agnostic predictor of neural network performance,

called DAP. For evaluation, we investigated three experimental cases (Case A, B,

and C) that reflect the practical uses of a predictor. Case A covers the scenario

where a predictor is trained using several samples from a NAS search space, and

then used to predict the performance of other DNNs during the search. Case B

covers the scenario where a researcher would like to know the performance of a

DNN (e.g., ResNet) on a new problem and where its performance is already known

on other common datasets (e.g., ImageNet). Case C is the most challenging. It

covers the scenario where a trained predictor (e.g., from Case A or Case B) is

transferred to an entirely new problem without re-training. The experimental

results show that the proposed DAP performed the best in all three cases. Overall,

the DAP achieved MSE measures below 0.000315, Tau measures above 0.8, and
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R2 measures above 0.9.

To better understand the learned features of the DAP, we visualized the

network-level features V using t-SNE [219]. Fig. 5.11 presents the visualiza-

tion on the 2D t-SNE embedding space. The DNNs with similar performance

stay near each other, i.e., within the same cluster. This shows that the extracted

network-level features are salient, and they are effective for predicting the DNN’s

performance.

Figure 5.11: Visualization of the network-level features V using t-SNE (best viewed in
color). Each point represents a unique DNN, with color indicating the actual validation
accuracy. The red star indicates the DNN with the highest validation accuracy for a given
dataset.

There are two aspects of DAP that can be investigated in future works. First,

the proposed DAP is evaluated only on deep networks designed for the image

classification task. However, it can be readily extended to other tasks, e.g., se-

mantic segmentation, object detection, and monocular depth estimation. This

extension can be investigated in future works. Second, it is uncertain if the DAP

is search space-agnostic. Future works can investigate if DAP can be extended to

accurately predict DNN’s performance from an unseen search space.

5.6 Chapter summary

In this chapter, we demonstrate that it is feasible to estimate the performance of a

DNN from its architectural descriptor without actually training it. The proposed

DAP utilizes a new structure of dual LSTMs to model a DNN for performance
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prediction. It can also generalize across different datasets by incorporating a new

dataset difficulty feature. Extensive experiments show that the DAP outperforms

the existing methods in three test cases. Our analysis also shows that DAP can ob-

tain high accuracy with minimal training samples. Furthermore, the effectiveness

of DAP is also demonstrated in several practical use cases in the context of NAS

and from a researcher’s perspective. The effectiveness and generalization ability

of the proposed DAP allows its integration into many NAS pipelines (reducing

the need for memory-saving techniques), and aids researchers in developing new

DNNs (reducing the design time).
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Deep learning (DL) uses deep neural networks (DNNs) to extract salient

features from raw data automatically. This capability of DL allows it to be applied

to many problems rapidly and successfully. A common task when applying DL

to a new problem is designing a suitable deep neural network. This task relies

heavily on human expertise, is time-consuming, and requires many trial-and-

error experiments. A poorly designed DNN will lead to poor performance. This

thesis proposes two new neural architecture search (NAS) algorithms to automate

this laborious task for two real-world problems: pedestrian lane segmentation

for assistive navigation and hyperspectral image segmentation for biosecurity

scanning. We also introduce a new dataset-agnostic predictor of neural network

performance, which can be integrated into any NAS algorithm that requires the

evaluation of candidate DNNs.

The remainder of this chapter is organized as follows. Section 6.1 summarizes

the research contributions of the thesis. Section 6.2 outlines the future work and

research directions. Finally, Section 6.3 concludes the thesis.
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6.1 Research summary

The research activities have been documented in several chapters of this thesis.

They are summarized as follows.

• We provided a literature review on deep learning, which includes a historical

account of deep learning, a discussion on important DL works in image

classification and segmentation, and a concise overview of NAS. [Chapter 2]

• We proposed a NAS algorithm, named MSD-NAS, for pedestrian lane seg-

mentation. MSD-NAS can automatically design a DNN with multi-scale

input branches, which allows the derived network to utilize both local and

global contexts for predictions. To improve information-sharing in the de-

rived network, we introduced a novel Short-term Visual Memory mecha-

nism. Evaluated on the PLVP3 dataset of 10,000 images, the deep network

found by MSD-NAS outperforms many hand-designed network architec-

tures, and achieves state-of-the-art accuracy, processing speed, and model

size in pedestrian lane detection. [Chapter 3]

• We proposed a NAS algorithm, named AdaptorNAS, for hyperspectral im-

age segmentation. AdaptorNAS aims to design the optimum decoder for

any given encoder. In our approach, the search space of AdaptorNAS is a

large DNN, and the optimal decoder is derived by pruning the large DNN

via a new perturbation-based pruning strategy. Verified on three popular

encoders, i.e., ResNet-34, MobileNet-V2, and EfficientNet-B2, AdaptorNAS

can design high-speed decoders that are significantly better than six com-

mon hand-crafted decoders. Additionally, with the EfficientNet-B2 encoder,

AdaptorNAS outperforms the state-of-the-art NAS algorithms and hand-

crafted network architectures on the hyperspectral image segmentation task.

[Chapter 4]

• We investigated the feasibility of two tasks: i) predicting a deep neural net-
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work’s performance accurately given only its architectural descriptor, and

ii) generalizing the predictor across different datasets without re-training.

To this end, we developed a dataset-agnostic predictor of neural network

performance, named DAP. The proposed DAP employs a novel dual-LSTM

model and a new dataset difficulty feature. The experimental results show

that both tasks above are indeed feasible, and the proposed method out-

performs the existing techniques in all experimental cases. Additionally,

we also demonstrated several practical use cases of the proposed predictor.

[Chapter 5]

6.2 Future work

Possible research directions can be summarized as follows:

• Extending the proposed NAS algorithms to other computer vision tasks. Although

the proposed NAS algorithms are designed for the image segmentation

task, they can be extended to other tasks with minimal changes, e.g., depth

estimation and object detection. An anticipated modification is the output

layer of the candidate DNNs. For example, different tasks may require

different types of predictions.

• Considering inference speed and model size in the search process of NAS. An

advantage of NAS is that it can automatically design a DNN that fulfills

some user-defined criteria. In this thesis, we mainly focus on obtaining the

best accuracy only. By also including inference speed and model size in

the search criteria, NAS algorithms may find highly efficient and effective

DNNs.

• Generalizing the DNN performance predictor to new search spaces. We have

experimentally shown that the proposed DAP can accurately predict DNNs’

performance on new image datasets without re-training. However, it is
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uncertain if DAP can predict the performance of DNNs from new search

spaces without re-training.

6.3 Chapter summary

This thesis presents two new NAS algorithms for image segmentation and a new

predictor of neural network performance. Specifically, the proposed methods

include: (i) a novel gradient descent-based NAS method that can find a DNN with

multi-scale input branches (MSD-NAS); (ii) a novel perturbation-based NAS method

that can design the optimum decoder for any given encoder (AdaptorNAS); and

(iii) a novel performance predictor that can approximate the accuracy of DNNs on

different datasets given only their architectural descriptor (DAP). The proposed

NAS algorithms have been applied to tackle two real-world computer vision

problems: MSD-NAS for pedestrian lane segmentation task and AdaptorNAS for

hyperspectral image segmentation task.

Several conclusions can be drawn from this research. First, MSD-NAS can

find deep networks that achieve state-of-the-art performance in terms of accu-

racy, processing speed, and model size on the pedestrian lane segmentation task.

Second, AdaptorNAS can design high-speed decoders that are significantly bet-

ter than the existing hand-crafted decoders. Using the EfficientNet-B2 encoder,

AdaptorNAS outperforms the state-of-the-art NAS algorithms and hand-crafted

network architectures on the hyperspectral image segmentation task. Third, the

proposed DAP demonstrates that it is feasible to accurately predict DNNs’ per-

formance on different datasets, including datasets unknown to the predictor. The

effectiveness and generalization ability of the proposed DAP allows its integration

into many NAS pipelines.

121



Bibliography

[1] F. Sultana, A. Sufian, and P. Dutta, “Evolution of image segmentation using

deep convolutional neural network: A survey,” Knowledge-Based Syst., vol.

201-202, pp. 1–25, 2020.

[2] A. Lavecchia, “Deep learning in drug discovery: opportunities, challenges

and future prospects,” Drug Discov. Today, vol. 24, no. 10, pp. 2017–2032,

2019.

[3] D. W. Otter, J. R. Medina, and J. K. Kalita, “A survey of the usages of deep

learning for natural language processing,” IEEE Trans. Neural Networks Learn.

Syst., vol. 32, no. 2, pp. 604–624, 2021.

[4] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, pp.

436–444, 2015.

[5] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing

human-level performance on ImageNet classification,” in Proc. Int. Conf.

Comput. Vis., 2015, pp. 1026–1034.

[6] Q. Yu, Y. Yang, F. Liu, Y.-Z. Song, T. Xiang, and T. M. Hospedales, “Sketch-

a-Net: A deep neural network that beats humans,” Int. J. Comput. Vis., vol.

122, pp. 411–425, 2017.

122



Bibliography

[7] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in

nervous activity,” Bull. Math. Biophys., vol. 5, pp. 115–133, 1943.

[8] F. Rosenblatt, “The perceptron - A perceiving and recognizing automaton,”

Cornell Aeronautical Laboratory, Tech. Rep., 1957.

[9] H. J. Kelley, “Gradient theory of optimal flight paths,” ARS J., vol. 30, no. 10,

pp. 947–954, 1960.

[10] S. Dreyfus, “The numerical solution of variational problems,” J. Math. Anal.

Appl., vol. 5, pp. 30–45, 1962.

[11] M. Minsky and S. A. Papert, Perceptrons: An Introduction to Computational

Geometry. The MIT Press, 1969.

[12] S. Linnainmaa, “The representation of the cumulative rounding error of

an algorithm as a Taylor expansion of the local rounding errors,” Master

Thesis, University of Helsinki, 1970.

[13] A. G. Ivakhnenko, “Polynomial theory of complex systems,” IEEE Trans.

Syst. Man. Cybern., vol. 1, no. 4, pp. 364–378, 1971.

[14] K. Fukushima, “Neocognitron: A self-organizing neural network model for

a mechanism of pattern recognition unaffected by shift in position,” Biol.

Cybern., vol. 36, pp. 193–202, 1980.

[15] P. J. Werbos, “Applications of advances in nonlinear sensitivity analysis,”

in Syst. Model. Optim., 1982, pp. 762–770.

[16] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations

by back-propagating errors,” Nature, vol. 323, pp. 533–536, 1986.

[17] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural

Networks, vol. 61, pp. 85–117, 2015.

123



Bibliography

[18] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hub-

bard, and L. D. Jackel, “Backpropagation applied to handwritten zip code

recognition,” Neural Comput., vol. 1, no. 4, pp. 541–551, 1989.

[19] S. Hochreiter, “Untersuchungen zu dynamischen neuronalen Netzen,”

Diploma Thesis, Technische Universität München, 1991.

[20] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Com-

put., vol. 9, no. 8, pp. 1735–1780, 1997.

[21] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for

deep belief nets,” Neural Comput., vol. 18, no. 7, pp. 1527–1554, 2006.

[22] R. Raina, A. Madhavan, and A. Y. Ng, “Large-scale deep unsupervised

learning using graphics processors,” in Proc. Int. Conf. Mach. Learn., 2009,

pp. 873–880.

[23] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and F.-F. Li, “ImageNet: A

large-scale hierarchical image database,” in Proc. Conf. Comput. Vis. Pattern

Recognit., 2009, pp. 248–255.

[24] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,”

in Proc. Int. Conf. Artif. Intell. Stat., 2011, pp. 315–323.

[25] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with

deep convolutional neural networks,” in Proc. Adv. Neural Inf. Process. Syst.,

2012, pp. 1–9.

[26] K. Simonyan and A. Zisserman, “Very deep convolutional networks for

large-scale image recognition,” in Proc. Int. Conf. Learn. Represent., 2015, pp.

1–14.

[27] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in

Proc. Conf. Comput. Vis. Pattern Recognit., 2015, pp. 1–9.

124



Bibliography

[28] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio, “Generative adversarial nets,” in Neural Inf.

Process. Syst., 2014, pp. 1–9.

[29] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in Proc. Conf. Comput. Vis. Pattern Recognit., 2016, pp. 770–778.

[30] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche,

J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman,

D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach,

K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of Go

with deep neural networks and tree search,” Nature, vol. 529, pp. 484–489,

2016.

[31] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely con-

nected convolutional networks,” in Proc. Conf. Comput. Vis. Pattern Recognit.,

2017, pp. 4700–4708.

[32] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,

M. Andreetto, and H. Adam, “MobileNets: Efficient convolutional neural

networks for mobile vision applications,” ArXiv e-prints, pp. 1–9, 2017.

[33] M. Tan and Q. V. Le, “EfficientNet: Rethinking model scaling for convolu-

tional neural networks,” in Proc. Int. Conf. Mach. Learn., 2019, pp. 1–10.

[34] S. Minaee, Y. Boykov, F. Porikli, A. Plaza, N. Kehtarnavaz, and D. Terzopou-

los, “Image segmentation using deep learning: A survey,” IEEE Trans. Pat-

tern Anal. Mach. Intell., pp. 1–20, 2021.

[35] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for

semantic segmentation,” in Proc. Conf. Comput. Vis. Pattern Recognit., 2015,

pp. 3431–3440.

125



Bibliography

[36] H. Noh, S. Hong, and B. Han, “Learning deconvolution network for seman-

tic segmentation,” in Proc. Int. Conf. Comput. Vis., 2015, pp. 1520–1528.

[37] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A deep convolu-

tional encoder-decoder architecture for image segmentation,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 39, no. 12, pp. 2481–2495, 2017.

[38] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks

for biomedical image segmentation,” in Proc. Int. Conf. Med. Image Comput.

Comput. Assist. Interv., 2015, pp. 234–241.

[39] A. Chaurasia and E. Culurciello, “LinkNet: Exploiting encoder representa-

tions for efficient semantic segmentation,” in Proc. IEEE Vis. Commun. Image

Process., 2017, pp. 1–5.

[40] Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang, “UNet++: A

nested U-Net architecture for medical image segmentation,” in Proc. Deep

Learn. Med. Image Anal. Multimodal Learn. Clin. Decis. Support, 2018, pp. 3–11.

[41] Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger, “3D

U-Net: Learning dense volumetric segmentation from sparse annotation,”

in Proc. Int. Conf. Med. Image Comput. Comput. Assist. Interv., 2016, pp. 1–8.

[42] Z. Zhang, Q. Liu, and Y. Wang, “Road extraction by deep residual U-Net,”

IEEE Geosci. Remote Sens. Lett., vol. 15, no. 5, pp. 749–753, 2018.

[43] J. Wang, K. Sun, T. Cheng, B. Jiang, C. Deng, Y. Zhao, D. Liu, Y. Mu, M. Tan,

X. Wang, W. Liu, and B. Xiao, “Deep high-resolution representation learning

for visual recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 10,

pp. 3349 – 3364, 2021.

[44] T.-Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature

pyramid networks for object detection,” in Proc. Conf. Comput. Vis. Pattern

Recognit., 2017, pp. 2117–2125.

126



Bibliography

[45] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing network,”

in Proc. Conf. Comput. Vis. Pattern Recognit., 2017, pp. 2881–2890.

[46] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Se-

mantic image segmentation with deep convolutional nets and fully con-

nected CRFs,” in Proc. Int. Conf. Learn. Represent., 2015, pp. 1–14.

[47] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,

“DeepLab: Semantic image segmentation with deep convolutional nets,

atrous convolution, and fully connected CRFs,” IEEE Trans. Pattern Anal.

Mach. Intell., vol. 40, no. 4, pp. 834–848, 2018.

[48] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking atrous

convolution for semantic image segmentation,” ArXiv e-prints, pp. 1–14,

2017.

[49] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-

decoder with atrous separable convolution for semantic image segmenta-

tion,” in Proc. Eur. Conf. Comput. Vis., 2018, pp. 1–18.

[50] L.-C. Chen, Y. Yang, J. Wang, W. Xu, and A. L. Yuille, “Attention to scale:

Scale-aware semantic image segmentation,” in Proc. Conf. Comput. Vis. Pat-

tern Recognit., 2016, pp. 3640–3649.

[51] H. Li, P. Xiong, J. An, and L. Wang, “Pyramid attention network for semantic

segmentation,” in Proc. Br. Mach. Vis. Conf., 2018, pp. 1–13.

[52] Y. Yuan, L. Huang, J. Guo, C. Zhang, X. Chen, and J. Wang, “OCNet: Object

context for semantic segmentation,” Int. J. Comput. Vis., pp. 1–22, 2021.

[53] J. Fu, J. Liu, H. Tian, Y. Li, Y. Bao, Z. Fang, and H. Lu, “Dual attention network

for scene segmentation,” in Proc. Conf. Comput. Vis. Pattern Recognit., 2019,

pp. 3146–3154.

127



Bibliography

[54] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proc. Conf. Neural

Inf. Process. Syst., 2017, pp. 1–11.

[55] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Un-

terthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit,

and N. Houlsby, “An image is worth 16x16 words: Transformers for image

recognition at scale,” in Proc. Int. Conf. Learn. Represent., 2021, pp. 1–21.

[56] S. Zuo, Y. Xiao, X. Chang, and X. Wang, “Vision transformers for dense

prediction: A survey,” Knowledge-Based Systems, vol. 253, pp. 1–23, 2022.

[57] S. Zheng, J. Lu, H. Zhao, X. Zhu, Z. Luo, Y. Wang, Y. Fu, J. Feng, T. Xiang,

P. H. S. Torr, and L. Zhang, “Rethinking semantic segmentation from a

sequence-to-sequence perspective with transformers,” in Proc. Conf. Comput.

Vis. Pattern Recognit., 2021.

[58] R. Ranftl, A. Bochkovskiy, and V. Koltun, “Vision transformers for dense

prediction,” in Proc. Int. Conf. Comput. Vis., 2021, pp. 12 179–12 188.

[59] J. Chen, Y. Lu, Q. Yu, X. Luo, E. Adeli, Y. Wang, L. Lu, A. L. Yuille, and

Y. Zhou, “TransUNet: Transformers make strong encoders for medical im-

age segmentation,” ArXiv e-prints, pp. 1–13, 2021.

[60] B. Baker, O. Gupta, N. Naik, and R. Raskar, “Designing neural network

architectures using reinforcement learning,” in Proc. Int. Conf. Learn. Repre-

sent., 2017, pp. 1–18.

[61] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement learn-

ing,” in Proc. Int. Conf. Learn. Represent., 2017, pp. 1–16.

[62] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A sur-

vey,” J. Mach. Learn. Res., vol. 20, pp. 1–21, 2019.

128



Bibliography

[63] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang,

Y. Zhu, R. Pang, V. Vasudevan, Q. V. Le, and H. Adam, “Searching for

MobileNetV3,” in Proc. Int. Conf. Comput. Vis., 2019, pp. 1314–1324.

[64] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning

applied to document recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278 –

2324, 1998.

[65] V. Nekrasov, H. Chen, C. Shen, and I. Reid, “Fast neural architecture search

of compact semantic segmentation models via auxiliary cells,” in Proc. Conf.

Comput. Vis. Pattern Recognit., 2019, pp. 9126–9135.

[66] W. Chen, X. Gong, X. Liu, Q. Zhang, Y. Li, and Z. Wang, “FasterSeg: Search-

ing for faster real-time semantic segmentation,” in Proc. Int. Conf. Learn.

Represent., 2020, pp. 1–14.

[67] X. Zhang, H. Xu, H. Mo, J. Tan, C. Yang, L. Wang, and W. Ren, “DCNAS:

Densely connected neural architecture search for semantic image segmen-

tation,” in Proc. Conf. Comput. Vis. Pattern Recognit., 2021, pp. 13 956–13 967.

[68] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L. J. Li, L. Fei-Fei, A. Yuille,

J. Huang, and K. Murphy, “Progressive neural architecture search,” in Proc.

Eur. Conf. Comput. Vis., 2018, pp. 1–16.

[69] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution for

image classifier architecture search,” in Proc. AAAI Conf. Artif. Intell., 2019,

pp. 1–16.

[70] S. Xie, H. Zheng, C. Liu, and L. Lin, “SNAS: Stochastic neural architecture

search,” in Proc. Int. Conf. Learn. Represent., 2019, pp. 1–17.

[71] J. Chang, X. Zhang, Y. Guo, G. Meng, S. Xiang, and C. Pan, “DATA: Differ-

entiable architecture approximation,” in Proc. Conf. Neural Inf. Process. Syst.,

2019, pp. 1–11.

129



Bibliography

[72] Y. Xu, L. Xie, X. Zhang, X. Chen, G.-j. Qi, Q. Tian, and H. Xiong, “PC-DARTS:

Partial channel connections for memory-efficient architecture search,” in

Proc. Int. Conf. Learn. Represent., 2020, pp. 1–13.

[73] G. Li, G. Qian, I. C. Delgadillo, M. Müller, A. Thabet, and B. Ghanem,

“SGAS: Sequential greedy architecture search,” in Proc. Conf. Comput. Vis.

Pattern Recognit., 2020, pp. 1620–1630.

[74] M. S. Abdelfattah, A. Mehrotra, Ł. Dudziak, and N. D. Lane, “Zero-cost

proxies for lightweight NAS,” in Proc. Int. Conf. Learn. Represent., 2021, pp.

1–17.

[75] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable

architectures for scalable image recognition,” in Proc. Conf. Comput. Vis.

Pattern Recognit., 2018, pp. 8697–8710.

[76] X. He, K. Zhao, and X. Chu, “AutoML: A survey of the state-of-the-art,”

Knowledge-Based Syst., vol. 212, pp. 1–27, 2021.

[77] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. C. Chen, “Mo-

bileNetV2: Inverted residuals and linear bottlenecks,” in Proc. Conf. Comput.

Vis. Pattern Recognit., 2018, pp. 4510–4520.

[78] H. Cai, L. Zhu, and S. Han, “ProxylessNAS: Direct neural architecture search

on target task and hardware,” in Proc. Int. Conf. Learn. Represent., 2019, pp.

1–13.

[79] Y. Weng, T. Zhou, Y. Li, and X. Qiu, “NAS-Unet: Neural architecture search

for medical image segmentation,” IEEE Access, vol. 7, pp. 44 247–44 257,

2019.

[80] H. Liu, K. Simonyan, and Y. Yang, “DARTS: Differentiable architecture

search,” in Proc. Int. Conf. Learn. Represent., 2019, pp. 1–13.

130



Bibliography

[81] R. J. Williams, “Simple statistical gradient-following algorithms for connec-

tionist reinforcement learning,” Mach. Learn., vol. 8, no. 3-4, pp. 229–256,

1992.

[82] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean, “Efficient neural

architecture search via parameter sharing,” in Proc. Int. Conf. Mach. Learn.,

2018, pp. 4095–4104.

[83] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and Q. V.

Le, “MnasNet: Platform-aware neural architecture search for mobile,” in

Proc. Conf. Comput. Vis. Pattern Recognit., 2019, pp. 2820–2828.

[84] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal

policy optimization algorithms,” ArXiv e-prints, pp. 1–12, 2017.

[85] A. Darwish, A. E. Hassanien, and S. Das, “A survey of swarm and evolu-

tionary computing approaches for deep learning,” Artif. Intell. Rev., vol. 53,

pp. 1767–1812, 2020.

[86] Y. Liu, Y. Sun, B. Xue, M. Zhang, G. G. Yen, and K. C. Tan, “A survey on

evolutionary neural architecture search,” IEEE Trans. Neural Networks Learn.

Syst., pp. 1–21, 2021.

[87] D. Kang and C. W. Ahn, “Efficient neural network space with genetic

search,” in Proc. Int. Conf. Bio-Inspired Comput. Theor. Appl., 2020, pp. 638–646.

[88] A. Kwasigroch, M. Grochowski, and M. Mikolajczyk, “Deep neural network

architecture search using network morphism,” in Proc. Int. Conf. Methods

Model. Autom. Robot., 2019, pp. 30–35.

[89] H. Tian, S.-C. Chen, M.-L. Shyu, and S. Rubin, “Automated neural network

construction with similarity sensitive evolutionary algorithms,” in Proc. Int.

Conf. Inf. Reuse Integr. Data Sci., 2019, pp. 283–290.

131



Bibliography

[90] A. Kwasigroch, M. Grochowski, and A. Mikolajczyk, “Neural architecture

search for skin lesion classification,” IEEE Access, vol. 8, pp. 9061–9071, 2020.

[91] H. Zhu, Z. An, C. Yang, K. Xu, E. Zhao, and Y. Xu, “EENA: Efficient evolution

of neural architecture,” in Proc. Int. Conf. Comput. Vis. Work., 2019, pp. 1–9.

[92] L. Xie and A. Yuille, “Genetic CNN,” in Proc. Int. Conf. Comput. Vis., 2017,

pp. 1388–1397.

[93] S. Gibb, H. M. La, and S. Louis, “A genetic algorithm for convolutional

network structure optimization for concrete crack detection,” in Proc. IEEE

Congr. Evol. Comput., 2018, pp. 1–8.

[94] A. A. Ahmed, S. M. S. Darwish, and M. M. El-Sherbiny, “A novel automatic

CNN architecture design approach based on genetic algorithm,” in Proc.

Int. Conf. Adv. Intell. Syst. Informatics, 2019, pp. 473–482.

[95] Z. Chen, Y. Zhou, and Z. Huang, “Auto-creation of effective neural network

architecture by evolutionary algorithm and ResNet for image classification,”

in Proc. Int. Conf. Syst. Man Cybern., 2019, pp. 3895–3900.

[96] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. V. Le, and

A. Kurakin, “Large-scale evolution of image classifiers,” in Proc. Int. Conf.

Mach. Learn., 2017, pp. 2902–2911.

[97] Y. Sun, B. Xue, M. Zhang, and G. G. Yen, “Completely automated CNN

architecture design based on blocks,” IEEE Trans. Neural Networks Learn.

Syst., vol. 31, no. 4, pp. 1242–1254, 2020.

[98] Y. Sun, B. Xue, M. Zhang, and G. G. Yen, “Evolving deep convolutional

neural networks for image classification,” IEEE Trans. Evol. Comput., vol. 24,

no. 2, pp. 394–407, 2020.

132



Bibliography

[99] Y. Sun, B. Xue, M. Zhang, G. G. Yen, and J. Lv, “Automatically designing

CNN architectures using the genetic algorithm for image classification,”

IEEE Trans. Cybern., vol. 50, no. 9, pp. 3840–3854, 2020.

[100] X. Dong and Y. Yang, “Searching for a robust neural architecture in four

GPU hours,” in Proc. Conf. Comput. Vis. Pattern Recognit., 2019, pp. 1–10.

[101] C. J. Maddison, D. Tarlow, and T. Minka, “A* sampling,” in Proc. Int. Conf.

Neural Inf. Process. Syst., 2014, pp. 3086–3094.

[102] X. Chu, T. Zhou, B. Zhang, and J. Li, “Fair DARTS: Eliminating unfair

advantages in differentiable architecture search,” in Proc. Eur. Conf. Comput.

Vis., 2020, pp. 465–480.

[103] A. Zela, T. Elsken, T. Saikia, Y. Marrakchi, T. Brox, and F. Hutter, “Under-

standing and robustifying differentiable architecture search,” in Proc. Int.

Conf. Learn. Represent., 2020, pp. 1–28.

[104] X. Chu, X. Wang, B. Zhang, S. Lu, X. Wei, and J. Yan, “DARTS-: Robustly

stepping out of performance collapse without indicators,” in Proc. Int. Conf.

Learn. Represent., 2021, pp. 1–22.

[105] R. Wang, M. Cheng, X. Chen, X. Tang, and C.-J. Hsieh, “Rethinking archi-

tecture selection in differentiable NAS,” in Proc. Int. Conf. Learn. Represent.,

2021, pp. 1–18.

[106] K. Yu, C. Sciuto, M. Jaggi, C. Musat, and M. Salzmann, “Evaluating the

search phase of neural architecture search,” in Proc. Int. Conf. Learn. Repre-

sent., 2020, pp. 1–16.

[107] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and K. Kavukcuoglu, “Hier-

archical representations for efficient architecture search,” in Proc. Int. Conf.

Learn. Represent., 2018, pp. 1–13.

133



Bibliography

[108] L. Li and A. Talwalkar, “Random search and reproducibility for neural

architecture search,” in Proc. Conf. Uncertain. Artif. Intell., 2019, pp. 1–20.

[109] P. Chrabaszcz, I. Loshchilov, and F. Hutter, “A downsampled variant of

ImageNet as an alternative to the CIFAR datasets,” ArXiv e-prints, pp. 1–9,

2017.

[110] A. Klein, S. Falkner, S. Bartels, P. Hennig, and F. Hutter, “Fast bayesian

optimization of machine learning hyperparameters on large datasets,” in

Proc. Int. Conf. Artif. Intell. Stat., 2017, pp. 1–9.

[111] A. Zela, A. Klein, S. Falkner, and F. Hutter, “Towards automated deep

learning: Efficient joint neural architecture and hyperparameter search,” in

Proc. Int. Conf. Mach. Learn. Work. AutoML, 2018, pp. 1–11.

[112] B. Baker, O. Gupta, R. Raskar, and N. Naik, “Accelerating neural architecture

search using performance prediction,” in Proc. Int. Conf. Learn. Represent. -

Work., 2018, pp. 1–19.

[113] T. Wei, C. Wang, Y. Rui, and C. W. Chen, “Network morphism,” in Proc. Int.

Conf. Mach. Learn., 2016, pp. 1–9.

[114] H. Cai, T. Chen, W. Zhang, Y. Yu, and J. Wang, “Efficient architecture search

by network transformation,” in Proc. AAAI Conf. Artif. Intell., 2018, pp. 2787–

2794.

[115] H. Jin, Q. Song, and X. Hu, “Auto-Keras: An efficient neural architecture

search system,” in Proc. Conf. Knowl. Discov. Data Min., 2019, pp. 1946–1956.

[116] C. Wong, Y. Lu, N. Houlsby, and A. Gesmundo, “Transfer learning with

neural AutoML,” in Proc. Conf. Neural Inf. Process. Syst., 2018, pp. 1–10.

[117] P. Ackland, S. Resnikoff, and R. Bourne, “World blindness and visual im-

pairment: Despite many successes, the problem is growing,” Community

Eye Heal., vol. 30, no. 100, pp. 71–73, 2018.

134



Bibliography

[118] A. J. Jackson and J. S. Wolffsohn, Low Vision Manual. Elsevier, 2007.

[119] M. S. Uddin and T. Shioyama, “Bipolarity and projective invariant-based

zebra-crossing detection for the visually impaired,” in Proc. Comput. Soc.

Conf. Comput. Vis. Pattern Recognit. Work., 2005, pp. 22–30.

[120] M. C. Le, S. L. Phung, and A. Bouzerdoum, “Pedestrian lane detection for

assistive navigation of blind people,” in Proc. Int. Conf. Pattern Recognit.,

2012, pp. 2594–2597.

[121] S. Se and M. Brady, “Road feature detection and estimation,” Mach. Vis.

Appl., vol. 14, no. 3, pp. 157–165, 2003.

[122] V. Ivanchenko, J. Coughlan, and H. Shen, “Detecting and locating cross-

walks using a camera phone,” in Proc. Conf. Comput. Vis. Pattern Recognit.

Work., 2008, pp. 1–8.

[123] S. L. Phung, M. C. Le, and A. Bouzerdoum, “Pedestrian lane detection in

unstructured scenes for assistive navigation,” Comput. Vis. Image Underst.,

vol. 149, pp. 186–196, 2016.

[124] T. N. A. Nguyen, S. L. Phung, and A. Bouzerdoum, “Hybrid deep learning-

gaussian process network for pedestrian lane detection in unstructured

scenes,” IEEE Trans. Neural Networks Learn. Syst., vol. 31, no. 12, pp. 5324–

5338, 2020.

[125] C. Tan, T. Hong, T. Chang, and Shneier Michael, “Color model-based real-

time learning for road following,” in Proc. IEEE Conf. Intell. Transp. Syst.,

2006, pp. 939–944.

[126] M. A. Sotelo, F. J. Rodriguez, L. Magdalena, L. M. Bergasa, and L. Boquete,

“A color vision-based lane tracking system for autonomous driving on

unmarked roads,” Auton. Robots, vol. 16, no. 1, pp. 95–116, 2004.

135



Bibliography

[127] O. Ramstrom and H. Christensen, “A method for following unmarked

roads,” in Proc. IEEE Symp. Intell. Veh., 2005, pp. 650–655.

[128] O. Miksik, P. Petyovsky, L. Zalud, and P. Jura, “Robust detection of shady

and highlighted roads for monocular camera based navigation of UGV,” in

Proc. IEEE Int. Conf. Robot. Autom., 2011, pp. 64–71.

[129] J. M. Alvarez and A. M. Lopez, “Road detection based on illuminant invari-

ance,” IEEE Trans. Intell. Transp. Syst., vol. 12, no. 1, pp. 184–193, 2011.

[130] C. Oh, J. Son, and K. Sohn, “Illumination robust road detection using geo-

metric information,” in Proc. IEEE Conf. Intell. Transp. Syst., 2012, pp. 1566–

1571.

[131] C. Rasmussen, “Texture-based vanishing point voting for road shape esti-

mation,” in Proc. Br. Mach. Vis. Conf., 2004, pp. 470–477.

[132] H. Kong, J.-Y. Audibert, and J. Ponce, “General road detection from a single

image,” IEEE Trans. Image Process., vol. 19, no. 8, pp. 2211–2220, 2010.

[133] J. D. Crisman and C. E. Thorpe, “UNSCARF - A color vision system for

the detection of unstructured roads,” in Proc. IEEE Int. Conf. Robot. Autom.,

1991, pp. 2496–2501.

[134] C.-K. Chang, C. Siagian, and L. Itti, “Mobile robot monocular vision navi-

gation based on road region and boundary estimation,” in Proc. IEEE/RSJ

Int. Conf. Intell. Robot. Syst., 2012, pp. 1043–1050.

[135] R. Ali, J. H. Chuah, M. S. A. Talip, N. Mokhtar, and M. A. Shoaib, “Automatic

pixel-level crack segmentation in images using fully convolutional neural

network based on residual blocks and pixel local weights,” Eng. Appl. Artif.

Intell., vol. 104, p. 104391, 2021.

[136] S. T. Duong, S. L. Phung, A. Bouzerdoum, and M. M. Schira, “An unsu-

pervised deep learning technique for susceptibility artifact correction in

136



Bibliography

reversed phase-encoding EPI images,” Magn. Reson. Imaging, vol. 71, pp.

1–10, 2020.

[137] S. P. Ang, S. L. Phung, A. Bouzerdoum, T. N. A. Nguyen, S. T. M. Duong, and

M. M. Schira, “Real-time pedestrian lane detection for assistive navigation

using neural architecture search,” in Proc. Int. Conf. Pattern Recognit., 2020,

pp. 1–8.

[138] J. Mukhoti and Y. Gal, “Evaluating bayesian deep learning methods for

semantic segmentation,” ArXiv e-prints, pp. 1–13, 2018.

[139] A. Kendall, V. Badrinarayanan, and R. Cipolla, “Bayesian SegNet: Model

uncertainty in deep convolutional encoder-decoder architectures for scene

understanding,” in Proc. Br. Mach. Vis. Conf., 2017, pp. 1–11.

[140] A. Kirillov, R. Girshick, K. He, and P. Dollar, “Panoptic feature pyramid

networks,” in Proc. Conf. Comput. Vis. Pattern Recognit., 2019, pp. 6399–6408.

[141] H. Saari, A. Akujärvi, C. Holmlund, H. Ojanen, J. Kaivosoja, A. Nissinen,

and O. Niemeläinen, “Visible, very near IR and short wave IR hyperspectral

drone imaging system for agriculture and natural water applications,” in

Proc. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., vol. 42, 2017, pp.

165–170.

[142] S. Jakob, R. Zimmermann, and R. Gloaguen, “The need for accurate geo-

metric and radiometric corrections of drone-borne hyperspectral data for

mineral exploration: MEPHySTo-A toolbox for pre-processing drone-borne

hyperspectral data,” Remote Sens., vol. 9, no. 1, pp. 1–17, 2017.

[143] Q. Wang, X. He, and X. Li, “Locality and structure regularized low rank

representation for hyperspectral image classification,” IEEE Trans. Geosci.

Remote Sens., vol. 57, no. 2, pp. 1–14, 2019.

137



Bibliography

[144] P. W. Yuen and M. Richardson, “An introduction to hyperspectral imaging

and its application for security, surveillance and target acquisition,” Imaging

Sci. J., vol. 58, no. 5, pp. 241–253, 2010.

[145] F. Meng, K. Luo, H. Li, Q. Wu, and X. Xu, “Weakly supervised semantic seg-

mentation by a class-level multiple group cosegmentation and foreground

fusion strategy,” IEEE Trans. Circuits Syst. Video Technol., vol. 30, no. 12, pp.

4823–4836, 2020.

[146] X. Sun, X. Sun, C. Chen, X. Wang, J. Dong, H. Zhou, and S. Chen, “Gaussian

dynamic convolution for efficient single-image segmentation,” IEEE Trans.

Circuits Syst. Video Technol., 2021.

[147] J. Ji, R. Shi, S. Li, P. Chen, and Q. Miao, “Encoder-decoder with cascaded

CRFs for semantic segmentation,” IEEE Trans. Circuits Syst. Video Technol.,

vol. 31, no. 5, pp. 1926–1938, 2021.

[148] W. Ji, X. Li, F. Wu, Z. Pan, and Y. Zhuang, “Human-centric clothing segmen-

tation via deformable semantic locality-preserving network,” IEEE Trans.

Circuits Syst. Video Technol., vol. 30, no. 12, pp. 4837–4848, 2020.

[149] Y. Yuan, X. Chen, and J. Wang, “Object-contextual representations for se-

mantic segmentation,” in Proc. Eur. Conf. Comput. Vis., 2020, pp. 1–18.

[150] X. Weng, Y. Yan, S. Chen, J.-H. Xue, and H. Wang, “Stage-aware feature

alignment network for real-time semantic segmentation of street scenes,”

IEEE Trans. Circuits Syst. Video Technol., pp. 1–16, 2021.

[151] Grupo De Inteligencia Computacional (GIC), “Hyperspectral Remote

Sensing Scenes.” [Online]. Available: http://www.ehu.eus/ccwintco/

index.php?title=Hyperspectral_Remote_Sensing_Scenes

[152] L. L. B. Marion F. Baumgardner and D. A. Landgrebe, “220 Band AVIRIS

138

http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes


Bibliography

Hyperspectral Image Data Set: June 12, 1992 Indian Pine Test Site 3,” 2015.

[Online]. Available: https://purr.purdue.edu/publications/1947/1

[153] Y. Chen, H. Jiang, C. Li, X. Jia, and P. Ghamisi, “Deep feature extraction

and classification of hyperspectral images based on convolutional neural

networks,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 10, pp. 6232–6251,

2016.

[154] S. Yu, S. Jia, and C. Xu, “Convolutional neural networks for hyperspectral

image classification,” Neurocomputing, vol. 219, pp. 88–98, 2017.

[155] H. Lee and H. Kwon, “Going deeper with contextual CNN for hyperspectral

image classification,” IEEE Trans. Image Process., vol. 26, no. 10, pp. 4843–

4855, 2017.

[156] X. Ma, A. Fu, J. Wang, H. Wang, and B. Yin, “Hyperspectral image classifi-

cation based on deep deconvolution network with skip architecture,” IEEE

Trans. Geosci. Remote Sens., vol. 56, no. 8, pp. 4781–4791, 2018.

[157] M. E. Paoletti, J. M. Haut, J. Plaza, and A. Plaza, “Deep&Dense convolu-

tional neural network for hyperspectral image classification,” Remote Sens-

ing, vol. 10, no. 9, 2018.

[158] W. Song, S. Li, L. Fang, and T. Lu, “Hyperspectral image classification with

deep feature fusion network,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 6,

pp. 3173–3184, 2018.

[159] J. Xie, N. He, L. Fang, and P. Ghamisi, “Multiscale densely-connected fusion

networks for hyperspectral images classification,” IEEE Trans. Circuits Syst.

Video Technol., vol. 31, no. 1, pp. 246–259, 2021.

[160] C. Zhang, G. Li, R. Lei, S. Du, Z. X. Ying, H. Zheng, and Z. Wu, “Deep feature

aggregation network for hyperspectral remote sensing image classification,”

139

https://purr.purdue.edu/publications/1947/1


Bibliography

IEEE J. Sel. Topics. Appl. Earth Observ. and Remote Sens., vol. 13, pp. 5314–5325,

2020.

[161] A. B. Hamida, A. Benoit, P. Lambert, and C. B. Amar, “3-D deep learning

approach for remote sensing image classification,” IEEE Trans. Geosci. Remote

Sens., vol. 56, no. 8, pp. 4420–4434, 2018.

[162] Z. Zhong, J. Li, Z. Luo, and M. Chapman, “Spectral–spatial residual network

for hyperspectral image classification: A 3-D deep learning framework,”

IEEE Trans. Geosci. Remote Sens., vol. 56, no. 2, pp. 847–858, 2018.

[163] Z. Ge, G. Cao, X. Li, and P. Fu, “Hyperspectral image classification method

based on 2D–3D CNN and multibranch feature fusion,” IEEE J. Sel. Topics.

Appl. Earth Observ. and Remote Sens., vol. 13, pp. 5776–5788, 2020.

[164] S. K. Roy, G. Krishna, S. R. Dubey, and B. B. Chaudhuri, “HybridSN: Explor-

ing 3-D–2-D CNN feature hierarchy for hyperspectral image classification,”

IEEE Geoscience and Remote Sensing Letters, vol. 17, no. 2, pp. 277–281, 2020.

[165] H. Gao, Y. Yang, D. Yao, and C. Li, “Hyperspectral image classification with

pre-activation residual attention network,” IEEE Access, vol. 7, pp. 176 587–

176 599, 2019.

[166] H. Guo, J. Liu, J. Yang, Z. Xiao, and Z. Wu, “Deep collaborative attention

network for hyperspectral image classification by combining 2-D CNN and

3-D CNN,” IEEE J. Sel. Topics. Appl. Earth Observ. and Remote Sens., vol. 13,

pp. 4789–4802, 2020.

[167] R. Hang, Z. Li, Q. Liu, P. Ghamisi, and S. S. Bhattacharyya, “Hyperspectral

image classification with attention-aided CNNs,” IEEE Trans. Geosci. Remote

Sens., pp. 1–13, 2020.

[168] S. K. Roy, S. Manna, T. Song, and L. Bruzzone, “Attention-based adaptive

140



Bibliography

spectral-spatial kernel ResNet for hyperspectral image classification,” IEEE

Trans. Geosci. Remote Sens., pp. 1–13, 2020.

[169] X. Zhang, Y. Wang, N. Zhang, D. Xu, H. Luo, B. Chen, and G. Ben, “SSDANet:

Spectral-spatial three-dimensional convolutional neural network for hyper-

spectral image classification,” IEEE Access, vol. 8, pp. 127 167–127 180, 2020.

[170] W. Guo, H. Ye, and F. Cao, “Feature-grouped network with spectral-spatial

connected attention for hyperspectral image classification,” IEEE Trans.

Geosci. Remote Sens., pp. 1–13, 2021.

[171] Z. Li, X. Zhao, Y. Xu, W. Li, L. Zhai, Z. Fang, and X. Shi, “Hyperspectral image

classification with multiattention fusion network,” IEEE Geosci. Remote Sens.

Letters, pp. 1–5, 2021.

[172] Z. Xue, X. Yu, L. Bing, X. Tan, and X. Wei, “HResNetAM: Hierarchical

residual network with attention mechanism for hyperspectral image classi-

fication,” IEEE J. Sel. Topics. Appl. Earth Observ. and Remote Sens., pp. 1–15,

2021.

[173] M. Zhu, L. Jiao, F. Liu, S. Yang, and J. Wang, “Residual spectral–spatial

attention network for hyperspectral image classification,” IEEE Trans. Geosci.

Remote Sens., vol. 59, no. 1, pp. 449–462, 2021.

[174] L. Zou, X. Zhu, C. Wu, Y. Liu, and L. Qu, “Spectral–spatial exploration

for hyperspectral image classification via the fusion of fully convolutional

networks,” IEEE J. Sel. Topics. Appl. Earth Observ. and Remote Sens., vol. 13,

pp. 659–674, 2020.

[175] Z. Zheng, Y. Zhong, A. Ma, and L. Zhang, “FPGA: Fast patch-free global

learning framework for fully end-to-end hyperspectral image classification,”

IEEE Trans. Geosci. Remote Sens., vol. 58, no. 8, pp. 5612–5626, 2020.

141



Bibliography

[176] Y. Jiang, Y. Li, S. Zou, H. Zhang, and Y. Bai, “Hyperspectral image classifica-

tion with spatial consistence using fully convolutional spatial propagation

network,” IEEE Trans. Geosci. Remote Sens., pp. 1–13, 2021.

[177] Y. Zhang, Z. Qiu, J. Liu, T. Yao, D. Liu, and T. Mei, “Customizable architec-

ture search for semantic segmentation,” in Proc. Conf. Comput. Vis. Pattern

Recognit., 2019, pp. 11 641–11 650.

[178] H. Wu, J. Zhang, and K. Huang, “SparseMask: Differentiable connectivity

learning for dense image prediction,” in Proc. Int. Conf. Comput. Vis., 2019,

pp. 6768–6777.

[179] A. Shaw, D. Hunter, F. Iandola, and S. Sidhu, “SqueezeNAS: Fast neural

architecture search for faster semantic segmentation,” in Proc. Int. Conf.

Comput. Vis. Work., 2019, pp. 1–11.

[180] C. Liu, L.-C. Chen, F. Schroff, H. Adam, W. Hua, A. Yuille, and L. Fei-Fei,

“Auto-DeepLab: Hierarchical neural architecture search for semantic image

segmentation,” in Proc. Conf. Comput. Vis. Pattern Recognit., 2019, pp. 82–92.

[181] L.-C. Chen, M. D. Collins, Y. Zhu, G. Papandreou, B. Zoph, F. Schroff,

H. Adam, and J. Shlens, “Searching for efficient multi-scale architectures

for dense image prediction,” in Proc. Neural Inf. Process. Syst., 2018, pp.

8713–8724.

[182] X. Li, Y. Zhou, Z. Pan, and J. Feng, “Partial order pruning: For best

speed/accuracy trade-off in neural architecture search,” in Proc. Conf. Com-

put. Vis. Pattern Recognit., 2019, pp. 9145–9153.

[183] X. Chu, B. Zhang, and R. Xu, “FairNAS: Rethinking evaluation fairness of

weight sharing neural architecture search,” in Proc. Int. Conf. Comput. Vis.,

2021, pp. 1–10.

142



Bibliography

[184] P. Yakubovskiy, “Segmentation models pytorch,” https://github.com/

qubvel/segmentation_models.pytorch, 2020.

[185] E. Xie, W. Wang, Z. Yu, A. Anandkumar, J. M. Alvarez, and P. Luo, “Seg-

Former: Simple and efficient design for semantic segmentation with trans-

formers,” in Proc. Neural Inf. Process. Syst., 2021, pp. 1–14.

[186] T. Wu, S. Tang, R. Zhang, J. Cao, and Y. Zhang, “CGNet: A light-weight con-

text guided network for semantic segmentation,” IEEE Trans. Image Process.,

vol. 30, pp. 1169–1179, 2020.

[187] M. Contributors, “MMSegmentation: Openmmlab semantic seg-

mentation toolbox and benchmark,” https://github.com/open-mmlab/

mmsegmentation, 2020.

[188] D. Wofk, F. Ma, T. J. Yang, S. Karaman, and V. Sze, “FastDepth: Fast monoc-

ular depth estimation on embedded systems,” in Proc. IEEE Int. Conf. Robot.

Autom., 2019, pp. 6101–6108.

[189] Y. Ming, X. Meng, C. Fan, and H. Yu, “Deep learning for monocular depth

estimation: A review,” Neurocomputing, vol. 438, pp. 14–33, 2021.

[190] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:

Unified, real-time object detection,” in Proc. Conf. Comput. Vis. Pattern Recog-

nit., 2016, pp. 779–788.

[191] F. Shao, L. Chen, J. Shao, W. Ji, S. Xiao, L. Ye, Y. Zhuang, and J. Xiao, “Deep

learning for weakly-supervised object detection and localization: A survey,”

Neurocomputing, pp. 1–16, 2022.

[192] N. Altini, B. Prencipe, G. D. Cascarano, A. Brunetti, G. Brunetti, V. Trig-

giani, L. Carnimeo, F. Marino, A. Guerriero, L. Villani, A. Scardapane, and

V. Bevilacqua, “Liver, kidney and spleen segmentation from CT scans and

143

https://github.com/qubvel/segmentation_models.pytorch
https://github.com/qubvel/segmentation_models.pytorch
https://github.com/open-mmlab/mmsegmentation
https://github.com/open-mmlab/mmsegmentation


Bibliography

MRI with deep learning: A survey,” Neurocomputing, vol. 490, pp. 30–53,

2022.

[193] S. P. Ang, S. L. Phung, M. Field, and M. M. Schira, “An improved deep learn-

ing framework for MR-to-CT image synthesis with a new hybrid objective

function,” in Proc. Int. Symp. Biomed. Imaging, 2022, pp. 1–5.

[194] X. Dong, L. Liu, K. Musial, and B. Gabrys, “NATS-Bench: Benchmarking

NAS algorithms for architecture topology and size,” IEEE Trans. Pattern

Anal. Mach. Intell., pp. 1–14, 2021.

[195] T. Domhan, J. T. Springenberg, and F. Hutter, “Speeding up automatic

hyperparameter optimization of deep neural networks by extrapolation of

learning curves,” in Proc. Int. Jt. Conf. Artif. Intell., 2015, pp. 1–9.

[196] A. Klein, S. Falkner, J. T. Springenberg, and F. Hutter, “Learning curve pre-

diction with Bayesian neural networks,” in Proc. Int. Conf. Learn. Represent.,

2017, pp. 1–16.

[197] B. Deng, J. Yan, and D. Lin, “Peephole: Predicting network performance

before training,” ArXiv e-prints, pp. 1–10, 2017.

[198] R. Luo, F. Tian, T. Qin, E. Chen, and T.-Y. Liu, “Neural architecture opti-

mization,” in Proc. Conf. Neural Inf. Process. Syst., 2018, pp. 1–12.

[199] W. Wen, H. Liu, Y. Chen, H. Li, G. Bender, and P.-J. Kindermans, “Neural

predictor for neural architecture search,” in Proc. Eur. Conf. Comput. Vis.,

2020, pp. 1–16.

[200] L. Dudziak, T. Chau, M. S. Abdelfattah, R. Lee, H. Kim, and N. D. Lane,

“BRP-NAS: Prediction-based NAS using GCNs,” in Proc. Conf. Neural Inf.

Process. Syst., 2020, pp. 1–11.

144



Bibliography

[201] C. White, W. Neiswanger, S. Nolen, and Y. Savani, “A study on encodings

for neural architecture search,” in Proc. Conf. Neural Inf. Process. Syst., 2020,

pp. 1–11.

[202] C. White, W. Neiswanger, and Y. Savani, “BANANAS : Bayesian optimiza-

tion with neural architectures for neural architecture search,” in Proc. AAAI

Conf. Artif. Intell., 2021, pp. 10 293–10 301.

[203] R. Istrate, F. Scheidegger, G. Mariani, D. Nikolopoulos, C. Bekas, and A. C.

Malossi, “TAPAS: Train-less accuracy predictor for architecture search,” in

Proc. AAAI. Conf. Artif. Intell., 2019, pp. 3927–3934.

[204] H. Lee, E. Hyung, and S. J. Hwang, “Rapid neural architecture search

by learning to generate graphs from datasets,” in Proc. Int. Conf. Learn.

Represent., 2021, pp. 1–16.

[205] M. Zhang, S. Jiang, Z. Cui, R. Garnett, and Y. Chen, “D-VAE: a variational

autoencoder for directed acyclic graphs,” in Proc. Conf. Neural Inf. Process.

Syst., 2019, pp. 1–13.

[206] F. Scheidegger, R. Istrate, G. Mariani, L. Benini, C. Bekas, and C. Malossi,

“Efficient image dataset classification difficulty estimation for predicting

deep-learning accuracy,” Vis. Comput., pp. 1–18, 2020.

[207] C. Ying, A. Klein, E. Real, E. Christiansen, K. Murphy, and F. Hutter, “NAS-

Bench-101: Towards reproducible neural architecture search,” in Proc. Int.

Conf. Mach. Learn., 2019, pp. 1–15.

[208] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimiza-

tion,” J. Mach. Learn. Res., vol. 13, pp. 281–305, 2012.

[209] S. Falkner, A. Klein, and F. Hutter, “BOHB: Robust and efficient hyperpa-

rameter optimization at scale,” in Proc. Int. Conf. Mach. Learn., 2018, pp.

1436–1445.

145



Bibliography

[210] X. Dong and Y. Yang, “One-shot neural architecture search via self-evaluated

template network,” in Proc. Int. Conf. Comput. Vis., 2019, pp. 3681–3690.

[211] L. Deng, “The MNIST database of handwritten digit images for machine

learning research,” IEEE Signal Process. Mag., vol. 29, no. 6, pp. 141–142,

2012.

[212] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: A novel image dataset

for benchmarking machine learning algorithms,” ArXiv e-prints, pp. 1–6,

2017.

[213] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng, “Reading

digits in natural images with unsupervised feature learning,” in Proc. NIPS

Work. Deep Learn. Unsupervised Featur. Learn., 2011, pp. 1–9.

[214] M. Tan and Q. V. Le, “MixConv: Mixed depthwise convolutional kernels,”

in Proc. Br. Mach. Vis. Conf., 2019, pp. 1–13.

[215] I. Radosavovic, R. P. Kosaraju, R. Girshick, K. He, and P. Dollár, “Designing

network design spaces,” in Proc. Conf. Comput. Vis. Pattern Recognit., 2020,

pp. 10 428–10 436.

[216] X. Li, W. Wang, X. Hu, and J. Yang, “Selective kernel networks,” in Proc.

Conf. Comput. Vis. Pattern Recognit., 2019, pp. 510–519.

[217] R. Wightman, “Pytorch image models,” https://github.com/rwightman/

pytorch-image-models, 2019.

[218] E. D. Cubuk, B. Zoph, J. Shlens, and Q. V. Le, “RandAugment: Practical

automated data augmentation with a reduced search space,” in Proc. Conf.

Neural Inf. Process. Syst., 2020, pp. 1–12.

[219] L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,” J. Mach.

Learn. Res., vol. 9, pp. 2579–2605, 2008.

146

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

	Neural Architecture Search for Image Segmentation and Classification
	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Abbreviations and Acronyms
	1 Introduction
	1.1 Research motivation and objectives
	1.2 Thesis organization
	1.3 Research contributions
	1.4 Publications

	2 Background and Related Work
	2.1 Deep learning: A historical account
	2.2 Deep learning in computer vision
	2.2.1 Image classification
	2.2.2 Image segmentation

	2.3 Neural architecture search
	2.3.1 Search spaces
	2.3.1.1 Entire-network search space
	2.3.1.2 Cell-based search space

	2.3.2 Search methods
	2.3.2.1 Reinforcement learning
	2.3.2.2 Evolutionary algorithm
	2.3.2.3 Gradient descent
	2.3.2.4 Random search

	2.3.3 Model evaluation strategies

	2.4 Chapter summary

	3 Real-time Pedestrian Lane Detection with Neural Architecture Search
	3.1 Introduction
	3.2 Related work
	3.2.1 Traditional methods for unmarked lane detection
	3.2.2 Deep learning-based methods for image segmentation

	3.3 Methodology
	3.3.1 Generalized Segmentation Network
	3.3.2 Architectural parameters of the GSN
	3.3.3 Optimizing the GSN
	3.3.4 Deriving the final network from the optimized GSN
	3.3.5 Short-term visual memory mechanism

	3.4 Experiments and analysis
	3.4.1 Pedestrian lane dataset
	3.4.2 Experimental steps
	3.4.3 Search settings
	3.4.4 Ablation study
	3.4.5 Comparison with existing hand-crafted architectures

	3.5 Chapter summary

	4 Hyperspectral Image Segmentation with Neural Architecture Search
	4.1 Introduction
	4.2 Related work
	4.2.1 Existing work on hyperspectral image segmentation
	4.2.2 Neural architecture search for image segmentation

	4.3 Methodology
	4.3.1 Components of AdaptorNAS
	4.3.2 Searching for the optimum operations
	4.3.3 Perturbation-based pruning strategy

	4.4 Experiments and analysis
	4.4.1 Hyperspectral image dataset
	4.4.2 Performance measures
	4.4.3 Ablation study of AdaptorNAS
	4.4.3.1 Number of layers
	4.4.3.2 Number of edges
	4.4.3.3 AdaptorNAS versus hand-crafted DNNs
	4.4.3.4 Perturbation-based pruning versus random pruning

	4.4.4 Comparison with NAS-based methods for image segmentation
	4.4.5 Comparison with deep learning-based methods for image segmentation

	4.5 Discussion
	4.6 Chapter summary

	5 Predicting Neural Network Performance without Training
	5.1 Introduction
	5.2 Related work
	5.3 Methodology of DAP
	5.3.1 Network architecture encoding
	5.3.2 Dual-LSTM feature extractor
	5.3.3 Dataset difficulty approximator
	5.3.4 Performance score predictor

	5.4 Experimental results and analysis
	5.4.1 Dataset acquisition and description
	5.4.2 Experimental setup and evaluation methods
	5.4.3 Experimental test cases
	5.4.3.1 Case A: Seen dataset but unseen network architectures
	5.4.3.2 Case B: Unseen dataset but seen network architectures
	5.4.3.3 Case C: Unseen dataset and unseen network architectures

	5.4.4 Ablation study
	5.4.4.1 Analysis of the proposed network encoding
	5.4.4.2 Analysis of DAP on a larger search space
	5.4.4.3 The effects of training sample size
	5.4.4.4 Effectiveness of the proposed difficulty score values

	5.4.5 Use cases of DAP
	5.4.5.1 Neural architecture search using DAP
	5.4.5.2 Gaining dataset insights using DAP


	5.5 Discussion
	5.6 Chapter summary

	6 Conclusion
	6.1 Research summary
	6.2 Future work
	6.3 Chapter summary

	References

