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Abstract 

Developing an ecological understanding on the linkages between patch types in coastal seascapes 

is a key goal in seascape ecology. Many reef-associated fish worldwide have complex life-

histories, using vegetated nursery habitats as juveniles before undergoing ontogenetic habitat shifts 

to reefs. Currently, there is limited quantitative information on the spatiotemporal scales that fish 

connect patch types through ontogeny, particularly in temperate seascapes. Better quantifying this 

connectivity is essential to improving our understanding on the processes structuring fish 

populations, identifying critical habitats, and designing management strategies. In this thesis, I 

investigate the movement of reef-associated fish at both juvenile and adult life-stages to better 

quantify seascape connectivity and its importance for marine management and conservation. 

First, I use baited remote underwater videos deployed across > 400 km of coastline to determine 

the scale of connectivity between estuarine nurseries and coastal reefs for a key targeted fish 

Chrysophrys auratus (pink snapper). The species were inferred to undertake ontogenetic habitat 

shifts to nearby coastal reefs, with smaller (~ 260 mm) and more abundant C. auratus observed on 

reefs within 8.5 km of estuaries. Interestingly, the effect of marine reserves on C. auratus across 

the study area was not influenced by estuarine proximity. Next, I sought to directly quantify the 

movement of juvenile Girella tricuspidata (luderick) and Acanthopagrus australis (yellowfin 

bream) within seagrass nursery areas and their dispersal to adult rocky reef habitats using acoustic 

telemetry. Before doing this, however, I needed to determine how acoustic tracking might be 

affected by fish moving through seagrass as this had not been previously investigated. The 

detection range of acoustic transmitters suitable for tracking juvenile fish (V7 tags) was ~85 m 

when above seagrass and decreased to 40 m when transmitters were ensconced in seagrass fronds. 

This information was then used to interpret and analyse the movement patterns of the tagged 
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juvenile fish. Both species exhibited site-attachment to seagrass for up to ~400 days but also moved 

across large (~ 2km) expanses of seagrass meadows and to adjacent patches. Many fish were 

detected moving to reefs close (over 100’s m to km’s) to seagrass, but these were not permanent 

ontogenetic habitat shifts and instead appeared to be regular excursions to reefs. The small-scale 

movements of juvenile fish meant they were rarely detected crossing the boundaries of an existing 

marine reserve. Finally, I tracked adult G. tricuspidata on reefs along the open coast to assess 

whether the species showed generalities in their movements between different seascapes. Adult 

fish were highly resident to reefs for up to 589 days with only limited movements to other adjacent 

patches ~1 km away and they were more likely to be absent during periods of large swells. These 

findings were like those previously reported for G. tricuspidata tracked on reefs in a protected 

coastal embayment but differed from riverine estuaries where the species is highly mobile. 

Using both inferential and direct methods, I demonstrate that juvenile and adult fish link patch 

types over small spatial scales (100’s m to km’s) in temperate seascapes. A key finding was that 

juvenile fish connect multiple patch types during their routine movements and perform ontogenetic 

habitat shifts in greater numbers to nearby reefs than those far away. This has implications for 

identifying critical fish habitats such as nursery areas, which I contend should be perceived as 

interconnected patch types forming a habitat mosaic (i.e. “seascape nurseries”). Furthermore, these 

findings highlight that the global loss of aquatic vegetation may disrupt important linkages 

between populations. The site-attachment and small-scale connectivity observed for reef-

associated fishes can help guide the design of Marine Protected Areas and coastal restoration 

efforts. In conclusion, I improve current understanding on the movement and connectivity of reef-

associated fishes in temperate seascapes, and this information can be integrated into actions for 

biodiversity conservation, remediation and ecosystem-based fisheries management. 
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Chapter 1: General Introduction 

Seascape ecology is a burgeoning field that investigates the causes and ecological 

consequences of spatial heterogeneity in the marine environment (Grober-Dunsmore et al. 

2009; Boström et al. 2011, Pittman 2018). The field has transformed scientific understanding 

on fish-habitat relationships by examining patterns and processes across multiple 

spatiotemporal scales (Boström et al. 2011, Pittman 2018). A key concept in seascape ecology 

is that patches are not isolated from one another and are connected by the movement of 

organisms (Pittman & McAlpine 2003, Grober-Dunsmore et al. 2009, Pittman 2018). This 

connectivity is thought to be a key mechanism that integrates seascape structure and ecological 

functions, due to its influence on species distributions, reproduction, fitness and resource 

availability (Sheaves 2009, Boström et al. 2011, Pittman 2018). Recent technological advances 

in remote sensing and sampling techniques have led to a proliferation of studies explicitly 

quantifying connectivity patterns across seascapes. For instance, acoustic telemetry is 

providing an opportunity to explore fish movements, habitat use, and connectivity (Donaldson 

et al. 2014; Finn et al. 2014, Hussey et al. 2015, Taylor et al. 2017). However, few studies 

tracking fish with acoustic telemetry have tested hypotheses applying a seascape framework, 

despite this information having significant implications for ecosystem-based fisheries 

management. In this chapter, I provide a brief overview of seascape ecology and seascape 

connectivity, highlight the need to quantify fish movements across the seascape and its 

importance for the management of coastal fisheries.  

1.1 Seascape ecology 

There has been a long-standing appreciation for the effects of environmental heterogeneity over 

various scales on patterns of biodiversity and ecological processes (Humboldt 1807, Jaccard 

1912, Troll 1939, Andrewartha and Birch 1954). Seascape ecology is a relatively novel, multi-
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disciplinary field combining spatial analyses and ecology to examine the causes and ecological 

consequences of heterogeneity within seascapes (Boström et al. 2011, Pittman 2018). A 

seascape can be defined as a heterogeneous marine environment, often perceived as a mosaic 

of nearshore patch types (but can include the pelagic environment) that exhibits some form of 

patterning or gradient across various spatial and temporal scales (Boström et al. 2011). The 

traditional view of seascapes has been as 2-D planar surfaces consisting of patches, however 

new technologies (e.g. Lidar) have allowed them to also be represented in 3-D, such as digital 

terrain models (Wedding et al. 2011, Pittman 2018, Lepczyk et al. 2021). Seascape ecology 

(Ray 1991) adopts many of the concepts and techniques developed in its terrestrial counterpart, 

landscape ecology, which was developed through the mid 1900’s and has roots in several 

scientific theories - the most influential and well known being the theory of island 

biogeography (MacArthur and Wilson 1967) and metapopulation dynamics (Levins 1969, 

Wiens 1997). Although landscape ecology is a well-established and recognised field (Forman 

and Godron 1986, Turner 2005), its application in the marine environment has largely been 

hindered by difficulties in obtaining detailed habitat and biological data over sufficiently broad 

scales (10’s to 100 kms) (Grober-Dunsmore et al. 2009, Boström et al. 2011, Wedding et al. 

2011, Pittman et al. 2021). Recent advances in remote sensing and sampling techniques means 

that complex, broad-scale hypotheses related to seascape structure can now be tested, and the 

number of studies in seascape ecology has been growing exponentially (Fig. 1.1). 
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Glossary of Seascape Ecology terms 

Heterogeneity The uneven spatiotemporal distribution of objects in the environment  

Seascape structure The composition (e.g. abundance and diversity of patch types) and spatial 

arrangement of patch types within the seascape  

Patch type A discrete area of space with similar substratum and abiotic conditions that 

differs from its surroundings  

Edge environment The boundary or ecotone of one or more patch types 

Habitat context The position of a focal patch relative to surrounding habitats 

Seascape connectivity The arrangement of patch types altering their physical linkages (e.g. patch 

isolation) 

Mosaic An area of multiple patches of various composition 

Spatial pattern metrics A range of metrics used to quantify different spatial characteristics of 

seascape structure, such as patch area, fragmentation, isolation, shape and 

terrain surface morphology. 

 

Historically, the influence of seascape structure on fish assemblages has been investigated 

across multiple spatial scales. Early literature of fish-habitat relationships predominantly 

focussed on how features within discrete patch types, such as structural complexity or edge 

environments, affect species distributions (Bell and Galzin 1984, Sale and Douglas 1984, Bell 

and Westoby 1986, Chittaro 2002, Jelbart et al. 2006). Both observational and controlled 

experiments were used in early seascape research to determine the importance of a patches 

size, physical structure, context and isolation for fish recruitment and abundance, and assess 

whether marine reserves should be designed as single large areas or several small areas (i.e. 

SLOSS debate; Molles 1978, Schroeder 1987, McNeill and Fairweather 1993). The importance 

of connectivity was also highlighted through observations of fish movements between tropical 

patch types (Ogden and Zieman 1977, Gladfelter et al. 1980, Parrish 1989), however few 

studies were able to explicitly quantify connectivity and explore its effect on assemblages 

across broad spatial scales in marine systems due to technological limitations. With the 

development of accurate and affordable remote sensing techniques (e.g. aerial and satellite 
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imagery, Lidar), research over the past two decades has made significant progress in testing 

hypotheses relating to seascape structure and have identified that connectivity plays an integral 

role in driving patterns of biodiversity and associated ecological processes in a range of marine 

systems (Grober-Dunsmore et al. 2007, Pittman et al. 2007, Gullström et al. 2008, Hitt et al. 

2011, Berkström et al. 2012, Olds et al. 2012b, Pittman et al. 2014, Martin et al. 2015, Staveley 

et al. 2016, Nagelkerken et al. 2017, Gilby et al. 2018b, Perry et al. 2018, Rees et al. 2018, 

Bradley et al. 2019, Swadling et al. 2019; Berkström et al. 2020).  

 

 

Figure 1.1 The growth of publications in the field of seascape ecology over the past 20 years. 

Columns represents the number of publications on seascape ecology each year. Publication 

data was gathered from Web of Science using the search term ‘Seascape Ecology’ and “Marine 

Landscape Ecology” accessed on the 05-02-2022. 
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1.2 Connectivity; a central tenet of seascape ecology 

Connectivity is an important concept in seascape ecology from both a fundamental and applied 

perspective. While connectivity has a diverse context within ecology (Calabrese and Fagan 

2004, Sheaves 2009), it can be broadly defined as the movement of organisms, materials and 

energy across seascapes. In animal ecology, connectivity is a function of the dispersal ability 

of species and the area, quality and spatial configuration of patch types (Hodgson et al. 2009, 

Berkström et al. 2012, Olds et al. 2012a, Pittman 2018). Connectivity plays a key role in 

determining the distribution of biota across a range of taxa in marine systems (Jordán-Dahlgren 

2002, Mumby 2006, Ayre et al. 2009, Huijbers et al. 2013, Swadling et al. 2019), as it is crucial 

for regulating metapopulation dynamics, with more connected patches experiencing greater 

immigration (Grober-Dunsmore et al. 2009, Sheaves 2009). Further, connectivity is essential 

for ensuring ecosystem functioning (e.g. nutrient subsidies and herbivory) and population 

resilience (Clark et al. 2009, Davis et al. 2014, Hyndes et al. 2014, Swindells et al. 2017, Martin 

et al. 2018). The role of connectivity in mediating species distributions and ecosystem 

functioning means it is an important consideration for management strategies, such as 

identifying the optimal location and spacing for marine reserve networks to protect key habitats 

and movement corridors (Allison et al. 1998, Mumby 2006, Olds et al. 2016, Weeks 2017, 

Friesen et al. 2019) and optimising coastal seascape restoration and creation (Gilby et al. 2018a, 

Duncan et al. 2019, Gilby et al. 2019).  

Coastal seascapes are heterogeneous environments containing a mosaic of various patch types 

(e.g. reefs, seagrass, mangroves and sand) which are connected through biological, physical 

and chemical processes (Grober-Dunsmore et al. 2009). Fish act as important mobile links 

connecting coastal patch types and populations across multiple spatial and temporal scales 

(Irlandi and Crawford 1997, Lundberg and Moberg 2003, Pittman and McAlpine 2003, Hyndes 

et al. 2014). For example, numerous species of fish exhibit a triphasic life-cycle where they 
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recruit to inshore habitats (e.g. seagrass and mangroves) following a pelagic larvae stage, and 

then perform ontogenetic migrations to adult habitats such as reefs once they reach a certain 

age or size-class (Pittman and McAlpine 2003, Elliott et al. 2007, Nagelkerken 2009, Sambrook 

et al. 2019). In addition, many mobile fish connect patches during tidal, diel, monthly or 

seasonal movements in search of food and refugia or to spawn (Pittman and McAlpine 2003, 

Green et al. 2015). The availability, or access to, these adjacent patch types is dependent on 

seascape structure, with certain attributes either facilitating (patches in close proximity or 

presence of habitat corridors) or hindering movement (no patches nearby or presence of a 

barrier) (Grober-Dunsmore et al. 2009). Therefore, the distribution of many fishes can be 

explained by the spatial context of patch types and seascape structure. For instance, reefs close 

to large areas of seagrass have been reported to support greater abundance and species diversity 

relative to more isolated reefs in both tropical (Dorenbosch et al. 2005, Grober-Dunsmore et 

al. 2007, Campbell et al. 2011, Berkström et al. 2012, Olds et al. 2012b; Berkström et al. 2020) 

and temperate (Rees et al. 2018, Swadling et al. 2019) seascapes. This increase in abundance 

and diversity has been attributed to seagrass areas acting as “source” habitats and enhancing 

the recruitment of fishes to nearby reefs. Alternatively, increased biodiversity may occur when 

seagrasses are adjacent to reefs due to more resources being available in the seascape for mobile 

fish (i.e. landscape complementation and supplementation; Dunning et al. 1992), such as 

predatory Haemulids or Lutjanids that feed in seagrasses at night (Nagelkerken et al. 2000, 

Beets et al. 2003, Appeldoorn et al. 2009). 

The movement of organisms has been categorised into four components, but this can be 

expanded to include seascape structure (Nathan et al. 2008, Pittman 2018). The four 

components of movement proposed by Nathan et al. (2008) include; 1) the internal state of the 

organism compelling it to move (e.g. foraging and reproduction), 2) the movement ability of 

the individual or its aptitude for locomotion/transport, 3) the organisms navigational ability in 
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time and space, and 4) external influences, such as environmental signals and resource 

distribution. When considered within a seascape framework, seascape structure incorporates 

many of the external factors determining movement, particularly for mobile species (Fig. 1.2; 

Pittman 2018). The effect of seascape structure on movement decisions, however, is dependent 

on species traits such as its capacity to move and its internal state (Fig. 1.2). For example, the 

movements of species between patch types may decrease when patches are further apart due to 

energetic constraints, difficulties in navigation or exposure to predation when migrating 

(Zollner and Lima 1999, Grober-Dunsmore et al. 2009, Turgeon et al. 2010, Ryan et al. 2012, 

Nagelkerken et al. 2015). Certain species can also create seascape features during their 

movements or activities (i.e. external dynamics; Fig. 1.2), such as stingrays feeding in seagrass 

causing rounded depressions and the removal of seagrass fronds (Orth 1975, Howard et al. 

1977). Therefore, the conceptual model of movement proposed by Nathan et al. (2008) and 

later adapted by Pittman (2018) can be further modified to incorporate these relationships as 

seen in Figure 1.2.  

Connectivity can be quantified using metrics that fall into three main categories as suggested 

by Calabrese and Fagan (2004). Firstly, structural connectivity uses the spatial arrangements 

of physical structures in the seascape to infer connectivity with limited knowledge on the scale 

of movements. Secondly, potential connectivity combines some information on species 

movements with seascape configuration. And finally, connectivity can be quantified as actual 

connectivity which requires techniques that quantify the movement pathways across the 

seascape. The majority of seascape studies to date have used structural connectivity metrics 

(i.e. patch area and isolation) to explore correlations with observed distribution and abundance 

data (e.g. Grober-Dunsmore et al. 2007, Olds et al. 2012b, Swadling et al. 2019). Such methods 

are popular as they can identify key fish habitats and provide surrogates for multispecies 
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conservation in a simple and cost-effective manner, making them practical for management 

(Ward et al. 1999, Dalleau et al. 2010, Olds et al. 2014). 

 

Figure 1.2 A conceptual framework for the movement pathway selected by an organism and 

the influence of seascape structure adapted from Nathan et al. (2008) and Pittman (2018). 

Relationships between components and their effects on one another are represented by arrows. 

Definitions: Navigation process is the navigational ability of the organism at its current 

location; Locomotion process is the speed and direction of movements produced; Movement 

process refers to the capacity of an individual to move at its current location, internal state and 

navigational ability. 

 

Whilst quantifying connectivity using structural metrics is useful, this method infers movement 

pathways and provides limited information on actual connectivity. Therefore, current 

understanding on the movement of many fish species at different life-stages is largely 

conceptual. This is especially true for the ontogenetic dispersal of juveniles from nursery areas 

to adult habitats, with most information coming from studies testing for correlations between 
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structural connectivity metrics and observational data of abundance and/or size classes 

(Dorenbosch et al. 2005, Grober-Dunsmore et al. 2007, Olds et al. 2012b, Rees et al. 2018, 

Swadling et al. 2019, Berkström et al. 2020). Other methods have been used to provide a more 

quantitative estimate on the spatial scale that juvenile fish disperse from nursery areas, 

including mark-recapture (Morton et al. 1993, Zeller et al. 1996, Verweij et al. 2007, Wakefield 

et al. 2011) and otolith chemistry (Yamashita et al. 2000, Forrester and Swearer 2002, 

Gillanders 2002, Gillanders 2005, Hamer et al. 2005, Reis-Santos et al. 2015, Schilling et al. 

2018). For example, Gillanders (2002) used otolith chemistry to demonstrate that the majority 

(89%) of a key fisheries species in Australian waters, pink snapper (Chrysophrys auratus), 

caught on coastal reefs in the Sydney region used nearby estuaries as nursery areas. These 

techniques highlight the value of certain nursery areas to fish populations and provide some 

estimate of actual connectivity in the seascape, but they do not quantify fish movements over 

spatial scales appropriate to reconstruct detailed movement pathways. Therefore, several 

fundamental questions remain about how juvenile fish connect patch types across the seascape 

such as the spatial and temporal scales over which they disperse from nurseries to adult habitats, 

the importance of this connectivity for fisheries conservation strategies and which methods can 

be used to effectively track juvenile fish movements. Examining such questions using 

experimental or quantitative methods in a seascape framework will provide a better 

understanding of connectivity and the mechanisms underpinning biodiversity patterns. One 

method with the potential to achieve this is acoustic telemetry. 

1.3 Acoustic telemetry 

Quantifying the movement of fauna in aquatic systems is challenging. The spatial ecology of 

fishes has historically been investigated using methods such as visual observations (Beets et 

al. 2003), extractive techniques such as net or trap sampling (Guillard 1998, Hohausová et al. 

2003, Jelbart et al. 2007, Clark et al. 2009), chemical isotopes (Gillanders 2002, Elsdon et al. 
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2008), biological tags (e.g. parasites; Lester et al. 2001, Mosquera et al. 2003) or capture-

recapture tagging (Morton et al. 1993, Barrett 1995, Gray et al. 2012, Fowler et al. 2018). The 

development of biotelemetry represents a significant progression on these techniques, allowing 

for the movement of marine organisms to be quantified in detail both affordably and time 

efficiently (Rutz and Hays 2009, Donaldson et al. 2014, Hussey et al. 2015, Wilmers et al. 

2015). 

Acoustic telemetry (Box. 1.1) is among the most popular biotelemetry methods currently 

available to track fish movements (Donaldson et al. 2014, Hussey et al. 2015, Taylor et al. 

2017a). Since its inception in the early 1970’s, acoustic telemetry in aquatic ecosystems has 

experienced rapid growth and innovation, with the technology becoming more accessible, 

smaller and increasingly reliable (Thorstad et al. 2013, Donaldson et al. 2014, Taylor et al. 

2017a). Acoustic telemetry has since become widespread in marine ecology and has been used 

to track the movement of a range of species from smaller, less mobile fish such as razorfish 

and Serranids (March et al. 2010, Alós et al. 2011, Aspillaga et al. 2021) to large, highly mobile 

fish such as marlin (Block et al. 1992), white sharks (McAuley et al. 2017, Bruce et al. 2019) 

and whale sharks (Rohner et al. 2020). Acoustic telemetry has revolutionised fisheries science 

and conservation by providing critical insights into the habitat use, population dynamics, 

migration patterns, physiology, behaviour, and inter-specific interactions of fishes (Donaldson 

et al. 2014, Hussey et al. 2015, Crossin et al. 2017). The findings from many acoustic telemetry 

studies highlight how fish move across the seascape, particularly when combined with reliable, 

high resolution seafloor maps and therefore provide many opportunities to address questions 

relevant to the field of seascape ecology, although most studies fail to do this.  
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1.4 Acoustic telemetry and fish movements within seascapes 

Acoustic telemetry has been commonly used to determine the habitat use and connectivity of 

adult, large-bodied fishes. Habitat use has been explored by quantifying residency to certain 

areas/patch types, using habitat selection indices, or by superimposing movement pathways or 

home-ranges from utilisation distributions (UDs: Box 1.2) onto benthic seascape maps (Lowry 

and Suthers 1998, Eristhee and Oxenford 2001, Lowe et al. 2003, Espinoza et al. 2011, Hitt et 

al. 2011). This research has revealed that many fishes have habitat preferences (Topping et al. 

2005, Guttridge et al. 2015, Earl et al. 2017, Pillans et al. 2017) and species once considered to 

be highly mobile show residency or site-attachment to relatively small areas for periods of time 

(Ferguson et al. 2013, Harasti et al. 2015, Fetterplace et al. 2016, Novak et al. 2020). A number 

of species have also been observed to regularly connect patch types through their movements 

whilst foraging, seeking shelter or spawning (Luo et al. 2009, Claisse et al. 2011, Ferguson et 

al. 2013, Gannon et al. 2015, Green et al. 2015, Murchie et al. 2015, Taylor et al. 2018a). For 

instance, some piscivorous fish perform daily crepuscular migrations from reefs to adjacent 

seagrass patches (Verweij and Nagelkerken 2007, Appeldoorn et al. 2009, Green et al. 2015, 

Honda et al. 2016, Taylor et al. 2018a). These daily movements of piscivores have been 

attributed to foraging behaviour on adjacent seagrass meadows, which are highly productive 

and contain large amounts of prey items. Additionally, a range of species have been shown to 

move from day-time home ranges to night-time locations (Eristhee and Oxenford 2001, Claisse 

et al. 2011, Marshell et al. 2011, Ferguson et al. 2013). It has been proposed that these night-

time locations are used for shelter because they are often structurally complex patch types such 

as rugose reefs or vegetated areas that offer protection (Claisse et al. 2011, Marshell et al. 

2011). For example, Claisse et al. (2011) reported that yellow tang (Zebrasoma flavescens) 

exhibits crepuscular migrations along consistent corridors of up to 600 m between daytime 

foraging areas and night refuge sites.  
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There have been numerous studies that have observed fish moving along specific habitat 

corridors (Rhodes et al. 2012, Murchie et al. 2015, Hall et al. 2019, Hayden et al. 2019). For 

instance, Murchie et al. (2015) reported tagged bonefish (Albula vulpes) on the island of Grand 

Bahama move along a canal that traverses the island to reach spawning grounds, instead of 

migrating around the island’s periphery. It is critical for research to continue identifying the 

connections between patch types and specific corridors used during daily and life-cycle 

movements, as this information has significant ramifications for designing conservation 

strategies, as shown in landscape ecology (Turner 2005, Lindenmayer et al. 2008). 

Far fewer studies have explicitly quantified the movement of juvenile fish using acoustic 

telemetry, which is likely a result of acoustic transmitters being too large for use in small fishes. 

Therefore, current understanding on the habitat use of juveniles and their movement from 

nursery areas to adult populations remains unclear. The limited information available from 

acoustic telemetry on juvenile fish movements is predominantly for larger bodied teleosts (e.g. 

Argyrosomus japonicus; Childs et al. 2015, Taylor et al. 2017b) and elasmobranchs (Heupel 

and Hueter 2001, Weng et al. 2007, Simpfendorfer et al. 2010, Chin et al. 2016, Bruce et al. 

2019, Hutchinson et al. 2019, Bangley et al. 2020). In contrast, there is a paucity of data for 

juvenile fishes of small body size (but see Furey et al. 2013, Huijbers et al. 2015, Grant et al. 

2017). Huijbers et al. (2015) provides one study that has used acoustic telemetry to provide 

direct evidence of ontogenetic movements of juvenile fish (< 30 cm total length) from known 

nursery areas (i.e. a sheltered embayment in Curaçao) to coral reefs. A key finding of their 

study was that a proportion of juvenile schoolmaster snapper (Lutjanus apodus) permanently 

move to nearby coral reefs whilst other individuals appeared to perform exploratory 

movements to nearby reefs before returning to nursery areas. The lack of information on the 

movements of juvenile fish is undoubtedly due to the difficulties of implanting acoustic tags 

within small fish (Jepsen et al. 2005, Thorstad et al. 2009), which is constrained by tag size. 
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There is a general notion that is widely accepted in the telemetry community that excess 

mortality occurs when tagging fish if the tag to body mass ratio exceeds 2% (i.e. the 2% rule) 

(Jepsen et al. 2005). However, there is increasing evidence to challenge the 2% rule, with many 

species unaffected by the surgical implantation of tags weighing up to 12% of their body mass 

(Brown et al. 1999, Childs et al. 2011, Smircich and Kelly 2014, Klinard et al. 2018). 

Regardless, caution is still warranted when tagging small-bodied fishes, and the increasing 

miniaturisation of acoustic tags now offers researchers the opportunity to begin tracking 

juvenile teleosts of smaller sizes.  

Research investigating the movement of fish between patches has largely used presence-

absence data from passive telemetry to describe connectivity. Novel techniques now exist that 

can be used to extend beyond simply describing patterns of connectivity and explicitly test 

movement-seascape relationships with acoustic data collected using passive acoustic telemetry 

(Box 1.2; Pittman 2018, Whoriskey et al. 2019). For example, the seascape within a fish’s 

home-range calculated using UDs can be analysed with spatial patterns metrics to deduce how 

seascape structure influences movement behaviour (Hitt et al. 2011, Dance and Rooker 2015). 

Another statistical technique beginning to be frequently applied to interpret telemetry data is 

network analyses. Indeed, network analyses provide researchers the ability to test how patch 

type, size and isolation influence movements (Jacoby et al. 2012, Finn et al. 2014, Espinoza et 

al. 2015, Lédée et al. 2015, Becker et al. 2020). An example of this is Espinoza et al. (2015), 

who examined the degree of connectivity of several shark species in the Great Barrier Reef 

using network analysis. The ability of sharks to migrate between habitats was dependent on the 

level of isolation of patch reefs, however this was species specific, with bull sharks 

(Carcharhinus leucas) showing greater mobility and connecting more isolated reefs than grey 

reef (Carcharhinus amblyrhynchos) and silvertip (Carcharhinus albimarginatus) sharks. 

Network analyses show great promise for testing movement-seascape hypotheses in 
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comparison to more “conventional” analyses such as KUDs, as it can identify certain patch 

types and corridors important for maintaining connectivity (Lédée et al. 2015, Engelhard et al. 

2017). Further, network analyses can be used to model the effects of habitat loss on 

connectivity patterns (Jacoby et al. 2012, Jacoby and Freeman 2016), which is important 

considering the increased pressure on marine systems from anthropogenic stressors (Halpern 

et al. 2008, Crain et al. 2009, Creighton et al. 2015).  

Whilst acoustic telemetry provides a great opportunity to quantify the movements of fish, some 

limitations remain (Donaldson et al. 2014, Kessel et al. 2014, Brownscombe et al. 2019). One 

of the most notable considerations for passive acoustic telemetry is the variability and 

magnitude of the detection range of acoustic receivers within arrays (Kessel et al. 2014, 

Huveneers et al. 2016, Brownscombe et al. 2020). The detection range of acoustic receivers is 

defined as the maximum distance in which the acoustic signal of tags can be effectively 

detected and decoded (Kessel et al. 2014, Brownscombe et al. 2020). The detection range of 

receivers varies in time and space because acoustic signals are attenuated, refracted or lost as 

they travel in water, blocked by physical barriers or muffled by environmental and biological 

noise, all of which corrupt the transmitted code (Cagua et al. 2013, Gjelland and Hedger 2013, 

Kessel et al. 2014, Huveneers et al. 2016, Selby et al. 2016). Detection range can also vary due 

to the specifications of an acoustic tag, with higher powered tags detected over greater distances 

(How and de Lestang 2012, Cagua et al. 2013, Klinard et al. 2019), although this comes with 

the trade-off of larger tag sizes. False detections by receivers can also occur when signals are 

altered by external noises but still decoded by a receiver, or when transmissions from multiple 

tags operating on the same frequency overlap and collide (Simpfendorfer et al. 2015, 

Brownscombe et al. 2020). Therefore, the tag selected for a study and its transmission delay 

are important considerations when undertaking telemetry studies. 
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The environmental and biological conditions that effect the detection range of acoustic 

receivers differ between systems and patch types, making in situ acoustic range tests an 

essential pre-requisite for telemetry studies to determine the appropriate array design and data 

interpretation (Kessel et al. 2014, Brownscombe et al. 2020). Another important consideration 

to incorporate into acoustic range tests is the behavioural traits of species that could contribute 

to variation in detection ranges, such as animals sheltering within refugia (e.g. rock crevices or 

aquatic vegetation) (Baktoft et al. 2015, Weinz et al. 2021). However, the majority of published 

acoustic range tests fail to incorporate nuances in how tagged animals use habitat as they only 

examine variations in detection performance using stationary tags in the water column (Kessel 

et al. 2014, Huveneers et al. 2016, Reubens et al. 2018, Brownscombe et al. 2020). The failure 

to incorporate information on receiver performance and range within a study creates the 

potential for erroneous conclusions to be deduced on the movement behaviour of tagged 

individuals (Payne et al. 2010).  

1.5 Implications for marine management 

Fisheries production is highly dependent on habitats (Creighton et al. 2015, Raoult et al. 2018, 

Taylor et al. 2018b, Jänes et al. 2020), meaning resource managers require information on key 

fish habitats and the connections between them to develop policies (CBD 2011; Crossin et al. 

2017; NSW MEMA 2018). Such habitat management strategies include the protection of key 

fish habitat to mitigate any habitat loss or damage resulting from human stressors and 

enhancing, restoring or creating (e.g. offsets) habitats (Beck et al. 2001, Creighton et al. 2015, 

Fitzsimons et al. 2015, Gilby et al. 2018a, Jacob et al. 2018). Information on how fish interact 

with habitats within the seascape gathered using acoustic telemetry can help managers 

prioritise areas of habitats to protect (Crossin et al. 2017). For example, Simpfendorfer et al. 

(2010) quantified the fine-scale movement and habitat use of the critically endangered 

smalltooth sawfish (Pristis pectinata) and found that juveniles had small home-ranges located 
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in shallow mud/sand banks lined with mangrove shorelines. Therefore, conservation of the 

species should target the protection of areas containing these patch types. Acoustic telemetry 

has also been used to highlight the success of habitat restoration projects (Espinoza et al. 2011, 

Brooks et al. 2017, Hall et al. 2019). By combining acoustic telemetry and population surveys 

(i.e. seining and long-lining), Espinoza et al. (2011) demonstrated that juvenile gray smooth-

hound sharks (Mustelus californicus) were using a newly restored Californian estuary and that 

the system provided suitable resources for feeding and growth. Improved knowledge on fish 

movements across varying spatiotemporal scales will assist managers to better protect key 

habitats for fisheries production or threatened species and to develop effective restoration 

strategies. 

Marine Protected Areas (MPAs) are being used worldwide to protect and conserve the 

biological diversity and social values of marine ecosystems from anthropogenic stressors 

(Spalding et al. 2008, Gaines et al. 2010, Edgar et al. 2014, Knott et al. 2021). To be successful 

in conserving fish populations, MPAs must be appropriately sized and located to incorporate 

the areas fish use regularly during at least part of their life-cycle (Kramer and Chapman 1999, 

Grüss et al. 2011). Information on the movement and connectivity patterns of fishes within the 

seascape is therefore essential to both assess the efficacy of currently established MPAs and to 

assist the design of future “no-take” marine reserves. This is particularly true for the dispersal 

of juvenile fish from nursery areas to adult habitats, as this will determine the optimal design 

to protect fish throughout their life-histories (Grüss et al. 2011). For instance, if juvenile fish 

disperse from nurseries to nearby adult habitats, then reserves should be designed to cover both 

habitats within their boundaries and protect these linkages. Alternatively, if juveniles disperse 

large distances to adult habitats, then networks of spatially discrete reserves may be more 

appropriate to conserve fish populations. Incorporating nursery areas within reserves could also 

be used to prevent the loss of these habitats and to promote adjacent fisheries, as the ‘spill-
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over’ (i.e. dispersing over reserve boundaries) of individuals will ensure adequate recruitment 

to adult habitats where fishing is permitted (Gell and Roberts 2003, Grüss et al. 2011). The 

importance of connectivity for MPA design is further emphasised by recent research 

highlighting that both academic scientists and resource managers identified that the spatial 

scales of connectivity within the seascape and its impact on management actions (e.g. MPAs 

or habitat restoration) is a high priority research question for future work in the field of seascape 

ecology (Pittman et al. 2021). 

1.6 Thesis aims and structure 

There is a clear need for information on the mechanisms underpinning patterns of biodiversity 

and ecological processes that can be deduced using a seascape ecology framework. Central to 

this is the movement of fish as it is a key determinant of connectivity and the distribution of 

species. Furthermore, understanding the movement and connectivity of fishes will assist the 

identification of key fish habitats and the implementation of management initiatives such as 

MPAs. This is critically needed given that the continued and pervasive degradation to the 

marine environment has the potential to disrupt linkages across the seascape. In this thesis, I 

investigated fish movements and connectivity between patch types using both observational 

techniques and acoustic telemetry. The overarching aims of this thesis include 1) examining 

the movement patterns and habitat use of reef-associated fish at varying life-stages, 2) 

quantifying the connectivity between nursery areas and adult habitats for temperate reef-

associated fish, and 3) assessing the importance of fish movements and connectivity for spatial 

management strategies, such as MPAs.   

The specific aims addressed in each chapter were: 

Chapter 2: “Over what spatial scales do estuarine nursery areas contribute juvenile fish to 

rocky reefs and how does this affect the abundance and size of the population?” In this chapter, 
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I examined how the relative abundance and body length of three targeted fish species 

(Chrysophrys auratus, Pseudocaranx georgianus and Nemadactylus douglasii) on coastal 

rocky reefs varied in relation to the proximity and size of the nearest estuary. Based on previous 

research showing C. auratus to be dependent on estuaries as nurseries, I predicted that the 

species would be smaller and more abundant on reefs close to estuaries due to increased 

recruitment of juveniles. In contrast, I predicted that the abundance and length of the other two 

species (P. georgianus and N. douglasii) would not be influenced by the proximity or area of 

estuaries as these species are not estuarine dependent. As a network of marine reserves exist 

across the study area, I also assessed whether reserve effects were influenced by proximity to 

estuaries. I predicted that reserves would contain greater abundances of each fish species, but 

C. auratus abundance would be greatest in reserves closest to estuaries due to the enhanced 

recruitment.  

Chapter 3: “Is the detection range of acoustic receivers impacted when tagged fish are within 

the seagrass canopy?” Range tests of acoustic receivers are an essential prerequisite prior to 

conducting telemetry projects. However, there has been no formal assessment of the 

performance of acoustic telemetry within seagrass patch types or any consideration on how the 

sheltering behaviour of fish within seagrass fronds affect the transmission of acoustic signals. 

In this chapter, I performed a novel range test where acoustic transmitters were located within 

and above the seagrass canopy to determine the impacts on the detection range of receivers and 

the efficacy of a Vemco Positioning System (VPS; Box 1.1). I predicted that there would be a 

substantial decrease in detection range and fewer positional estimates from the VPS when 

transmitters were ensconced in seagrass. In addition, I also predicted that the detection range 

of receivers would be influenced by environmental conditions (i.e. wind, time of day, 

background noise, atmospheric pressure, receiver tilt and depth). 
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Chapter 4: “Do juvenile reef-associated fish show residency within seagrass nursery areas 

and how far do they disperse to adult habitats?” The aim of this chapter was to quantify the 

movement patterns of juvenile fish belonging to two targeted species (Acanthopagrus australis 

and Girella tricuspidata) within their nursery areas (i.e. seagrass patches) and their dispersal 

to adult reef habitats using acoustic telemetry. I predicted both species would show residency 

to their capture location in seagrass nursery areas. I further predicted that both species would 

move to rocky reef habitats directly adjacent nurseries and not reefs farther afield. This 

prediction was formed from previous research finding higher abundance and diversity of fish 

on reefs close to seagrass in the study area, which was used to infer connectivity (Rees et al. 

2018, Swadling et al. 2019). I also assessed the scale of these movements in relation to the size 

of current no-take marine reserves and identified if individuals crossed reserve boundaries into 

fished areas.  

Chapter 5: “Do fish show general movement patterns across seascapes with different 

environmental conditions?” In this chapter I quantified the movement patterns of adult Girella 

tricuspidata on rocky reefs along a wave exposed coastline. I predicted that individuals would 

exhibit strong residency or site-attachment like those previously reported on reefs in a coastal 

embayment. I also predicted that the species movements on coastal reefs would be different to 

those reported from estuarine systems where fish are exposed to large fluctuations in physico-

chemical conditions that effectively force them to move. I also examined how the movement 

of adult G. tricuspidata varies with environmental conditions, predicting that individuals will 

be less mobile at night and in stochastic weather events such as storms and large swells. 
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Chapter 2: Seascape connectivity of temperate fishes between 

estuarine nursery areas and open coastal reefs 
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Plate 2.1 Graphical abstract for Chapter 2.
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2.1 Introduction 

The ecological and economic importance of estuaries as nursery areas for coastal fishes is 

widely recognised (Beck et al., 2001; Barbier et al., 2011; Sheaves et al., 2015), yet the spatial 

extent over which estuaries influence fish populations along open coastlines is poorly 

quantified. Many species extracted in coastal fisheries are known to recruit as larvae/juveniles 

to estuaries where they benefit from physico-chemical conditions favourable to growth, high 

availability of food and refugia before migrating to adult populations in coastal habitats (Beck 

et al., 2001; Potter et al., 2015). Determining the spatial scales over which nursery areas 

contribute recruits to adult populations is critically needed to better measure population 

dynamics, identify relevant spatial scales for management, understand the ecosystem services 

provided by nursery habitats and determine target habitats for conservation which will provide 

recruits to exploited fish populations (Beck et al., 2001; Lipcius et al., 2008). This is 

particularly important for targeted species that use estuaries as nursery areas, as estuarine 

systems are experiencing degradation worldwide from anthropogenic stressors such as 

overdevelopment, pollution, and climate change (Barbier et al., 2011). This degradation to 

estuaries could significantly disrupt the lifecycles of estuarine dependent species and reduce 

overall recruitment (Meynecke et al. 2008; Sheaves et al., 2014). Quantifying supply-side 

relationships between estuarine nurseries and coastal populations should allow us to predict the 

impacts of estuary degradation on broader fish metapopulations and develop mitigation or 

remediation strategies to avoid these costly and damaging effects in the future (Kennish, 2002; 

Meynecke et al. 2008; Sheaves et al., 2014). 

Research using observational techniques, natural tags (e.g. otoliths, parasites, and stable 

isotopes) or mark-recapture methods has shown that many species preferentially disperse from 

estuarine nurseries to nearby reefs relative to distant ones (Olson & Pratt, 1973; Morton et al., 

1993; Gillanders, 2002; Rees et al., 2021). For example, Gillanders (2002) used otolith 
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chemistry to show that the majority (89%) of Chrysophrys auratus captured on coastal reefs in 

the Sydney region originated from the closest estuary. Examination of the abundance and size-

structure of fishes provides a complimentary approach to studies of natural tags to better 

understand connectivity between estuaries and adjacent coastal habitats (Gillanders et al., 

2003). For instance, Rees et al. (2021) reported that juvenile C. auratus had a higher probability 

of occurrence on reefs near large estuaries. However, they modelled this relationship using the 

presence-absence of categorical size-classes and did not assess the scale of connectivity 

between estuaries and reefs. Therefore, the distance at which recruits are supplied from 

estuaries to coastal reefs remains poorly resolved. An alternative method to better quantify the 

scale of connectivity between habitats is to model fish abundance and body length as 

continuous variables (Galaiduik et al., 2017). Such an approach would enable inferences on 

how far juveniles disperse to coastal reefs across the seascape, through an increase in fish length 

and a decrease in abundance as reefs get further from estuaries. Similar methods have been 

used to quantify connectivity between seagrass nursery areas and reef habitats (Nagelkerken et 

al., 2017; Rees et al., 2018; Swadling et al., 2019; Berkström et al. 2020).  

No-take marine reserves (hereafter referred to as NTMR) are used globally to conserve marine 

biodiversity by reducing anthropogenic impacts to the marine environment (Halpern & Warner, 

2002; Gaines et al., 2010). There is, however, only a nascent understanding on how 

connectivity influences NTMR performance (Olds et al., 2016). Close proximity to nursery 

habitats has been assumed to provide strong connectivity by offering a highly connected source 

of recruits which may enhance the effect of NTMRs (Nagelkerken et al., 2012; Olds et al., 

2013). For example, Olds et al. (2013) observed enhanced reserve effects on targeted fishes on 

protected coral reefs close to mangrove nurseries in comparison to more isolated protected 

reefs that experienced lower recruitment of nursery dependent species. Despite this evidence, 

and recommendations in the literature to incorporate connectivity into NTMR design (Olds et 
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al., 2016), there are few examples where connectivity has been assessed to evaluate ecological 

patterns within NTMRs.  

In this study, we examined relationships between the relative abundance and size-structure of 

fishes on temperate coastal rocky reefs in relation to the proximity and size of estuaries. We 

collected these data using Baited Remote Underwater Videos Systems (BRUVS), across an 

entire temperate bioregion (the Batemans Marine Bioregion; 34° 35’S to 36° 48’S) in south-

eastern Australia. As a network of NTMRs exists across the bioregion, we also assessed for 

reserve effects and whether differences in fish abundance and size between reserve and non-

reserve sites are influenced by the proximity and size of estuaries. We focussed on three species 

harvested in both recreational and commercial fisheries in the bioregion; pink snapper 

(Chrysophrys auratus), grey morwong (Nemadactylus douglasii) and silver trevally 

(Pseudocaranx georgianus) (Stewart et al., 2015; West et al., 2015). All species have similar 

adult body size, but disparate life-histories, allowing for a comparison among fishes with 

differing estuarine dependency. Specifically, the sparid C. auratus has an estuarine ontogenetic 

phase, remaining in estuaries for 1-2 years and reaching lengths between ~180-220 mm before 

migrating to coastal reefs (Bell & Worthington, 1992; Ferrell & Sumpton, 1997); the carangid 

P. georgianus is considered an estuarine opportunist, with adults and juveniles found in both 

estuarine and coastal waters (Farmer et al., 2005; Fowler et al., 2018); and finally the 

cheilodactylid N. douglasii is a reef specialist and is not known to use estuaries as nursery 

habitats (Stewart & Hughes, 2009). We therefore predicted that the estuarine dependent C. 

auratus would be more abundant and smaller on reefs close to large estuaries due to the 

presence of recruits < 220 mm. In contrast, we predicted that the abundance and size-structure 

of species less reliant on estuarine nurseries (i.e. N. douglasii and P. georgianus) would not be 

correlated to the proximity or area of estuaries.  
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2.2 Methods 

We sampled 46 rocky reef sites along a 417 km length of coastline in the Batemans Marine 

Bioregion in south-eastern NSW, Australia (Fig. 2.1). The seascape of the bioregion, like most 

temperate coastal marine environments, is comprised of coastal rocky reefs and estuaries 

containing vegetative patches (primarily seagrass and mangroves), interspersed in a matrix of 

unconsolidated soft sediment. These patch types are present throughout the bioregion but vary 

spatially in their coverage and arrangement. Estuarine patch types important for fish 

populations (seagrass, mangroves and saltmarshes) have experienced losses in NSW waters 

and face a range of anthropogenic stressors which include development and land use changes 

(Meehan & West 2000, Saintilan & Wilton 2001, Harty & Cheng 2003, Williams & Thiebaud 

2007), boating activities and infrastructure (Fyfe & Davis 2007, West 2011, Glasby & West 

2018), trampling by humans and livestock (Ross 2006) and events associated with climate 

change such as droughts or sea level rise (Saintilan et al. 2014, Davis et al. 2016, Scanes et al. 

2020). The bioregion contains two multi-use marine parks, Batemans Marine Park and Jervis 

Bay Marine Park with replicated NTMR (where it is not permitted to harm or remove animals) 

along with habitat protection zones and general use zones where fishing is allowed (Fig. 2.1). 
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Figure 2.1 Locations of the 629 stereo-BRUV deployments across the Batemans bioregion in 

South-Eastern Australia. The locations of the two Marine Parks (MPA) and their no-take 

marine reserves (NTMR) are included. 
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2.2.1 Fish assemblage sampling and video analysis 

Rocky reef fish assemblages were sampled using BRUVS, with a total of 629 BRUVS 

deployed across the 46 reef sites (Fig. 2.1). At each site, BRUVS were deployed on rocky reefs 

simultaneously in groups of four during the austral Winter and Spring of 2010, 2011, 2015 and 

2016. The BRUV deployments in this study were completed for a larger project, specifically 

the NSW state-wide BRUV monitoring program undertaken by NSW Fisheries Research (see 

Knott et al. 2021). Sites were positioned to representatively sample fish assemblages across 

reefs throughout the bioregion and were located at various distances from estuaries, meaning 

these data were suitable for investigating relationships between fish assemblages and estuarine 

connectivity. The BRUVS were baited with ~500 g of crushed pilchards (Sardinops sagax), 

deployed for a minimum of 30 minutes, and separated by 200 m (Malcolm et al., 2007; Harasti, 

Malcolm, et al., 2015). Rocky reef sites ranged from 15-36 m in depth and contained numerous 

species targeted in fisheries, including C. auratus, N. douglasii and P. georgianus (Kelaher et 

al., 2014; Knott et al., 2021).  

The BRUVS were constructed as described in Malcolm et al. (2007) and consisted of a video 

camera (digital Canon HG21 or HFG10/25) attached to a galvanised metal frame with a 1.5 m 

horizontal bait arm. In 2015 and 2016, stereo-BRUVS were used, and these systems had two 

calibrated cameras on each frame which record simultaneously allowing for accurate 

measurements of fish lengths. The 30-min videos from each BRUV deployment were analysed 

using EventMeasure software (SeaGIS Pty Ltd). Fish that entered the field of view within 5 m 

of the camera were identified to the species level where possible. A relative abundance measure 

(MaxN) was calculated for each species, which was defined as the maximum number of a given 

species observed in a single frame during the 30-minute deployment. For the stereo-BRUVS 

deployed in 2015 and 2016, the fork length (FL) of the three study species was measured at the 

time of MaxN for each species. The number of lengths obtained for the three species (320 to 



51 
 

356 measurements) and deployments (n= 326) fit the recommended levels to determine 

accurate size-structure of fish populations using stereo-BRUVs (Weerarathne et al., 2021). 

Stereo-BRUVS were calibrated before and after each sampling period to ensure accurate length 

estimates. 

2.2.2 Quantifying spatial metrics 

The distance to the nearest estuary from each BRUV deployment was quantified as Euclidean 

distances in ArcGIS version 10, along with the area of estuary surrounding each deployment 

at two spatial scales, 10 and 20 km, measured as radii centred over each deployment (n= 629). 

Only open estuaries defined by Roy et al. (2001) were selected for analyses. Intermittently 

closed and open lakes and lagoons are present throughout the bioregion but were excluded 

because there is limited information available on their episodic opening and closing. Therefore, 

we could not be certain if they could be contributing individuals to coastal populations at the 

time of sampling. Reef sites were positioned within fished areas or NTMR (i.e. unfished areas) 

across the bioregion and fishing status was included as an explanatory variable because it has 

been demonstrated to significantly affect the abundance and size of reef-associated fishes 

(Halpern & Warner, 2002; Malcolm et al., 2018; Knott et al., 2021). Sites in fished areas and 

NTMRs were distributed across similar distances from estuaries throughout the bioregion (Fig. 

A1.1). The accessibility of reefs by fishers, measured as the distance to boat ramps, was 

consistent across the bioregion (Fig. A1.2) and not collinear with estuary proximity (Pearson 

correlation r= 0.08, P= 0.3). The depth of each deployment was also recorded.  

2.2.3 Statistical analyses 

We used generalised additive mixed models (GAMMs) to understand correlations between the 

proximity and area of estuaries in combination with fishing status and sampling year and the 

abundance and body length of reef-associated fish (Hastie & Tibshirani, 1987). GAMMs were 

selected because they are suitable for predicting complex non-linear relationships between 
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species distribution data and environmental predictors whilst taking into account random 

effects (Guisan et al. 2002; Zuur et al. 2009). In addition, GAMMs have previously shown 

great utility for modelling fish abundance and length data to explore relationships with seascape 

structure (Galaiduk et al. 2017; Swadling et al. 2019; Berkström et al. 2021). Preliminary data 

exploration was used to assess homogeneity and collinearity between predictor variables (Zuur 

et al., 2009). Estuary area was square root and log(x + 1) transformed at the 10 and 20 km 

scales respectively to normalise their distribution. A full-subset approach was used to fit all 

possible combinations of explanatory variables that were not collinear (i.e. Pearson’s 

correlations < 0.28) to models (Fisher et al., 2018). All models were fitted with a maximum of 

three predictors and the smoothing parameter was limited to a simple spine (k= 5) to prevent 

overfitting and create conservative, ecologically relevant models (Fisher et al., 2018). Site was 

included within models as a random effect to increase inferential power and account for 

overdispersion and spatial autocorrelation (Harrison, 2014). The depth of deployments and 

sampling year were also included as predictor variables. Interactions were permitted in models 

between factors, and between factors and continuous predictors (e.g. between fishing status 

and distance to estuary). The model residuals did not show evidence of spatial autocorrelation 

using Morans I and spline correlograms (Fig. A1.4 - 6). 

Fish response variables were not transformed as the selection of appropriate error distributions 

in GAMMs account for non-normal distributions of the data. GAMMs for species lengths were 

fitted with gaussian distributions while models of abundance used a tweedie distribution to 

account for the large number of zeroes (Tweedie, 1984). The lengths for a given species 

recorded from a single stereo-BRUV deployment are not independent of one another so 

deployment number was included as an observation-level random effect into models for body 

length (Harrison, 2014). Model selection was based on the Akaike information criterion for 

small sample sizes (AICc), with the best model having the lowest AICc (Burnham & Anderson, 
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2002). When multiple candidate models occurred within ±2 AICc of the best model, the most 

parsimonious model(s) with the fewest predictors was selected. R2 values were used to indicate 

the predictive power of each model. Summed AICc weights were used to determine the relative 

importance of predictor variables across the full set of models (Anderson & Burnham, 2002). 

Length frequency distributions were used to compare the body lengths of C. auratus, P. 

georgianus and N. douglasii on reef sites “close” or “distant” from estuaries. Reefs were 

categorised as either close or distant based on whether they were below or above the mean 

distance of reefs (~8,500 metres) from an estuary. A Kolmogorov-Smirnov two-sample test 

was used to compare length distributions between close and distant reefs. The Kolmogorov-

Smirnov two-sample test was conducted using 100,000 simulations to account for the small 

sample sizes. All statistical analyses and plots were performed using the statistical computing 

program “R” (R Core Development Team, 2018) and the packages FSSGAM 1.11 (Fisher et 

al., 2018), mgcv (Wood, 2015), gamm4 (Wood & Scheipl, 2014) and ggplot2 (Wickham, 

2016). 

2.3 Results 

The distance to estuary, fishing status and sampling year were the most important predictors 

for the abundance and length of the three study species, however relationships were highly 

species specific (Table 2.1; Fig. 2.2). Full subsets analysis identified an interaction between 

fishing status and the year sampled on the lengths of all species (Table 2.1). There were no 

interactive effects between fishing status and either the size or distance to estuary in any models 

within ± 2 AICc of the top model for species abundance and length (Table A1.1).  
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Table 2.1 Best generalised additive mixed models (GAMMs) predicting the abundance and 

length of the study species. All models within ± 2 AICc values are presented in Table A1.1. * 

denotes an interaction between variables. 

Response edf wAICc AICc R2 Best model(s) 

Species abundance 

(MaxN) 

Chrysophrys 

auratus 

38.06 1 3690.23 0.28 Distance to estuary + Status*Year 

 Nemadactylus 

douglasii 

25.93 0.229 608.84 0.16 Distance to estuary + Estuarine area 

(20 km) 

  25.89 0.199 609.12 0.16 Distance to estuary + Status 

 Pseudocaranx 

georgianus 

33.78 0.21 2445.61 0.11 Estuarine area (10 km) + Year 

Species lengths Chrysophrys 

auratus 

8 0.751 3867.85 0.14 Distance to estuary + Status*Year 

 Nemadactylus 

douglasii  

8 0.45 3466.7 0.06 Distance to estuary + Status*Year 

  8 0.26 3467.81 0.05 Estuarine area (10 km) + Status*Year 

 Pseudocaranx 

georgianus 

8 0.3 3178.35 0.001 Depth + Status*Year 

  8 0.27 3178.56 0.002 Distance to estuary + Status*Year 

 
 

8 0.2 3178.83 0.0001 Estuarine area (10 km) + Status*Year 
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Figure 2.2 Relative importance scores from the full-subsets analyses exploring the effect of 

predictor variables on the abundance and length of the study species. The X labels illustrates 

variables selected in the most parsimonious model(s) 

 

The abundance of Chrysophrys auratus exhibited a non-linear relationship with distance to 

estuary, decreasing from an average MaxN of four on reefs directly adjacent to an estuary to 

one individual on reefs 4 km from estuaries. The predicted MaxN of C. auratus then increased 

to three on reefs 11 km from estuaries before declining again to a MaxN of one (Fig. 2.3a; R2= 

0.28). Higher abundances of C. auratus were also observed in NTMRs compared to fished 

areas and abundance in each zone gradually increased through time (Table 2.1; Fig. 2.3a). As 

predicted, the abundance of Nemadactylus douglasii exhibited no clear relationship with 

distance to estuary with only small increases at both 2.5 and 11 km. Both C. auratus and N. 



56 
 

douglasii exhibited peaks in abundance on reefs ~11 km from estuaries which corresponded 

with a high proportion of BRUV deployments within NTMRs in comparison to fished areas 

and likely represent a reserve effect rather than an increase in abundance due to the distance 

from estuary. The abundance of N. douglasii remained consistent with estuarine area at the 20 

km scale (Table 2.1; Fig 2.3b; R2= 0.16). There was an alternate parsimonious model within ± 

2 AIC of the best model for N. douglasii abundance, which contained the distance to estuary 

and indicated a greater abundance in NTMRs compared to fished areas (Table 2.1; Fig. A1.3a). 

The abundance of Pseudocaranx georgianus slightly decreased with greater area of estuary at 

the 10 km spatial scale, although this was a very marginal effect. The abundance of P. 

georgianus was also greater in 2015 and 2016 when compared to 2010 and 2011 (Table 2.1; 

Fig. 2.3c; R2= 0.11). 
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Figure 2.3 Relationships between explanatory variables and the abundance of a) Chrysophrys 

auratus, b) Nemadactylus douglasii, and c) Pseudocaranx georgianus. Fitted GAMM 

prediction curves (solid line) are included, and ribbons and error bars represent ± standard 

error. Grey bars = areas where fishing is permitted and red bars = ‘no-take’ marine reserves. 

Distance to estuary is measured in metres. 
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The average body length of C. auratus increased with the distance from estuary, plateauing at 

~260 mm until reefs were 8.5 km from estuaries and then increasing substantially to ~350 mm 

on reefs > 15 km from estuaries (Table 2.1; Fig. 2.4a; R2= 0.14). The length of N. douglasii 

increased from 320 mm to 350 mm as reefs became more isolated from estuaries (Fig. 2.4b), 

although this relationship had low explanatory power (R2= 0.06; Table 2.1). There was also an 

increase in the length of N. douglasii with estuarine area at the 10 km scale (Table 2.1; Fig. 

A1.3b). The predicted average length of P. georgianus decreased from 280 mm to 250 mm as 

depth increased from 17 to 22 m, before plateauing around 255 mm (Table 2.1; Fig. 2.4c). 

There was little effect of estuaries on the length of P. georgianus with these relationships 

having small effect sizes and explaining little variation (R2 < 0.002; Table 2.1; Fig. A1.3). 

The length of C. auratus demonstrated the strongest response to status and year, being larger 

in NTMRs in comparison to fished zones and length also increased in both zones through time 

(Fig. 2.4a). Both N. douglasii and P. georgianus were larger on reefs in NTMRs compared to 

those in fished areas in 2015 (Fig. 2.4). However, N. douglasii length on fished reefs increased 

in 2016 so there were marginal differences between management zones (Fig. 2.4b). Further, P. 

georgianus length in NTMRs decreased in 2016 to sizes comparable to fished areas (Fig. 2.4c).  

Length frequency histograms provided further characterisation of the differences in length 

distributions of each species on reefs “close” and “distant” from estuaries (Fig. 2.5). The length 

distributions of C. auratus was significantly larger on reefs distant from estuaries (KS test: D= 

0.23, P < 0.001; Fig. 2.5a). The modal length of C. auratus was much smaller on reefs close to 

estuaries, indicating the presence of many more juveniles, while large individuals greater than 

the minimum legal length of the species (i.e. > 300 mm total length (TL) or > 260 mm FL; 

Ferrell & Sumpton, 1997) were more evenly distributed across the bioregion (Fig. 2.5a). The 

length distributions of N. douglasii and P. georgianus were not significantly different between 

reefs that were close versus distant from estuaries (K-S test: P > 0.05). 
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Figure 2.4 Relationships between explanatory variables and the fork length (mm) of a) 

Chrysophrys auratus, b) Nemadactylus douglasii, and c) Pseudocaranx georgianus. Fitted 

GAMM prediction curves (solid line) are included, and ribbons and error bars represent ± 

standard error. Grey bars = areas where fishing is permitted and red bars = ‘no-take’ marine 

reserves. Distance to estuary is measured in metres. 
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Figure 2.5 Length distributions for the fork lengths (mm) at reefs close and distant from 

estuaries for a) Chrysophrys auratus, b) Nemadactylus douglasii, and c) Pseudocaranx 

georgianus. The dashed red line highlights the approximate body length when the species 

reaches maturity. The P values are the result of a Kolmogoroc-Smirnov two-sample test.  

 

2.4 Discussion  

Although considered fundamental to the replenishment of fisheries worldwide and the 

maintenance of metapopulations, there are generally few quantitative estimates on the potential 

recruitment subsidy from estuarine nurseries to coastal adult populations and this has led to 

their importance being questioned (Sheaves 2017; Sheaves et al. 2020). We present one of the 

few empirical studies quantifying the spatial scale that estuarine nursery habitats contribute 

individuals to coastal reef-associated fish populations. A key finding was that the abundance 
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and length of a highly important species for recreational and commercial fisheries in temperate 

waters, Chrysophrys auratus, is heavily influenced by distance to estuaries across more than 

400 km of temperate coastline. Effects on abundance generally occurred up to 2 km from 

estuaries whereas the species length was consistently smaller on reefs within 8.5 km from 

estuaries. The validity of this interpretation is highlighted by no distinct relationship being 

found between estuarine proximity or area the distribution of Nemadactylus douglasii and 

Pseudocaranx georgianus, two species that are considered not to be dependent on estuaries as 

nursery habitats.  

Previous research has highlighted that estuaries are an important source of recruits for C. 

auratus and there is evidence that adults of the species inhabiting reefs in NSW originate from 

nearby estuaries (Gillanders, 2002; Rees et al., 2021). We observed smaller C. auratus on reefs 

close to estuaries, which is consistent with the species performing ontogenetic migrations from 

estuarine nurseries to nearby open coastal rocky reefs. We extend previous research, however, 

by combining continuous fish length data from stereo-BRUVs with seascape maps to reveal 

that the supply of recruits from estuaries occurs disproportionately across small spatial scales, 

with individuals < 220 mm FL (and approximately 1-2 years of age) found largely on reefs 

within 8.5 km from estuaries. These findings contrast with studies from other regions of 

Australia (i.e. Victoria, South Australia and Western Australia) analysing the chemical 

compositions of otoliths for C. auratus that have found coastal embayments contribute 

juveniles/subadults to reefs at much broader scales, across 10’s to 100’s of kilometres (Fowler 

et al., 2005; Hamer et al., 2005; Hamer et al., 2011). For example, Hamer et al. (2005) reported 

that Port Phillip Bay in Victoria supplied 60% of subadult (i.e. 1-2 years) C. auratus captured 

on reefs 60 km away. The strong connectivity between estuarine and coastal populations of 

subadult C. auratus is important considering any declines in estuary health and nursery quality 
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will have the potential for negative impacts on the number of recruits entering nearby coastal 

fisheries. 

Importantly, we observed large adult C. auratus to be distributed uniformly across the 

bioregion, irrespective of reef proximity to estuaries. The predicted increase in size far from 

estuaries was caused by the lack of smaller individuals on distant reefs rather than an increase 

in the observed lengths. Previous analysis of the otolith chemistry of this species in South 

Australia and Victoria has suggested that they are highly mobile between the ages of 3 to 5 

years, where they redistribute themselves across the coastline (Fowler et al., 2005; Hamer et 

al., 2011). Given that 3+ year old (approximately ≥ 300 mm FL; Ferrell & Sumpton, 1997; 

Stewart et al., 2011) C. auratus were evenly distributed on reefs along the coastline in the 

current study, we contend that the species is also highly mobile in this age class within the 

Batemans Marine bioregion. We suggest that C. auratus predominantly move out of estuaries 

at around 1 to 2 years (i.e. ~180-220 mm FL) to reefs adjacent (< 8.5 km) estuaries and over 

the next few years move to reefs farther afield resulting in the even distribution of older size-

classes (i.e. > 300 mm FL) across the bioregion. This may be linked to a shift in diet through 

ontogeny, with the species expanding its diet to larger items such as crabs, bivalves and teleosts 

as they grow (Usmar, 2012). The movement of C. auratus through ontogeny is poorly 

understood, but adults and subadults have been reported to show residency on coastal reefs in 

NSW for at least one-year post-tagging (Harasti, Lee, et al., 2015). Future studies using direct, 

quantitative techniques such as acoustic telemetry is necessary to provide more detail on the 

connectivity of C. auratus, and other estuarine dependent fishes, across coastal seascapes.  

As predicted, the length and abundance of N. douglasii and P. georgianus showed little 

relationship to estuarine proximity which supports the hypothesis that these species do not rely 

on estuaries as nurseries. While observations of juvenile P. georgianus within estuaries suggest 

they use these areas as nurseries, the species is highly mobile and inhabit numerous shallow 
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coastal patch types, such as soft-sediments and reefs (Rowling & Raines, 2000; Farmer et al., 

2005; Fowler et al., 2018). Therefore, if a significant proportion of the species recruits directly 

to coastal reefs or other nearshore patch types and regularly move over large areas, the 

influence of estuaries on the structure of the population would be limited and difficult to assess 

using indirect (i.e. observational) techniques. The lack of effect for estuarine proximity on the 

distribution of N. douglasii and P. georgianus highlights that our findings for C. auratus are 

likely driven by ontogenetic dispersal, rather than other processes altering assemblages such as 

estuarine plumes that influence productivity and recruitment on nearby reefs (Grimes & 

Kingsford, 1996; Connolly et al., 2009). 

Connectivity between nursery and adult habitats has been found to enhance the ability of 

NTMRs to promote the abundance of fish in tropical seascapes (Nagelkerken et al., 2012; Olds 

et al., 2013). In the current study, however, we found no interactions between reserve effects 

and the distance to estuary for any species. This is particularly surprising for C. auratus, as we 

expected based on previous literature that greater rates of immigration from estuaries to nearby 

protected reefs would promote higher abundances within these NTMRs. The relationship 

between the abundance of C. auratus within NTMRs and connectivity is likely due to subadults 

dispersing to reefs prior to being targeted by fishers as these individuals are below the legal-

size limit in NSW of 300 mm (TL). Therefore, these individuals are protected from fishing 

pressure on reefs in both fished and NTMRs which would reduce the apparent reserve effect. 

Conceptually, the connectivity between estuaries and reefs may still be important as NTMRs 

located adjacent to estuaries will offer protection to a range of C. auratus size classes and are 

supplied with more recruits than those reserves far away. The network of NTMRs within the 

bioregion did appear to provide conservation benefits to C. auratus populations irrespective of 

their spatial context to estuaries, with larger and more abundant C. auratus observed within 

reserves compared to fished areas, and this difference increased through time. Similar 
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responses to protection by C. auratus have been reported in previous research in Australia 

(Harasti et al., 2018; Malcolm et al., 2018), including in the Batemans bioregion (Kelaher et 

al., 2014; Knott et al., 2021), and in New Zealand (Edgar et al., 2017). NTMR effects in the 

bioregion for N. douglasii and P. georgianus occurred but were more variable than those 

observed for C. auratus. 

This study provides quantitative data on the spatial scales over which estuaries contribute 

individuals to coastal reefs and the consequences for the distribution of species. Specifically, 

these data suggest that local estuaries are an important source of C. auratus recruits for nearby 

open coastal rocky reefs. This is significant considering that globally, numerous species of fish 

with high socio-economic value have been reported to be estuarine dependent as juveniles 

before migrating to offshore populations as adults (Vasconcelos et al., 2008; Tournois et al., 

2017; Santos et al., 2019). Future research in other geographic regions is therefore imperative 

to understand the relative contributions of estuarine nursery areas to coastal fisheries and the 

scale over which they supply juveniles to offshore marine populations. The need for this 

information is further underscored by the continued stress placed on estuaries by anthropogenic 

processes which threatens to reduce the nursery function of these systems (Meynecke et al. 

2008; Potter et al., 2015; Rees et al., 2021). For example, if localised recruitment occurs for 

these species, then the degradation and loss of habitats within estuaries may pose a threat to 

the health and productivity of coastal fish populations by disrupting linkages essential for the 

maintenance of metapopulations. Indeed, this would have serious social and economic 

consequences. Protecting or restoring estuarine systems should therefore be a priority for 

management to ensure the conservation of ecological functions and to sustain adequate 

recruitment for species with estuarine dependency.
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3.1 Background 

Acoustic telemetry is used to quantify the movement patterns of marine fauna (1-3), however 

assessments on the performance of telemetry among different habitats is limited (4-7). A key factor 

affecting the performance of acoustic telemetry is the detection range of a receiver (5). The 

‘detection range’ is defined as the maximum distance where a certain proportion of transmissions, 

generally 50%, are detected by a receiver (5). Quantifying the factors affecting the detection range 

in various systems is essential to guide the spatial arrangement of receiver arrays and help interpret 

the movement and behaviour of tagged individuals (5, 8-10). Further, information on detection 

ranges can prevent studies drawing inaccurate conclusions on fish movements that would 

misinform management (5, 10). The detection range of receivers is often assumed, and few studies 

have conducted in situ range tests of acoustic equipment. Consequently, there is a paucity of data 

available for the performance of acoustic equipment in many habitats or environmental conditions. 

Understanding the detection range is particularly relevant when arrays are designed as positioning 

systems (e.g. Vemco Positioning System – hereafter called VPS). Positioning systems allow for 

the fine-scale movements of tagged individuals to be determined within metres. These systems are 

becoming a popular tool in both marine and freshwater systems to elucidate activity and patterns 

of habitat use (11-13). In a VPS, positions are triangulated through measuring the differential time 

of arrival of pings from a transmitter detected simultaneously by three or more receivers with 

overlapping detection ranges (11, 14, 15). The successful application of positioning systems is 

dependent on receivers being spaced to maximise the likelihood of multiple receivers detecting a 

transmitter and the speed of sound being relatively consistent throughout the habitat. Therefore, 

information on the detection range of receivers a priori is critical to determining the geometry to 

be employed in VPS systems.  
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Determining the detection range can be difficult, and it is temporally variable and dependent on 

several factors including attenuation and refraction of acoustic signals and spreading losses with 

increasing distance (5, 7, 16, 17). Further, environmental variables such as water properties (e.g. 

temperature and salinity) and physical barriers can increase attenuation or obstruct the 

transmission of acoustic signals (4, 6, 7, 17-19). Noise from anthropogenic and natural sources, 

for example snapping shrimp, wind generated waves, boats or depth sounders can interactively 

contribute to variation in detection range and create background noise which disrupts the decoding 

of signals by receivers (4, 9, 10). The behavioural traits of tagged individuals can also contribute 

to variation in detection ranges, such as animals sheltering within refugia (e.g. rock crevices or 

aquatic vegetation) at regular diurnal intervals (20). These factors have contributed to the variable 

performance of acoustic telemetry reported in the literature (5, 7). This creates a need to conduct 

acoustic range testing prior to commencing research in specific habitats or systems, and to account 

for this variation in array design and data analyses (7, 10).  

One common habitat where the relationships between the performance of acoustic telemetry and 

environmental variables are poorly understood is seagrass meadows. Seagrasses are structurally 

complex and productive habitats containing high levels of biodiversity and play an important role 

in ecosystem functioning (21-23). The spatial distributions of numerous fish species captured in 

both recreational and commercial fisheries are linked to seagrass meadows as fish use the habitat 

for foraging, shelter or as nurseries (13, 24-26). Seagrass meadows, however, are under increasing 

pressure from anthropogenic activities and have been declining at alarming rates (27, 28). 

Protecting seagrass meadows is therefore a focus of conservation strategies and fisheries 

management (29), making them an important system in which to study the movement and 

behaviour of organisms. This has undoubtedly contributed to the increasing number of studies 
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investigating the movement of fishes within seagrass (13, 30-33), but no studies have 

quantitatively assessed the performance of a VPS or receivers in this habitat. Seagrass meadows 

contain a suite of unique conditions that pose challenges for the performance of acoustic telemetry. 

Most notably, the Oxygen produced in photosynthesis by the plants and either stored in 

aerenchyma or emitted as bubbles can attenuate acoustic signals and alter sound wave velocity, 

thereby affecting VPS performance and error (34, 35). Furthermore, many fish species are known 

to regularly position themselves within the seagrass canopy to rest, shelter from predators or stalk 

prey (36). The consequence of these behaviours could include attenuation or obstruction of 

acoustic transmissions by seagrass leaves. 

This study quantitatively evaluates the performance of acoustic telemetry within seagrass habitats. 

Specifically, we compare detection ranges for transmitters within and above the seagrass to 

determine impacts on the performance of a VPS. We also assess the effects of a number of 

environmental factors commonly measured in range tests on the performance of acoustic receivers, 

such as meteorological conditions (i.e. wind, rain and atmospheric pressure), depth, time of day, 

ambient noise (69 kHz) and water temperature. The overarching goal of this research was to 

determine how the performance of acoustic telemetry is affected by fish moving amongst 

Posidonia australis, a large, robust seagrass species that grows to a width of 2cm and a length of 

60cm. This information will ascertain the appropriate spatial configuration of receivers forming a 

VPS and arrays in seagrass. 
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3.2 Results 

VPS performance was substantially reduced when transmitters were positioned within the seagrass 

(Fig. 3.1). The positional accuracy of the VPS significantly improved when transmitters were 

positioned above the seagrass (2.2 m) compared to when transmitters were within seagrass (2.7 m) 

(P < 0.01; Fig. 3.1a). There was also substantially more variation in the positional accuracy of 

transmitters within the seagrass (1.7 - 5.26 m) than above it (1.7 - 2.74 m). Transmitters located 

above seagrass were positioned with significantly better precision (0.45 m) in contrast to those 

within seagrass (0.9 m) (P < 0.001; Fig. 3.1b). The greatest impact of a transmitters position 

relative to the seagrass canopy on VPS performance was on the proportion of successful number 

of positions per day (i.e. daily system efficiency), which significantly decreased from 30.9% for 

transmitters above the canopy to 5.9% when they were within seagrass (P < 0.01; Fig. 3.1c).  

 

Figure 3.1 Distributions of the mean daily a) positional accuracy (m), b) precision and c) system 

efficiency (%) for the transmitters above and within seagrass (x-axis). Data points represents the 

raw values, violin plots illustrate the probability density and the black line is the mean. 
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Figure 3.2 Modelled detection probability for each deployment period at varying distances 

between transmitters and receivers. Black dots represent transmitters above seagrass and grey 

triangles illustrate transmitters within seagrass. Solid lines illustrate the prediction of the model 

and dashed lines define the standard error. The horizontal dashed line indicates the working 

detection range (i.e. 50% probability of detecting a transmitter) of acoustic receivers. 

 

Detection probability was significantly reduced when transmitters were positioned within the 

seagrass compared to above (t125 = 12.56, P < 0.001). The working detection range of acoustic 

receivers (i.e. distance where 50% of transmissions were detected) more than halved from ~85 m 

for transmitters above the seagrass to ~40 m when they were located amongst the seagrass (Fig. 

3.2). For transmitters within seagrass, 10% of detections were recorded at ~90 m from the receiver 

and the detection probability decreased to 0 at 150 m (Fig. 3.2). In comparison, transmitters above 
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seagrass had a 10% probability of detection at ~200 m from the receiver (Fig. 3.2). We therefore 

estimate the maximum workable detection range to be 90 m and 200 m for the transmitters located 

within and above the seagrass, respectively. However, fish implanted with V7 transmitters with a 

fixed delay of 180 s would have to be resident within these distances for an average of 30 minutes 

to be recorded. 

Variation in the detection probability of the internal transmitters in the VR2Tx receivers was best 

explained by the distance to receiver, average wind speed and hour of day (R2= 0.45; Fig. 3.3). 

Considering that acoustic signals attenuate over distance, it was expected that distance from the 

receiver would be an important variable for predicting detection probability. The detection 

probability of the internal transmitters was high (> 0.8) up to 200 m but declined beyond this 

distance (Fig. 3.3). The working detection range of acoustic receivers detecting the internal 

transmitters was ~260 m (Fig. 3.3). Detection probability was found to negatively correlate with 

average wind speed, decreasing from 0.9 in conditions of no wind to 0.75 when wind gusts reached 

50 km hr-1 (Fig. 3.3). A strong diurnal pattern in detection probability was also observed, increasing 

from 0.55 at midnight to 0.80 in the middle of the day (Fig. 3.3). It was notable that a strong diurnal 

pattern was also found for the mean environmental noise at 69 kHz which peaked at 710 mV at 

night and decreased to 520 mV at 1500 hours (Fig. 3.4)
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Figure 3.3 Relationships for the model of environmental variables found to predict the detection probability of the internal VR2Tx 

transmitters from a GAMM.  Solid lines illustrate the prediction of the model, and the dashed areas define the 95% confidence intervals 

around the fitted values. The horizontal dashed line in the distance to receiver plot represents the working detection range (i.e. 50% of 

transmissions received). 
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Figure 3.4 Noise (mV) at 69 kHz calculated at all three VR2Tx receivers for each hour of the day. 

Solid dots represent the mean hourly value and error bars are ± standard deviation. Shading 

indicates nocturnal hours between 19:30 - 06:00. 

 

3.3 Discussion 

This study provides clear evidence that the seagrass canopy represents an obstacle to the 

transmission of acoustic signals and can substantially reduce the performance of a VPS and 

acoustic receivers. The positional accuracy, precision and the system efficiency of the VPS was 

significantly poorer when transmitters were within the seagrass compared to those positioned 

above the canopy. The reduced VPS performance was ascribed to a decrease in detection range for 

transmitters amongst seagrass, with the distance at which 50% of detections were recorded 

declining from 85 to ~ 40 m. Further, detection probability varied temporally, with fewer 

detections found in high wind conditions and at night. Other range testing studies have reported 
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similar temporal variations in response to wind and time of day (4, 6, 10, 18), however these were 

performed in reefs, lakes and open habitats such as soft sediments and not in seagrass meadows. 

Overall, our findings highlight that VPS performance and detection range may be significantly 

reduced for fish residing in seagrass habitats, particularly if they are routinely sheltered amongst 

seagrass such as juveniles or cryptic species. These results demonstrate the importance of 

performing in situ acoustic range tests that consider how fish use habitats for creating effective 

receiver arrays and interpreting movement data. 

Previous research has highlighted that topographic features and vegetation obstructing the line of 

sight between a receiver and transmitter can reduce the performance of acoustic telemetry (5, 19, 

37–39). For instance, in coral reef systems the topography of the substrate has been reported to 

reduce the detection range of acoustic receivers by up to 70% (38). In the present study, seagrass 

leaves obstructing the line of sight of receivers were observed to reduce detection range. For 

transmitters positioned in the water column above seagrass, the 50% detection range of receivers 

was 85 m which is comparable to previous studies using the same model transmitter (i.e. V7) in 

coral reef habitats (60–120 m) (18, 40). When transmitters were placed within the seagrass canopy, 

however, the distance at which 50% of detections were recorded decreased by over half to 40 m 

and no detections were recorded beyond 150 m. The blades of Posidonia australis are large and 

robust and therefore present a substantial obstacle that impedes or absorbs the acoustic signals 

reaching receivers. 

The ability of the VPS to position a transmitter is dependent on at least three receivers 

simultaneously detecting an acoustic signal travelling at a known speed. Given that the probability 

of detecting a transmitter decreased when it was amongst the seagrass, it is unsurprising that the 

daily system efficiency of the VPS was significantly lower for transmitters within (5.9%) 
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compared to above (30.9%) the seagrass. It is also notable that no positions could be calculated for 

transmitters outside of the VPS boundary. The relatively low percentage of positions by the VPS 

for both the above and within seagrass transmitters could also result from the high levels of ‘in-

band’ noise recorded in the system. The noise levels during the day were high enough to impact 

the ability of a receiver to detect an acoustic signal (i.e. 450–650 mV) and the extreme noise levels 

at night would drastically decrease receiver performance (> 650 mV). The accuracy of positions 

was reasonable (2–3 m) for both the transmitters above and within seagrass and corroborates 

estimates reported in marine and freshwater systems (< 5 m) (14, 15, 37). The positional accuracy 

and precision of the VPS, however, were significantly different when transmitters were within 

seagrass. Furthermore, the positional accuracy of the VPS for transmitters within seagrass had a 

much higher variance than those above seagrass. It is possible that the poorer accuracy and 

precision recorded for transmitters within seagrass was caused by the acoustic signal being 

refracted by seagrass leaves and therefore taking a longer time to travel between receivers (41). 

Alternatively, the acoustic signal may be attenuated or change speed as it travels through the plant 

tissue, the gas contained within the seagrass and the oxygen bubbles collected on the leaves. 

Overall, our findings suggest that a VPS in seagrass will provide a low system efficiency, 

particularly if fish ensconce in seagrass for periods of time, although any positions should have a 

reasonable accuracy and precision. 

Detection probability of the internal VR2Tx transmitters was lower in high wind conditions and at 

night. Wind speed has previously been reported to negatively affect detection range, particularly 

in shallow water habitats (4, 42). Wind influences sound propagation as it generates surface waves 

which create noise and air bubbles that penetrate the upper water column (4–6). We also observed 

a strong diel pattern, with detection probability increasing during the day and declining at night. 



84 
 

Similar observations have been made in previous studies in reef systems and attributed to 

biological noise (6, 10, 18, 38). Although we cannot explicitly state the exact mechanism behind 

the observed diurnal patterns, noise at the 69 kHz frequency was exceptionally loud (> 650 mV) 

at night and likely originates from biological sources. For example, invertebrates commonly found 

in seagrass such as snapping shrimp (Alpheus spp.) are nocturnally active and create background 

noise (43, 44). This background noise has been suggested to mask acoustic signals and interfere 

with a receiver’s ability to translate pings to detections (9, 10, 45). These findings highlight the 

importance of considering environmental conditions when designing arrays and analysing 

movement patterns from detection data (10).  

While studying acoustic telemetry performance under varying abiotic and biotic conditions is 

important, it is equally relevant to recognise how to address confounding factors when 

implementing telemetry research (4, 42). The findings of this study emphasise the importance of 

considering the effects of how fish use structurally complex vegetated habitats on VPS and 

receiver performance when designing telemetry studies. For instance, tracking fish species known 

to move regularly within the water column will require a different receiver configuration when 

compared to tracking species that regularly shelter amongst seagrass. Our results suggest that 

receivers must be tightly spaced in our system when using V7 transmitters, ~ 40 m for a VPS and 

80 m in receiver arrays to ensure that fish moving within seagrass have a 50% chance of being 

detected. However, detection ranges will vary with location and are dependent on local 

environmental conditions. We therefore strongly advocate that all telemetry studies perform in situ 

range tests rather than infer detection ranges to determine the adequate spacing of receivers. In 

addition, studies should include multiple sentinel transmitters in receiver arrays placed within and 

above the seagrass to quantify variations in detection probability through time (4, 5, 7, 10). This 
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information on the spatiotemporal variation of detection probabilities can be incorporated into 

statistical analyses to improve confidence in the interpretation of fish movement patterns and 

behaviour (7, 10). Furthermore, understanding detection range over spatiotemporal scales can 

guide the positioning of receivers to maximise coverage over habitats or areas relevant to scientific 

questions and therefore increase the economic efficiency of research (6). The performance of 

acoustic telemetry in seagrass habitat will also vary with the model of transmitter selected. For 

example, in the current study the internal VR2Tx transmitters were equivalent to a low powered 

V16 transmitter and increased the 50% detection range of receivers to ~ 260 m when above 

seagrass (compared to 85 m for the lower powered V7 transmitters). It is likely that higher-powered 

transmitters would also have an increased detection range when amongst the seagrass compared 

to low-powered transmitters. However, the attenuation rate of acoustic signals emitted by high-

powered transmitters within seagrass remains unclear and the influence of this on detection ranges 

should be explored in future acoustic range tests. It is noteworthy that higher output transmitters 

are intrinsically large due to increased battery size and would not be as appropriate as the V7 model 

for tracking the smaller cryptic species or juveniles commonly found in seagrass meadows (e.g. 

the 2% rule; (46)). 

3.3.1 Conclusion  

In conclusion, we have provided the first evidence that the performance of a VPS and acoustic 

receivers is greatly reduced when transmitters are within the seagrass. The reduced performance 

observed in the VPS can be attributed to declines in detection range when transmitters are amongst 

seagrass. In addition, detection probability was found to decrease in high wind conditions and at 

night, which corroborates previous range testing studies in other habitats. We strongly support 

recommendations for performing acoustic range tests as a prerequisite for acoustic telemetry 
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studies and the incorporation of multiple sentinel transmitters (i.e. stationary transmitters) within 

arrays to quantify temporal changes in detection probability (4, 5, 7, 10). Incorporating range 

testing and sentinel transmitters into studies will allow researchers to better understand any 

assumptions made when estimating the home ranges or habitat associations of fishes (6). Future 

research is necessary to explore if similar patterns in detection probability occur for transmitters 

within other seagrass species possessing different morphologies to P. australis, such as those with 

smaller leaves (e.g. Zostera spp.) as these may represent less of an obstacle to acoustic signals. 

Future range testing studies should also consider the effect of a fish’s behaviour on the 

performance of acoustic telemetry in other habitat types, such as fish sheltering within reef 

crevasses or being buried within soft sediments (47). 

3.4 Methods 

3.4.1 Study area 

The study was conducted in Jervis Bay Marine Park (JBMP; 35.06203° S, 150.73419° E) on the 

south coast of New South Wales (NSW), Australia (Fig. 3.5). JBMP incorporates a large acoustic 

array consisting of approximately 60 receivers which has been used to track a range of fish species 

over the past ~ 10 years (48, 49). The seascape of JBMP is dominated by rocky intertidal and 

subtidal reefs, seagrass meadows and soft sediments. The seagrass selected for this study was 

Posidonia australis (Hook.f.), a species endemic to temperate Australia that forms large meadows 

within JBMP. P. australis is a long leaved, slow-growing seagrass of high conservation 

significance due to population declines and has been listed as endangered at six locations in NSW 

(28, 50). 
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Figure 3.5 Map of the location of Jervis Bay, NSW, Australia showing the major habitats and the 

positions of the VPS, additional receivers and transmitters.  
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3.4.2 Experimental design 

In November 2017, three VR2Tx acoustic receivers (VEMCO Ltd Canada, Nova Scotia) were 

deployed to form a VPS within a large seagrass bed at Plantation Point in JBMP (Fig. 3.5). The 

three receivers were placed in a triangular formation and separated by 150 m on fixed moorings 

(Fig. 3.5). An additional six VR2W acoustic receivers (VEMCO Ltd Canada, Nova Scotia) were 

deployed in a cross formation 150 m apart to allow for a range of distances between the receivers 

and transmitters placed within the array (Fig. 3.5). The nine receiver moorings were deployed at 

depths ranging from 2.4 to 9 m and were comprised of a section of railway line (50 kg) and a 

subsurface polystyrene buoy attached to a rope which maintained receivers in an upright position 

(hydrophones oriented to the surface). Receivers were fixed to the mooring a minimum of 1 m 

below the buoy to avoid blocking the hydrophone. 

Range testing was performed using two different models of acoustic transmitters. First, four 

VEMCO V7-4x 69 kHz range test transmitters (power output 136 dB, fixed delay 180 s) were used 

to test the effect of submersion within seagrass on the performance of the VPS and acoustic 

receivers. These four V7-4x range testing transmitters were attached to two transportable 

moorings, respectively. These moorings were 2 m in height and comprised a six-pound dive weight 

with a subsurface polystyrene buoy attached to polypropylene rope. The V7-4x transmitters were 

placed either 15 cm or 145 cm from the base of the mooring to ensure that one transmitter was 

within the seagrass while the other was above the canopy (Fig. 3.6). Each pair of transmitters were 

located either within or outside of the VPS (Fig. 3.5). The transmitters within the VPS were 

relocated to five positions across two 4-week periods. The transmitters outside of the VPS were 

relocated to different positions generally every 7 days over two 4-week periods during November–

December 2017 and March 2018 (one deployment was for a 2-week period due to poor weather). 
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The locations of each V7 transmitter pair within and outside the VPS were spatially balanced using 

ArcGIS version v. 10 and ranged from 2.3 to 6 m in depth. Second, the three VR2Tx receivers 

each had an internal transmitter set to high power (154 dB) and a 300-s fixed delay, which is 

comparable to the output of a V16-4L transmitter (150–162 dB). These internal VR2Tx 

transmitters were deployed from November 2017 to April 2018 at depths ranging between 3.5 and 

5 m and were used to investigate the influence of environmental variables on array performance 

over a broader temporal scale. 

 

Figure 3.6 Schematic of a VR2W acoustic receiver station (left) and two transmitters (V7-4x) 

suspended either above (145cm) and within (15cm) the seagrass. 

 

The distance between each transmitter location and receiver was calculated in R using the GPS 

locations and the ComputeDistance function in the package VTrack (51). Meteorological 

conditions were recorded by the Australian Bureau of Meteorology (BOM) at the Point 
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Perpendicular meteorological station 10.5 km from the study site. Four meteorological variables 

were included in our analyses; wind speed and direction, precipitation and air pressure. Each 

meteorological variable was recorded every 30 min and averaged to get an hourly value. The 

VR2Tx receivers recorded water temperature, receiver tilt and the ambient noise levels at 69 kHz 

(the operational frequency of the acoustic transmitters) every 10 min (Table 3.1). Each metric 

recorded by the VR2Tx receivers was averaged to provide an hourly mean. A variety of 

environmental conditions were encountered during the study period (Table 3.1), but as variation 

in receiver tilt was found to be negligible it was excluded from subsequent analyses. 

Table 3.1 The minimum and maximum values of environmental conditions 

Variable Source Min. value Max. value 

Precipitation (mm) BOM 0 8.7 

Wind speed (km/hr) BOM 0 50 

Wind direction (°) BOM 0.5 359.5 

Atmospheric pressure (Pa) BOM 996.95 1030.25 

Depth of receivers (m) Depth sounder 2.4 9 

Temperature (°C) VR2Tx sensor 13.4 25 

Noise 69 kHz (mV) VR2Tx sensor 290 803.3 

 

3.4.3 Statistical analyses 

The detection probability for each receiver and V7 transmitter combination was calculated as the 

total number of recorded detections for each deployment period over the number of expected 

detections. The detection probability of the internal VR2Tx transmitters was calculated as the 

number of recorded detections for each transmitter per hour divided by the number of expected 

detections (i.e. 12 detections). Days when the transmitters were relocated or deployed were 

excluded from the analyses. The influence of distance on the detection probability of transmitters 



91 
 

above and within seagrass was estimated by fitting a logistic regression. A paired-sample t test 

was used to evaluate differences in the number of detections for transmitters “above” versus 

“within” seagrass over the entire deployment period. 

The VPS used three acoustic receivers (VR2Tx) to triangulate the x–y positions of transmitters 

(52). Positions calculated by the VPS were based on the differential time of arrival of acoustic 

transmissions travelling at a known speed that were simultaneously detected by all three receivers 

(11, 15). The speed of sound was quantified from the temperature and salinity of the water (8). 

The internal clocks of the VPS receivers were synchronised using the internal VR2Tx sync 

transmitters that emitted pings at known times (11, 15). Time synchronisation of the receivers is 

necessary to accurately calculate differences in the time of arrival and account for time drift in the 

receiver’s clocks. Differences in the time of arrival of transmissions between receivers were then 

converted to differences in range and used in a hyperbolic positioning algorithm to generate an x–

y position (52). 

Three metrics for VPS performance were calculated: (1) positional accuracy, (2) precision, and (3) 

system efficiency (37). Positional accuracy was measured as the Euclidean distance between the 

position estimated by the VPS and the GPS position of the transmitters. Precision represented the 

variability of positional accuracy and was the standard deviation of the mean daily positional 

accuracy. System efficiency was calculated as the proportion of successful estimated positions (i.e. 

number of positions/expected number of positions) by the VPS. These metrics were calculated and 

averaged to give a daily value for each day the transmitters were in the water, excluding the days 

during which transmitters were relocated. Generalised linear models (GLMs) were used to test the 

influence of a transmitter’s position above or within the seagrass canopy on the mean daily 
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positional accuracy, precision and system efficiency. GLMs for daily system efficiency were fitted 

with a binomial distribution and a gamma distribution was used for daily accuracy and precision. 

Relationships between the detection probability of the internal VR2Tx transmitters and 

environmental variables were examined using generalised additive mixed models (GAMMs) (53, 

54). Prior to analysis, collinearity between explanatory variables was assessed using Pearson’s 

pairwise correlation coefficients and Variance Inflation Factor (VIF). GAMMs were constructed 

using a full-subset approach to provide all possible model combinations (55). GAMMs were fitted 

using a beta distribution with receiver ID as a random effect to account for the lack of 

independence between receivers. Models were restricted to a maximum of three explanatory 

variables and excluded variables with a Pearson’s correlation greater than 0.28 to avoid issues with 

collinearity (55, 56). These parameters were selected to prevent overfitting and develop 

conservative, interpretable models. Average wind direction and hour of day were fitted using 

cyclic smooths to account for their circular nature (55). Akaike Information Criterion corrected for 

small sample sizes (AICc) was used to compare models, with the best fitting model containing the 

lowest AICc (57). No alternate candidate models were within ± 2 AICc of the best model. All 

statistical analyses and plots were developed using the statistical computing program R (58) and 

the functions; FSSGAM 1.11 (55), mgcv (59), ggplot2 (60), visreg (61) and gamm4 (62). 

3.4.4 Abbreviations 

VPS: Vemco Positioning System; BOM: Bureau of Meteorology; GPS: Global Positioning 

System; JBMP: Jervis Bay Marine Park; NSW: New South Wales; ID: Identification; GLM: 

Generalised Linear Models; GAMM: Generalised Additive Mixed Models; AICc: Akaike 

Information Criterion corrected for small sample sizes. 
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Chapter 4: Consequences of juvenile fish movement and seascape 

connectivity: Does the nursery-role concept need a rethink? 

 

 

This chapter has been prepared for submission to Ecological Applications.  

At the time of writing, a small number of receivers (4) in the Jervis Bay Marine Park receiver 

array had not been downloaded because fieldwork was delayed by COVID-19 restrictions. 

However, enough receivers were downloaded to provide results and I am confident that any 

data on the receivers yet to be collected will not affect the conclusions drawn in this chapter. 

The remaining data will be collected and analysed before this chapter is submitted for 

publication. 

 

 

 

Plate 4.1 School of luderick (Girella tricuspidata) and yellowfin bream (Acanthopagrus 

australis) on a reef adjacent to seagrass in the Hare Bay sanctuary zone in Jervis Bay Marine 

Park, Australia. 
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4.1 Introduction 

Nearshore patch types provide important nursery areas for harvested fish species and are essential 

for maintaining the sustainability of fisheries worldwide (Beck et al. 2001, Heck Jnr et al. 2003, 

Sheaves et al. 2015). Nursery areas are generally defined as discrete or homogenous patch types 

that provide benefits to juveniles (i.e. increased survival and growth) and contribute a 

disproportionate number of recruits to adult populations (Beck et al. 2001, Heck Jnr et al. 2003, 

Dahlgren et al. 2006). For example, seagrasses are thought to play an important role as nurseries 

for juveniles of numerous reef-associated fish before they disperse to adult populations once a 

certain age or size-class is reached (Heck Jnr et al. 2003, Pittman and McAlpine 2003, Sambrook 

et al. 2019). Defining nursery areas as discrete patch types may be too simplistic because many 

species are found in multiple patch types at juvenile life-stages and have the potential to connect 

these patches with their movements (Sheaves et al. 2006, Nagelkerken et al. 2015, Litvin et al. 

2018). Therefore, it has been suggested that the nursery-role concept should consider nursery areas 

as spatially explicit seascapes of connected patch types (i.e. “seascape nurseries”) (Nagelkerken et 

al. 2015, Perry et al. 2018, Pittman et al. 2021). However, there is currently limited information 

on the movement patterns and connectivity of juvenile fishes and these data are essential to 

properly understand whether the nursery-role concept needs to be refined and to quantify the 

contribution of nursery habitats to adult populations (Beck et al. 2001, Dahlgren et al. 2006, 

Nagelkerken 2009, Nagelkerken et al. 2015, Sheaves et al. 2015). The need for this information is 

underscored by the global loss of nearshore vegetated habitats due to anthropogenic stressors 

(Waycott et al. 2009, Li et al. 2018, Dunic et al. 2021). This degradation has the potential to disrupt 

linkages between patch types and the number of recruits entering coastal fisheries (Barbier et al. 

2011, Sheaves et al. 2014, Li et al. 2018).  
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There is increasing evidence highlighting that juvenile dispersal from nursery areas may occur at 

greater rates to nearby adult populations than those further afield, however there are few examples 

of this dispersal being directly quantified. Instead, current understanding on the spatiotemporal 

scale of ontogenetic habitat shifts comes largely from observational studies inferring movements 

from changes in abundances or size classes between patch types (Dorenbosch et al. 2005, Grober-

Dunsmore et al. 2007, Olds et al. 2012, Nagelkerken et al. 2017, Swadling et al. 2019, Berkström 

et al. 2020, Rees et al. 2021), natural tags such as otolith microchemistry, parasites, and stable 

isotopes (Olson and Pratt 1973, Gillanders 2002, Hamer et al. 2005, Russell et al. 2021) or mark-

recapture studies (Morton et al. 1993, Gray et al. 2012). For instance, Swadling et al. (2019) 

observed a higher abundance and diversity of fish on reefs close to large seagrass patches and 

attributed this to a greater number of recruits dispersing to reefs from adjacent seagrass nurseries. 

Whilst useful for providing evidence of dispersal, such methods do not provide a detailed 

mechanistic understanding of movement pathways. Therefore, they are inappropriate to explicitly 

establish the spatial scales over which fish perform ontogenetic habitat shifts and determine 

whether this dispersal occurs abruptly or as a stepwise process where individuals slowly move 

from nursery areas toward reefs as they become larger. 

Acoustic telemetry provides the opportunity to quantify the movement, space-use and connectivity 

of juvenile fishes (Donaldson et al. 2014, Hussey et al. 2015, Taylor et al. 2017a). Studies adopting 

acoustic telemetry have largely focussed on tracking the movement of adult fish across a range of 

spatial and temporal scales, providing valuable insights into species movement ecology and 

helping inform marine management and conservation (Donaldson et al. 2014, Crossin et al. 2017, 

Taylor et al. 2017a). Acoustic tracking of smaller fish has been limited by transmitter (i.e. tag) size 

because high tag size to body mass ratios can have negative effects on fish health and behaviour 
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(Jepsen et al. 2005, Brown et al. 2006, Thorstad et al. 2013). Consequently, literature tracking 

juvenile fish movements in the marine environment has generally been restricted to species with 

large (e.g. > 30 cm) body sizes (Childs et al. 2015, Taylor et al. 2017b, Murray et al. 2018, Staveley 

et al. 2019, Duffing Romero et al. 2021, Kendall et al. 2021, Stamp et al. 2021) including 

elasmobranchs (Simpfendorfer et al. 2010, Knip et al. 2011, Chin et al. 2013, Bangley et al. 2020, 

Martins et al. 2020). Advances in technology leading to the miniaturisation of acoustic transmitters 

means research tracking the movement of small marine fishes (< 20 cm), including juvenile life-

stages, is increasing (Pursche et al. 2014, Huijbers et al. 2015, Aspillaga et al. 2021, Barcelo-Serra 

et al. 2021, Matley et al. 2021).  

Marine Protected Areas (MPAs) have been established worldwide to conserve biological diversity 

and social values (Spalding et al. 2008, Gaines et al. 2010, Hernandez et al. 2021), and there is 

growing evidence highlighting their benefits to harvested fishes (Edgar et al. 2017, Malcolm et al. 

2018, Goetze et al. 2021, Knott et al. 2021). To provide effective conservation benefits to fishes, 

MPAs must be appropriately sized and located to incorporate the habitats used during species daily 

movements or life-cycle migrations (Kramer and Chapman 1999, Grüss et al. 2011, Weeks et al. 

2017). If MPAs are too small or do not contain important fish habitat, individuals will likely cross 

reserve boundaries and be exposed to fishing pressure or key habitats may be lost or degraded 

(Kramer and Chapman 1999, Grüss et al. 2011, Pittman et al. 2014). Knowledge of the movement 

patterns of fishes will therefore assist the design, management and assessment of MPAs to ensure 

they are effective (Crossin et al. 2017, Weeks et al. 2017). There is a particular need for 

information on the dispersal and connectivity of juvenile fishes, as this will guide the design of 

MPAs to protect species throughout their entire life-history (McCook et al. 2009, Grüss et al. 

2011). For instance, if fish use multiple patch types as juveniles and perform small-scale dispersal 
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from nursery areas to adjacent adult populations, then singular reserves should be designed to 

cover these patches within their boundaries to protect these linkages. Alternatively, if juveniles 

disperse to adult populations over large distances, then MPA networks positioned along the coast 

may be more appropriate. Identifying and including nursery areas within MPAs could also be used 

to promote the sustainability of adjacent fisheries, as the spill-over of individuals across reserve 

boundaries should ensure adequate recruitment to targeted populations (Lizaso et al. 2000, Gell 

and Roberts 2003, Halpern et al. 2009, Grüss et al. 2011). 

In this study, we used acoustic telemetry to quantify the movement and connectivity of juvenile 

fish belonging to two species important for commercial and recreational fisheries, luderick (Girella 

tricuspidata) and yellowfin bream (Acanthopagrus australis), over an area of 120 km2 in Jervis 

Bay Marine Park (JBMP), NSW, Australia. Both species reside in seagrasses as juveniles, and 

adults are commonly found on shallow coastal reefs (Curley et al. 2013). The specific aims of this 

study were to: 1) determine if juvenile fish exhibit site-attachment to seagrass ‘nursery’ areas or if 

they use a mosaic of patch types (i.e. seascape nurseries), 2) quantify the scale of ontogenetic 

habitat shifts between seagrass and rocky reefs, and 3) assess the movement and dispersal of 

juveniles in relation to current zoning within an existing MPA. We predicted that juveniles would 

show small-scale movements and site-attachment within nursery areas (defined in this study as 

seagrass patches). However, this would be dependent on body size, with fish expanding their 

home-ranges as they grow and become larger prior to permanent dispersal to adult habitats. We 

also predicted that both species would demonstrate ontogenetic habitat shifts in greater numbers 

to reefs adjacent to nursery areas compared to those further away. This prediction was founded on 

existing research in Jervis Bay reporting higher abundances and diversity of fish (including 

luderick and yellowfin bream) on reefs close to seagrass, providing qualitative evidence of 
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dispersal from nursery habitats (Rees et al. 2018, Swadling et al. 2019). Finally, we predicted that 

fish would show strong retention within current no-take marine reserve zones, given the 

anticipated small-scale movements of fish both within seagrass nurseries and to adult reef habitats. 

4.2 Methods 

4.2.1 Study Site 

The study was completed in Jervis Bay (35°8’S 150°43’E), which is a large coastal embayment in 

south-eastern Australia spanning 120 km2 (Fig. 4.1). The embayment is dominated by oceanic 

conditions and contains a mosaic of intertidal and subtidal rocky reef, seagrass and unconsolidated 

soft sediments, plus tidal creeks with seagrass, mangrove (Avicennaia marina and Aegiceras 

corniculatum) and saltmarshes (Sarcocornia quinqueflora and Sporobolus virginicus) also feeding 

into the Bay (Fig. 4.1). The predominant species of seagrass within the embayment is Posidonia 

australis, a slow growing, persistent species with large strap-like leaves (30-60 cm long and 6-14 

mm wide). Populations of P. australis are listed as endangered in six NSW estuaries, however this 

does not include meadows in Jervis Bay as rates of decline for the species here are relatively low 

(West 2010; West and Glasby 2021). Other species of seagrass are also found within Jervis Bay, 

although mainly within the tidal creeks, and these include Zostera muelleri subsp. capricorni 

(Ascherson) and Halophila species which are both smaller than P. australis and have transitory 

meadows that are more resistant to disturbances (Kilminster et al. 2015). Jervis Bay forms the 

central area of JBMP, which contains multiple “no-take” marine reserves (hereafter referred to as 

NTMR, also known locally as sanctuary zones; Fig. 4.1) where it is not permitted to remove or 

harm marine biota. The remainder of the Bay is zoned to allow recreational fishing and some forms 

of commercial fishing.  
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4.2.2 Fish collection and acoustic tagging 

Fish were captured using hook and line in JBMP between August 2018 and February 2020 (Table 

4.1). Tagging was concentrated within the Hare Bay NTMR (i.e. Hare Bay and Carama Inlet), but 

also occurred at other locations including Currambene Creek (i.e. Woollamia and Myola) and 

Moona Moona Creek (Fig. 4.1). It was notable that all luderick were below the size that the species 

reaches sexual maturity (i.e. 286 – 295 mm; Gray et al. 2012), whereas 7 of the 20 yellowfin bream 

were expected to be reproductively mature (i.e. > 220 mm; Pollock 1985, Curley et al. 2013). We 

elected to tag a range of size-classes (Table 4.1; Table A2.1) to explore whether juvenile fish 

mobility increased with size and to allow the best chance of quantifying the dispersal of 

individuals, given that the size or age class the species perform ontogenetic habitat shifts is 

unknown.  
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Figure 4.1 Map of Jervis Bay Marine Park (insert shows location on NSW coastline) and the 

dominant patch types. Receiver stations within the array are depicted and coloured based on 

whether they are in seagrass “nursery” patches (dark green), reef patches (russet) or part of the 

acoustic gate at the bays entrance (yellow). The general location of fish capture/release (see Table 

A2.1) are represented by yellow arrows. No-take marine reserves (NTMR) are illustrated by areas 

of red cross hatching. Please note that Wollamia and Myola are both located within Currambene 

Creek.
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Table 4.1 Summary data for the 53 tagged individuals. Values for fork length, number of 

detections and days at liberty represent the means ± standard deviation and in parentheses are 

the minimum and maximum values observed.  

Species Location Tagging 

year 

n Fork length 

(mm) 

Number of 

detections 

Days at liberty 

Luderick Hare Bay 2018 13 181.2 ± 18.1 

(146 - 216) 

1740.7 ± 1203.5 

(193 - 4975) 

322.3 ± 152.9 

(26 - 409) 

Luderick Currambene 

Creek 

2019 15 182.3 ± 23.8 

(145 - 231) 

16061.3 ± 24530.5 

(0 - 86496) 

321.4 ± 112.3 

(55 - 413) 

Luderick Moona Moona 

Creek 

2019 5 169.2 ± 9.45 

(160 - 185) 

71664.2 ± 56862.3 

(5723 - 145700) 

247.8 ± 191.8 

(6 - 409) 

Yellowfin 

Bream 

Hare Bay 2019 9 244.9 ± 41.3 

(166 - 298) 

3133 ± 2393 

(622 - 7880) 

363.4 ± 86.9 

(155 - 409) 

Yellowfin 

Bream 

Carama Inlet 2019 / 2020 11 193.2 ± 40.6 

(145 - 284) 

9815.8 ± 11394.4 

(420 - 35711) 

340.63 ± 118.9 

(7 - 409) 

 

All fish were captured in or directly adjacent to seagrass patches and were surgically implanted 

with Vemco V7-4x acoustic tags (7 mm diameter, 18 mm length, 0.7 g weight in water, ~400 

d battery life: Innovsea, NS, Canada). These coded tags were programmed to randomly emit a 

unique signal every 180 – 240 seconds at a frequency of 69 kHz. Prior to the surgical 

implantation of acoustic tags, fish were placed in an aerated 50 L holding tank for a minimum 

of 15 mins to recover from capture and were visually examined for general health and 

condition. Fish were then anaesthetized using 60 mg L-1 Aqui-S® solution before being 

transferred to a wetted cradle for surgery. A 10 mm incision was made in the ventral surface 

of the fish toward the rear of the peritoneal cavity in which the tag was inserted. Before surgery, 

all surgical equipment and acoustic tags were treated with povidone-iodine antiseptic 

(Betadine® solution) to prevent infection. Once the tag was inserted, the wound was sutured 

using one to two dissolving stitches tied with a double surgeon’s knot. Fish were then 
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transferred to another aerated 50 L holding tank and monitored for 30 minutes before release 

at the capture site.  

4.2.3 Acoustic monitoring array 

An array of 49 Vemco VR2W and VR2tx acoustic receivers was established within JBMP to 

passively track tagged fish (Fig. 4.1). The JBMP array is operated and maintained by the NSW 

Department of Primary Industries and collaborators (University of Wollongong and Macquarie 

University), and the resultant data are stored in the Integrated Marine Observing System 

Animal Tracking Facility Database (https://animaltracking.aodn.org.au/; Hoenner et al. 2018). 

Acoustic receivers in the array are strategically placed to provide detection coverage on almost 

every reef within Jervis Bay, along with the seagrass and creeks where fish were tagged in the 

current study. In addition, an acoustic gate across the mouth of Jervis Bay was present to allow 

for the detection of any fish leaving or entering the Bay (Fig. 4.1). Acoustic receivers were 

separated by a minimum of 500 m and placed no further than 300 m from the shoreline. Most 

acoustic receivers were attached to rope moorings which consisted of sections of railway lines 

(~50 kg) and a subsurface polystyrene buoy that maintained receivers in an upright position 

(hydrophones oriented to the surface). Receivers were fixed at least 1 m below the buoy and 2 

m above the sea floor. The exceptions were the receivers within the creeks of depths less than 

3 m, where receivers were attached to moorings with shorter ropes or on star pickets embedded 

within the substratum. Receivers were collected and the moorings cleaned every 12 months. 

The detection range of receivers has previously been determined to be 85 m for V7 acoustic 

transmitters above the canopy in seagrass meadows in Jervis Bay and 40 m when submerged 

within seagrass fronds (Swadling et al. 2020).  

4.2.4 Data processing 

Detection data for tagged individuals were corrected for time drift and then filtered to remove 

any detections that occurred less than 180 s apart, which was the minimum tag ping rate. 



109 
 

Detections within 180 s of each other were assumed to be suspect and classified as false 

detections caused by tag collisions and interference from background noise (Simpfendorfer et 

al. 2015). In addition, fish that were recorded on receivers for less than 10 days, had fewer 

than 50 detections and were not detected leaving the Bay (i.e. not detected on receivers in the 

gate or arrays outside of JBMP) were removed from subsequent analyses (Stocks et al. 2015, 

Moulton et al. 2017). These criteria led to the exclusion of four fish (Luderick 16, 29, 32 and 

Bream 2; Table A2.1).  

4.2.5 Home-range estimation 

The home-range of tagged fish was estimated using the Brownian Bridge Movement Model 

(BBMM) to calculate utilisation distributions (UD). The BBMM was selected over other UD 

methods as it models the probability of a tagged individual being in an area from its start and 

end locations, the time elapsed between detections and the speed travelled between successive 

detections (Bullard 1991, Horne et al. 2007). BBMM also incorporates location error, an 

important caveat in acoustic telemetry where the successful detection of an individual is 

dependent on them being within a receiver’s detection range (Kessel et al. 2014, Huveneers et 

al. 2016, Swadling et al. 2020). Estimates of locations for the BBMMs were produced using a 

mean position algorithm to create centres of activity for each fish (Simpfendorfer et al. 2002). 

Two smoothing parameters were required to create the BBMM (Horne et al. 2007). Firstly, the 

Brownian motion variance parameter (σ2
m) estimates the variance in a fish’s position between 

two points using a maximum likelihood approach. Secondly, the location error was also 

required, and this was set as the predicted receiver detection range of 85 m estimated in 

Chapter 3. Home-range estimates derived from BBMMs were calculated as 50% (core home 

range) and 95% (home range extent) UDs using the adehabitatHR package (Calenge 2006).  
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4.2.6 Network analysis 

Network analysis was used to further explore patterns of movement and connectivity of tagged 

individuals within the JBMP array. Network analyses offer a complimentary approach to 

traditional metrics modelling activity spaces (e.g. UDs) from passive telemetry data (Finn et 

al. 2014, Jacoby and Freeman 2016). The method is embedded within graph theory and 

investigates relationships between nodes (acoustic receivers) that are connected by edges (fish 

movements), with all the combined edges represented as a network (Finn et al. 2014, Jacoby 

and Freeman 2016). Network analysis is a powerful analytical tool that can identify movement 

corridors and pathways connecting patch types often overlooked in typical space-use metrics 

(Lédée et al. 2015, Becker et al. 2016, Whoriskey et al. 2019). 

To assess habitat use, we created non-square matrices from the detection data that counted the 

frequency of habitat use by individual tagged fish (Heupel et al. 2019). Frequency of habitat 

use was calculated by dividing the sum of detections by the number of receivers located in each 

patch type. Receivers were divided into five main patch types that included creeks, seagrass in 

Hare Bay, distant seagrass patches and rocky reef patches either adjacent or distant to the 

seagrass (i.e. nursery area) where fishes were released. For fish tagged in Hare Bay (Fig. 4.1), 

the seagrass patch was separated into two sub-categories: eastern and western Hare Bay. This 

allowed for an assessment on whether fish showed site-attachment to specific areas of seagrass 

within Hare Bay or if they regularly venture across the this large seagrass meadow. Bipartite 

habitat networks were created from the non-square matrices to visually represent the habitat 

use of each fish. 

To assess the connectivity of fish between habitats, directed and weighted movement networks 

were formed from square movement matrices. The colour of nodes (i.e. receivers) illustrated 

the proportion of detections recorded for a given fish and the colour of the edges was weighted 

by the number of movements between nodes (i.e. connectivity). All nodes were placed in their 
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actual (latitude and longitude) locations to assist with the interpretation of “real world” space-

use and connectivity. Each network was tested against 10,000 randomly generated network 

structures to determine whether fish exhibited non-random movement patterns. Random 

networks for each individual were generated using a link re-arrangement approach via 

bootstrapping (Croft et al. 2011) while retaining the same degree of distribution from the 

original network. Network-level metrics (i.e. degree, betweenness, closeness and transitivity) 

were then calculated from each randomly generated graph and tested against metrics from the 

original network using a one-sample Wilcoxon signed rank test (ɑ= 0.05).  

Core use receivers (CUR) were quantified to further define highly visited areas within each 

network following the methodology of Becker et al. (2016). Centrality degree (i.e. the total 

number of ingoing/outgoing movements from a receiver) was used to rank the receivers within 

individual networks, with receivers below 50% identified as a CUR. Centrality degree was 

selected as it is comparable to other UD techniques estimating the frequency an area was used 

and would therefore compliment the results of the core-use areas found using BBMM. 

However, it is notable that while both network analyses and BBMM produce similar results for 

core-use areas, network analysis has been suggested to overestimate the extent of home ranges 

(95% UDs) (Lédée et al. 2015). 

4.2.7 Modelling patterns of space use and connectivity 

Generalised Additive Mixed Models (GAMMs) were used to test whether observed movement 

patterns (i.e. core and extent home ranges and number of edges and nodes in networks) varied 

between species, the fork length of fish and the release location of individuals. Preliminary data 

exploration was performed to assess for potential outliers, normality of the data and collinearity 

between the explanatory variables (Zuur et al. 2009). Models were fit with the transmitter ID 

as a random factor to account for the repeated-measures nature of the data. Akaike Information 

Criterion corrected for small sample sizes (AICc) was used to compare models, with the best 
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fitting model containing the lowest AICc and fewest variables (Burnham and Anderson 2002). 

All analyses and plots were created using the statistical computing program R (R Core 

Development Team 2018) and the packages igraph (Csardi and Nepusz 2006), Vtrack 

(Campbell et al. 2012), glatos (Holbrook et al. 2017), mgcv (Wood and Wood 2015) and 

ggplot2 (Wickham 2016). 

4.3 Results 

4.3.1 General findings 

We tracked 33 luderick and 20 yellowfin bream between August 2018 and May 2021, recording 

a total of 712,552 filtered detections within the JBMP array. There were 19 luderick (57%) and 

14 yellowfin bream (70%) still being detected within the array at the expected date the 

transmitters would cease functioning (i.e. ~404 days from deployment; Fig. 4.2). The number 

of days fish were detected in the array was best explained by fork length, with an increase 

observed from 120 days for fish 150 mm FL to ~220 days at 250 mm FL before plateauing 

(Fig. 4.3). However, this model had low explanatory power (R2= 0.09; Table 4.2).  It was 

notable that multiple luderick tagged in Currambene Creek had large gaps in detection histories 

between December 2019 to April 2020 (Fig. 4.2a) and this can be attributed to the loss of a 

receiver. No fish were observed to permanently leave Jervis Bay, with none detected passing 

through the gate or on external acoustic arrays; only one fish was detected on the gate receivers 

before returning to its release location (Bream 10; Fig. 4.2, A2.5). 
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Figure 4.2 Detection history over the study period for tagged a) luderick and b) yellowfin 

bream at receivers in seagrass “nurseries” (green dots), rocky reefs (brown dots) or the 

acoustic gate (yellow dots). Tag deployment is represented by the black dots, with shape 

referring to release locations; black squares = Hare Bay, black circles = Currambene Creek, 

black triangles = Moona Moona Creek, black diamonds = Carama Inlet. Crosses indicate the 

anticipated date on which battery failure occurred. Fish with no detections are not included. 
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Figure 4.3 Predictions from the best fitting generalised additive mixed model for a) the extent 

area home-range (i.e. 95% BBMM), b) the number of days detected within the array, c) the 

number of edges within a network, and d) the number of nodes visited within a network. The 

solid lines are fitted prediction curves and ribbons and error bars represent ± standard error. 
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Table 4.2 Model candidates within ±2 AICc for explaining the movement patterns of tagged 

fish. The Akaike information criterion corrected for small sample sizes (AICc), difference 

between the lowest Akaike information criterion corrected for small sample sizes (ΔAICc), 

variance explained (R2) and effective degrees of freedom (EDF) are reported for model 

comparison. Models in bold represent the most parsimonious models. 

 

4.3.2 Species home ranges 

Both luderick and yellowfin bream were estimated to have comparatively small home ranges 

(Fig. 4.4, 4.5; Table A2.1). Core-use areas were not found to correlate with predictor variables 

(Table 4.2) and ranged from 0.018 to 0.25 km2 (mean = 0.04 km2 ± 0.04; Fig. 4.4) for luderick 

and 0.02 to 0.84 km2 (mean = 0.19 km2 ± 0.21; Fig. 4.5) for yellowfin bream (Table A2.1). 

Core-use areas for both species were generally focussed on stations within seagrass habitats, 

particularly around those closest to release locations suggesting a degree of site-attachment. 

Factor ‘Species’ was found to predict the extent of home ranges, with yellowfin bream moving 

over larger areas than luderick (R2= 0.45; Table 4.2; Fig. 4.3a, 4.4, 4.5). There were also some 

Response Best model (s) df AICc ΔAIC R2 

Core area (50% BBKUD) Null (~ tag ID) 1 33.36 0 <0.01 

Extent area (95% BBKUD) ~ Species + Fork length 4 117.33 0 0.5 

 ~ Species 3 117.99 0.66 0.47 

Number of days detected ~ Fork Length 3.4 631.5 0 0.09 

 ~ Species + Fork length 4.1 631.65 0.15 0.11 

 ~ Species + Fork length + Release      

   location 

7.7 632.67 1.17 21.7 

 ~ Fork length + Release location 6 632.68 1.18 18.7 

Number of nodes visited ~ Fork length + Species +     

   Release location 

7 222.06 0 0.46 

 ~ Fork length + Release location 6 223.06 1 0.45 

Number of edges ~ Fork length + Release location 7 332.58 0 0.53 
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minor differences in the extent of home ranges between release locations, although these were 

not identified in the top model (Table 4.2). Specifically, luderick released in creeks moved over 

smaller areas (Currambene Creek mean = 0.13 km2 ± 0.07 & Moona Moona Creek mean = 

0.16 km2 ± 0.12) in comparison to those in Hare Bay (mean = 0.64 km2 ± 0.41; Fig. 4.4). In 

contrast, yellowfin bream released in Carama Inlet moved over larger areas (mean = 3.02 km2 

± 2.2) than those in Hare Bay (mean = 1.4 km2 ± 1.39; Fig. 4.5).  

4.3.3 Species networks: Habitat use and connectivity 

All metrics calculated from the observed movement networks were significantly different from 

those generated by random networks (P < 0.001). Therefore, networks quantified for all fish 

were considered non-random and used in the analyses. The number of edges and nodes in 

individual movement networks was found to differ with the size of fish and release locations 

(Table 4.2). Specifically, the number of edges and nodes in movement networks increased with 

fork length, suggesting larger fish were more mobile (Fig. 4.3c-d). Fish released in Carama 

Inlet and Hare Bay also had a higher number of edges and nodes than those from Currambene 

and Moona Moona Creeks, providing further support to the results from the BBMMs that these 

fish used larger areas (Fig. 4.3c-d). 

Fish were observed to use the seagrass habitats where they were released disproportionately 

more than other habitats. This was evident by the high frequency of use illustrated in habitat 

networks (Fig. 4.6) and both the large number of CURs and high proportion of detections at 

the station nearest to release sites in the movement networks (Fig. 4.7, A2.2-2.5). It was 

notable, however, that luderick released in Hare Bay were primarily detected in the eastern 

section of this large seagrass habitat, whereas yellowfin bream moved more widely across the 

seagrass in Hare Bay (Fig. 4.6, A2.4-2.5).  
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There were strong linkages between Hare Bay and Carama Inlet, with many fish detected 

moving in and out of this creek system (Fig. 4.7, A2.2-2.5). This included nine luderick and 

five yellowfin bream tagged in Hare Bay moving up to 2 km into Carama inlet before returning 

to the Bay (Fig. A2.2-2.5). In addition, all but one yellowfin bream released in Carama Inlet 

were observed to egress into Hare Bay, where they showed wide-ranging movements before 

returning to the creek (Fig. 4.7, A2.5). Movements into the Bay were less frequent for luderick 

released in creeks. No fish from Currambene Creek were detected moving into the Bay, 

although several fish made repeated movements within this system (Fig. 4.7, A2.3). Two 

luderick from Moona Moona Creek were detected leaving this creek system into the Bay (Fig. 

A2.4). 
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Figure 4.4. Comparison of core (50% BBMM) and extent (95% BBMM) home ranges for 

luderick tagged at different sites within Jervis Bay Marine Park.  Points represent the mean 

values and bars are ± standard deviation. Maps illustrate spatial representations of the 50% 

(filled dark polygons) and 95% utilisation distributions (filled light polygons) using 

Brownian bridge movement models for a representative individual tagged at each different 

site. Dashed areas illustrate no-take marine reserves. Habitats (e.g. seagrass and reef) are 

depicted as seen in Figure 4.1. 
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Figure 4.5. Comparison of core (50% BBMM) and extent (95% BBMM) home ranges for 

yellowfin bream tagged at different sites within Jervis Bay Marine Park. Points represent the 

mean values and bars are ± standard deviation. Maps illustrate spatial representations of the 

50% (filled dark polygons) and 95% utilisation distributions (filled light polygons) using 

Brownian bridge movement models for a representative individual tagged at each different 

site. Dashed areas illustrate no-take marine reserves. Habitats (e.g. seagrass and reef) are 

depicted as seen in Figure 4.1. 
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Figure 4.6 Species habitat networks for luderick and yellowfin bream tagged in either Hare 

Bay or creeks. In b), the left network represents luderick released in Moona Moona Creek 

and the right are luderick from Currambene Creek. The size of the grey nodes is 

representative of the number of detections recorded for an individual fish whilst habitat node 

size is proportionate to the frequency a patch type was used by fish. Edge size is scaled by the 

number of detections an individual was recorded in a patch type. 
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Individual movement networks revealed that both species frequently visited reef habitats 

adjacent to seagrass nursery areas. These reef-ward movements were predominantly observed 

for luderick and yellowfin bream released in the Hare Bay NTMR, where they moved 100’s m 

to km’s from seagrass meadows to nearby rocky reefs (Fig. 4.7, A2.2, A2.5). The two-luderick 

detected emigrating out of Moona Moona Creek also regularly visited reef habitat, repeatedly 

moving ~500 m to the reef at the mouth of this tributary (Fig. S4). There was some evidence 

of larger scale movements from seagrass habitats to reefs around the Bay, with one luderick 

and four yellowfin bream detected on reef habitats up to 10 km from release sites (Fig. A2.2, 

A2.5). Importantly, no fish were detected to permanently disperse to reef habitats and instead 

appeared to visit reefs for short periods of time before returning to the sites where they were 

released. One luderick (Luderick 24) had remarkable movement patterns during the last 10 

days that it was detected, moving up to 15 km into the North of Jervis Bay twice (Fig. A2.4).   
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Figure 4.7 Individual movement networks showing connectivity and space use in JBMP for a 

representative fish from a) luderick released in Hare Bay, b) luderick released in Currambene 

Creek, c) luderick released in Moona Moona Creek, d) yellowfin bream released in Hare Bay 

and e) yellowfin bream released in Carama Inlet. The colour of nodes illustrates the proportion of 

detections at a given receiver and edge colour shows the number of movements (i.e. 

connectivity) between receivers. Empty black circles show the non-visited receivers. The red ‘x’s 

are the release location of fish and black crosses on receivers represent core-use receivers. 

4.3.4 MPA use 

The vast majority of fish tagged within the Hare Bay NTMR (i.e. n = 33) were never detected 

outside of this reserve. Only one luderick and four yellowfin bream were detected to cross the 

reserve boundary, where they mostly spent short durations (1 to 2 days) outside the NTMR (Fig. 

A2.1, A2.2, A2.5). However, the one luderick (Luderick 5) was consistently detected outside of 

the NTMR over a 3-month period before returning to Hare Bay (Fig. A2.1). Two yellowfin bream 

moved into a different NTMR, moving from Hare Bay NTMR to the Groper Coast NTMR (Fig 

A2.5).  

4.4 Discussion 

Assessing the habitat use and movement of juvenile fish will lead to a more sophisticated 

understanding of fish-habitat relationships and seascape connectivity. This study offers novel 

insights into the movement and connectivity patterns of juvenile fish belonging to two targeted 

species, luderick (Girella tricuspidata) and yellowfin bream (Acanthopagrus australis) in a 

temperate Marine Park. Although juveniles of both species exhibited site-attachment to seagrass 

habitats as we had predicted, many made wide-ranging movements across large areas of seagrass 

and to adjacent habitats and there was evidence of larger fish having increased mobility. As 

predicted, there was strong connectivity between seagrass and adjacent rocky reef habitats, with a 
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higher number of fish detected moving to nearby reefs than those far away. However, these reef-

ward movements were unexpectedly not unidirectional ontogenetic habitat shifts, and fish instead 

made frequent visits to adjacent reefs before returning to seagrass. There was also no observed 

export of individuals to populations along the open coast, with no fish recorded leaving the JBMP 

array. Overall, these findings have important implications for the definition of nursery areas and 

provide quantitative data to support the inferred connectivity of juvenile fish from seagrass habitats 

to adjacent reefs made by previous observational studies (Dorenbosch et al. 2005, Olds et al. 2012, 

Rees et al. 2018, Swadling et al. 2019; Berkström et al. 2020). 

Numerous fish species perform ontogenetic habitat shifts connecting juvenile populations in 

vegetated nearshore habitats to adult populations on reefs, yet the spatiotemporal scale of this 

dispersal has remained unclear (Pittman and McAlpine 2003, Sambrook et al. 2019). We provide 

some of the first telemetry data demonstrating that juvenile fish move from seagrass to rocky reef 

habitats across relatively small spatial scales (100’s m to km’s). Contrary to expectations however, 

these seagrass-reef movements were not permanent, and fish made repeated short visits to reefs 

before returning to the seagrass areas from which they were released. When considering that larger 

individuals appeared to be more mobile, it is possible that as fish grow, they perform exploratory 

movements outside of their normal home-ranges to adjacent reefs prior to permanently dispersing. 

This “area expansion” behaviour where juvenile fish move to adult habitats and then return to 

nursery areas has been previously observed in telemetry studies (Childs et al. 2008, Huijbers et al. 

2015, Murray et al. 2018, Stamp et al. 2021). For example, Murray et al. (2018) reported that 

juvenile Leerfish (Lichia amia) tagged in South Africa routinely made excursions out of estuaries 

to open coastal areas and attributed this to exploratory behaviour before a permanent ontogenetic 

habitat shift. Such a life-history strategy would allow later stage juveniles to access the resources 
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they require without the costs of permanently dispersing. Alternatively, the lack of permanent 

dispersal over the timescale of the current study (~404 days) may also suggest that many fish can 

remain in seagrass as adults and fewer fish perform explicit ontogenetic shifts to reef habitats than 

previously theorised. Indeed, this is supported by the larger mature yellowfin bream tagged in this 

study showing site-fidelity to seagrass habitats and previous observations of adults of both species 

being present in seagrass in Jervis Bay (Kiggins et al. 2018, Rees et al. 2018). It would be 

significant if few individuals permanently disperse to adult populations on reefs because it would 

suggest that these species may exist as a metapopulation, with a large proportion being a non-

dispersing subpopulation. Seagrass patches have also been identified to play an important role as 

habitat at different life stages (e.g. both juvenile and adults) for other targeted reef-associated fish 

species in tropical seascapes (Beets et al. 2003; Hitt et al. 2011, Honda et al. 2016, Ebrahim et al. 

2020). For example, Ebrahim et al. (2020) reported that adult shoemaker spinefoot (Siganus sutor) 

in the Seychelles display small movements, focussed mainly on mosaics of seagrass and coral. 

This was significant, because previous studies had identified seagrass only being important for the 

species as nursery area and not habitat for adults (Gell & Whittington, 2002, Kimerei et al. 2011).  

Identifying nursery habitat is essential for conservation and management strategies, but current 

definitions of nurseries may be too static as they do not incorporate seascape connectivity (Sheaves 

et al. 2006, Nagelkerken et al. 2015, Sheaves et al. 2015, Litvin et al. 2018). In the current study, 

we reveal that whilst both juvenile luderick and yellowfin bream tagged at several sites in Jervis 

Bay exhibit strong site-attachment to specific areas of seagrass habitat, they can show wide-

ranging movements and connect a mosaic of different patch types when in close proximity. For 

instance, fish tracked in the Hare Bay NTMR frequently moved across large areas of seagrass, into 

creeks (i.e. Carama Inlet) and directly adjacent reefs. We therefore propose that juvenile fish are 



126 
 

not bound to certain patch types (e.g. seagrass) and that they can use multiple patches when they 

are spatially connected to access food or shelter (i.e. landscape supplementation; Dunning et al. 

1992). Furthermore, the use of multiple patch types as nursery areas has important ecological 

consequences as juveniles could act as an important link between patches by transfering nurtients 

(Lundberg & Moberg 2003, Heck et al. 2008) .These findings suggest that the current framework 

for defining nursery habitats as discrete or homogenous patch types is too simplistic, and that the 

nursery-role concept should be refined to view nurseries as a combination of patch types that 

juvenile fish regularly use and visit during juvenile and subadult life stages. This “seascape 

nursery” approach offers a more realistic definition of nursery areas and would assist resource 

managers to identify appropriate areas for management actions (Nagelkerken et al. 2015, Sheaves 

et al. 2015, Pittman et al. 2021).  

The site-fidelity of fish released in an existing NTMR in the current study meant that few 

individuals were detected crossing reserve boundaries. This finding adds to the growing literature 

demonstrating that many fishes have small home-ranges and remain inside of NTMRs over 

relatively long time periods (Pittman et al. 2014, Harasti et al. 2015, Lee et al. 2015, Legare et al. 

2015, Aspillaga et al. 2016, Ferguson et al. 2016, Kendall et al. 2017, Novak et al. 2020). Strong 

retention within NTMRs have been previously observed for adult luderick in JBMP (Ferguson et 

al. 2013, Ferguson et al. 2016) and multiple species belonging to Sparidae in Australia (Harasti et 

al. 2015) and abroad (Parsons et al. 2003, March et al. 2011, La Mesa et al. 2013, Abecasis et al. 

2015). For example, Harasti et al. (2015) reported that juvenile and adult pink snapper (Sparidae: 

Chrysophys auratus) displayed site fidelity to a NTMR in NSW for up to 1249 days. While five 

fish in the current study moved across reserve boundaries, all returned to the NTMR where they 

were released after spending between 1 day to 3 months in fished waters. These movements 
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provide evidence of spill-over from the NTMR into adjacent fished populations which can 

influence biodiversity, productivity and ecological functioning (McClanahan and Mangi 2000, 

Halpern et al. 2009, Weigel et al. 2014, Di Lorenzo et al. 2020). 

The utilisation of multiple patch types and the gradual increase in species home range with size 

has important yet rarely considered implications for the design of MPAs (Carr et al. 2017, Balbar 

and Metaxas 2019). Currently, there are few examples where connectivity and ontogenetic 

habitat shifts are considered in spatial conservation strategies (but see Weeks 2017, Balbar and 

Metaxas 2019, Friesen et al. 2019), which is undoubtedly due to the paucity of empirical data on 

the movement of fishes across the seascape at various life-stages. For instance, Balbar and 

Metaxas (2019) reported that for 746 MPAs located across six countries, only 11% considered 

connectivity as an ecological criterion by managers designing them. In the face of limited 

information, MPAs are often designed to protect a portion of the patch types in an area (i.e. 

habitat representation) (Sala et al. 2002, Airamé et al. 2003, Rondinini 2011, Hernandez et al. 

2021), with little understanding of how they are connected through processes such as animal 

movement. A shift in the perception of nursery areas from individual patch types to a seascape 

mosaic as advocated by our findings, and those from previous studies (Pittman et al. 2007, 

Sheaves et al. 2006, Nagelkerken et al. 2015, James et al. 2019; Cheminée et al. 2021), highlight 

that simply representing patches within MPAs may be misguided. Instead, it may be more 

appropriate for MPA design to protect areas where there are different patch types in close 

proximity. This strategy should incorporate connectivity within MPA boundaries and maximise 

conservation benefits by protecting a large proportion of the population during their movements. 

It would also safeguard key fish habitats (e.g. seagrasses, mangroves, saltmarshes) that are 

currently under pressure globally (Waycott et al. 2009, Li et al. 2018, Dunic et al. 2021). Similar 
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recommendations have been made in previous studies (Pittman et al. 2007; McCook et al. 2009, 

Olds et al. 2016), including recently in a set of “rules of thumb” for designing MPA networks 

that incorporate connectivity outlined by the International Union for Conservation of Nature 

(IUCN) (Lausche et al. 2021) 

Understanding variation in movement patterns and connectivity at the species and individual level 

has been gaining increased attention in both terrestrial and marine biomes (Taylor et al. 2017a, 

Andrzejaczek et al. 2020, Dwyer et al. 2020, Hertel et al. 2020, Hilty et al. 2020, Shaw 2020). In 

the current study, there were some differences in species movements, with yellowfin bream having 

larger home-ranges than luderick. We also found substantial individual variation in movement 

patterns, which was largely driven by release location. Specifically, fish tagged in Currambene 

and Moona Moona Creek had restricted movements and smaller networks, due to the limited 

number of individuals moving out of these creeks and into Jervis Bay. It is worth noting that we 

may have underestimated the space-use of individuals within these creek systems, as fish could 

have moved upstream and not been detected. Our findings also indicate that larger individuals may 

be more mobile, and this is a common trend reported throughout the literature for various species 

(Kramer and Chapman 1999, Nash et al. 2015). Future research is required to better understand 

the processes underpinning the drivers of fish movements and causes of individual variation due 

to its importance in population dynamics and informing management and conservation strategies. 

Furthermore, information on the traits of different species, including their movements, also assist 

the design of spatial management strategies to reach varying conservation objectives (Miatta et al. 

2020). 

There are several reasons why some fish were not detected throughout the entire study period. 

Firstly, the detection range of receivers for V7 transmitters in seagrass patches is low, particularly 
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when fish are ensconced in seagrass (Swadling et al. 2020). Indeed, this may explain why smaller 

fish were detected on fewer days, because these individuals may be more likely to exhibit cryptic 

behaviour and shelter amongst the seagrass fronds. It is also possible that fish were present within 

the array or emigrated to the open coast without being detected, but it seems improbable because 

the preferred habitats of the study species were well covered by receivers and no fish were detected 

on external arrays. Using higher powered tags would increase the detection range and allow any 

diurnal patterns in juvenile movements to be elucidated, as we were unable to test for this due to 

poor detection ranges at night (Swadling et al. 2020). However, higher power comes with an 

increase in tag size, which would not be suitable for tracking small juvenile fish. Another 

explanation for the loss of tags in the array is that fish may have experienced natural mortality, 

such as predation. For example, the abrupt changes in movement patterns made over the final 10-

day detection period for Luderick 24 was probably due to a predation event. It would be worth 

future studies tracking juvenile fish to adopt tags with predation sensors (i.e. “predation tags”) to 

provide an estimate on the frequency of these events (Weinz et al. 2020). Furthermore, mortality 

due to fishing was predicted to be low as there is minimal illegal fishing in the Hare Bay NTMR 

and the study animals were generally under the legal size for the species.  

Our results demonstrate that juveniles belonging to two co-occurring species which are important 

in both commercial and recreational fisheries show site-attachment to seagrass habitats, but 

frequently move between different areas such as creeks and rocky reefs. The routine use of multiple 

patch types by juvenile fish has important ramifications for the nursery-role concept, highlighting 

the need to move away from defining nursery areas as discrete patch types and instead consider 

them as mosaics of functionally connected patches within the seascape (i.e. seascape nurseries). 

Although fish were detected moving to rocky reefs adjacent to seagrass at greater rates than to 
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reefs further away, these movements did not represent a permanent dispersal to adult populations, 

with many individuals making repeated visits to reefs. These movements to reef are thought to be 

driven by exploratory movements as fish grow, which would correspond to changing resource 

requirements, maturation, and reduced predation risk (Kimirei et al. 2013, Grol et al. 2014). 

Overall, gaining a more quantitative understanding on the movement patterns and connectivity of 

juvenile fish across the seascape, including habitat-use and the spatiotemporal scale of ontogenetic 

habitat shifts, is important for improving knowledge on species-habitat relationships and to better 

inform resource managers and assist the design of sound and effective MPAs.  
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Chapter 5: Assessing generality in movement patterns for a targeted 

fish: home range and residency of Luderick (Girella tricuspidata) on 

open coastal reefs 

 

This chapter has been written to be submitted to Fisheries Research. The receivers in the 

Bendalong array were scheduled to have their final download in mid-2021, however this was 

delayed due by COVID-19 restrictions. Despite this, the data in this chapter is of a considerable 

time scale (~19 months) and the remaining data will be collected and analysed before this chapter 

is submitted for publication. 

 

 

 

Plate 5.1 Commuting to our study site on the south side of Bendalong Point for a day of fish 

tagging.  
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5.1 Introduction 

Understanding generalities in patterns and processes is fundamental in ecology as it enables the 

prediction of relationships across systems (Lawton, 1999; Underwood et al. 2000; Knapp et al. 

2004). However, the tradition of single-site experiments has largely hindered our ability to 

conceive generalisations of ecological phenomena, as this requires repeated testing and the 

production of consistent, predictable outcomes (Borer et al. 2014). Acoustic telemetry is rapidly 

developing and is becoming a popular method to quantify the spatial and behavioural ecology of 

marine fauna (Donaldson et al. 2014; Hussey et al. 2015), yet there are few examples where 

repeated tests have been conducted to assess the generality of species movements across various 

systems. Instead, generalities of movement patterns are usually founded from meta-analyses (e.g. 

Green et al. 2015, Nash et al. 2015), but this may be misguiding because it means they are 

developed from studies of different species or contrasting methodological designs (e.g. acoustic 

arrays of differing configurations; Gates, 2002; Gurevitch and Mengersen, 2010). Gaining a better 

grasp on the drivers and scales of species movements in varying environmental contexts through 

replicated studies is essential to understand whether tracking data can be used to confidently guide 

the design of conservation and management strategies (Kramer and Chapman, 1999; Grüss et al. 

2011).  

Abiotic factors can be key drivers in the movement of fish across several temporal scales, including 

stochastic disturbances like weather events, or across days, seasons, and years (Meyer et al. 2007; 

Childs et al. 2008; Payne et al. 2013; Aspillaga et al. 2016; Bacheler et al. 2019). Such abiotic 

factors vary between patch types, which can result in intraspecific variation in the spatial ecology 

of species in different spatial contexts (Schlaff et al. 2014; Bradley et al. 2020). For instance, the 

movement of fish in estuaries have been linked to changes in salinity, turbidity and temperature 
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(Childs et al. 2008; Payne et al. 2013; Payne et al. 2015) whereas oceanic conditions such as swell 

or storms may have a larger influence on fish along the open coast (Stocks et al. 2015; Aspillaga 

et al. 2016; Bacheler et al. 2019). Few studies, however, have been replicated for species across 

different environmental systems and this represents a key challenge for developing generalisations 

in their response to various abiotic factors. Another challenge for developing generalisations in 

species spatial ecology are intrapopulation differences in movement patterns that are independent 

of environmental context (i.e. personalities) (Harrison et al. 2015, del Mar Delgado et al. 2018, 

Villegas-Rios et al. 2018, Papastamatiou et al. 2022). Many species do show repeatable movement 

patterns that can be placed within collective behavioural traits even despite differences due to 

individual fish movements (Kessel et al. 2016, Ferguson et al. 2013, Taylor et al. 2018, Stamp et 

al. 2021, Aspillaga et al. 2021). For example, many species of fish exhibit partial migration, where 

a fraction of the population perform migrations, but the remainder show residency to an area 

(Chapman et al. 2012, Gray et al. 2012, Papastamatiou et al. 2013, Childs et al. 2015, Winter et al. 

2021) 

In this study, we explore movement patterns using luderick (Girella tricuspidata; Quoy & 

Gaimard) as a study species to determine if reliable generalisations can be formulated. Luderick 

are a predominantly herbivorous Girellid commonly found on rocky reefs and in estuaries across 

south-eastern Australia and northern New Zealand where they are targeted in commercial, 

recreational and indigenous fisheries (Kingsford et al. 1991; Curley et al. 2013; Schnierer and 

Egan, 2016). Luderick movement patterns have been studied (Gray et al. 2012; Ferguson et al. 

2013; Cadiou, 2016; Ferguson et al. 2016), but the generality of their spatial ecology is yet to be 

determined. There is a paucity of movement data for luderick on coastal rocky reefs along wave 

dominated coastlines, despite these areas being a key habitat for adults (Kingsford, 2002). Acoustic 
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tracking of both adult and juvenile luderick in a coastal embayment (i.e. Jervis Bay) has 

demonstrated the species to be highly site-attached, with fish remaining at reefs and seagrass areas 

for substantial time periods, with some short-term (~1-3 days) movements to adjacent areas before 

returning to release locations (Ferguson et al. 2013; Ferguson et al. 2016; Chapter 4). Adult fish 

within this coastal embayment also showed diurnal movement patterns where they were active 

during the day and sheltered at night. This contrasts with the findings of research quantifying 

luderick movements within three large estuaries in NSW, where fish were observed to show little 

residency and moved widely around the estuarine system or egressed to the open coast (Cadiou, 

2016). Furthermore, changes in the species movement behaviour due to prevailing meteorological 

conditions remains unclear, although it has been speculated that they may seek shelter in storm 

events (Ferguson et al. 2013). In this study, we predicted that luderick on open coast rocky reefs 

would show similar movements to those previously observed within a coastal embayment and 

exhibit a high degree of site-attachment during ‘normal’ sea conditions and show distinct diurnal 

patterns of movement. This behaviour would then be punctuated by sheltering in calmer or 

protected areas during storm conditions. We propose this behaviour will be different from that 

observed in estuaries where substantial changes in physico-chemical conditions may effectively 

force fish to be more mobile and egress from estuaries to disperse to other areas (Cadiou, 2016).   

5.2 Materials and methods  

5.2.1 Study site 

This study was performed along a ~12 km stretch of wave exposed coastline in Bendalong, south-

eastern NSW, Australia (35.2191° S, 150.4864° E; Fig. 5.1). The coastline consists of intertidal 

and subtidal rocky reefs which are separated by expanses of soft sediments (Fig. 5.1). The study 
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area is dominated by oceanic conditions with minimal estuarine input and experiences relatively 

stable water quality.   

An array of 10 VR2W acoustic receivers (Innovsea, NS, Canada) were deployed on reefs across 

the study area in July 2018. The receivers were deployed on, or directly adjacent to, rocky reefs at 

depths ranging from 5 – 13 m. The range of the receivers was assumed to be 300 m based on 

previous research from nearby arrays on similar rocky reefs (i.e. Jervis Bay; Ferguson et al. 2013). 

The moorings were positioned no more than 250 m from the shoreline and were separated by a 

minimum of 1,000 m or a physical feature (e.g. headlands, bomboras or shallow reefs which would 

block acoustic signals between receivers). This receiver spacing is comparable to the array located 

within Jervis Bay Marine Park, where luderick have been tracked previously (Ferguson et al. 2013, 

Ferguson et al. 2016) and should therefore allow a comparison of the species movement patterns 

between systems. Receiver moorings comprised a section of railway line (60-100 kg) connected 

to a subsurface polystyrene buoy with a rope. All receivers were cable tied to the rope with the 

hydrophone orientated in an upright position, a minimum of 1.5 m from the seabed and 1 m below 

the subsurface buoy. The receivers were downloaded, and the moorings checked in June 2019 and 

March 2020. It is noteworthy that there are several acoustic receiver arrays adjacent to the study 

site that form the Australian Animal Tagging and Monitoring System (AATAMS, see 

https://animaltracking.aodn.org.au/) along south-eastern Australia. Therefore, if fish tagged in the 

current study moved to the north or south, they should theoretically be detected by these arrays.  

https://animaltracking.aodn.org.au/


151 
 

 

Figure 5.1 Map of the study area (Bendalong region, NSW, Australia) showing the configuration 

of the acoustic receivers (black dots) deployed over the 18-month study period. Circles 

surrounding each receiver illustrate a 300 m detection area. Areas of rocky reef (brown) and 

unconsolidated soft-sediment (light grey) are depicted.  
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5.2.2 Fish collection and tagging 

A total of 10 adult luderick (Girella tricuspidata) were captured and internally tagged with Vemco 

V9-2H coded transmitters (27.5 mm length, 9 mm diameter, 2.7 g in water, battery life 912 days) 

possessing a nominal delay of 120-180 s. Luderick were caught in August and September of 2018 

from rock platforms at depths < 4 m using rod and line, with a circle hook baited with Ulva spp. 

All fish were larger than the legal-size limit (270 mm for NSW waters) and were likely to be 

sexually mature, with individuals ranging from 275 mm to 350 mm fork length (Table A3.1; Gray 

et al. 2012). Fish were captured and tagged in the centre of the array (i.e. B7 and B8; Table 5.1; 

Fig. 5.1) so that if any fish moved in a north or south direction, they would have a high probability 

of being detected. The surgical procedure in this study followed an established technique used 

effectively in previous studies (Chapter 4; Ferguson et al. 2013; Fetterplace et al. 2016). Upon 

capture, fish were placed in an aerated 50 L holding tank for a minimum of 15 mins to recover and 

were visually examined for general health and condition. Fish were then anaesthetized using 60 

mg L-1 Aqui-S® solution before being transferred to a wetted cradle for surgery. Transmitters were 

inserted through a 1cm incision in the ventral surface of the fish toward the rear of the peritoneal 

cavity. The incision was closed with two dissolvable stitches tied with a double surgeon’s knot. 

All surgical equipment and acoustic transmitters were submerged in povidone-iodine antiseptic 

(Betadine) prior to insertion to prevent infection. Post-surgery, fish were transferred to an 

oxygenated holding tank with 50 L of fresh seawater. Ram ventilation was also used to increase 

water flow over the gills and assist in recovery. Fish were then monitored until recovery (~30 

minutes) before release. All fish recovered from surgery and were released at their point of capture.  
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5.2.3 Data analysis 

Tagged fish were passively tracked from August 2018 through to March 2020 (~19 months; Table 

A3.1). Fish 1 and 2 had a limited number of detections (< 20) and were excluded from subsequent 

analyses (Table 5.1; Fig. 5.2). The residency of the tagged luderick was estimated using a residency 

index (IR) (Afonso et al. 2008; Ferguson et al. 2013). This was calculated for each individual as 

the total number of days a fish was detected divided by the total possible number of days the fish 

could be detected (i.e. period between the release date and the last day detected for each individual) 

multiplied by 100. IR was determined for (a) the whole array (hereafter referred to as IR – array), 

and (b) each receiver station to identify medium and small-scale residency patterns. Low IR values 

represented fish being detected on very few days whereas absolute residency (IR = 100) meant fish 

were detected on every possible day. The number of stations that individuals visited per week and 

per month was quantified to describe the movement patterns and site fidelity of luderick between 

reefs. We also determined the Minimum Linear Dispersal (MLD) for each fish as the distance 

between the release location and the furthest station visited.  

Generalised linear mixed models (GLMMs) were applied to test for relationships between the 

movements of luderick and environmental variables. The movement metrics used in the analyses 

were the daily presence/absence of fish in the array, the weekly number of stations visited and the 

weekly MLD for each fish. Five environmental variables were included in the analyses and 

included wave height, wave direction, wave period, sea temperature and tidal range. Swell 

variables were collected from the Batemans Bay wave buoy and tidal data was collected from a 

gauge in Batemans Bay, both operated by the Manly hydraulics laboratory 

(https://www.mhl.nsw.gov.au). Swell and tide variables were collected hourly and averaged to 

obtain daily and weekly means. Preliminary data exploration was performed using the methods 

https://www.mhl.nsw.gov.au/
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outlined in Zuur et al. (2009). Collinearity was evident between swell period and direction, with 

southerly swells having higher periods. We therefore excluded swell period from the subsequent 

analyses. All continuous predictor variables were standardised to allow them to be compared on 

the same scale by subtracting the sample mean and dividing by the standard deviation. GLMMs 

for the daily presence/absence of luderick were conducted using a binomial distribution and the 

weekly number of stations visited was modelled with a Poisson distribution. A zero-inflated 

negative binomial distribution was used to model the MLD travelled by fish per week to account 

for apparent overdispersion and zero-inflation in these data (Brooks et al. 2017). Model fitting was 

conducted using the ‘lme4’ (Bates et al. 2007) and ‘glmmTMB’ (Magnusson et al. 2017) package 

in R version 3.6.3 (R Core Development Team, 2018). We used Akaike’s information criterion 

corrected for small sample sizes (AICc) and differences in AICc (ΔAICc) to evaluate support 

among all possible candidate models (Burnham and Anderson, 2002). The best model was the one 

with the lowest AICc and models within ±2 ΔAICc were considered to have reasonable support 

(Burnham and Anderson, 2002). The proportion of variance explained was calculated for the fixed 

effects (marginal R2) and the combined fixed and random effects (conditional R2) (Nakagawa, 

2014). 

The home range of each fish was estimated using the Brownian bridge movement model (BBMM) 

to calculate utilization distributions (UD). The BBMM was selected in preference to other methods 

that quantify space-use (e.g. fixed kernels) as it considers the time-ordered characteristic of 

telemetry data by modelling the probability of an animal being located in an area based on its start 

and end locations, the time elapsed between detections and the speed of movements (Bullard, 

1991; Horne et al. 2007). The location of individuals for the BBMM were estimated using a mean 

position algorithm to ascertain centres of activity (COA) following Simpfendorfer et al. (2002). 
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BBMM estimation required two smoothing parameters to be calculated. Firstly, the Brownian 

motion variance parameter (σ2
m) which describes the mobility of the animal and the distance it can 

travel from the line between two successive points. The ‘liker’ function was employed to estimate 

σ2
m using the maximum likelihood approach as per Horne et al. (2007). The second smoothing 

parameter related to the location error (δ) was based on the receiver detection range estimated at 

300 m. Fish home ranges were calculated as 50% UDs (core home range) and 95% UDs (extent 

of home range) using the ‘kernelbb’ function in the R package ‘adehabitatHR’ (Calenge, 2006). 

UDs were not calculated for Fish 1 and Fish 2 due to their limited number of detections (Table 

5.1). Spearman rank correlations were used to test for relationships between the length of fish and 

IR-array, the number of stations visited (per week, month and total), the MLD and the 50% and 

95% UDs. Differences in the movement pattern of fish between day and night were investigated 

using a Rayleigh’s Z test, which determined if there was a non-random pattern in the number of 

detections over diel periods (i.e. 24 hours).  

5.3 Results 

5.3.1 General detection patterns 

All tagged fish were detected within the array for at least a month (Table A3.1; Fig. 5.2). A total 

of 22,387 acoustic detections of luderick were recorded, with the number of detections for fish 

ranging from 2 (Fish 2) to 15 948 (Fish 5) (Table 5.1). Five fish (50%) were detected within the 

array for the entire study period (i.e. 589 days) (Table A3.1; Fig. 5.1). It was assumed that Fish 3 

remained within the array, despite long periods of absence as this fish likely frequented areas with 

poor receiver coverage (Fig. 5.2). Fish with early absences from the array had their final detections 

between October 2018 and February 2019 which equates to 43 - 190 days post tagging (Table 

A3.1; Fig. 5.2). Five fish were not detected within the array for periods greater than one month 
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before reappearing (Fig. 5.2). No fish with early absences from the array were detected to leave 

the study area (i.e. movement north or south out of the array) or on any receivers along the NSW 

coastline forming the AATAMS network.  

Table 5.1 Summary data for the 10 tagged luderick (Girella tricuspidata) monitored in the 

Bendalong array including the movements between reefs, residency to the array and the activity 

spaces for each fish. IR – array: residency index to the array, MLD: Minimum linear distance 

between release point and the farthest receiver an individual was detected, 95% and 50% UD: 

utilisation distributions (UDs) using Brownian bridge movement models.   

          Mean no. 

stations visited 

Fish # Days 

detected 

Station 

nearest 

release 

Total no. 

detections 

No. 

stations 

visited 

Furthest 

station 

visited 

IR - 

array 

MLD 

(km) 

95% UD 

(km2) 

50% UD 

(km2) 

Per 

week 

Per 

month 

1 4 B8 13 2 B7 2.1 0.513 - - - - 

2 2 B8 2 1 B8 2.25 0.25 - - - - 

3 30 B8 139 3 B6 5 0.85 1.62 0.37 1.2 1.62 

4 42 B7 158 4 B5 36.19 1.1 2.11 0.42 1.13 2.75 

5 433 B7 15948 1 B7 77.6 0.17 1.15 0.25 1 1 

6 223 B7 3557 1 B6 39.86 0.47 1.18 0.25 1 1.17 

7 198 B7 741 3 B5 31.3 1.1 2.21 0.59 1.3 2.67 

8 17 B7 315 1 B7 39.54 0.17 1.15 0.25 1 1 

9 33 B7 1136 1 B7 71.74 0.17 1.15 0.25 1 1 

10 98 B7 378 3 B5 16.937 1.1 2.09 0.52 1.1 2.25 
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5.3.2 Residency and Site fidelity 

Luderick detections occurred across four stations in the centre of the array (B5-B8) which covered 

a ~3 km stretch of coastline (Fig. 5.2). Residency to the array was variable between individuals 

and IR-array ranged from 2.1 to 77.6% (Table 5.1). Fish generally exhibited the greatest residency 

(IR) to the receiver nearest to their point of release (Fig. 5.3). The exceptions were Fish 3, which 

had a slightly greater residency at B7 compared to B8, and Fish 10 which had its greatest residency 

at both B7 and B5 (Fig. 5.3). It was notable, however, that the residency indices for these fish were 

low at each station (i.e. IR < 7%) (Fig. 5.3). Three fish (5, 8 and 9) were only detected on stations 

closest to their point of release, being detected on up to 77.6% of days they were tracked (Fig. 5.2, 

5.3).  

Half of the tagged luderick moved to adjacent stations before returning to release reefs (Table 5.1; 

Fig. 5.2). On average, individuals visited less than 1.5 stations per week and only four fish visited 

over 2 stations per month (Table 5.1). The average Minimum Linear Dispersal (MLD) was 0.59 

km (± 0.41 km SD) and ranged from 0.17 to 1.1 km (Table 5.1). Most movements between stations 

occurred around Bendalong point (i.e. B6 to B8) which is connected by sections of continuous 

reef. Three individuals, however, performed movements across ~ 500 m of a mosaic of reef and 

sand patches to B5 before moving back to their release reef. The IR, number of stations visited and 

MLD were not found to be significantly correlated to the fork length of the tagged luderick 

(Spearman correlation: rho = 0.05 – 0.47, P > 0.05). 
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Figure 5.2 Timing and location of detections for the 10 tagged luderick (Girella tricuspidata). Black diamonds denote the date fish 

were tagged (August and September 2018) and the final download of the acoustic receivers (March 2020). Please see Figure 5.1 for the 

spatial location of each station.  
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Figure 5.3 Residency index by station for 8 luderick (Girella tricuspidata) passively tracked in the Bendalong receiver array. The size 

of the filled circles and numbers illustrate the IR values at each station. Reef patches are coloured in brown. Empty circles depict the 

location of acoustic receiver stations and CS* represents where each fish was captured and released. 
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5.3.3 Space-use 

Luderick were estimated to have relatively small home ranges, with core areas (50% UD) varying 

between 0.25-0.59 km2 (mean = 0.36 km2) and extent home ranges (95% UD) from 1.15-2.21 km2 

(mean = 1.5 km2) (Table 5.2; Fig. 5.4). Core areas were centered over the station nearest to release 

for half of the fish (n = 5). Fish 7 and 10 had the largest core areas that covered three stations (i.e. 

B5-B7) (Fig. 5.4). It was notable that while Fish 4 had a relatively small core area, it had the largest 

home range extent which encompassed four stations (B5-B8) (Fig. 5.4). No significant correlations 

were found between the 50% and 95% UDs and the length of the fish (Spearman correlation: rho 

= 0.4 and 0.22, P > 0.05) 

5.3.4 Environmental variables and diel patterns 

We found clear influences of environmental variables on the daily presence/absence of tagged 

luderick within the array, with model selection showing the greatest support (i.e. no other models 

within ±2 AICc) for the full model containing all fixed effects (Table 5.2). Swell variables were 

the most important predictors for the daily occurrence of luderick, with fish having a significantly 

greater chance of being absent within the array on days with higher swell heights (estimate = -

0.448, SE = 0.054, z = -8.241, P <0.0001) and swell coming from a southerly direction (estimate 

= -0.215, SE = 0.049, z = -4.381, P <0.0001). Fish were also significantly more likely to be absent 

on days with higher tide heights (estimate = -0.139, SE = 0.05, z = -2.739, P <0.005). Further, fish 

had a significantly greater chance of being present within the array in warmer sea temperatures 

(estimate = 0.194, SE = 0.05, z = 3.864, P <0.0005). However, these fixed effects only explained 

a small portion of the variation in the data (R2m = 0.07) whereas the random effect of Fish ID 

accounted for 33% of the variation (i.e. R2c - R2m = 0.33; Table 5.2). Environmental variables 
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were not found to affect the number of stations visited per week or the MLD, as the null models 

had the lowest AICc for these movement metrics (Table 5.2). 

There was a strong non-random pattern in the detections of luderick over diel cycles (Rayleigh’s 

z-test: P < 0.05), with greater detections recorded during the day than compared to night (Fig. 5.5). 

The initial and final detections were associated with sunrise (0600 h) and sunset (1800 h) for most 

fish (Fig. 5.5). Only one fish (Fish 7) was detected consistently across all hours of the day 

(Rayleigh’s z-test: P = 0.94; Fig. 5.5). 
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Figure 5.4 Spatial representation of the 50% and 95% utilisation distributions (UD) for 8 luderick (Girella tricuspidata) calculated 

using Brownian bridge movement models.   95% UD (extent of home range);    50% UD (core home range); + Centres of activity 

(COA) estimates, CS* capture site,  station locations. 
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Table 5.2 Top three candidate models based on AICc for the Generalized Linear Mixed Models 

(GLMMs) exploring relationships between the daily presence/absence of fish, weekly number of 

stations visited and minimum linear dispersal. * denotes model with a zero-inflated negative 

binomial distribution. R2m represents the marginal R2 and R2c is the conditional R2. All models 

include fish ID as a random effect.  

Response Model(s) AICc ΔAICc R2m R2c 

Daily 

presence/absence 

~ Swell height + Swell direction + Sea 

temperature + Tide 

2855.2 0 0.07 0.40 

 ~ Swell height + Swell direction + Sea 

temperature 

2861.3 6.08 0.06 0.40 

 ~ Swell height + Swell direction + Tide 2867.7 12.55 0.06 0.38 

Number of stations 

visited per week  

Null model 780.6 0 - 0.02 

 ~ Swell height 782.6 2 0 0.02 

 ~ Swell direction 782.6 2 0 0.02 

Minimum Linear 

Dispersal * 

Null model 1132.6 0 - 0.69 

 ~  Tide 1133.6 1 0 0.69 

 ~ Swell direction 1133.9 1.3 0 0.69 
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Figure 5.5 The mean number of detections for each hour of the day for 8 tagged luderick (Girella 

tricuspidata) within the Bendalong array. Solid dots represent the mean hourly value and error 

bars are ± standard deviation. Shading illustrates nocturnal hours between 18:00 and 06:00. 

5.4 Discussion 

5.4.1 Generalities in luderick movement 

As predicted, the site-attachment, residency and diurnal activity patterns observed in this study are 

strikingly similar to the movements reported for luderick within a coastal embayment (Ferguson 

et al. 2013; Ferguson et al. 2016) yet differ from the highly mobile fish acoustically tracked in 

estuaries (Cadiou, 2016). For instance, Ferguson et al. (2016) reported similar movements for 

luderick across several locations in Jervis Bay with individuals having small home ranges and 

remaining on capture reefs between 43 to 96% of days over an eleven-month period. Luderick in 

Jervis Bay also commonly moved to adjacent reefs before returning to release locations, however, 

these inter-reef movements were more frequent and occurred across broader scales (i.e. up to 10 

km) than those observed in the current study. In contrast, previous research tracking luderick in 
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NSW estuaries reported that individuals were highly mobile, performing large downstream 

migrations (up to 30 km) or egressing from the estuaries to move along the open coast (Cadiou, 

2016). These large-scale movements in estuaries were in response to high flow conditions and low 

salinity associated with periods of heavy rainfall. We therefore contend that there are generalities 

in the movement behaviour of luderick on reefs in coastal systems, where fish exhibit higher 

residency and site-attachment in comparison to estuaries due to greater oceanic inputs and much 

more stable physico-chemical conditions. 

The high residency and small home ranges observed for luderick on coastal reefs are also 

comparable to those of other temperate reef-associated fishes (Afonso et al. 2008; Harasti et al. 

2015; Lee et al. 2015; Stocks et al. 2015; Aspillaga et al. 2016; Lowry et al. 2017). These restricted 

movements across a small area suggest that small sections of reef provide sufficient resources and 

that individuals have a degree of habitat familiarity. Such habitat familiarity would correspond 

with fitness advantages by increasing the success of predator evasion and foraging efficiency 

(Brown, 2001; Warburton, 2003; Forrester and Steele, 2004). Furthermore, it is also possible that 

fish exhibited residency to capture reefs because they contained a greater amount of food. For 

example, luderick have been reported to preferentially select reefs that contain a high coverage of 

Ulva spp. (Ferguson et al. 2015), however more research is required to determine whether the 

home ranges of luderick correlate to algal coverage and grazing rates on the open coast.   

5.4.2 Relationships between movement and environmental conditions 

During large swells, which are predominantly caused by storms and come from a southerly 

direction in NSW, luderick were more likely to appear absent from the array. Contrary to 

predictions, there was no evidence of fish in the current study moving to adjacent reefs that were 

on more sheltered areas of coastline in large swells. While this could be due to waves reducing the 
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detection range of receivers (Kessel et al. 2014; Stocks et al. 2014), reef-associated fish have also 

been reported to move to deeper waters or sheltered sections of reef in periods of high swell (Stocks 

et al. 2015; Aspillaga et al. 2016; Bacheler et al. 2019; Matley et al. 2019). For example, Girella 

elevata, a closely related species to luderick that also inhabit shallow temperate rocky reefs in 

NSW have been reported to move to deeper reefs to shelter from stochastic periods of high swell 

and wind (Stocks et al. 2015). We therefore suggest that individuals may have sought refuge in 

deeper waters or sections of reef that offered less turbulent conditions as this would minimise the 

energetic costs associated with swimming in high energy flows (Roche et al. 2014). While 

Ferguson et al. (2013) did not examine the influence of environmental conditions on luderick 

movements, reefs in a sheltered coastal embayment are rarely exposed to large swells. This may 

be one reason why the residency indices from the coastal embayment were higher than those 

observed in the high-energy reef patches from the current study. 

Several other environmental factors also correlated to the presence of luderick within the array. 

Fish were absent during periods of higher tides, which is likely due to increased access to the 

intertidal zone where luderick feed on algae such as Ulva spp. (Ralston and Horn, 1986; Kingsford, 

2002). Furthermore, tagged fish were found to have a greater likelihood of being present within 

the array (and assumed to be more active) on days with warmer sea temperatures. While luderick 

can remain active across a range of temperatures, the optimal temperature for the species activity 

has been estimated at 19.3°C (±1.3 SE) (Payne et al. 2016). Previous tracking research has reported 

that luderick in estuaries were more active in warmer conditions (up to 23.1°C) (Cadiou, 2016). In 

the current study, there was little daily variation in sea temperature as the study area is dominated 

by oceanic conditions. However, sea temperature varied considerably between seasons, ranging 

from ~14°C in cooler months (Aug-Sept) to ~25°C in warmer months (Jan-March). Therefore, the 
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relationship between activity and temperature likely reflects seasonal changes to luderick 

movement patterns, rather than daily changes. 

Luderick were detected far more frequently during the daytime than at night, which may be 

associated with diurnal activity patterns where fish seek food and shelter. This is under the 

assumption that greater detections in the daytime are associated with increased activity, not 

decreased detection ranges of receivers that are commonly observed at night in some systems 

(Kessel et al. 2014; Swadling et al. 2020). Similar diel patterns in movements have been reported 

in luderick (Ferguson et al. 2013) and other Girellids (Stocks et al. 2015). For instance, Ferguson 

et al. (2013) observed that luderick have smaller home ranges at night and seek refuge behind the 

edges of reefs which would block acoustic signals reaching receivers positioned on reefs. While it 

was beyond the scope of this study to quantify the fine-scale movement patterns of tagged fish 

(using active tracking or a positioning system), our findings suggest luderick on coastal reefs 

exhibit this nocturnal behaviour and it is a common predator avoidance strategy employed by many 

reef-associated fish worldwide (Jorgensen et al. 2006; Claisse et al. 2011; Harasti et al. 2015; 

Honda et al. 2016). Higher activity of herbivorous fish during daylight hours may also be 

associated with it being easier to visually locate algae (Ralston and Horn, 1986). Furthermore, diel 

feeding may be an optimal foraging strategy as the nutritional content of algae is greatest in the 

daytime, particularly the afternoon (Taborsky and Limberger, 1980; Zemke-White et al. 2002; 

Raubenheimer et al. 2005).  

5.4.3 Technical considerations 

There are several possible reasons why many fish had extended or permanent absences from the 

array before the end of the study period. Firstly, luderick have been suggested to exhibit partial 

migration with a proportion of the population migrating large distances northward to spawn (Gray 
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et al. 2012; Curley et al. 2013; Cadiou, 2016). It is possible that some departures from the array 

were associated with fish spawning, as the final detections occurred during the predicted spawning 

period of the species in the study area (i.e. October to February; Gray et al. 2012). However, there 

was no evidence of fish leaving the study area (no detections on the northern or southern receivers) 

and no detections on other coastal or estuarine arrays along the NSW coastline. While the receiver 

array was designed to cover most rocky reefs in the study area, this was not always possible as 

many reefs had rocky outcrops or shallow sections which would impede acoustic signals. It is 

possible that fish used these shallow reefs or even deeper offshore areas when migrating out of the 

array and were not detected. Moreover, it is likely that luderick regularly used sections of reef with 

poor receiver coverage as this explains why many fish were absent for periods of days to months 

before suddenly reappearing again. In this circumstance, our residency indices would have been 

underestimated and this may have also resulted in the lower residency observed in this study when 

compared to Ferguson et al. (2013). Natural mortality or fishing related mortality may have led to 

the deaths of fish during the study and therefore early absences (Klinard and Matley, 2020). The 

study area is a popular fishing destination, and some of our tagged fish may have been captured. 

Although the fate of some of the tagged fish remains unclear, this study represents only 589-days 

of the 900-day battery life of the transmitters (i.e. 65%) so they may be detected on receivers in 

the future. 

5.4.4 Management Implications 

The movement of fish is central to the design of effective conservation and management strategies 

(Kramer and Chapman, 1999; Grüss et al. 2011; Crossin et al. 2017). For example, the protection 

afforded by Marine Protected Areas (MPAs) to fish populations is dependent on the scale of 

individuals daily movements and the amount of time they spend outside of reserves (Kramer and 
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Chapman, 1999). If reserves are not sufficiently large enough to encompass the home range of 

fish, then they can be susceptible to fishing pressure when moving in areas outside of the reserves 

(Kramer and Chapman, 1999; Pittman et al. 2014; Green et al. 2015). It remains challenging to 

design MPAs that are effective for multiple species with varying home-range sizes, particularly 

given the limited data on fish movements. Therefore, it is important to improve our understanding 

on the movement patterns of many targeted fish species and form generalities. Information on the 

movement of luderick is particularly important for MPA design as the species is harvested in 

fisheries and may be vulnerable to local depletion due to restricted movement patterns, the species 

longevity (> 26 years) and late maturation (> 4 years) (Gray et al. 2012). Given the general high 

residency and site-attachment on reefs and the fact that restricted movements would mean only a 

small proportion of fish would cross reserve boundaries, we suggest that appropriately sized and 

positioned spatial management units could be a useful tool to conserve luderick populations in 

both coastal embayment’s and reefs along the open coast. Indeed, this notion is supported by 

observations of the species being larger and more abundant within no-take zones in comparison to 

fished areas in a Marine Park within a coastal embayment (Ferguson et al. 2016). Overall, these 

findings highlight the importance of considering the spatial context of fish when developing 

generalities in movement patterns. Gaining such generalities will greatly assist designing effective 

conservation strategies across a range of environmental systems. The challenge for future research, 

however, will be to explore the movement patterns for numerous species in different 

environmental contexts. This information is essential to better inform resource managers and allow 

them to confidently design management strategies aimed at conserving multiple species. 
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Chapter 6: General Discussion 

Seascape ecology is an emerging field investigating the ecological consequences of spatial 

heterogeneity in the marine environment (Grober-Dunsmore et al. 2009, Boström et al. 2011, 

Pittman 2018). A preeminent concept in seascape ecology is that patch types are not 

independent from one another and are connected by the movement of organisms and matter. 

The connectivity of marine fishes across the seascape operates over multiple spatiotemporal 

scales and is thought to be a key process underpinning the structure of assemblages. For 

example, numerous reef-associated fish worldwide recruit to inshore vegetated patch types 

(e.g. seagrasses or mangroves) and once a certain age or size class is reached, disperse to adult 

populations on coastal reefs (Pittman and McAlpine 2003, Sambrook et al. 2019). However, 

the movements of reef-associated fish connecting habitats at various life-stages remains poorly 

quantified, with current understanding being largely conceptual and inferred from 

observational studies. This is particularly true for the movement of juvenile fish within nursery 

areas and the spatial scale of ontogenetic habitat shifts. Detailed evaluation of seascape 

connectivity at various life-stages will improve scientific understanding on species-habitat 

relationships, the drivers of species distributions and the structure and dynamics of populations. 

This information is vital to the design of effective management strategies that ensure the 

maintenance of biological diversity and ecosystem services.  

I sought to address several key knowledge gaps on seascape connectivity and fish movements 

by adopting various contemporary techniques in the temperate seascapes of south-eastern 

Australia. First, I used an observational approach to investigate the spatial scale of connectivity 

between estuarine nursery areas and coastal rocky reefs, and the implications of this 

connectivity on the effect of “no-take” marine reserves. I did this by comparing changes in the 

abundance and size-structure of three targeted reef-associated fish species with varying life-

history traits (Chrysophrys auratus, Pseudocaranx georgianus and Nemadatylus douglasii) 
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using Baited Remote Underwater Video Systems (BRUVS) deployed on reefs across > 400 km 

of coastline and two Marine Parks (Chapter 2). As such an observational approach infers 

movement, I then use acoustic telemetry to track both juvenile and adult fish to provide a more 

detailed and direct understanding on their movement patterns and seascape connectivity. 

Before doing so, I undertook a novel acoustic range test in seagrass patches where the detection 

range of receivers and the performance of a Vemco Positioning System was compared when 

acoustic tags were positioned within and above the seagrass canopy (Chapter 3). This 

information was collected to inform the analyses and interpretation of data in Chapter 4, where 

I acoustically tracked juveniles of two targeted species (Acanthopagrus australis and Girella 

tricuspidata) within nursery areas and attempted to quantify the spatiotemporal scales over 

which they move to reef habitats. Finally, I explored the movement of adult G. tricuspidata on 

wave dominated reefs along the open coastline to assess whether the species show any 

generalities in movement patterns between seascapes with differing environmental conditions 

(Chapter 5).  

6.1 Seascape connectivity of temperate fishes 

A key finding of my research was the consistent movement of fish from nursery areas to rocky 

reefs habitats across small spatial scales (100’s m to km’s), with these movements occurring in 

greater numbers to nearby reefs compared to those further afield. I demonstrated this through 

inference by assessing changes in size and abundance patterns, or directly using acoustic 

telemetry. Size and abundance data collected using BRUVS across a temperate bioregion 

(Batemans Marine Bioregion) indicated that one of the most important species for fisheries in 

Australia and New Zealand, C. auratus (pink snapper), was smaller and more abundant on 

coastal reefs close to estuaries (Chapter 2). Given that C. auratus is known to use estuaries as 

juveniles (Ferrell and Sumpton 1997, Gillanders 2002), these findings were consistent with an 

ontogenetic habitat shift and suggested juveniles are supplied to coastal reefs across a spatial 
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scale of 8.5 kilometres. Previous studies have reported strong linkages between estuaries and 

coastal reefs for C. auratus (Gillanders 2002, Fowler et al. 2005, Hamer et al. 2005, Hamer et 

al. 2011, Rees et al. 2021), however they have been unable to quantify the scales that juveniles 

disperse. For instance, Rees et al. (2021) recently found that juvenile C. auratus were more 

likely to be present on patch reefs near large estuaries in the Sydney Region. However, Rees et 

al. (2021) explored the presence-absence of categorical size-classes (i.e. juvenile < 25 cm or 

adult > 32 cm) and did not provide estimates on the scale of connectivity between estuaries and 

reefs. Through utilising body length data and estuarine proximity as continuous variables, I 

was able to model the spatial distribution of size-classes along the open coast in relation to 

estuaries and determine the spatial scale that the species perform ontogenetic habitat shifts. 

Such an approach has rarely been done to quantify connectivity (but see Galaiduk et al. 2017), 

with most research simply binning size-class data for fishes. My findings highlight that using 

size data as a continuous variable may provide a more realistic representation of ecological 

processes and a better understanding on the scales of connectivity (Galaiduk et al. 2017). 

Small-scale connectivity was also revealed using the more detailed approach of acoustic 

telemetry in Chapter 4, where juveniles of two harvested fishes, G. tricuspidata (luderick) and 

A. australis (yellowfin bream) were found to move more frequently between seagrass and 

directly adjacent reefs. Overall, my findings align with previous literature reporting that 

numerous species around the globe disperse from nursery areas to reefs over small spatial 

scales (100’s m to km’s), and that this connectivity can influence the distribution of fishes 

(Mumby et al. 2004, Dorenbosch et al. 2005, Grober-Dunsmore et al. 2007, Berkström et al. 

2012, Olds et al. 2012b, Olds et al. 2013, Nagelkerken et al. 2017, Rees et al. 2018, Swadling 

et al. 2019, Berkström et al. 2020).  

Not only did my research demonstrate the distance over which fish connect habitats across 

temperate seascapes, but it also provided evidence on the temporal scale of ontogenetic habitat 
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shifts. Unexpectedly, the movement of both juvenile G. tricuspidata and A. australis from 

seagrass to rocky reefs did not represent permanent dispersal (Chapter 4). Tagged individuals 

instead regularly visited reef habitats for short time periods before returning to the area of 

seagrass where they were released. Although these movements may simply indicate that fewer 

individuals of these species permanently disperse to reef populations than expected, past 

research has also reported similar phenomena. For instance, juveniles from a range of systems 

have been observed to either gradually disperse, or undertake repeated excursions, from inshore 

nursery areas to coastal adult habitats (Childs et al. 2008, Appeldoorn et al. 2009, Huijbers et 

al. 2015, Murray et al. 2018, Stamp et al. 2021). These visits outside of individuals home-

ranges within nursery areas have been associated with area expansion prior to a permanent 

ontogenetic habitat shift (Childs et al. 2008, Murray et al. 2018). While it was not possible to 

determine if juvenile C. auratus moved in and out of estuaries using BRUVS in Chapter 2, it 

was interesting that mature adults (< 300 mm FL) were distributed evenly on reefs along the 

coastline, irrespective of estuarine proximity. Considering this finding, I proposed that the 

dispersal of the species occurs as a stepwise process, where individuals move to reefs adjacent 

(< 8.5 km) estuaries at 1 to 2 years of age (180-220 mm FL) and then a proportion of these 

animals move to reefs along the coastline as they grow. These findings from both observational 

data and acoustic telemetry suggest that ontogenetic habitat shifts do not happen suddenly 

across large spatial scales, rather they may be a gradual process where fish slowly emigrate 

from nursery areas to adult populations.  

Assessing habitat-use and connectivity as fish move across the seascape is essential to develop 

a deeper understanding of fish-habitat relationships (Hitt et al. 2011, Nagelkerken et al. 2015, 

Pittman 2018). I observed that juvenile fish can connect multiple patch types during their 

routine movements, with both juvenile G. tricuspidata and A. australis moving between 

seagrass, creeks (containing seagrass and mangroves) and rocky reefs (Chapter 4). Typically, 
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nursery areas have been defined as discrete or homogenous patch types based on whether they; 

i) have high densities of juveniles, ii) provide increased juvenile growth rates or survival, and 

iii) contribute a disproportionate number of recruits to adult populations when compared to 

other patch types (Beck et al. 2001, Adams et al. 2006, Dahlgren et al. 2006). There is a growing 

body of literature proposing that such definitions may be too simplistic, as they overlook the 

mobility of many fish species at juvenile life-stages and their capacity to move between patches 

(Sheaves et al. 2006, Nagelkerken et al. 2015, Sheaves et al. 2015, Litvin et al. 2018). The 

movements of juvenile fish linking multiple patch types in Chapter 4 provides some of the 

first direct movement data to support the claims that the nursery role of habitats need to be 

refined. Specifically, these data indicate that nurseries should be defined using the “seascape 

nursery” approach coined by Nagelkerken et al. (2015), where the nursery areas of species are 

perceived as a spatially explicit seascape containing a mosaic of connected patch types. While 

defining discrete patches as nurseries may work for species with high juvenile abundances in 

one or two patch types, the seascape nursery approach is more realistic and will improve the 

identification and management of fish populations and critical fish habitats (Nagelkerken et al. 

2015, Litvin et al. 2018, Bradley et al. 2019, Olson et al. 2019).  

Both juvenile (G. tricuspidata and A. australis) and adult (G. tricuspidata) fish were found to 

exhibit site-attachment, small home-ranges and connect habitats over small spatial scales 

(Chapters 4 and 5). Adults of both species have previously been reported to demonstrate 

similar movement patterns (Ferguson et al. 2013, Ferguson et al. 2016, Lowry et al. 2017, 

Taylor et al. 2018), but this may be dependent on their environmental context. For example, 

adult G. tricuspidata tracked on reefs along the open coast (Chapter 5) and within a coastal 

embayment (Ferguson et al. 2013, Ferguson et al. 2016) both had high residency and site-

attachment to reefs. However, G. tricuspidata tagged in several estuaries in NSW were found 

to move large distances downstream (up to 30 km) or leave the system entirely (Cadiou 2016). 
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The large-scale movements of the species in estuaries are postulated to be caused by weather 

events with high rainfall that cause strong flows and low salinity, forcing fish to move (Cadiou 

2016). I therefore propose that the higher residency and site-attachment of G. tricuspidata in 

coastal reefs compared to estuaries is due to coastal seascapes experiencing oceanic inputs and 

much more stable physico-chemical conditions. These findings illustrate that seascape 

connectivity and fish movements may be nuanced and dependent on environmental context, 

highlighting the need to perform repeated studies in various systems to gain a general, 

predictive understanding of ecological processes. 

6.2 Applying acoustic telemetry to quantify seascape connectivity 

Acoustic telemetry is a valuable tool to monitor the movement of fish connecting patch types 

and provide novel insights for spatial ecology (Donaldson et al. 2014, Hussey et al. 2015). For 

instance, studies often use acoustic tracking to investigate movements linking patches for 

foraging, shelter, and spawning (Luo et al. 2009, Hitt et al. 2011, Marshell et al. 2011, Ferguson 

et al. 2013, Pittman et al. 2014, Matley et al. 2015, Taylor et al. 2018, Ebrahim et al. 2020). 

From a seascape ecology perspective, acoustic tracking can be adopted to explore how fish 

move in response to seascape patterning across multiple scales and different life-stages (Hitt et 

al. 2011, Pittman 2018). The application of acoustic telemetry, however, has generally been 

limited to adult fish or those species with large juvenile body sizes (e.g. > 30 cm; Childs et al. 

2015, Taylor et al. 2017b, Murray et al. 2018, Staveley et al. 2019, Kendall et al. 2021, Stamp 

et al. 2021). Therefore, the movement of small juvenile fish and the scale of ontogenetic habitat 

shifts remains unclear, with current understanding coming mainly from observational studies 

inferring movement between patch types (Grober-Dunsmore et al. 2007, Appeldoorn et al. 

2009, Olds et al. 2012b, Rees et al. 2018, Swadling et al. 2019). The lack of studies tracking 

small-bodied juvenile fishes is undoubtedly due to issues surrounding tag size, with high tag to 

body mass ratios (e.g. the 2% rule) reported to create adverse health and behavioural effects 



183 
 

(Jepsen et al. 2005, Thorstad et al. 2009). Technological advances in acoustic telemetry have 

led to the creation of smaller and longer lasting tags, meaning that tracking small juvenile fish 

(15-20 cm) is now possible and I demonstrated this in Chapter 4. Furthermore, there are now 

a suite of innovative analytical techniques to model telemetry data (e.g. network analyses) that 

quantify the linkages between patches (Jacoby et al. 2012, Finn et al. 2014, Jacoby and Freeman 

2016, Staveley et al. 2019, Whoriskey et al. 2019). Such techniques deliver a standardised 

method to explore connectivity patterns with telemetry data and provide information that 

traditional analyses (e.g. Utilisation distributions) cannot, like identifying corridors of 

movements between patches (Jacoby et al. 2012, Lédée et al. 2015, Becker et al. 2016).  

Although it is now possible to track the movement and connectivity of small fishes, it remains 

a challenge to match the size, power and battery life of tags with the configuration of acoustic 

receiver arrays and the cryptic behaviour of juveniles. Currently, studies wanting to quantify 

the movement patterns of small-bodied fish are restricted to using small tags, which inherently 

have lower power, shorter battery life and reduced detection ranges compared to larger tag 

models. For instance, I found the detection range of V7 tags to be ~ 85 m in seagrass, whereas 

higher powered tags (equivalent to V16 tags) were detected 250 m away (Chapter 3). Further 

difficulties may be experienced when tracking juvenile fish with cryptic behaviours, as I 

observed for the first time that the detection range of receivers decreased to 40 m when V7 tags 

were amongst seagrass fronds, and this diminished the performance of a Vemco Positioning 

System. Large reductions in the efficacy of acoustic telemetry due to macrophytes have since 

been reported in freshwater systems (Stott et al. 2021, Weinz et al. 2021). These findings 

highlight the importance of conducting in situ acoustic range tests before undertaking telemetry 

studies and the need to account for fish behaviour. This information will have important 

ramifications for configuring receiver arrays and interpreting collected data, as it is difficult to 
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determine if the absence of detections represent the absence of fish or the poor detection range 

of receivers (Kessel et al. 2014).  

6.3 Implications of connectivity for marine management and conservation 

Marine Protected Areas (MPAs) are a spatial management strategy employed worldwide, 

generally aiming to conserve biodiversity and manage fisheries (Halpern 2003, Lester et al. 

2009, Gaines et al. 2010, Hernandez et al. 2021). The conservation value of MPAs to fish is 

often questioned by various stakeholders, as there is a general belief that many species move 

over scales larger than the areas afforded protection by marine reserves (Kramer and Chapman 

1999, Martin et al. 2016, Hilborn 2017). I provide evidence that both juveniles and adults of 

targeted fish species can show residency and site-attachment over a substantial time, suggesting 

that MPAs would provide significant protection to these fishes (Chapter 4 and 5). Indeed, the 

restricted movements of juvenile G. tricuspidata and A. australis released in a no-take marine 

reserve in Jervis Bay Marine Park meant that few fish (5 of 33 tagged individuals) were 

detected crossing into fished areas (Chapter 4). Furthermore, I observed a key targeted species, 

C. auratus, to be larger and more abundant inside marine reserves across two marine parks 

spanning a temperate bioregion (Chapter 2). It was notable, however, that the proximity of 

marine reserves to estuarine nurseries did not influence reserve effects for this species. This 

contradicts findings from previous literature in the tropics demonstrating that seascape 

connectivity can lead to increased abundances of species within reserves because these areas 

experience a greater inflow of recruits (Huntington et al. 2010, Olds et al. 2012a, Olds et al. 

2013, Martin et al. 2015, Ortodossi et al. 2018). I propose that the limited effect between 

estuarine connectivity and the abundance of C. auratus within reserves found in Chapter 2 

was likely due to the species dispersing to adult reef patches before they reach the minimum 

length (i.e. 300 mm TL) required to be taken in fisheries at the study site. Overall, my findings 

provide support to the growing number of studies reporting the efficacy of MPAs in south-
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eastern Australia and around the world, either through increased fish abundance, body size or 

biomass (Anderson et al. 2014, Edgar et al. 2014, Kelaher et al. 2014, Friedlander et al. 2017, 

Harasti et al. 2018, Malcolm et al. 2018, Goetze et al. 2021, Knott et al. 2021), or the residency 

of fish within reserve boundaries (Lowe et al. 2003, Ferguson et al. 2013, Harasti et al. 2015, 

Lee et al. 2015, Aspillaga et al. 2016, Ferguson et al. 2016, Fetterplace et al. 2016, Honda et 

al. 2016, Lea et al. 2016).  

For MPAs to effectively conserve fish populations, they must be located, sized and spaced to 

adequately cover the areas used by species during their daily and life-cycle movements 

(Kramer and Chapman 1999, Grüss et al. 2011, Crossin et al. 2017). A general “rule of thumb” 

when designing MPAs is to represent a portion of the different patch types in a bioregion within 

reserve boundaries, under the assumption that these patches contain distinct biological 

assemblages and act as surrogates for biodiversity (Roberts et al. 2003, Gaines et al. 2010, 

Saarman et al. 2013, Rees et al. 2018). However, habitat representation is a crude approach that 

does not consider seascape connectivity, so MPAs may not be reaching their conservation 

potential. Considering the post-settlement movement of fishes and how they link patches 

should lead to the incorporation of critical fish habitats within MPA design and improved 

conservation outcomes (Carr et al. 2017, Weeks 2017, Weeks et al. 2017). The lack of 

consideration for connectivity in MPA design (Balbar et al.2019) is almost certainly a result of 

the limited information on fish movements linking patches over multiple spatial and temporal 

scales. In this thesis, I demonstrate that targeted reef-associated fish connect patches across 

small-spatial scales (100’s m to km’s) and that this can influence the abundance and size 

structure of populations (Chapter 2 and 4). These findings highlight the need to incorporate 

seascape connectivity into MPA design, as simply representing patch types within reserves 

would likely fail to include these linkages and therefore not protect fish throughout their life-

histories. Instead of MPA design focussing on habitat representation, it may be more 
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appropriate to focus on areas where key fish habitats are close to one another, such as nursery 

and adult habitats. This should ensure that MPAs are designed adequately so they maintain 

ecological processes and ensure the ecological viability and integrity of fish populations 

(TFMPA 1999).   

While it is valuable to recognise the importance of incorporating connectivity in management 

strategies, it is equally valuable to know how to practically apply this information (Carr et al. 

2017, Rees, 2017). There have been a limited number of studies integrating seascape 

connectivity into MPA design, and these have introduced three main approaches that include; 

i) using algorithms derived from observational data that create a connectivity matrix and 

identify movements between critical habitats (Mumby 2006), ii) using network analyses to 

infer connectivity across the seascape for species moving over different spatial scales and 

identify hotspots for MPA planning and assessment (Engelhard et al. 2016, Friesen et al. 2019), 

and iii) incorporating important components of the seascape (e.g. areas where nursery and adult 

habitats are in close proximity) into spatial prioritisation using decision-support software (e.g. 

Marxan; Weeks, 2017). Not only are these approaches logical and transparent, but they 

represent cost and time effective methods to identify optimal subsets of patches that guide the 

design of MPAs. Adopting these approaches has been hindered by the lack of information on 

seascape connectivity, particularly in temperate seascapes, so MPAs worldwide continue to 

focus on representing a certain percentage of patch types within their boundaries. I would 

argue, however, that the risks of unfavourable conservation outcomes from ignoring 

connectivity outweigh those associated with attempting to include it, even with limited 

quantitative information. 

 The productivity and sustainability of coastal fisheries is dependent on habitats (Hayes et al. 

1996, Brown et al. 2019), yet many nearshore macrophytes are under immense pressure from 

anthropogenic stressors and are experiencing global declines (Waycott et al. 2009, Li et al. 
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2018, Dunic et al. 2021). The small-scale connectivity observed in this thesis for C. auratus 

between estuaries and coastal reefs (Chapter 2), and juvenile G. tricuspidata and A. australis 

within seascape nurseries (Chapter 4), highlight the strong contribution of nurseries to coastal 

fisheries and allude to the potential consequences of this habitat loss. Specifically, the loss or 

degradation of nearshore macrophytes may reduce their nursery function and disrupt 

connectivity patterns between patches, leading to fewer recruits entering coastal fisheries and 

potential localised population depletion (Jordan et al. 2009, Sundblad et al. 2013, Brown et al. 

2019). This is particularly concerning given that south-eastern Australia is a climate change 

hotspot (Hobday and Lough 2011, Hobday and Pecl 2014, Scanes et al. 2020). Predictions 

suggest that the region will become warmer and drier, resulting in changes to environmental 

flows, physico-chemical conditions, and the loss of patch types (Gillanders et al. 2011, Smale 

et al. 2019, Scanes et al. 2020), which could impact connectivity patterns across the seascape. 

This is best exemplified by the predicted changes to the morphology of estuaries, with reduced 

rainfall expected to cause a build-up of sand bars that close estuary mouths and prevent any 

fish (e.g. C. auratus) performing ontogenetic habitat shifts to the marine environment 

(Gillanders et al. 2011). Overall, my findings highlight the importance of conserving vegetated 

habitats, managing seascapes to maintain connectivity (e.g. artificially opening estuary mouths 

in future climatic scenarios) and mitigating anthropogenic stressors on habitats as this will 

ensure adequate recruitment and the sustainability of fisheries.   

Habitat restoration is being increasingly used by management to intervene or offset human 

modification of seascapes, and to augment ecosystem services such as fisheries (Gilby et al. 

2018a, Duarte et al. 2020). Most coastal restoration strategies have been directed at single patch 

types including seagrass (Paling et al. 2009, Tan et al. 2020, Ferretto et al. 2021), saltmarsh 

(Warren et al. 2002), mangroves (Ellison 2000, Worthington and Spalding 2018, Su et al. 

2021), oyster reefs (Humphries and La Peyre 2015, Gilby et al. 2018b) or artificial reefs 
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(Becker et al. 2018, Folpp et al. 2020). There is a need when restoring habitats to consider their 

context within the seascape, as their connectivity to adjacent patches can enhance their 

conservation benefits (Gilby et al. 2018a, Duncan et al. 2019, Gilby et al. 2019, Pittman et al. 

2021). For example, Gilby et al. (2018a) reported that of 89 coastal marine restoration projects 

only 13% incorporated seascape context in their design, but over half of these resulted in more 

diverse and larger animal populations than natural control sites. Indeed, the results of this thesis 

suggest that habitat restoration should consider the context and seascape connectivity, and that 

they could be incorporated within seascapes to build effective fish nurseries and promote 

ecosystem services such as fisheries production.  

6.4 Future Directions 

In this thesis, I have improved current understanding of seascape connectivity to better inform 

management practices, and I wish to highlight several promising directions for future research. 

Firstly, there is a disparity in the global distribution of studies examining the importance of 

seascape patterning for fish distributions and ecological processes, with most research 

originating from tropical biomes (Dorenbosch et al. 2005, Dorenbosch et al. 2006, Grober-

Dunsmore et al. 2007, Berkström et al. 2012, Olds et al. 2012b, Nagelkerken et al. 2017, Martin 

et al. 2018, Berkström et al. 2020). My research revealed similar patterns to those reported 

within tropical seascapes, with connectivity occurring over small spatial scales (100’s m to 

km’s) and influencing fish populations. This adds to the growing body of literature suggesting 

that there are generalities in the response of fish to seascape patterns between tropical and 

temperate marine systems (Staveley et al. 2016, Perry et al. 2018, Rees et al. 2018, Swadling 

et al. 2019). Furthermore, I build on this previous research by using contemporary techniques 

to explore seascape connectivity, such as acoustic telemetry or stereo-BRUVs to collect 

continuous body length data. Future research should adopt these techniques to gain a more 
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quantitative understanding of connectivity and test for generalities in the patterns I observed 

within other temperate seascapes.  

Another valuable avenue for future work is to investigate the role of connectivity in more 

remote seascapes, such as deep-water patch types. I demonstrate the scale of connectivity and 

its importance for the distribution of C. auratus on reefs at similar depth contours (15-36 m) 

along the coastline, but this does not consider the dispersal of the species to populations on 

deeper reefs (e.g. > 100 m depth). The paucity of data on the seascape ecology of deep-water 

fishes is caused by the difficulty of sampling these assemblages and the limited maps of deep 

patch types. Recent developments in sampling techniques (e.g. stereo-BRUVs, ROVs) that can 

be used at great depths and an increased availability of high-resolution maps of deep-water 

seascapes (e.g. swath acoustic surveys), has resulted in recent assessments of the spatial 

distribution of deep-water fishes (Sih et al. 2017, Williams et al. 2019, Wellington et al. 2021). 

The need to understand the seascape connectivity of deep-water fish assemblages is heightened 

by the fact that they may have previously acted as natural refuges from fishing or other 

disturbances (Morato et al. 2006), yet they are now experiencing greater fishing pressure due 

to improved equipment (e.g. sounders or electric fishing reels) and many species are vulnerable 

to depletion as they have late maturation, slow growth and low fecundity (Devine et al. 2006). 

There have been calls to consider seascape connectivity when defining nursery areas, but this 

is largely founded from observational studies inferring juvenile fish movements across a 

mosaic of patch types (Sheaves et al. 2006, Nagelkerken et al. 2015, Litvin et al. 2018). Using 

acoustic telemetry, I provided some of the first data that directly demonstrates small-bodied 

juvenile fish regularly connect patch types within seascapes during their routine movements. 

These findings provide considerable support for the nursery-role concept to shift its focus from 

defining nursery areas as discrete patch types and move towards them being perceived as 

“seascape nurseries” that contain an interconnected mosaic of patches (Nagelkerken et al. 
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2015). Quantifying the movements of juvenile fish within seascape nurseries in both tropical 

and temperate systems is worthy of greater research as this will help inform resource managers 

to identify key fish habitats and their contribution to fisheries (Nagelkerken et al. 2015, Litvin 

et al. 2018). Furthermore, it is notable that I did not observe individuals permanently dispersing 

to reefs. Future research using acoustic telemetry to track juvenile fish is therefore necessary 

to better elucidate the spatial and temporal scales of ontogenetic habitat shifts.  

I encourage future research that acoustically track fish movements to use tags with sensors and 

consider the limitations of the technology. Acoustic tags can now be equipped with various 

sensors that measure parameters such as acceleration, temperature, predation and depth 

(Hussey et al. 2015, Lennox et al. 2017, Taylor et al. 2017a, Brownscombe et al. 2019, Weinz 

et al. 2020). Combining the location of individuals with these parameters provides remarkable 

insights into both the behavioural and spatial ecology of fishes. For instance, behavioural states 

(e.g. foraging, chasing or predator avoidance) can be determined using triaxial accelerometers 

and overlayed on seascape maps to produce “activity seascapes”, which illustrate the 

locations/times where different activities occur and how energy expenditure varies across the 

seascape (Brownscombe et al. 2017, Pittman 2018, Papastamatiou et al. 2018, Meese and Lowe 

2020). Whilst tags with sensors provide additional data on fish movements, they do come at 

increased financial costs and were outside of the scope of this thesis. I also demonstrate that 

studies must consider the efficacy of acoustic telemetry in their study system and how it is 

affected by fish behaviour, as I observed dramatic decreases in the detection range of receivers 

when tags were ensconced amongst seagrass fronds (Chapter 3). Considering the importance 

of this information for the interpretation and analyses of movement data, future research should 

explore possible ways to overcome reduced detections ranges when fish are amongst seagrass 

fronds. Furthermore, the effects of fish behaviour in other patch types on the performance of 

acoustic telemetry should be quantified, such as fish sheltering under reef ledges or burying 
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themselves in soft sediments. Finally, it is envisaged that if advances in technology progress at 

the current rate, small tags possessing high power and long battery life will soon be available 

(Lennox et al. 2017). When this occurs, I highly recommend future studies adopt this 

technology to provide a more sophisticated understanding on juvenile fish movements and their 

dispersal across the seascape.  

Research determining whether connectivity improves the efficacy of management practices 

and the ecological consequences of seascape change (e.g. habitat loss or fragmentation) have 

recently been highlighted as key research priorities in seascape ecology (Pittman et al. 2021). 

Previous studies in tropical seascapes suggest incorporating connected patches into no-take 

marine reserves can enhance conservation outcomes (Nagelkerken et al. 2012, Olds et al. 

2012a, Olds et al. 2013, Martin et al. 2015, Olds et al. 2016). It was unexpected that I did not 

find any evidence in Chapter 2 of the connectivity between estuaries and reefs improving 

reserve effects along the open coast. Future research is required to better understand the 

importance of connectivity for the performance of marine reserves in temperate seascapes. 

Furthermore, seascapes containing degraded or lost habitats are associated with decreased fish 

abundance and biomass (Hughes et al. 2002, Deegan and Buchsbaum 2005, Brown et al. 2019). 

However, many questions remain about the effects of this habitat loss on connectivity and fish 

assemblages in adjacent patch types, such as “does the loss of nursery habitat correlate with 

decreased fish abundances in surrounding waters” or “are there thresholds in the amount of 

habitat degradation or loss that must be exceeded to disrupt connectivity patterns?”. Questions 

such as these are challenging to answer, but future research should endeavour to explore them 

given the large losses of coastal habitats occurring globally and the predicted human impacts 

on biodiversity in the future (Waycott et al. 2009, Hobday and Lough 2011, Li et al. 2018, 

Smale et al. 2019, Dunic et al. 2021). 
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6.5 Concluding remarks 

My research represents an important step in improving current understanding on connectivity 

in temperate seascapes and its implications for marine management. I demonstrate the spatial 

scale that juvenile fish disperse from estuarine nursery areas to coastal reefs across a temperate 

marine bioregion and how this influences the abundance and size structure of fish populations. 

I provide the first evidence on the performance of acoustic telemetry in seagrass and decreased 

detection ranges of receivers and VPS efficacy when tags are amongst seagrass fronds; a 

pattern that has since been shown to occur in freshwater systems containing macrophytes (Stott 

et al. 2021, Weinz et al. 2021). I also used acoustic telemetry to gain more detailed information 

on the movement and connectivity patterns of both juvenile and adult fishes which provided 

important insights for the definition of nursery areas, the potential spatiotemporal scale of 

ontogenetic habitat shifts, the generality of movements in varying environmental contexts and 

the efficacy of MPAs. In a global context, this thesis represents a valuable contribution to the 

field of seascape ecology, by improving current understanding on seascape connectivity in 

temperate seascapes and how it can be integrated into management and conservation strategies 

to ensure the maintenance of biodiversity and ecosystem services into the future.  
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Appendix 1 
 

 

Supporting Information for 

Chapter 2: Seascape connectivity of temperate fishes between estuarine nursery areas and 

open coastal reefs 

 

This includes: 

Table A1.1 

Figures A1.1 – A1.6 
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Table A1.1. All models within ±2 AICc values of the top model for all fish variables. The most 

parsimonious (i.e. “best” models) are in bold 

 

Response edf wAICc AICc R2 Best model (s) 

Species 

abundance  

Chrysophrys 

auratus 

38.06 1 3690.23 0.28 Distance to estuary + Status*Year 

 Nemadactylus 

douglasii 

25.93 0.23 608.84 0.16 Distance to estuary + Estuary area (20 

km) 

 
 

25.89 0.2 609.12 0.16 Distance to estuary + Status 

  26.88 0.1 610.49 0.16 Distance to estuary + Status + Depth 

  26.88 0.1 610.53 0.16 Distance to estuary + Estuary area (20 km) + 

Depth 

  26.88 0.1 610.53 0.16 Distance to estuary + Estuary area (20 km) + 

Status 

 Pseudocaranx 

georgianus 

33.78 0.21 2445.61 0.11 Estuary area (10 km) + Year 

  34.54 0.121 2446.71 0.11 Estuary area (10 km) + Year + Status 

  34.76 0.079 2447.55 0.11 Estuary area (10 km) + Year + Depth 

Species lengths Chrysophrys 

auratus 
8 0.75 3867.85 0.14 Distance to estuary + Status*Year 

 
Nemadactylus 

douglasii  

8 0.45 3466.7 0.06 Distance to estuary + Status*Year 

 
 

8 0.26 3467.81 0.05 Estuary area (10 km) + Status*Year 

 Pseudocaranx 

georgianus 

8 0.3 3178.35 0.0001 Depth + Status*Year 

 
 

8 0.27 3178.56 0.002 Distance to estuary + Status*Year 

  8 0.23 3178.83 0.0001 Estuary area (10 km) + Status*Year 
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Figure A1.1. Frequency distributions of sites located in fished areas (grey bars) and no-take 

marine reserves (red bars) with distance to the nearest estuary (m).
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Figure A1.2: The frequency of sample sites at various distances from boat ramps (m). The location 

of boat ramps was accessed from transport NSW 

(https://opendata.transport.nsw.gov.au/dataset/nsw-boating-ramps). We only included ramps that 

were in “fair” or “good” condition and those located in open estuaries classified by Roy et al. 

(2001).

https://opendata.transport.nsw.gov.au/dataset/nsw-boating-ramps
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Figure A1.3. Relationships for the alternate parsimonious model(s) (Table 2.1) between 

explanatory variables and (a) Nemadactylus douglasii (grey morwong) abundance, (b) 

Nemadactylus douglasii length (mm), and (c) – (d) Pseudocaranx georgianus (silver trevally) 

length (mm). Fitted GAMM prediction curves (solid line) are included. Ribbons and error bars 

represent ± standard error. Grey bars = fished areas and red bars = ‘no-take’ marine reserves (i.e. 

NTMR).
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Figure A1.4. Spline correlograms examining spatial autocorrelation for analyses of the abundance 

and length of Chrysophrys auratus (pink snapper). Shaded areas depict 95% pointwise bootstrap 

confidence intervals in (A) raw C. auratus abundance data, (B) GAMM residuals for the model 

containing C. auratus abundance and the distance to estuary, status*year and site (C) raw C. 

auratus length data, and (D) GAMM residuals for the model containing C. auratus length and the 

distance to estuary, status*year and site.  
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Figure A1.5. Spline correlograms examining spatial autocorrelation for analyses of the abundance 

and length of Nemadactylus douglasii (grey morwong). Shaded areas depict 95% pointwise 

bootstrap confidence intervals in (A) raw N. douglasii abundance data, (B) GAMM residuals for 

the model containing N. douglasii abundance and the distance to open estuary, estuary area 20 km 

and site, (C) raw N. douglasii length data, and (D) GAMM residuals for the model containing N. 

douglasii length and the distance to estuary, status*year and site.  
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Figure A1.6. Spline correlograms examining spatial autocorrelation for analyses of the abundance 

and length of Pseudocaranx georgianus (silver trevally). Shaded areas depict 95% pointwise 

bootstrap confidence intervals in (A) raw P. georgianus abundance data, (B) GAMM residuals for 

the model containing P. georgianus abundance and mangrove area 20km and site, (C) raw P. 

georgianus length data, and (D) GAMM residuals for the model containing P. georgianus length 

and depth, status*year and site.  
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Appendix 2 
 

 

 

Supporting Information for 

Chapter 4: Consequences of juvenile fish movement and seascape connectivity: Does the 

concept of nursery habitats need a rethink? 

This includes: 

Table A2.1 

Figures A2.1 – A2.5 
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Table A2.1: Summary information for tagged luderick (Girella tricuspidata) and yellowfin bream 

(Acanthopagrus australis) tracked in Jervis Bay Marine Park. Please refer to Fig. 4.1 for a map of 

release locations. 

Fish ID Species Release 

location 

Date 

Released 

Fork 

Length 

(mm) 

Days 

Detected 

Days at 

Liberty 

Total no. 

Detections 

No. stations 

visited 

50% UD 

(km2) 

95% UD 

(km2) 

Lud 1 Luderick Hare Bay 07-06-18 199 252 406 3182 8 0.072543 0.926207 

Lud 2 Luderick Hare Bay 27-06-18 146 184 407 1363 8 0.07181 1.28306 

Lud 3 Luderick Hare Bay 05-07-18 150 66 73 762 3 0.035905 0.367845 

Lud 4 Luderick Hare Bay 05-07-18 186 113 393 954 5 0.036638 0.398621 

Lud 5 Luderick Hare Bay 18-07-18 194 323 409 4975 10 0.05056 1.011207 

Lud 6 Luderick Hare Bay 18-07-18 216 33 32 1608 6 0.105517 0.415474 

Lud 7 Luderick Hare Bay 23-08-18 172 13 26 193 3 0.020517 0.094526 

Lud 8 Luderick Hare Bay 23-08-18 184 223 408 1674 5 0.023448 0.153879 

Lud 9 Luderick Hare Bay 23-08-18 184 298 408 2183 10 0.108448 1.027327 

Lud 10 Luderick Hare Bay 23-08-18 193 254 406 2462 7 0.030776 0.36125 

Lud 11 Luderick Hare Bay 23-08-18 171 207 408 1218 8 0.047629 0.759138 

Lud 12 Luderick Hare Bay 23-08-18 179 138 408 756 6 0.258664 1.206853 

Lud 13 Luderick Hare Bay 23-08-18 182 182 406 1299 6 0.039569 0.363448 

Lud 14 Luderick Woollamia 26-08-19 145 15 55 115 1 0.018655 0.090168 

Lud 15 Luderick Woollamia 27-08-19 181 52 311 331 3 0.018655 0.096386 

Lud 16 Luderick Woollamia 27-08-19 172 1 1 1 - NA NA 

Lud 17 Luderick Woollamia 27-08-19 152 105 409 1243 1 0.018655 0.093277 

Lud 18 Luderick Woollamia 27-08-19 192 163 413 2956 3 0.021765 0.12126 

Lud 19 Luderick Woollamia 27-08-19 162 72 400 750 1 0.018655 0.093277 

Lud 20 Luderick Myola 02-09-19 170 270 278 21689 3 0.018655 0.096386 

Lud 21 Luderick Myola 02-09-19 173 230 238 36302 3 0.024874 0.214538 

Lud 22 Luderick Myola 02-09-19 171 131 361 18587 3 0.055966 0.292269 

Lud 23 Luderick Myola 02-09-19 200 292 409 39363 3 0.04042 0.261176 

Lud 24 Luderick Moona Crk 13-09-19 185 130 395 86906 9 0.043529 0.37 

Lud 25 Luderick Moona Crk 13-09-19 160 386 409 113998 2 0.04042 0.183445 

Lud 26 Luderick Moona Crk 13-09-19 162 30 6 5994 1 0.018655 0.090168 

Lud 27 Luderick Moona Crk 16-09-19 164 387 409 145700 1 0.018655 0.090168 

Lud 28 Luderick Moona Crk 16-09-19 175 17 20 5723 1 0.018655 0.090168 

Lud 29 Luderick Myola 04-12-19 212 NA NA NA - NA NA 

Lud 30 Luderick Myola 04-12-19 213 86 409 246 1 0.018655 0.090168 
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Lud 31 Luderick Myola 04-12-19 231 275 409 86496 1 0.018655 0.090168 

Lud 32 Luderick Myola 04-12-19 199 NA NA NA - NA NA 

Lud 33 Luderick Myola 04-12-19 162 11 165 718 1 0.018655 0.090168 

Bream 1 Yellowfin 

Bream 

Carama nlet 13-09-19 155 

130 407 1790 

5 

0.841527 5.626273 

Bream 2 Yellowfin 

Bream 

Carama Inlet 13-09-19 145 

8 7 719 

 
NA NA 

Bream 3 Yellowfin 

Bream 

Carama Inlet 25-10-19 210 

171 407 1963 

9 

0.379377 2.638393 

Bream 4 Yellowfin 

Bream 

Carama Inlet 25-10-19 195 

83 367 622 

6 

0.142554 3.398297 

Bream 5 Yellowfin 

Bream 

Carama Inlet 25-10-19 168 

160 401 3768 

4 

0.587459 7.620876 

Bream 6 Yellowfin 

Bream 

Hare Bay 13-11-19 225 

210 260 3358 

6 

0.072426 1.924475 

Bream 7 Yellowfin 

Bream 

Hare Bay 13-11-18 213 

291 409 2892 

7 

0.157499 1.532453 

Bream 8 Yellowfin 

Bream 

Hare Bay 14-11-19 166 

366 409 5078 

3 

0.028741 0.147152 

Bream 9 Yellowfin 

Bream 

Hare Bay 27-11-19 217 

405 409 24050 

5 

0.022993 0.112663 

Bream 

10 

Yellowfin 

Bream 

Carama Inlet 11-12-19 284 

264 409 7880 

10 

0.266713 3.927125 

Bream 

11 

Yellowfin 

Bream 

Hare Bay 17-12-19 240 

389 409 10699 

3 

0.034489 0.198885 

Bream 

12 

Yellowfin 

Bream 

Hare Bay 17-12-19 281 

146 408 1827 

9 

0.105766 4.393874 

Bream 

13 

Yellowfin 

Bream 

Hare Bay 17-12-19 298 

191 403 4307 

4 

0.135656 2.331443 

Bream 

14 

Yellowfin 

Bream 

Hare Bay 17-12-19 280 

399 409 35711 

5 

0.02989 0.541474 

Bream 

15 

Yellowfin 

Bream 

Hare Bay 17-12-19 284 

52 155 420 

4 

0.304651 1.72559 

Bream 

16 

Yellowfin 

Bream 

Carama Inlet 11-02-20 221 

130 282 1716 

1 

0.044835 0.551821 

Bream 

17 

Yellowfin 

Bream 

Carama Inlet 11-02-20 161 

135 243 2595 

3 

0.117262 1.135831 

Bream 

18 

Yellowfin 

Bream 

Carama Inlet 11-02-20 158 

250 407 7752 

6 

0.097718 1.377253 

Bream 

19 

Yellowfin 

Bream 

Carama Inlet 11-02-20 239 

234 409 2147 

7 

0.078175 2.03369 

Bream 

20 

Yellowfin 

Bream 

Carama Inlet 11-02-20 189 

209 408 3511 

3 

0.173594 1.870443 
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Figure A2.1: Detection history over the study period for tagged a) luderick and b) yellowfin bream 

at receivers in NTMR (i.e. protected – pink) or fished areas (blue). Tag deployment is represented 

by the black dots, with shape referring to release locations; black squares = Hare Bay, black circles 

= Curramebene Creek, black triangles = Moona Moona Creek, black diamonds = Carama Inlet. 

Crosses indicate the anticipated date which battery failure occurred. 
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Figure A2.2: Individual movement networks for all thirteen luderick released in Hare Bay. The 

colour of nodes illustrates the proportion of detections at a given receiver and edge colour shows 

the number of movements between receivers. Empty black circles show the non-visited receivers. 

The red ‘x’s are the release location of fish and black crosses on receivers represent core-use 

receivers. Dashed areas illustrate no-take marine reserves. 
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Figure A2.3: Individual movement graphs for the twelve luderick used in analyses released in 

Curramebene Creek. The colour of nodes illustrates the proportion of detections at a given receiver 

and edge colour shows the number of movements between receivers. Empty black circles show 

the non-visited receivers. The red ‘x’s are the release location of fish and black crosses on receivers 

represent core-use receivers. Dashed areas illustrate no-take marine reserves. Please note three fish 

did not have sufficient detections and were not included. 
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Figure A2.4: Individual movement graphs for the five luderick used in analyses released in 

Moona Moona Creek. The colour of nodes illustrates the proportion of detections at a given 

receiver and edge colour shows the number of movements between receivers. Empty black 

circles show the non-visited receivers. The red ‘x’s are the release location of fish and black 

crosses on receivers represent core-use receivers. Dashed areas illustrate no-take marine 

reserves. 
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Figure A2.5: Individual movement graphs for the nineteen yellowfin bream used in analyses that 

were released in Hare Bay and Carama Inlet. The colour of nodes illustrates the proportion of 

detections at a given receiver and edge colour shows the number of movements between receivers. 

Empty black circles show the non-visited receivers. The red ‘x’s are the release location of fish 

and black crosses on receivers represent core-use receivers. Dashed areas illustrate no-take marine 

reserves. Please note one fish did not have sufficeint detecttions and was not included. 
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Appendix 3 

 

Supporting Information for 

Chapter 5: Assessing generality in patterns of movement for a targeted fish: home range and 

residency of Luderick (Girella tricuspidata) on open coastal reefs 

This includes: 

Table A3.1 
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Table A3.1: Summary of the tagging, biological and detection data for the 10 acoustically 

tagged luderick (Girella tricuspidata) passively tracked in this study. 

Fish # Fork length 

(mm) 

Release date Station nearest release Last date detected 

1 290 08-08-2018 B8 14-02-2019 

2 295 09-08-2018 B8 06-11-2018 

3 325 09-08-2018 B8 26-01-2020 

4 275 08-09-2018 B7 22-12-2018 

5 312 08-09-2018 B7 19-03-2020 

6 309 08-09-2018 B7 18-03-2020 

7 350 09-09-2018 B7 18-03-2020 

8 309 09-09-2018 B7 22-10-2018 

9 323 09-09-2018 B7 25-10-2018 

10 320 09-09-2018 B7 17-03-2020 
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