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Abstract—This paper presents a multi-user, multi-class and
multi-layer edge computing-based framework for effective task
offloading and computation processes. Important system re-
quirements that were not captured in the existing multi-layer
solutions such as offloading, computations and deadline re-
quirements were captured in the system modeling, while both
wireless communications and task computation constraints were
considered. We considered three layers system, where each
device offloads its generated tasks in each time slot to any
selected layer for computation. On its arrival at such a selected
layer, the task is only accepted if the queue size is below
the pre-defined threshold, otherwise, such a task is offloaded
to the next layer. Tasks were classified into class 1 and class
2 tasks following tasks’ quality of service requirements. We
adopted stochastic geometry, parallel computing and queueing
theory techniques to model the performance of the considered
integrated edge-fog-cloud computing environment and obtained
analysis for various performance metrics of interest. The obtained
analyses demonstrate the importance of multi-layer and multi-
class edge computing systems towards improving the experience
of both delay-sensitive and mission-critical applications in any
task offloading environment.

Index Terms—Latency, mean throughput, mobile computing,
parallel computing, queueing theory.

I. INTRODUCTION

THE phenomenal increase of data traffic spurred by the
continuous evolution of the internet of things (IoT) and

5G applications continues to pose unprecedented challenges
especially when the system is evaluated with a focus on
latency, capacity, scalability and reliability. This is a result
of the limited computing and storage capacities of the con-
nected devices as well as the less reliable communication
channels among the heterogeneous IoT devices. These chal-
lenges are further aggravated by the increasing interactions
among network nodes, random topology changes and network
heterogeneity [1]. To reduce the effects of these challenges on
the performance of the system, more powerful computing and
storage capacities are needed to enhance task processing and
storage as well as caching capabilities, such that both delay-
sensitive and mission-critical applications can be efficiently
supported.
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Cloud computing is a promising technique that can com-
pensate for the storage and computing resource limitations of
the connected IoT devices through the deployment of cloud
servers on the core network layer [2]. These cloud servers
are known to be powerful in terms of computing and storage
capacities and have been receiving a lot of attention in the
last decades owing to their promising network architecture
that has been demonstrated to be useful in facing the up-
coming mobile data traffic deluge [3]. With the integration
of the cloud computing framework, IoT devices can offload
computation-intensive tasks to the cloud server via wireless
networks. Task offloading to the cloud servers – which are
generally known to be spatially far from devices – can however
results in high transmission latency, data leakage and other
related issues. As a result, these cloud-centric solutions may
be unsuitable for various delay-sensitive and mission-critical
applications. The resulting challenges with the cloud-centric
solutions necessitate the need for other novel solutions through
the deployment of computational nodes at the network edges
to reduce the communication latency, while also offering an
efficient computation resource capability.

Edge and fog computing models are considered as ex-
pansions of cloud computing model which allow improved
processing and storage capabilities for IoT devices. Edge
solutions (i.e. edge/fog computing) provide ubiquitous and
low latency access to computing resources in IoT-enabled
applications and systems. When deployed, IoT devices can
offload their tasks to the nearby edge nodes/servers, which
provide lower communication latency when compared to cloud
computing. Unlike cloud computing, however, the computation
capabilities of edge servers are rather limited. To address the
limitations of cloud, edge/fog computing environments, recent
efforts have considered the integration of these approaches.
The evolving solution is capable of producing a massive
improvement on the users’ quality of service (QoS) as well
as the overall system performance, thereby introducing higher
flexibility for rapid computations as well as high mobility
patterns [4].

An integrated edge-fog-cloud computing environment can
facilitate a multi-layer offloading process, where multiple edge
layers are created with different capabilities and locations
from the devices – located at the users’ layer. When a task
computation request cannot be executed at any selected layer,
such a task is forwarded to another layer with a suitable
computation capability for better and faster computation, sub-
ject to its assigned deadline. Tasks computation requests that
cannot be executed at the edges due to limited computation
capability are forwarded to the cloud layer. Due to the cloud
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layer’s relatively unlimited computation capacity, each arriving
task computation request is always accepted for possible
computation. With this, task expirations at the cloud layer
due to deadlines can be captured using queueing theory with
reneging technique. The integrated edge-fog-cloud computing
model is very useful as it can prevent computation overloading
at the edge servers through an efficient task offloading process,
while also supporting the mobility of nodes.

Unlike the traditional radio access network, modeling of
multi-layer edge computing-based networks is more difficult
owing to a more complicated task offloading and computation
processes resulting from the existence of interference in the
system [5]. This is further complicated by possible server
failures and vacations at different layers. Since the goal of any
offloading scheme is to reduce the network response latency,
the performance of the integrated edge-fog-cloud computing
network1 can be evaluated by investigating the network’s
communication and computation latency. These metrics have
been well investigated in single-layer point-to-point mobile
edge computing (MEC) systems using the tool of queueing
theory. The existence of interference in large-scale systems,
however, means investigating such metrics in large-scale edge
computing networks is much more challenging. As a result,
a large-scale edge computing network with infinite nodes has
not been well explored [5] and remains the motivation of the
work presented in this paper. A multi-layer framework will
improve task offloading efficiency in large-scale networks and
ensure that delay-sensitive applications are computed before
the expiration of their deadlines.

In large-scale multi-layer edge computing-based networks,
task offloading and computation decisions may depend on
different underlying parameters such as transmission costs,
computation powers and energy consumption requirements.
Another important parameter when deciding an appropriate
point of execution2(PoE) for any generated task is the task
execution deadline. The execution/computation of any task
should be completed before the expiration of its deadline
[6]. Deadline, therefore, becomes a useful parameter when
deciding appropriate PoE in a multi-layer system, although
understanding its analysis as in a real-time system is very
difficult. When the deadline is far enough in the future, a delay
can be tolerated to grant delay-sensitive tasks faster access to
computation resources. An accurate decision on appropriate
PoE selection can improve the computation offloading perfor-
mance in edge-fog-cloud computing environments.

In this paper, we considered a multi-user, multi-class and
multi-layer edge computing-based environment where task
offloading and computation decisions are achieved based on
the tasks transmissions, computations and deadline require-
ments, while also considering both wireless communications
and task computation constraints in the system modeling. The
PoE of any arbitrarily generated task can either be at the
user, edge, fog, or cloud layer depending on the computation

1We used the terms integrated edge-fog-cloud computing network and
multi-layer edge computing-based network interchangeably throughout this
paper.

2In the considered multi-layer system, PoE is defined as the layer in which
any selected task is executed.

requirements. The user’s layer is selected as the PoE if
the offloading power requirement cannot be satisfied by the
originating device. Otherwise, such a task can be offloaded to
either the edge or fog layer. A task that cannot be computed
at the edge and fog layers due to either limited queueing
capacity or the required computation capacity is offloaded to
the cloud layer for faster computation access before the likely
expiration of its deadline. We considered important factors
such as priority and server failure in the analysis. To the best
of our knowledge, such a multi-user, multi-class, and multi-
layer edge computing-based problem has not been considered
before. The contributions of this paper are thus summarised
as follows:

• We investigated a novel approach to improve task of-
floading processes in large-scale systems by proposing a
multi-class and multi-layer offloading solution. To capture
such a multi-layer system, we proposed an integrated
edge-fog-cloud computing system. This integrated edge-
fog-cloud computing system was modeled using the
tool of stochastic geometry (SG) and queueing theory,
where spatial relationships between nodes were captured
through point processes. Each layer of this multi-layer
system was further considered to have multiple virtual
machines (VMs) or servers.

• We then obtained a spatiotemporal analysis for the pro-
posed framework and presented an analysis for connec-
tivity probability – a metric that captures the fractions
of devices with reliable communication links to base
stations (BSs). Following the analysis of the connectivity
probability, we modeled the proposed communication
model and obtained tractable analysis for communication
latency – a metric that captures the total time from the
task generation period to the task arrival period at the
selected PoE.

• Next, the task computation at each layer was charac-
terized using queueing theory and parallel computing
techniques to ensure simultaneous multiple task execution
among VMs at each layer. The effect of the resulting
input/output (I/O) interference was carefully captured in
the system modeling.

• We explored task generation and arrival rates, task de-
parture rates, task priority, and server failure to improve
the offloading experience of delay-sensitive tasks, and
obtained analysis for computation latency. We capture
the expiration of the deadline using the queueing sys-
tem with reneging technique and considered each server
breakdown to be independent of other servers in the same
layer. The classification of task priorities was achieved
based on the expected task execution deadline.

• Finally, we carried out numerical simulations to evaluate
and demonstrate the performance of the presented multi-
layer scheme.

The remainder of this paper is organized as follows: Section
II highlights important related literature. In Section III, the
details of the proposed multi-layer edge computing-based
network model were presented, while analyses for the com-
munication model were presented in Section IV. Section V
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presents the analysis of the computation model, while the
outcomes of the numerical simulations were presented in
Section VI. Section VII concludes this paper.

II. RELATED WORKS

Computation offloading is an efficient technique towards
an effective reduction of the response latency in wireless
applications and systems. It is therefore unsurprising that the
area continues to receive a lot of attention recently. Single-
user computation offloading problem was formulated in [7] as
a branch and bound algorithm, while multi-user computation
offloading problem was also formulated as a mixed-integer
linear programming problem – a problem reported to be an
NP-hard problem. Offloading processes were achieved via
bandwidth, divided into multiple channels, where each channel
is allocated to only one user. Each user was also considered
to be orthogonal to others. Unlike single-user offloading prob-
lems, multi-user offloading problems do not only depend on
the overhead it saves but also on the interference generated due
to the activities of other users. This makes its analysis often
difficult to obtain. To avoid complicated analysis, existing
works often assume users’ independent offloading schemes.
Such an assumption however failed to capture the intrinsic
interaction among users owing to the need among users
to compete for computing resources. Independent offloading
scheme is therefore insufficient.

A multiuser computation offloading problem was studied
in [8] using the game theory technique in a multi-channel
environment with interference. The authors in [9] similarly
formulated a joint MEC offloading and D2D computation
offloading process as a sequential game in a multi-user system.
Effective computation offloading in multiuser computation
offloading environment requires reliable radio resources. In
orthogonal radio communication channels, devices located
within the same cell transmit over orthogonal channels, while
operations of devices located within different cells may inter-
fere with each other [10]. Interference control is also important
in non-orthogonal multiple access [3]. Hence, offloading de-
cisions must consider the effects of interference, especially in
large-scale MEC systems. This interference can be effectively
characterized using various SG tools [11], [12]. In [13], task
offloading decision was made by each device at each time slot.
With such an approach, any device can either offload tasks
to the edge server or execute such a task at its local CPU.
Offloading decision was assumed to be made by the cloud
manager in [10] for simplicity.

Modeling of large-scale MEC networks using SG was
first attempted in [5]. The work adopted the concepts of
SG, queueing theory and parallel computing to study the
performance of large-scale single layer MEC networks. The
data obtained by various IoT sensors were processed by the
edge servers, which in return provide intelligent real-time
solutions for various applications and systems. In a similar
work, the analysis for outage probability for heterogeneous
mobile cloud computing systems using SG was obtained in
[14]. A spatial and temporal decisions algorithm was also
formulated for edge-computing cloud-enabled heterogeneous

networks in [6]. Through the formulated Markov decision
process model, the appropriate computation site and time
are decided. The performance of centralized cloud and edge
computing applications was investigated in [15].

To improve the tasks offloading and computation rates,
parallel computing technique is often adopted in wireless net-
works as in [5], [16]–[18]. Parallel computing can improve the
runtime experience of tasks [18] while facilitating an energy-
efficient design [19]. Service delay minimization method in
the edge-cloud system was carried out in [20], while VMs
migration in scalable MEC system was proposed in [21] to
reduce delay. Traditional performance network models often
ignore channel failures and recovery in network modeling and
are generally known to overestimate network capacity and
performances. Hence, the work in [16] considered network
failures and recovery in cognitive radio networks. The analyses
presented in [16] were later adopted in [17] to model server
failures and repair in MEC-enabled wireless systems. The
problem of feasible and dependable task execution, which
often accounts for the joint limitation of network-wide mutual
interference and parallel task computing by failure-prone VMs
was also addressed. The work modeled both the failure and
repair rates as independent Poisson processes, although of-
floading decisions and other important underlying parameters
were not considered.

The continuous evolution of IoT and 5G applications toward
the deployment of the smart environment means integration
of centralized cloud and edge computing solutions is essential
to meet the demands of the next-generation devices. Hence,
the performance evaluation of a three layers cloud-fog-edge
computing infrastructure through the adoption of queueing
theory techniques was carried out in [4]. Task computation
requests were assumed to arrive at edge nodes following
independent and identically distributed (iid) Poisson processes,
while task computation times at the edge, fog and cloud
computing nodes were assumed to be distributed exponentially
with a mean value. The associated deadline of each task
computation request was further assumed to be exponentially
distributed with a mean value. Similarly, holistic integration of
cloud, fog and edge computing was introduced in [22], where
fog computing paradigm meets the demanding requirements
of various applications via multiple cloudlets collaborations,
while edge computing provides edge-server-oriented service
to achieve efficient processing with low latency.

While the works in [4], [22] introduced a novel approach
of integrating cloud, fog and edge computing frameworks,
important parameters that were not considered in such works
include tasks priority, server failures, offloading and com-
putation interference, etc. These parameters are central to
a proper understanding of the multi-layer edge computing
system. One useful approach towards achieving task priority is
to categorize tasks based on their required deadlines. A similar
approach was considered in [23], where users with lower
latency requirements were considered to have non-preemptive
priority over users with higher latency requirements. Multi-
layer MEC scheme was also proposed in [24]–[26] and multi-
service MEC scheme in [27], [28], where it was demonstrated
that multi-layer and multi-service MEC scheme can reduce
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the overall system latency while increasing the processing rate
compared to the traditional edge networks.

In contrast to the existing solutions which failed to properly
capture the important system requirements such as priority,
server failure, offloading, and computation interference, in this
paper, we concentrate on providing a multi-class and multi-
layer solution towards improving the offloading scheme in
large-scale environments. Tasks with low latency requirements
(i.e., delay-sensitive tasks) are considered to possess non-
preemptive priority over delay-tolerant tasks. Except otherwise
defined, the definitions of common notations used throughout
this paper are listed in Table I.

III. NETWORK MODEL

We considered a discrete-time multi-user, multi-class and
multi-layer tasks offloading system where the time axis is
segmented into unit intervals called slots t, (∀t = 1, 2, ...),
while offloading attempts are synchronized. IoT devices can
take advantage of the multi-layer environment by offloading
their tasks to higher layers for efficient and faster compu-
tation opportunities, provided that the required total uplink
and downlink transmissions power is less than the required
computation power for local execution. The proposed environ-
ment is presented in Fig. 1, where the computation capacity
c = {cL, cE , cF , cCl} satisfied the constraint cL < cE < cF <
cCl given that parameters cL, cE , cF and cCl represent the
computation capacity of the local device, edge, fog and cloud
servers respectively. A task computation request that cannot
be executed at the local CPU of each device is offloaded for
execution at the edge, fog, or cloud layer depending on the
required computation capacity and subject to offloading power
and task deadline requirements, since a lower computation
delay can be achieved at the higher layer at the expense of
higher transmission cost. The details of the proposed multi-
layer edge computing system are discussed in the following
subsections.

A. Spatial distributions model

The distributions of devices located at the users’ layer
are considered to follow homogeneous PPP (HPPP) ΨL of
intensity λL, while similar to [4], [17], BSs within which
edge servers were equipped at the edge layer are also assumed
to be distributed following an independent HPPP ΨE of
intensity λE . Similarly, the distributions of BSs located at
the fog layer follow independent HPPP ΨF of intensity λF .
The signal power attenuates at the rate of r−α following
unbounded path-loss propagation model, where r and α ≥ 2
represent the distance and path-loss exponent respectively. We
also assumed that channel links between the users’ layer and
any selected higher layer (edge, fog, or cloud) are subject to
Rayleigh fading such that the desired signal power gains hd

and interference signal hI are exponentially distributed with
unit mean, i.e. hd, hI ≈ exp(1), while each of B uplink
links is randomly selected by each device. We further adopted
channel inversion power control, which allows each device to
adjust its transmit power to ensure that the received uplink
power level at any BS is equal to a predetermined power

threshold ρ. We assumed that communications between edge,
fog and cloud layers are achieved through dedicated error-free
channels with negligible interference, while there is no loss of
packets on such channels to avoid complicated analysis.

We modeled the service zones of BSs located at the edge
layer using the bipolar model [29], where the service zone of
each BS xE

i ∈ ΨE is considered to depend on its transmission
signal power PE . The radius of any selected BS xE

k ∈ ΨE

service zone DE can be obtained as DE = rE(
∆θEPM

PE
)

1
α ,

where rE is the distance between any tagged device xL
k ∈ ΨL

and its corresponding BS xE
k ∈ ΨE located at the edge layer,

θE is a predefined threshold for successful task reception at
the edge layer, PM is the transmit power of any device and
∆ is the design factor [29]. The radius of any selected BS
xF
i ∈ ΨF service zone in fog layer, given as DF can also

be obtained following the same process. Similar to [4], we
assumed that the service zone of cloud services is relatively
unlimited. Each device xL

i ∈ ΨL is located within the service
zone of at least one edge node xE

i ∈ ΨE as shown in Fig.
1. Similarly, each edge node xE

i ∈ ΨE is located within the
service area of at least one fog node xF

i ∈ ΨF , while each
fog node xF

i ∈ ΨF is located within the service area of cloud
server. The service zone of any BS is defined to be the same
as its coverage zone.

In a large-scale network, an IoT device may be located
within the service zone of more than one BSs belonging to the
same layer. In such a case, a typical device will be connected
to its nearest BS for the task offloading process as in [11],
[17]. Consider a typical BS located at the origin, the number
of devices located within the service zone Ω(0, DE) of such
a typical BS xE

k ∈ ΨE in the edge layer can be captured
through the contact distribution function [30]. The probability
that there is at least one device located within Ω(0, DE) is
given as

P (Ω, DE) = 1− exp(λLπD
2
E),∀DE ≥ 0. (1)

Similarly, the probability that there is at least one device
located within Ω(0, DF ) is obtained as

P (Ω, DF ) = 1− exp(λLπD
2
F ),∀DF ≥ 0. (2)

B. Task generation model

The task generation model for the proposed multi-layer
edge computing system is modeled as a discrete-time queueing
model3. Hence, task generation at each device is considered to
follow an independent Bernoulli process with rate g tasks per
unit slot. Similarly, task inter-arrival times were considered to
follow geometric distributions. We assumed that there is no
synchronization between devices. From devices’ perspectives,
task generations are assumed to occur at the beginning of any
time slot t, while the offloading of a single task occupies a
random number of slots N ≥ 1.

Some tasks are known to be delay-sensitive tasks in real-
life applications, while some are delay-tolerant. It is therefore

3Discrete-time queueing models are better suited than continuous-time
queueing models when analysing and designing digital transmitting and
telecommunication systems [31].
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TABLE I
COMMON NOTATIONS USED

Notation Definition

ς Any selected layer. ς = {E,F,Cl} for edge, fog and cloud layer respectively

c; cς Computation capacity; computation capacity of ς

Ψ;λ Distribution of nodes; the intensity of nodes

r;α Distance between any two communicating nodes; path-loss exponent

hd;hI Desired signal power; interference signal power

ρ Uplink power threshold

PM ;Pς Offloading power of devices; Offloading power of BS located at layer ς

θς ;∆ SIR threshold; design factor

Dς ; Ω(0, Dς) Service zone radius of any BS; service zone of a BS in layer ς

g; gn Task generation rate; class n task generation rate

τ ; η Length of deadline period; the occurring rate of τ

Hς ; lς Queue capacity at layer ς; queue size at layer ς

Kς ;Prς Number of VMs in layer ς; the probability of selecting layer ς

mς ; dς Queueing system efficiency threshold; server degradation factor at layer ς

ϕ; vς Reliability threshold; the weight of task acceptance at layer ς

ρς ; ρn,ς System load at layer ς; system load of class n task at layer ς
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Fig. 1. Multi-layer edge computing environment.

important to classify tasks based on their delay requirements
to ensure that the QoS of each task is satisfied [32]. With
task classifications, different priority levels could be associated
with different task requests [10]. Preferably, any generated
task should be computed before the expiration of its deadline
(if there is any). Hence the priority level can be assigned to
tasks based on the latency requirements. As in [23], tasks with
shorter deadlines (i.e., lower latency requirements) were classi-
fied as delay-sensitive tasks, while tasks with longer deadlines
were classified as delay-tolerant tasks. Delay-sensitive tasks
(referred to as class 1 tasks) were thus considered to have
non-preemptive priority over delay-tolerant tasks (referred to
as class 2 tasks). The joint task generation rate at each device
can then be captured as g = {g1 ∪ g2}, where g1 and g2
represent independent task generation rates of class 1 and class

2 tasks respectively4, given that g1 ≪ g2. With g1 ≪ g2, the
QoS requirements of class 2 tasks can be satisfied.

After being generated, a task has until the expiration of its
deadline, a certain length of time slot τ for its execution. At
the expiration of τ , an unprocessed task leaves the system (a
process known as task reneging). Generally, the deadline τ
can be represented as a random variable in the range [0,∞)
and its probability density function can be represented as

f(t) = η exp(−ηt),∀η ≥ 0, t ≥ 0, (3)

where η is the occurring rate of deadline τ , while 1
η gives the

average length of τ . A task is classified as class 1 if τ ≤ dt and
as class 2 if otherwise. To enhance fairness in real practical
systems, the threshold dt should be constantly defined by an

4It is often assumed that delay-sensitive tasks are rare in real-life compared
to delay-tolerant tasks, hence the reason for the condition g1 ≪ g2. The
model, however, remains valid for condition g2 > g1 with little modifications.
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Fig. 2. Tasks offloading and transferring processes.

independent external application. Such a threshold can depend
on the total required computation time of tasks waiting in
service and is beyond the scope of this paper.

C. Tasks offloading and acceptance modeling

A newly generated task is offloaded to any one of the edge,
fog and cloud layers at the beginning of any time slot t if
the offloading requirement is satisfied at the originating device
(i.e., the originating device can produce the required offloading
power necessary for a successful reception at the selected
PoE). The offloading process in terms of layer selection is
shown in Fig. 2. Such a task is offloaded to an edge layer
if the required computation capacity c ≤ cE and to a fog
layer if cE < c ≤ cF . The task is offloaded to a cloud layer if
c > cF . Given that a typical device selects an appropriate layer
based on the required computation capacity c, the probability
of selecting each layer as a potential PoE is given as

Prς =


PrE = P (c ≤ cE), if selecting edge layer
PrF = P (cE < c ≤ cF ), if selecting fog layer
PrCl = P (c > cF ), if selecting cloud layer,

(4)
where PrE , PrF , and PrCl are the probabilities that a typical
device will select edge, fog and cloud layer respectively for
its computation, with PrE + PrF + PrCl = 1.

The queues at the edge and fog layers are considered to be
of finite capacities of sizes HE and HF respectively, where
task execution within each class follows a first come first serve
(FCFS) scheduling policy. Owing to its unlimited capacity
and faster computation process, the queue at the cloud layer
is considered to be of infinite capacity. When the offloading
requirement cannot be satisfied by the originating devices, any
generated tasks can only be computed locally. In this paper, we
only focus on situations where the offloading requirements are
satisfied. Hence the analysis presented focuses on edge, fog
and cloud layers. We also assumed that all devices are always
aware of the computation capacities of the edge, fog and cloud
servers.

A task is accepted for computation at the edge layer if the
queue size lE satisfies the condition lE < mE ≤ HE . Such a
task joins the queue at the edge layer and waits for computa-
tion opportunity. Otherwise, an unaccepted task is transferred
to the fog server by the edge server for computation. Such a
task is accepted at the fog layer if the queue size lF at the fog

layer satisfies the condition lF < mF ≤ HF , otherwise, the
task is transferred to the cloud layer. The queue capacities HE

and HF are selected to ensure all accepted tasks are computed
before the expiration of their deadlines5. We assumed that
edge, fog and cloud layers are made up of KE , KF and KCl

number of virtual machines (VMs) respectively. Owing to the
non-preemptive priority possessed by class 1 tasks, any class
1 task, upon arrival at any layer, is immediately moved to the
head of the queue for immediate computation. We assumed
that each accepted task has different sizes; hence each task
requires a random number of slots for computation.

One metric of interest, in this case, is therefore the accep-
tance probability – defined as the probability that an offloaded
task is accepted at the selected layer. Generally, an acceptance
probability at the edge layer is 1 when the queue size lE is
less than the predefined threshold mE ≤ HE . Similarly, the
acceptance probability at the fog layer is 1 when the queue
size lF is less than the predefined threshold mF ≤ HF . This
acceptance probability is known to decrease with an increase
in the queue size [33]. Due to unlimited capacity at the cloud
layer, the acceptance probability is always 1 at the cloud layer.
For ς ∈ {E,F}, the acceptance probability can be summarized
as

φlς =

{
1, lς ≤ mς

1 + (ln{Hς

mς
})−1 ln{mς

lς
}, mς < lς ≤ Hς .

(5)

At lς = Hς , φlς = 0. The proposed task offloading scheme is
summarized in Algorithm 1.

D. Tasks arrival rate

A careful observation of the proposed multi-layer systems
shows that the task arrival rate at each layer – which is
also considered to follow the Bernoulli process – not only
depends on the task generation rate and acceptance probability
but also the offloading success probability. This offloading
success probability at any arbitrary layer ς ∈ {E,F,Cl} can
be obtained in terms of signal-to-interference ratio (SIR) as
Oς = P (SIRς > θς). Since offloading success probabilities
in different slots are independent, there is no need for time
index t. Generally, the task arrival rate of class n tasks at the
edge layer when φlE is neglected is given as

an,E = PrEOEgn,∀n = {1, 2}. (6)

Similarly, given that a task is received at the fog layer from
the edge layer owing to full queue capacity at the edge layer
(i.e., lE ≥ HE with probability πHE

=
∑∞

k=1 πHE
(k), the

task arrival rate of class n tasks at the fog layer when φlF is
neglected is given as

an,F = PrFOF gn + an,EπHE
,∀n = {1, 2}, HE ≥ 1. (7)

Finally, the task arrival rate of class n tasks at the cloud layer
given that such a task is received at the cloud layer owing to

5Note that the parameters that matter are mE and mF . The parameters
HE and HF are, however, necessary to represent the finite capacities of
the queues. This is useful to show that, the system becomes unstable when
mς > Hς , for ς ∈ {E,F}, due to the number of waiting tasks.
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Algorithm 1: Task offloading scheme
Initialization: φlς , mE , mF , HE , HF

End Initialization
Input: xL

k ∈ ΨL and c
while task computation is required do

if c < cE then
xL
k ∈ ΨL offloads to layer ς = {E};

end
else if cE < c < cF then

xL
k ∈ ΨL offloads to layer ς = {F}

end
else

xL
k ∈ ΨL offloads to layer ς = {Cl}

end
For any packet at ς = {E,F}:
if lς < mς < Hς then

φlς = 1;
end
else if mς < lς < Hς then

φlς = 1 + (ln{Hς

mς
})−1 ln{mς

lς
}

end
else

Forward the packet to the next layer
end

end

full queue capacity at the fog layer with probability πHF
=∑∞

k=1 πHF
(k) is obtained as

an,Cl = PrClOClgn + an,FπHF
,∀n = {1, 2}, HF ≥ 1. (8)

We adopted an early arrival system policy where departures
occur immediately before the slot boundaries in the inter-
val (t−, t), while arrivals occur immediately after the slot
boundaries in the interval (t, t+). From (5)–(8), we know
that the overall joint tasks arrival rate aς at each layer ς , for
ς ∈ {E,F}, considering the effect of φlς is given as

aς = φlς

2∑
n=1

an,ς =

{∑2
n=1 an,ς , lς ≤ mς∑2
n=1 an,ς(1 + (ln{Hς

mς
})−1 ln{mς

lς
}), mς < lς ≤ Hς .

(9)
For ς ∈ {Cl}, the joint arrival rate aς = aCl is simplified as

aCl =

2∑
n=1

an,Cl. (10)

E. Tasks reneging rate

It is also important to investigate the reneging rate of any
arbitrarily accepted task due to the expiration of its deadline.
From (3), we know that arrivals and departures of tasks due
to deadline expiration are independent. Therefore, it is safe
to capture the reneging rate as a function of the queue size.
An unprocessed task is said to have reneged if such a task

leaves the system after a certain period τ . When the queue
size lς ≤ mς for ς ∈ {E,F,Cl}, we assumed that no task
renege as the expected total computation time is expected to
be less than τ . However, when lς > mς , the reneging behavior
can be said to be an exponentially distributed random variable
with parameter γς . The reneging rate can be obtained as

γlς =

{
0, lς ≤ mς

γς(lς −mς), mς < lς ≤ Hς .
(11)

The probability that any arriving task will renege after accep-
tance is provided in Section V.

F. Tasks computation rate

We considered the mean computation time at each layer
to follow independent general distributions, where the service
times at each VM are iid random variables. Each of these
VM is subject to failure or breakdown following the Bernoulli
process. Hence, the probability that a typical VM is available
during any time slot is given as p ∈ (0, 1]. With the adoption
of parallel computing at each layer, each VM suffers from
I/O interference from other VMs that must be captured in
the system modeling. Let the task execution rate of a single
available VM in layer ς be given as µ0,ς tasks per unit slot,
the task execution rate of such a VM when multiple VMs are
involved, given that pKς VMs are available at any selected
layer can be obtained as

µ1
ς =

µ0,ς

(1 + dς)pKς−1
, (12)

where dς depicts the computation degradation factor owing to
I/O interference among pKς VMs. Degradation factor (dς ≥
0) is defined as the percentage increase in the expected service
time of a task, experienced by a VM when multiple VMs
are multiplexed. From (12), the mean execution rate at any
selected layer can be approximated as

µς = pµ1
ς . (13)

IV. ANALYSIS OF COMMUNICATION MODEL

In this section, we analyze the communication model to
investigate the performance of the proposed multi-layer edge
computing system. We first present the analysis for the connec-
tivity probability followed by an analysis for communication
latency.

A. Connectivity model

The connectivity model captures the coverage of radio
access networks in the proposed multi-layer edge computing
system at the network level. This model follows from the
analysis of offloading success probability and is useful in mea-
suring the fraction of devices with reliable links/connections
to BSs. When any tagged device xL

k ∈ ΨL offloads its tasks
to any selected BS xς

k ∈ Ψς , the probability that such a task
is successfully received depends on the received SIR at the
paired BS, considering an interference-limited channel. Let
ϑt
xL
k ,ς

∈ {0, 1} represents the user-server association indicator
in time slot t, such that ϑt

xL
k ,ς

= 1 indicates that a device xL
k
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offload its task to layer ς in time slot t and ϑt
xL
k ,ς

= 0 indicates
otherwise. We assume that each device can only offload to one
layer (for computation at a single VM) at a time. The user-
server association rule can be obtained as

κ =

{
ϑt
xL
k ,ς

∈ {0, 1}, ∀xL
k ∈ ΨL, x

ς
k ∈ Ψς∑

xς
k∈Ψς

ϑt
xL
k ,ς

= 1, ∀xL
k ∈ ΨL.

(14)

The received SIR at any tagged BS xς
k ∈ Ψς located at layer

ς = {E,F,CL} is obtained as

SIRς =
ρhd∑

xL
i ∈ΨL\xL

k
ϑt
xL
i ,ς

PMhI ||z||−α
, (15)

where ||z|| is the Euclidean distance between an active device
xL
i ∈ ΨL except the tagged device xL

k ∈ ΨL and the tagged
BS. From (15), the connectivity probability is obtained as
the probability that the received SIRς is greater than the
pre-defined signal threshold for uplink transmission. This is
obtained as

P ς
conn = Oς

= P
( ρhd∑

xL
i ∈ΨL\xL

k
ϑt
xL
i ,ς

PMhI ||z||−α
> θς |ΨL,Ψς

)
. (16)

We make two key assumptions next.
Assumption 1: Stationary point process is assumed such that
the location of each device within each observation period
remains unchanged.
Remark: This assumption has been widely adopted when mod-
eling wireless communications to avoid complicated analysis
and has been verified through simulations. Hence, the network
topology remains unchanged in each time slot and independent
of the other time slots [34]–[37].
Assumption 2: The transmission powers of active devices are
independent.
Remark 2: Note that the transmission powers of active devices
are dependent owing to the adopted channel inversion power
control. However, to ensure tractable analysis, we neglect such
dependence. This assumption has been validated in [38], [39].
Following Assumption 1 and Assumption 2, the connectivity
probability at any selected layer is given in Lemma 1.
Lemma 1: Given that any tagged device located at the
users’ layer offloads its generated tasks to any selected layer
ς = {E,F,Cl} and that λL

λς
is the average number of devices

connected to each BS xς
i ∈ Ψς , the connectivity probability

at the selected layer is straightforward from (16) and can be
obtained as

P ς
conn =

exp
{−2θςgPrς

λL
λςB

α−2 2F1(1, 1− 2
α , 2−

2
α ,−θς)

}
(1 +

θςgPrς
λL
λςB

(1+θς)u
)u

,

(17)
where 2F1(.) represents the Gaussian hypergeometric function,
while u = 3.575 captures the approximation of the probability
distribution function of the PPP Voronoi cell area in Euclidean
space R2. At α = 4, (17) is simplified as

P ς
conn =

exp{−gPrς
λL

λςB

√
θς arctan(

√
θς)}

(1 +
θςgPrς

λL
λςB

(1+θς)u
)u

. (18)

Proof: Since tasks offloading from devices are unscheduled,
inter-cell and intra-cell interference will affect the offloading
process of the tagged device. This analysis follows from
approximating the locations of interfering devices with a PPP
of the same intensity, hence ignoring the spatial correlations
among devices. The proof of Lemma 1 is straightforward from
[38], [39] and is summarised in Appendix A for completeness.

B. Connectivity-reliability

It is also interesting to investigate the reliability of the
connectivity model. For the connectivity process to be reliable,
the portion of the connected devices must not be less than
ϕ, with 0 < ϕ ≪ 1. Connectivity-reliability captures the
portion of devices in each realization of ΨL that achieves a
SIR of θς with a probability of at least ϕ. The goal is to find
the complementary cumulative distribution function of P ς

conn

given as

FP ς
conn

(ϕ) = P !{P ς
conn(θς) > ϕ},∀0 < ϕ ≪ 1, θς ∈ R+,

(19)
where P ! represents the reduced Palm measure of the PPP.
Lemma 2: The Connectivity-reliability of an uplink of-
floading of tasks can be obtained from the analytical Meta
distribution of the SIR following the Gil-Pelaez theorem [40]
as

FP ς
conn

(ϕ) =
1

2
+

1

π

∫ ∞

0

ℑe−jw lnϕMjw

w
dw, (20)

where ℑ(z) represents the imaginary parts of complex number
z and Mjw is obtained through the moments of P ς

conn. The
b-th moment of P ς

conn presented in (16) can be approximated
as

Mb,ς(θς) ≜ E0(P ς
conn(θς)

b), b ∈ C. (21)

Note that the random variable P ς
conn(θς) ∈ [0, 1], then

Mb,ς(θς) =

∫ 1

0

bϕb−1FP ς
conn

(ϕ)dϕ. (22)

From [41], we know that P ς
conn(θς) ≡ M1(θς) is the first

moment of the connectivity probability (i.e., offloading success
probability). The approximate solution using beta distribution
for the analysis presented in Lemma 2 is straightforward from
[41], [42]. The pdf of any beta distributed random variable X
with mean ξ can be obtained from the general analysis of the
beta function as

fX(x) =
x

ξ(β+1)−1
1−ξ (1− x)β−1

B(βξ/(1− ξ), β)
, (23)

where B(:, :) is the beta function. The parameter β is obtained
as

β =
(1− ξ)(ξ −M2)

M2 − ξ2
. (24)

Through the analysis of the moments with ξ = M1, the
Meta distribution can be obtained for each value of ϕ and
θς . This provides insights into the connectivity-reliability of
the network.
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C. Communication latency

The communication model captures the communication
efficiency during tasks offloading in the radio access network
between any tagged device and its corresponding BS in the se-
lected layer. The efficiency of any communication channel can
be measure through the joint uplink and downlink communica-
tion latency. While the uplink transmission captures the tasks
offloading between an active device and its corresponding BS
in the selected layer, downlink transmission represents tasks
transmission from the PoE to the users’ layer after execution.
The communication latency is the mean number of time
slots required to transmit a task until a successful reception
at the intending receiver (i.e., BS at any selected layer for
uplink transmission and the tagged device for the downlink
transmission). For uplink transmission, the communication
latency is obtained as

Tcom,up ≜ E0(min{t ∈ N : 1t(m → ς)}), (25)

where 1t(m → ς) = 1 if SIRς > θς in time slot t and 0
if otherwise. For downlink transmission, the communication
latency is obtained as

Tcom,dow ≜ E0(min{t ∈ N : 1t(ς → m)}). (26)

Because the size of the processed data after computation
is much smaller than the size of the input data, while the
transmission power at the higher layer is also much larger than
the transmission power of devices, the downlink transmission
time is usually ignored. Hence, we similarly assumed that
the downlink transmission (achieved via dedicated error-free
channels) time is negligible, while the location of the tagged
device during downlink transmission is known at the selected
layer. As a result, we focus only on the uplink communication
latency.
Proposition 1: The communication latency experienced dur-
ing task offloading between a tagged device and its corre-
sponding BS located at the selected layer is given as

Tcom,ς = E0
Ψ

( 1

P ς
conn

)
≈ M−1. (27)

Proof: The expression is obtained from the analysis of P ς
conn

following Assumption 1. The analysis for Tcom,ς is obtained
as the -1-st moment of connectivity probability conditioned
on ΨL and Ψς . This is possible since generated tasks are not
queued but are offloaded immediately they are generated.

Note that any tagged device does not know the present
queueing condition at the higher layers, thus an appropriate
layer is selected for the newly generated task based on the
required computation capacity. A task that cannot be computed
at the selected layer due to the queueing constraints are
forwarded to the next higher layer by the selected layer via a
dedicated error-free channel with negligible interference. This
means additional time is consumed when tasks are forwarded
to another layer due to queue constraints. This will be captured
through the quality level parameter introduced in Section V.

D. Mean task throughput

The efficiency of the communication model can also be
evaluated through the mean task throughput – a metric that

captures the mean number of tasks that a typical device can
offload successfully in a time slot. This metric is related to the
communication latency – which captures the number of time
slots required to successfully offload a task.
Definition 1: Given that the number of tasks generated by a
tagged device xL

k ∈ ΨL within any time slot [0, t] is NxL
k
(t),

while the average communication latency of any i-th task is
T i
com,avg =

∑nl
ς=1 T i

com,ς

nl
, where nl = 3 represents the number

of layers in the system. The mean task throughput can be
defined as

Tavg = lim
t→∞

NxL
k
(t)∑N

xL
k
(t)

i=1 T i
com,avg

. (28)

By adopting queueing theory technique, we can represent the
communication model as a queueing system, where the task
generation rate serves as the input to the system, while the
offloading success rate serves as the output. With this, the
mean task throughput can be obtained as shown in Proposition
2.
Proposition 2: Given that the tasks generation rate follows
Bernoulli process with rate g, while the average offloading
success probability follows the iid general distribution of rate
P avg
com =

∑nl
ς=1 P ς

conn

nl
, the mean task throughput of any tagged

device xL
k ∈ ΨL is given as

Tavg =
{P avg

conn − g

1− g

}+

, (29)

where {.}+ represents max{., 0}.
Proof: The proof follows from the analysis of queueing system
with geometric inter-arrival and general service times [32]. It
is omitted for brevity.

V. ANALYSIS OF COMPUTATION MODEL

Like the communication model, the computation model
captures the computation efficiency in the proposed multi-
layer edge computing system. This is evaluated through the
computation latency – a metric that captures the total time
slots a typical task spends waiting for computation opportunity
on the queue and the total time slots used for the actual
computation. Recall that in Section III, we classified tasks as
class 1 and class 2 tasks, with class 1 tasks possessing non-
preemptive priority over class 2 tasks. Hence, class 1 tasks
may experience lower computation latency compare to class 2
tasks. Next, we obtain the queue dynamics which was followed
by the computation details of class 1 and class 2 tasks.

A. Queueing dynamics and service rate

At the beginning of each time slot t, the system contents
can be represented using the tuple Q(t)ς = (qς1, q

ς
2), where qς1

and qς2 are the respective number of class 1 and class 2 tasks
in layer ς including those currently being computed. Clearly,
Q(t)ς forms a Markov chain. The queue process {Q(t)ς}∞t=1

evolves following

Q(t+ 1)ς = aς(t) + {Q(t)ς − µς(t)− γς(t)}+, (30)

where aς = (a1,ς , a2,ς) represents the number of arriving
tasks during the considered time slot, µς = (µ1,ς , µ2,ς)
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represents the number of successfully computed tasks and
γς = (γ1,ς , γ2,ς) represents the number of reneged tasks.

We assumed a single queue at each layer with Kς identical
VMs where each VM computes a single task at a time. Once a
task joins a queue, it cannot leave except due to the expiration
of deadline or end of its successful computation. Note that
the availability of each VM during any slot is independent
of its availability during the other slot and independent of
the availability of other VMs. A computed task leaves the
system immediately after its successful computation. Owing
to the adopted discrete-time queueing system, the computation
of any arriving task during a time slot begins at the beginning
of the next slot subject to available computation resources.
For simplicity and to reduce the impact of I/O interference
on the computation of class 1 tasks, we assumed that once a
class 1 task is admitted for computation at beginning of any
time slot t, the entire layer is unavailable for class 2 tasks.
Without loss of generality, we considered VMs to be numbered
from 1 through Kς such that the task with the lowest index
is computed by the available VM with the lowest index and
task with the second-lowest index is computed by the next
available VM, and so on.

Since a maximum of Kς VMs may be available at any time
slot, the average service rate at each layer depends on the
number of available VM at such a slot. Hence, the system
task execution degree can be summarized as

Λlς =


lς

pKς
, lς ≤ pKς

1, pKς < lς ≤ mς

1 + b ln
{

lς
mς

}
, mς < lς ≤ Hς ,

(31)

where b is a constant value. Let µmax be the maximum average
service rate possible, the dynamic iid average task execution
rate can be obtained as

µl,ς = ΛlςpKςµς =


lςµς , lς ≤ pKς

pKςµς , pKς < lς ≤ mς

pKςµς

(
1 + b ln

{
lς
mς

})
, mς < lς ≤ Hς ,

(32)
where b =

( µmax
pKςµς

−1)

ln(
Hς
mς

)
. At lς = Hς ,

µH,ς = pKςµς

(
1 + b ln{Hς

mς
}
)
= µmax. (33)

Recall that a task can be redirected from the edge layer to the
fog layer or from the fog layer to the cloud layer via a fed-
erated computing process [43] if such a task arrives when the
queue capacity lς = Hς . Such a federated computing system
can be characterized by a quality level qf,ς(0 < qf,ς ≤ 1) that
captures the task’s QoS in terms of the expected computation
time. In such a case, the average task execution time can be
captured as

1

µf,ς
=

1

qf,ςµl,ς
>

1

µl,ς
. (34)

From (32) and (34), we can obtain the overall average task
execution rate at any selected layer ς as

µov,ς = vςµl,ς + vfµf,ς ,∀vς + vf = 1, (35)

where vς and vf represent weights of acceptance at layer ς
from the originating device and layer ς − 1 respectively. At
the edge layer, vf = 0, hence µov,E = µl,ς . Since a task once
admitted at any typical layer can only depart due to expiration
of its deadline or end of its successful computation, the average
task departure rate is generally given as

ως =

{
µov,ς , lς ≤ mς

µov,ς + γlς , mς < lς ≤ Hς .
(36)

To ensure necessary and sufficient conditions for stability
at each layer, it is important to assume that the demand
for task execution at each layer does not overload the task
execution mechanism. Hence, the average arrival rate at each
layer is considered to be less than the average departure
rate, i.e., ρς = aς

ως
< 1. The average joint departure rate

ως = ω1,ς + ω2,ς , where ω1,ς and ω2,ς represent class 1 and
class 2 tasks departure rates respectively.

B. Computation latency for class 1 tasks

At any layer, class 1 tasks are computed at the beginning of
any slot as long as such tasks are present in the system. Hence
class 1 tasks experience lower computation latency compared
to class 2 tasks. To obtain the computation latency, one must
first understand the system content at the beginning of any
arbitrary slot. Hence, we obtain the system content of class 1
tasks in Proposition 3.
Definition 2: The probability that the system in any selected
layer is empty depends on the joint arrival rate and departure
rate of tasks in such a layer. This is given as π0,ς = 1− ρς .
Proposition 3: The mean value of the system contents of class
1 tasks in any layer ς at the beginning of any typical slot is
given as

U ς
1 =

2ρ1,ς ¯ρ1,ς + T1,ςVa1,ς
+ a21,ςVT1,ς

+ a1,ςa2,ςVT2,ς

2 ¯ρ1,ς
,

(37)
where X̄ = 1−X , Tn,ς =

1
ωn,ς

and V[.] is the variance of [.].
Proof: The proof is straightforward from [44] and is presented
in Appendix B for completion. From (37), the expression for
the mean computation latency can be obtained for any typical
class 1 task.
Proposition 4: The mean computation latency of any tagged
class 1 task is given as

T 1,ς
comp =

ρ1,ς ¯ρ1,ς + T1,ςVa1,ς + a21,ςVT1,ς + a1,ςa2,ςL

2a1,ς ¯ρ1,ς
, (38)

where L = (VT2,ς
+ T 2

2,ς − T2,ς).
Proof: The proof follows from Proposition 3 and is summa-
rized in Appendix C for completeness.

C. Computation latency for class 2 tasks

Similar to class 1 tasks, the computation of class 2 tasks at
any selected layer is computed following FCFS and provided
that no class 1 task arrived at the beginning of the considered
time slot. Hence the computation latency of class 2 tasks is
affected by the arrival and departure rates of class 1 tasks. The
system content of class 2 tasks in any selected layer is given
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in the next Proposition.
Proposition 5: The mean value of the system contents of class
2 tasks in any layer ς at the beginning of any typical slot is
given as

U ς
2 =

2ρ2,ς ρ̄ς ¯ρ1,ς + T 2
1,ςa2,ςVa1,ς

+ ¯ρ1,ς [2T1,ςVa1,ς
+ T2,ςVa2,ς

]

2ρ̄ς ¯ρ1,ς

+
a2,ς(a1,ςVa1,ς

+ a2,ςVa2,ς
)

2ρ̄ς ¯ρ1,ς
. (39)

Proof: The proof follows from Appendix C. From Proposi-
tion 5, the expression for mean computation latency can be
obtained for any typical class 2 task.
Proposition 6: The mean computation latency of any tagged
class 2 task is given as

T 2,ς
comp =

1

2

{
T2,ς +

V 2
a2,ς

T2,ς + 2T1,ςVa1,2,ς

a2,ς ρ̄ς

}
+

1

2 ¯ρ1,ς{
− ¯ρ1,ς(T2,ς −1)+

a2,ςVT2,ς
+ Va2

1,ςT
2
1,ς

+ a1,ςV
2
a1,ς

ρ̄ς

}
, (40)

where Va1,2,ς
is the covariance of a1,ς and a2,ς .

Proof: The proof is similar to the proof of Proposition 3 and
is omitted for brevity.

D. Reneging due to expiration of deadlines

We capture the probability that a task expires before the
completion of its computation using the reneging technique.
Let πς depicts the probability that at least one VM is working
in any selected layer, then the probability that any newly
arriving class 1 task at such a layer will renege (i.e., experience
deadline expiration before computation opportunity) can be
approximated as

P ς
re,1 =

a1,ς − ω1,ς(πς − π0,ς)

a1,ς
. (41)

Similarly, the probability that any newly arriving class 2 task
at such a layer will renege

P ς
re,2 =

aς − ως(πς − π0,ς)

aς
. (42)

From (41) and (42), we can obtain the analysis for offloading
efficiency as Eoff,ς = 1− P ς

re,n.

VI. NUMERICAL SIMULATIONS AND RESULTS

We now numerically analyze the performance of the multi-
layer edge computing system investigated in this paper and
validate the analyses using independent Monte Carlo sim-
ulations averaged over 50, 000 channel realizations. Except
otherwise stated, the following simulation parameters were
used similar to [11], [12], [45]: α = 4, λL = 0.4, λE =
λF = λCL = 0.3.

The connectivity probability gives the fraction of devices
with a reliable connection to BSs located in all the considered
layers ς = {E,F,Cl}. As expected, the number of devices
with reliable connections reduces as θς increases. Owing to the
adopted power control technique, we considered the parameter
θς to be the same for all layers. This allows us to find the
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0 2 4 6 8 10 12 14 16 18 20

A
ve
ra
ge

C
on

n
ec
ti
v
it
y
P
ro
b
ab

il
it
y

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

g = 0.10 (analytical)
g = 0.10 (simulations)
g = 0.15 (analytical)
g = 0.15 (simulations)
g = 0.20 (analytical)
g = 0.20 (simulations)

Fig. 3. Average connectivity probability.

φ
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
o
n
n
ec
ti
v
it
y
-R

el
ia
b
il
it
y

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(g = 0.10)
(g = 0.15)
(g = 0.20)
(g = 0.25)
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average connectivity probability using the fraction of reliable
connections to all layers at any observation period as shown
in Fig. 3. Similarly, the average connectivity probability was
also shown to reduce as the task generation rates increase at
the users’ level. This is because the number of offloaded tasks
is often proportional to the task generation rate, which can
increase interference in the system.

It is also desirable to investigate the fraction of connections
in each network realization that can achieve θς with the
reliability of at least ϕ. This was investigated through the Meta
distribution – a method that has been properly investigated in
the literature. As shown in Fig. 4, the connectivity-reliability
reduces as the reliability parameter ϕ increases. This implies
that the system performance level decreases when the param-
eter ϕ is set to a very high value. The connectivity-reliability
was also observed to depend on the tasks generation rate and
was shown to reduce as task generation rates increases due to
the impact of interference.

The communication latency as a function of θς is presented
in Fig. 5. This metric largely depends on the number of avail-
able BSs in any selected layer. We set λE = 0.2, λF = 0.3
and λCL = 0.5 to investigate the experienced communication
latency when edge, fog and cloud layers are respectively
selected. As expected, the communication latency increases
with the SIR threshold θς regardless of the selected layer. Note
that PrE + PrF + PrCl = 1, hence PrF + PrCl = 0 when
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Fig. 6. Obtained mean task throughput vs g, λς = 0.3.

PrE = 1. A similar condition is applicable for PrF = 1 and
PrCl = 1. In Fig. 6, the performance of the system in terms
of the mean task throughput was investigated. The system
mean task throughput was shown to reduce as task generation
rates increases. This is also expected as the probability of task
re-offloading is expected to increase with g. The metric was
similarly shown to depend on θς .

The computation latency is another important metric that
is useful in investigating the performance of the system.
The mean computation latency of any tagged class 1 task is
presented in Fig. 7 under the assumption that the considered
system is stable. Owing to the non-preemptive priority enjoys
by class 1 tasks, its computation at any layer depends on
the class 1 tasks arrival and departure rates, as well as the
number of class 2 tasks that were already under computation
when such a tagged class 1 task arrived. When the average
task execution rate increases (for instance due to an increased
number of available VMs), the computation latency reduces.
This latency is expected to increase with the arrival rate
since more tasks will require computations at the servers. As
obtained, the proposed multi-class framework can reduce the
computation latency of class 1 tasks (when compared with the
traditional single layer approach) without sacrificing offloading
efficiency.

Similar to the case of class 1 tasks, the computation latency
of class 2 tasks is affected by many factors including the arrival
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Fig. 8. Effects of average service rate of class 2 tasks on computation latency
of class 2 tasks, a1,ς = 0.1, µ1,ς = 0.3.

and departure rates of class 1 tasks. Fig. 8 shows the mean
computation latency of class 2 tasks as a function of class 2
arrival and mean task execution rates. The mean computation
latency of class 2 tasks was shown to increase with the joint
arrival rates of tasks in the system. Similarly, Fig. 9 shows
the effect of mean task execution rates of class 1 and class 2
tasks on the mean computation latency of class 2 tasks. Class
2 tasks experience improved performance when class 1 and
class 2 tasks are executed at relatively high rates, which is
possible with multiple VMs deployed at multiple layers.

Generally, the proposed multi-layer edge computing scheme
achieved a lower latency and thus higher computation rate
when compared with the conventional MEC scheme – a
scheme that suffers from limited computing capacity, thereby
preventing and delay-sensitive and mission-critical applica-
tions to be processed on time. The scheme also achieved a
better performance when compare with the traditional cloud
computing-based scheme from communication perspective.

Finally, to further demonstrate the ability of the proposed
multi-layer edge computing scheme to meet the various tasks’
QoS requirements, we evaluate the performance of the multi-
layer scheme using task acceptance rate, task execution rate,
and average task reneging rate following the analyses pre-
sented in the previous sections. As presented in Fig. 10, the
multi-layer scheme can achieve a reliable acceptance rate at
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Hς = 10. When the queue length lς ≤ mς , the acceptance rate
is maximal. As the queue length increase beyond the mς , the
task acceptance rate begins to decrease until the acceptance
rate becomes 0 for lς ≤ Hς . Given a constant task execution
rate, the average task acceptance rate increases with mς .

Furthermore, the mean task execution rate depends on the
queue size and is observed to remain constant for lς ≤ mς at
Hς = 10, µς = 0.6 and Kς = 1. As the queue size increases
beyond mς , the task execution rate increases as shown in Fig.
11. The execution is also observed to decrease with p (i.e.,
the availability rate of VMs). The task execution rate can be
further increased as the number of VMs increases. This will
ensure more tasks are computed simultaneously.

To investigate the impact of high arrivals of class 1 tasks on
class 2 tasks, we investigated the tasks reneging rate of class
1 and class 2 tasks as a1,ς increases in Fig. 12. Under stable
condition, (i.e., a1,ς < µ1,ς ), with a2,ς = 0.15 and µ2,ς = 0.2
the task reneging rate for both classes of tasks remain zero.
This implies that all tasks will be served before the expiration
of their deadlines. As the a1,ς > µ1,ς , the system becomes
unstable. Thus, the tasks reneging rate increases drastically for
both classes of tasks. Interestingly, the unstable behaviour is
rare in practical systems as stability condition is often assume.
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Fig. 11. Task execution probability under stability condition.
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VII. CONCLUSION

The need to improve task processing and storage as well
as caching capabilities of task offloading systems continue to
be important requirements towards a successful deployment
of the next-generation system. This will ensure that both
delay-sensitive and mission-critical applications are efficiently
supported. To meet these requirements, we proposed a multi-
layer edge computing system and obtained various analyses
to investigate its performances. We adopted the tools of SG,
queueing theory and parallel computing.

While the capacity of available VMs in each layer was
only captured in the analyses using the probability that such
VMs are available in such a layer, this work can be improved
by incorporating the computation capacities available at each
layer through a more involved queueing dynamic. This will
ensure a better understanding of the computation performance
at each layer. Notwithstanding this, we believe that the anal-
yses presented in this paper offer important information to
understand the importance of the multi-class and multi-layer
offloading approach towards improving users’ experience in
any offloading system.
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APPENDIX A
PROOF OF LEMMA 1

The connectivity probability at any selected layer can be
obtained as

P ς
conn = P (SIRς > θς). (43)

Based on the adopted power control scheme by various devices
and the nearest BS association, it has been established in [38],
[39] that the intra-cell interference from any interfering device
is ρ, while the inter-cell interference from any interfering
device is less than ρ. Following Assumption 2, (43) gives

P ς
conn = LIout

(θς
ρ

)
LIin

(θς
ρ

)
. (44)

We know that the inter-cell interference in (44) can be obtained
as

Iout =
∑

xL
i ∈ΨL\xL

k

1Pi||zi||−α<ρPihi||zi||−α. (45)

At α = 4,

LIout
(s) = exp

{
− 2πgλLs

1
2E[P

1
2 ]

∫ ∞

(sρ)−
1
4

y

y4 + 1
dy

}
,

(46)
From [38],

E[PΘ] =
ρΘΓ

{
2Θ + 1, πλς(

PM

ρ )
1
2

}
(πλς)2Θ

{
1− exp(−πλς(

PM

ρ )
1
2 )
} ,

where Γ(a, b) =
∫ b

0
ta−1 exp(−t)dt is the lower incomplete

Gamma function, while Θ is a positive real number. For the
intra-cell interference in (44), we also have

Iin|i(s) =
∑
i

ρhi.

LIin(s) = E[exp(−sIin)] =
1

(1 + sρ)i
. (47)

By substituting (46) and (47) into (44), the expression pre-
sented in Lemma 1 is obtained.

APPENDIX B
PROOF OF PROPOSITION 3

At the beginning of any slot t in any selected layer, the
system can be idle, executing class 1 tasks or executing class 2
tasks. The probability generating function (PGF) of the general
system content is given as

Uς{z1(t), z2(t)} = E[Z
u1(t)
1 Z

u2(t)
2 {no task}] + E[Z

u1(t)
1

Z
u2(t)
2 {executing class 1 tasks}] + E[Z

u1(t)
1 Z

u2(t)
2

{executing class 2 tasks}] (a)= Uς(z1, z2)

(b)
= Uς(0, 0) + (1− Uς(0, 0))

{ρ1,ς
ρς

E[Z
u1(t)
1 Z

u2(t)
2 |qς1 > 0]+

ρ2,ς
ρς

E[Z
u1(t)
1 Z

u2(t)
2 |qς1 = 0, qς2 > 0]

}
. (48)

(a) is obtained through the steady-state equation of
Uς{z1(t), z2(t)} given as lim

t→∞
Uς{z1(t), z2(t)}, while (b) is

obtained knowing that class 1 tasks will be served in slot t

if at least one class 1 task arrived at the beginning of slot
t. Uς(0, 0) captures the case where no task is present (see
Definition 2) and is given as

Uς(0, 0) = Pr[qς1 = qς2 = 0] = 1− ρς ,

where ρς = ρ1,ς+ρ2,ς . Through some algebraic manipulations,
the expression in Proposition 3 is obtained by taking the first
derivatives of the obtained PGF for z = 1.

APPENDIX C
PROOF OF PROPOSITION 4

Note that computation latency is the total slots spent in the
system for computation which is the number of slots between
the end of the slot in which any tagged task arrived and the end
of the slot during which such a task departs from the system
due to service completion. A class 1 task will be computed
before class 2 tasks following the FCFS scheduling policy.
The computation latency of any tagged class 1 task arriving
during slot t can be obtained as

T 1,ς
comp = max(Tς −T el

ς −1, 0)+

U
(l)
1,ς−1∑
m=1

T1,ς(m)+

T el
ς∑

i=1

a
(t−i)
1,ς∑
m=1

T
(t−i)
1,ς (m) +

a
∗(t)
1,ς∑

m=1

T1,ς(m) + T1,ς , (49)

where Tς and T el
ς are the execution time and elapsed execution

time of the tasks in service during the arriving slot of the
tagged task respectively, U (l)

1,ς is the system content at the start
slot l, and a

∗(t)
1,ς is the number of class 1 tasks that arrive during

slot t but are computed before the tagged tasks. From this, the
analysis in Proposition 4 is straightforward. Interested readers
are referred to [44] for more details.
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