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Abstract—Edge computing-based framework is capable of
improving users’ quality of experience in cognitive internet
of things (IoT) networks. To explore the advantages of this
edge computing-based framework, possible offloading and pro-
cessing delay resulting from computation bottlenecks, and the
offloading latency caused due to inter-cell interference must be
properly considered. This paper thus considered a multi-class
channel access mechanism for cognitive edge computing-based
IoT networks where IoT users were categorized based on their
quality of experience requirements. Essential IoT devices are
permitted to offload to the edge server at any time following the
hybrid channel access model, while delay-tolerant IoT devices
are only permitted to offload to the server when the channel
is idle following the overlay channel access model. Analyses
were obtained for transmission rate and offloading delay to
demonstrate the performance of the proposed mechanism, while
important metrics such as total offloading latency and total
offloading cost were investigated. The total offloading costs were
formulated through the mixed strategy Nash equilibrium method.
The obtained results showed that multi-class channel access
mechanisms can reduce packet offloading delay in cognitive edge
computing-based IoT networks.

Index Terms—channel access, cognitive IoT, edge computing,
data offloading, delay

I. INTRODUCTION

The demand for wireless communication systems and appli-
cations continues to increase, and the need to improve the data
rate of wireless communications has recently been attracting a
lot of attention. Wireless applications are now been deployed
in various aspects of lives under the framework of the internet
of things (IoT) and the number of connected things is expected
to keep increasing. As a result, channel access and availability
remain a great threat to the continuous evolution of wireless
technologies. Hence, enhancing the communication quality
among connected users becomes an important topic to study. It
is, therefore, unsurprising that enhancing the communication
quality among heterogenous users has recently been the focus
of much research.

One preliminary method of enhancing the communication
quality among network users is through the adoption of
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relaying techniques [1], [2] where various relaying mechanism
such as decode and forward, as well as amplify and forward
relaying mechanisms have been exploited with the aim of
improving users’ transmission experience in the scarce spectral
resources. The adoption of the cognitive radio network (CRN)
also continues to be an interesting method of enhancing users’
spectrum access demands. In cognitive IoT (C-IoT) networks,
IoT devices are expected to intelligently access the spectral
resources belonging to primary users (PUs) based on some
predefined requirements as in CRN, to meet their channel
access requirements for data offloading, while also ensuring
that the activities of other users are not disrupted. However,
due to the time required to offload data to the cloud for
computation and processing, it may be difficult to satisfy the
channel access demands of C-IoT users, especially in networks
with dominant activities of PUs. As a result of this, the mobile
edge-based computation (MEC) technique can be adopted,
owing to its ability to reduce latency and energy consumption,
while improving communication quality among IoT users [3].

Despite the availability of communication, computation and
storage capacities at various IoT devices, most of the require-
ments of the next-generation systems cannot be met at the
users’ level. For instance, when deployed in a smart environ-
ment, e-health, interactive gaming and vehicular technology,
data must be offloaded for efficient computation owing to the
limited processing and storage capabilities available via local
CPUs at the users’ level. MEC provides a cloud computing
capability at the edge to improve communications and task
computation [4]. It offers faster access to computing and
storage resources due to its advantages of closeness, diversity
and resource-constrained. Through edge-based solutions, some
data can be offloaded to the MEC server, while only data that
require heavy computation are offloaded to the cloud.

Data offloading to the MEC server can, however, be very
challenging, especially in large-scale IoT networks, where
multiple data are offloaded simultaneously through the scarce
spectrum resources. This multiple offloading can result in
interference and increase the rate of data loss. It is hence im-
perative to consider an efficient offloading scheme to enhance
the effective offloading process. This paper thus presents a
cognitive edge computing-based approach, where offloading
of essential data are prioritized to reduce the number of si-
multaneous offloading processes. We defined a cognitive edge
computing-based IoT environment as an environment where
cognitive IoT devices offload their data to edge servers for
computation in an opportunistic manner on channels that are
assigned to the licensed users. This is important to ensure that
the offloading process of cognitive users is well coordinated
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to reduce interference and ensure a faster offloading process
for delay-sensitive users. This will improve the offloading
experience of IoT devices in large-scale IoT networks.

A. Related Work

To improve the offloading experience of IoT devices, many
works have recently focused on improving communications
and task computation experience among multiple IoT users.
These efforts are necessary to reduce huge amounts of energy,
time and bandwidth required to offload big data to the cloud
[5]–[7]. In [7], an edge-based IoT (EdgeIoT) architecture was
proposed to accommodate multiple connections and efficient
transmissions. Similarly, a deep learning approach towards
effective dynamic computation offloading was proposed in [8]
for single-user single-cell MEC network. Since users’ com-
petition for channel resources often challenge the offloading
process resulting in interference, interference was considered
as an important element of offloading process in [9], [10].
Packets were offloaded in [10] based on the interference level
and available computation resources.

A partial task offloading problem was formulated in [11] for
the vehicular edge-based computing environment. Transmis-
sion rates were estimated based on some practical assumptions.
Similarly, a cloud-based edge computing offloading frame-
work was proposed in [12] for vehicular networks. Through
the adopted Stackelberg game-theoretic approach, the authors
were able to design an efficient multilevel offloading scheme.
In [13], a multi-subtask and multi-server approach was pro-
posed where different sub-tasks were offloaded to different
servers for computation. The offloading process was achieved
based on the required offloading distance and processing
capacity. The offloading scheme was determined through the
required energy consumption and bandwidth capacity in [14].

In a similar work, the authors in [15] formulated an offload-
ing problem in the ultra-dense network as a mixed-integer non-
linear problem through the adoption of the software-defined
network mechanism. The NP-hardness of the formulated
offloading problem was proved. A collaborative offloading
solution was proposed in [16] with a focus on supporting the
coexistence of centralized cloud and multi-access edge com-
puting. Similarly, a selective offloading scheme was proposed
in [17], where cloud, edge, and local resources were integrated
for improved performances. In [18], an offloading decision-
making problem for a multi-user and multi-destination com-
putation offloading scheme was formulated as a sequential
game, while the Nash equilibrium of the game was shown
to exist. A deep reinforcement learning-based approach was
introduced in [19] to improve latency and reliability of the
networks, while the authors in [20] proposed a Stackelberg
game-based approach to improve computation offloading in
cognitive industrial IoT.

It is worth noting that some of the existing edge-based so-
lutions focused on single-user offloading problems [8], where
interference is often neglected to avoid complicated analysis.
However, in a multi-user environment, each user’s operations
can be significantly affected by interference from other users.
Moreover, users are known to interact and compete with

each other for computing resources. Hence, an independent
offloading assumption is not sufficient.

Although the interference level and undesirable transmission
delay [10] during offloading can be reduced through the local
computation when possible [21], a large volume of packets
is still expected to be offloaded in large-scale or ultra-dense
networks for satisfactory computation. This will significantly
increase the overall power consumption in the network. This
excessive power consumption can be reduced when task
offloading processes are achieved with a limited rate of re-
transmission and packet delay, hence some IoT devices can
desist from offloading until an appropriate channel is available
to satisfy their channel access demands. This will also reduce
inter-cell interference. It is, therefore, important to classify
the enormous IoT devices based on their expected quality
of experience (QoE) requirements, where channel access is
granted following the priority class of each user, thus the
justification for the adoption of the cognitive EdgeIoT in this
paper. This ensures that the cognitive feature is integrated into
edge services to make sure essential packets are offloaded with
limited delay.

B. Contributions

We hence proposed a multi-class delay-constrained channel
access mechanism capable of improving users’ QoE in a
cognitive edge computing-based network. To the best of our
knowledge, a multi-class channel access mechanism for cogni-
tive EdgeIoT networks has never been considered before. IoT
devices were categorized based on their QoE requirements as
shown in Fig. 1 to reduce the network interference and average
delay. Essential IoT devices are permitted to share channels
with high priority users following the hybrid channel access
scheme, while delay-tolerant users offload following overlay
channel access scheme (i.e. when all high priority users are not
offloading). We assumed that class priorities are assigned by
the operator depending on users’ QoE requirements. Similar to
[10], [21], we ignored the download transmission period since
users’ receiving power is much smaller than the transmission
power, while the size of the output data is much smaller than
the size of the input data. The contributions of this paper are
thus summarized as follows:
• We modeled the proposed multi-class delay-constrained

offloading scheme through an integrated hybrid channel
access scheme and dynamic channel reservation tech-
niques to ensure offloading retainability of CUs packets.

• To capture the relationship between the spatial geometry
of wireless links and their temporal traffic dynamic, we
integrated the techniques of stochastic geometry (SG) and
queueing theory via a spatiotemporal characterization of
the proposed cognitive Edge IoT networks.

• Analyses were then obtained for important metrics of
interest to demonstrate the effectiveness of the proposed
channel access mechanism on essential and delay-tolerant
IoT devices.

• Based on the obtained analyses for the average departure
rate and offloading delay, we obtained analysis for total
offloading latency – a metric that captures the total
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Fig. 1. Multi-class edge server access.

latency experienced by a packet from the time in which
such a packet was generated to the time in which its
computation was completed.

• Finally, we adopted the game theory approach via the
mixed strategy Nash equilibrium to obtain the total
offloading cost of each packet. We compared the total
offloading cost of a packet with the cost of its local
computation to demonstrate the advantages of packet
offloading in the proposed cognitive EdgeIoT system. We
demonstrated that the proposed channel access scheme
can improve users’ experience in large-scale networks.

We defined the departure rate as the rate at which packets
are being successfully received at the edge server, while the
offloading delay is the total time from generation to the
successful reception of packets at any edge node.

C. Organization

The rest of this paper is structured as follows: The system
model is presented in Section II, while the proposed multi-
class channel access scheme is described in Section III.
We then present the analyses of some selected performance
metrics of interest in Section IV. Section V presents the details
of the adopted mixed strategy Nash equilibrium – a game
theoretic-based technique – while Section VI presents the
outcomes of the numerical simulations and results. Section
VII concludes the paper.

II. SYSTEM MODEL

In this section, we present the spatial and traffic models for
the proposed cognitive Edge-IoT network and introduced the
proposed integrated multi-class delay-constrained offloading
scheme.

A. Spatial and Temporal Model

We considered a discrete time-based cognitive EdgeIoT
network, where PUs and CUs are distributed following two
independent homogeneous Poisson point processes (PPPs) Ψp

and Ψc of intensities µp and µc respectively, given that µp �
µc. CUs χi ∈ Ψc are C-IoT devices trying to satisfy their
channel access demands for offloading processes. These C-IoT
users were categorized as type k users (see Fig. 1) depending
on their required QoE. For simplicity, we considered only type
k = {1, 2}, where the distribution of type 1 and type 2 users
also follow two independent PPPs Ψ1

c and Ψ2
c of intensities

µ1
c and µ2

c respectively, with µ1
c � µ2

c ,∀Ψc = Ψ1
c ∪Ψ2

c . Type
1 CUs (also referred to as type 1 users) are essential IoT
devices and enjoy priority over type 2 CUs (i.e. type 2 users).
The proposed scheme can be extended to the case of k > 2
with little modifications. Note that PUs behaviors within the
channel are known to be independent of the activities of C-
IoT users since PUs have full privilege of offloading on their
designated frequency bands without informing CUs. All users
offload their data to the edge server for computation and only
data that cannot be computed at the edge level are forwarded
to the cloud server by the edge server.

To capture the temporal model, we adopt a discrete-time
queueing model, where the time axis is segmented into slots
of equal intervals. We then assumed that packets arrival and
departure from the system occur around the slot boundaries.
We considered packets’ arrival rates of PUs, type 1 and type 2
CUs to follow independent Bernoulli processes αp, α1 and α2

respectively. The buffer size at the edge server is considered
to be infinite.

With this, a typical type 1 CU, χ1
k ∈ Ψ1

c , with non-empty
buffer offloads to the edge server at any time slot following
the offloading decision parameter oc ∈ {0, 1}. The parameter
oc = 0 captures the event that a generated packet is computed
locally. Similarly, a typical type 2 CU χ2

k ∈ Ψ2
c offloads

following the offloading decision parameter od. The parameter
od depends on the joint activities of PU and type 1 CUs in
such a time slot, with od = 1 representing the event that the
band is available for type 2 CUs and od = 0 if otherwise.
The IoT devices (type 1 and type 2 CUs) adopt the channel
inversion power control [22], [23], where each user adjusts its
transmit power, such that the received power level at the edge
server equals a predetermined threshold Po and Pu for overlay
and underlay respectively. Po depicts the offloading power of
any CU (type 1 or 2) in the overlay channel access mode and
Pu depicts the offloading power of type 1 CUs in the underlay
channel access mode, with Po > Pu.

B. Packet offloading with channel reservation scheme

The licensed channel of PUs is divided into M multiple
cells or sub-channels of equal bandwidth where each user
chooses a vacant cell uniformly randomly and independent of
the location and the time slot (i.e., memoryless both spatially
and temporally). These sub-channels can be occupied by the
assigned PUs at any time. Thus, each CU can only oppor-
tunistically offload to the edge server through any licensed
sub-channel, such that the activities of CUs do not generate
disruptive interference in the primary network [24], [25]. The
activities of PUs can, therefore, be represented as a simple
queueing system, where the departure rate is only affected by
negligible interference from the activities of CUs. We hence
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focus on CUs since most of these IoT devices are expected to
access scarce spectrum resources as CUs rather than PUs.

When no PU is currently offloading, type 1 CUs offload
with full offloading power as in the overlay channel access
mode to enhance their throughput. Since PUs can appear at
any time to offload on their assigned cells thereby forcing
currently offloading type 1 CUs to terminate their offloading,
a certain number of sub-channels R are reserved for CUs.
This is important to ensure that type 1 CUs can continue
to offload their packets with full power on the reserved sub-
channels (R-SCH) when at least one PU is active on the non-
reserved sub-channels (N-SCH). Owing to the pre-emptive
nature of PUs, type 1 CUs offloading can also be interrupted
in the R-SCH by PUs when a newly arriving PU finds no
vacant sub-channel among the N-SCH. In such a case, type
1 CUs adjust their transmission powers and continue packet
offloading following underlay channel access mode, provided
that the interference generated at the nearest PU (InPU ) is less
than the predefined interference temperature γ, defined as the
total allowable interference level in a cell [26]. Otherwise, type
1 user’s offloading is blocked. With this, the offloading of type
1 CUs follows the hybrid channel access scheme.

On the other hand, type 2 CUs are only permitted to offload
on the N-SCH when no PU and type 1 CU is offloading
following the overlay channel access mode. On the arrival
of either PU or type 1 user, any currently offloading type 2
CU is moved to the R-SCH for continued offloading. Such
a type 2 CU is interrupted and moved to a virtual queue
when any PU or type 1 CU arrives on the R-SCH. Any
interrupted type 2 CU repeats its entire data offload the next
slot the channel is available. We assumed that interference
within a cell is negligible, while the interference between N-
SCH and R-SCH is also negligible. Similar to [9], [10], data
offloading from each user located within each cell follows
orthogonal frequency multiple access. We further assumed that
edge server-to-cloud communication is achieved through error
and interference-free bands. Hence, we focus on users-to-edge
server offloading processes.

III. MULTI-CLASS CHANNEL ACCESS AND PRELIMINARY
DERIVATIONS

In this section, we leverage the model and channel access
scheme presented in the last section and describe the key
algorithms of the proposed framework. We then present some
preliminary results on the packet offloading and processing
times.

One uniqueness of the proposed framework is its ability to
provide continuous channel access to type 1 CUs when PUs ar-
rive on the N-SCH through the reservation of a certain number
of sub-channels R. This parameter R is dynamically adjusted
depending on the ongoing channel occupancy status to ensure
packets offloading retainability in the system. Let Nf and PR
represent the total number of idle N-SCH sub-channels during
the current observation period and the predicted number of
users that will move to R-SCH in the next period respectively,
we used a simplified dynamic channel reservation method for
the estimation of an average number of cells to be reserved
for the next period Rres. This is given in Algorithm 1.

Algorithm 1: Simplified dynamic cell reservation
Input: R, Nf , PR
Output: Rres
Calculate Rres = min

{
max(R,Nf ),max(Nf , PR)

}
Update Rres, Nf , PR

Furthermore, let np,N , np,R, nT1,N , nT1,R, nT2,N and
nT2,R represent the number of active PUs in N-SCH, active
PUs in R-SCH, active type 1 CUs in N-SCH, active type 1
CUs in R-SCH, active type 2 CUs in N-SCH and active type 2
CUs in R-SCH respectively at any observation period. Ignoring
channel or cell failure, the offloading process of type 1 and
type 2 CUs is summarized in Algorithm 2. This is essential
to the analyses presented in the next sections.

The performance of these algorithms was validated using
independent Monte Carlo simulations to ensure that Algo-
rithm 2 always produces expected outputs (i.e., priority-based
channel access) for the range of users as long as channel
access is required and terminates when no access is required.
Similarly, Algorithm 2 provides reliable outcomes under stable
conditions (i.e., provided that the total arrival rate of packets
is less than the total departure rate in the system). For time
complexity, we know that Algorithm 1 depends on the channel
access request, hence its complexity is of order O(N). For
Algorithm 2, if the stability of the system is assumed, the
time complexity depends on the set of inputs. To solve the
complexity, we obtained the upper band and lower bound of
the time complexity. The order of complexity is lower-bounded
at O(N) and upper-bounded at O(N2). Next, we describe the
achievable offloading rate of both type 1 and type 2 CUs under
the proposed scheme.

A. Achievable offloading rate
Without loss of generality, we considered a tagged edge

server located at the origin o. The received signal to interfer-
ence plus noise ratio (SINR) at the origin from any tagged
type 1 CU SINRχ1

k,t
is given in (1), located at the top of

next page, where Pc ∈ {Po, Pu}, ha,b is the channel gain
between node a and b, σ2 captures the thermal noise signal
power, op ∈ {0, 1} captures the offloading decision parameter
of each PU χpi ∈ Ψp with transmission signal power Pp
and 1{.} is the indicator function. Similarly, ||.|| depicts the
Euclidean distance, η is the path-loss exponent and Pc! is the
received offloading power from other interfering type 1 CUs.
We assumed that only one user can offload on a sub-channel
at the same time, such that Pc! < Pc [22], [23].

The achievable offloading rate Rχk1 of a typical type 1 CU
at time slot t is obtained from (1) as

Rχ1
k,t

= ω log2

(
1 + SINRχ1

k,t

)
, (2)

where ω represents the channel bandwidth. For any typical
type 2 CU, the inter-cell interference is only generated from
other transmitting type 2 users within the considered frequency
band, hence the SINR is given as,

SINRχ2
k,t

=
Pohχ2

k,o

σ2 +
∑
χ2
i∈Ψ2

c\χ2
k
1{oc}Po!hχ2

i ,o
||χ2

i ||−η
, (3)



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, APRIL 2021 5

SINRχ1
k,t

=
Pchχ1

k,o

σ2 +
∑
χpi∈Ψp

1{op}Pphχpi ,o||χ
p
i ||−η +

∑
χ1
i∈Ψ1

c\χ1
k
1{oc}Pc!hχ1

i ,o
||χ1

i ||−η
. (1)

Algorithm 2: Offloading process for type 1 and 2 CUs
Initialization: Each user offloads at any observation
period with probability between 0 and 1.

End Initialization
Input: np,N , np,R, nT1,N , nT1,R, nT2,N and nT2,R

while channel access is required do
if np,N = 0, np,R = 0 & nT1,N > 0 then
χ1
i ∈ Ψ1

c offloads on N-SCH and R-SCH
following the overlay channel access scheme;

end
else if np,N > 0, np,R = 0 & nT1,N > 0 then

χ1
i ∈ Ψ1

c offloads on R-SCH following the
overlay mode; χ2

i ∈ Ψ2
c is blocked

end
else if np,N > 0, np,R > 0 & nT1,N > 0 then

Estimate InPU
For InPU < γ:
χ1
i ∈ Ψ1

c offloads on N-SCH and R-SCH
following the underlay channel access
scheme; χ2

i ∈ Ψ2
c is blocked

end
end
else if np,N = np,R = 0, nT1,N = nT1,R = 0 &
nT2,N > 0 then
χ2
i ∈ Ψ2

c offloads on N-SCH and R-SCH
following the overlay channel access scheme

end
else if np,N = np,R = 0, nT1,N > 0, nT1,R = 0 &
nT2,N > 0 then
χ2
i ∈ Ψ2

c offloads on R-SCH following the
overlay channel access scheme

end
else if np,N = np,R = 0, nT1,N > 0, nT1,R > 0 &
nT2,N > 0 then
χ2
i ∈ Ψ2

c is blocked
end

end

and its achievable transmission rate Rχk,2 is expressed as

Rχ2
k,t

= ω log2

(
1 + SINRχ2

k,t

)
, (4)

where Po! < Po. From (2) and (4), one may obtain the packet
offloading time tχk,t as

tχk,t =


dχk
R
χ1
k
,t

+ τχk , if type 1 CU
dχk
R
χ2
k
,2

+ τχk , if type 2 CU,
(5)

where dχk is the input data size of any user χk and τχk
represents the offloading time from the edge server to the cloud
server when the data cannot be computed at the edge level.
Owing to the assumed error-free communication channels

between the edge and cloud servers, the transmission time
between edge and cloud servers is assumed negligible, i.e.,
τχk ≈ 0.

B. Processing time

Packet processing/computation time depicts the average
time required to process a packet received from any test user
χk. Let fe and f c represents the CPU-cycle frequency of edge
and cloud servers (i.e. the processing capacity of edge and
cloud servers) respectively, then the time required to process
a data of size dχk at the edge server is given as

Te =
cχk
fe

, (6)

where cχk � fe � f c is the required CPU cycles to process
a task of size dχk . Similarly, the time required to process any
data of size dχk at the cloud server is obtained as

Tc =
cχk
f c

, (7)

From (6) and (7), we know that the total processing time of
any data of size dχk can be given as

Tt = ςeTe + ςcTc,∀ςe + ςc = 1, (8)

where ςe and ςc are the probabilities that the packet is
processed at the edge and cloud servers respectively. The
total offloading latency – defined as the total time from the
packet generation time to the time in which such a packet is
successfully computed – can be obtained as

Ctotal,t = tχk,t + Tt. (9)

The expression in (9) depends on tχk,t which is difficult
to obtain due to spatiotemporal correlation among interfering
nodes. In the next section, we obtained an analysis for the
average departure rate using the tools of SG and queueing
theory. With this, we obtained an approximate analysis for the
offloading time for any arbitrarily type 1 CU and type 2 CU.

IV. ANALYSIS OF AVERAGE DEPARTURE RATE AND
OFFLOADING DELAY

The average departure rate is the rate at which generated
packets are received at the edge’s level. This depends on the
average offloading success rate under each channel access
scheme, obtained as the rate at which the received SINR
exceeds the predefined threshold. This SINR is a random
variable and is better characterized via distribution. We hence
condition the process on the realization of point process
Ψ = Ψp ∪ Ψc [23], [27], such that the conditional packet
offloading success rates of type 1 CU and type 2 CU are
generally obtained following

CΨ
1,t = P (SINRχ1

k,t
≥ θ1|Ψ), (10)
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CΨ
2,t = P (SINRχ2

k,t
≥ θ2|Ψ), (11)

where θ1 and θ2 are the predefined SINR threshold for type
1and type 2 CUs respectively.
Assumption 1: To ensure tractability, we assumed that the
packet departure rates are independent over different time
slots, while the offloading powers among users are indepen-
dent. This assumption follows the mean-field approximation
[22], [23], [28]. Hence we assumed that the edge server
experiences almost independent interference at each time slot.
Remarks: In [22], [23], [29], it was shown that the spatial
correlation among the offloading power of interfering users
is weak. Furthermore, when the full channel inversion power
control scheme is adopted, the temporal SINR correlation
has a negligible effect on the average departure rate. This
approximation has also been validated in [22], [28], [29] and
was further confirmed by the simulation results in Section VI
of this paper. We hence drop the notation t.

A. Type 1 cognitive users

The average departure rate of a typical packet generated at
a test type 1 user χ1

k is obtained as

κ1 = pqp̄fC
Ψ,O
1 + p̄qpmC

Ψ,OI
1 + ρ̄β[pqpfC

Ψ,U
1

+p̄qp̄mC
Ψ,UI
1 ],

(12)

where Ā = 1−A. The parameter CΨ,O
1 represents the condi-

tional success rate of type 1 CUs as in the conventional overlay
channel access mode provided there was no misdetection,
CΨ,U

1 is the conditional success rate of type 1 CUs as in the
underlay channel access mode with a false alarm, CΨ,OI

1 and
CΨ,UI

1 are the success rates in the overlay mode when there is
misdetection and in the conventional underlay channel access
mode when there is interference from PUs respectively, pf and
pm represent the probability of false alarm and the probability
of misdetection of PU signal by type 1 CU respectively,
pq = P [op(t) = 0] = 1 − αp, ρ is the penalty term due
to periodic monitoring of the interference band in underlay
mode and β is the type 1 CU switching rate between underlay
and overlay modes. β = 0 indicates a fully or conventional
overlay mode, while β = 1 indicates a fully underlay mode.
0 < β < 1, however, indicates the hybrid model.

Next, we obtain analysis for each component of (12).
Lemma 1: The average departure rate of a tagged type 1 CUs
χ1
k as in the conventional overlay channel access mode CO1 can

be obtained as the conditional offloading success probability
following (10) as

CO,Ψ1

(a)
= P

(
Pohχ1

k,o

σ2 +
∑
χ1
i∈Ψ1

c\χ1
k
1{oc}Po!hχ1

i ,o
||χ1

i ||−η
> θ1|Ψ

)

= exp
{−θ1r

η
oσ

2

Po

} ∏
χ1
i∈Ψ1

c\χ1
k

(
oc,t

1 + θ1r
η
o

||χ1
i ||η

P
o!

Po

+ 1− oc,t

)
,

(13)
where ro is the distance between any tagged user and the edge
server.
Proof: The proof is straightforward following the Rayleigh
fading assumption on (a) with some algebraic manipulations
[25], [27].

The exact derivation of the analysis presented in Lemma 1
is difficult to obtain. Thus we obtained its approximate using
the b-th moment [30] as σ2 → 0. The b-th moment of Lemma
1 is given as

Mb = Eχ1
k
{(CO,Ψ1 )b}

= Ero

{ ∏
χ1
i∈Ψ1

c\χ1
k

(
1− E[oc,t|Ψ]

1 +
||χ1

i ||η
θ1

r−ηo
Po
P
o!

)b}

(a)
= exp

{
− µ1α1θ

2
η

1 r
2
o

2π2

η sin
(

2π
η

) ∞∑
k=1

(
b

k

)(
δ − 1

k − 1

)
ak1

}
,

(b)
= exp

{
− µ1α1θ

2
η

1 r
2
o

2π2

η sin
(

2π
η

) Γ(b+ δ)

Γ(b)Γ(1 + δ)

}
,

(14)
where E[oc,t|Ψ] = limt→∞ P (oc,t = 1|Ψ) in (a) is the steady-
state offloading probability of χ1

k, δ = 2
η and a1 is the active

probability of χ1
k. For a special case of a1 = 1, (b) is obtained.

The resulting meta distribution [30] can be approximated with
beta distribution as

P [CO,Ψ1 ≤ x] = Ix(β1, β2), (15)

where Ix(., .) is generally known as the regularized incomplete
beta function and

β1 =
M1(M1 −M2)

M2 −M2
1

,

β2 =
(M1 −M2)(1−M1)

M2 −M2
1

.

(16)

The parameters M1 and M2 represent the first and second
moment of CO,Ψ1 .

Similarly, the analysis for CU1 , COI1 and CUI1 in (12) can
be obtained from (17), located at the top of next page.

Following Assumption 1, the closed-form expressions for
CU1 , COI1 and CUI1 can be obtained as in Lemma 1. Substi-
tuting these into (12), the conditional average departure rate
can be obtained for any test type 1 CU’s packet. From this,
the packet offloading time in (5) can be approximated as

tχk = EΨ

{ 1

κ1

}
. (18)

Let ΛE and ΛC represent the offloading cost of a packet and
the computation cost of such a packet per unit time at the
edge server respectively, the total cost of offloading includes
the cost of offloading and the cost of computation at the edge
server1. Its analysis is straightforward from (9) and is given
as

OCcost = ΛE ∗ tχk + ΛC ∗ Tt. (19)

B. Type 2 cognitive users

Note that any type 2 CU can only offload data to the edge
server when all PUs and type 1 CUs within such a band are not
offloading since offloading opportunity is unavailable to type

1The local computation cost depends only on the computation time and
computation cost per unit time since packet offloading is not required in local
computing.
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CU,Ψ1 = P
( Puhχ1

k

σ2 +
∑
χ1
i∈Ψ1

c\χ1
k
1{oc}Pu!hχ1

i
||χ1

i ||−η
> θ1|Ψ

)
,

COI,Ψ1 = P
( Pohχ1

k

σ2 +
∑
χpi∈Ψp

1{op}Pphχpi ||χ
p
i ||−η +

∑
χ1
i∈Ψ1

c\χ1
k
1{oc}Po!hχ1

i
||χ1

i ||−η
> θ1|Ψ

)
,

CUI,Ψ1 = P
( Puhχ1

k

σ2 +
∑
χpi∈Ψp

1{op}Pphχpi ||χ
p
i ||−η +

∑
χ1
i∈Ψ1

c\χ1
k
1{oc}Pu!hχ1

i
||χ1

i ||−η
> θ1

)
.

(17)

2 users when any primary or type 1 users are offloading; hence
inter-cell interference is only generated from neighboring
type 2 CUs. The average departure rate of a typical packet
generated at a test type 2 user χk can be obtained as

κ2 = (1− αh)CΨ,O
2 ,∀αh = αp + α1. (20)

Lemma 2: The average departure rate of any tagged type 2
CUs χ2

k can be obtained as the conditional offloading success
probability following (11) as

CO,Ψ2 = P

(
Pohχ2

k,o

σ2 +
∑
χ2
i∈Ψ2

c\χ2
k
1{od}Po!hχ2

i ,o
||χ2

i ||−η
> θ2|Ψ

)

= exp
{−θ2r

η
oσ

2

Po

} ∏
χ2
i∈Ψ2

c\χ2
k

(
od,t

1 + θ2r
η
o

||χ2
i ||η

P
o!

Po

+ 1− od,t

)
.

(21)
Proof: From (11),

CΨ,O
2 = exp

(−θ2σ
2

Po

)
LI2
( θ2

Po

)
, (22)

where LI2 is the Laplace transform of interference from type
2 CUs except the test type 2 CU. The solution of CΨ,O

2 can
be obtained similar to (14). The approximation also follows
the same process as in Lemma 1 and is omitted to avoid
unnecessary repetition.

If we substitute (21) into (20), we can obtain the average
departure rate of packets belonging to a tagged type 2 user.
From this, we obtained the packet offloading time.

C. Channel availability

Note that the active probability of each user a1 depends
on both the packet arrival rates (i.e., αp, α1 and α2) and
offloading decision parameters (i.e., op, oc, od). This offloading
decision parameters highly depend on channel availability
rates. Thus, channel availability is characterized in this sub-
section following Algorithm 2. Recall that the dynamic chan-
nel reservation technique presented in the previous sections
permits Type 1 CUs to switch to R-SCH when at least one
PU arrives on the N-SCH to ensure offloading retainability of
Type 1 CUs. Similarly, an active Type 2 CU can switch to R-
SCH to ensure offloading retainability when at least one user
belonging to higher priority classes arrives, while assuming
negligible handover time. The channel availability indicator
can thus be modeled through a discrete-time Markov chain
(DTMC) model, where channel access (either in N-SCH or
R-SCH) in each time slot is given to one class of users if
there is no higher priority user on such a channel. The channel
access rule in either the N-RCH or R-SCH is obtained as

PU>Type 1 CU>Type 2 CU. It is worth noting that, channel
reservations can enhance effective and efficient usage of the
channel resources [31]–[34] and ensure that lower priority
class users continue to offload with full offloading power on
the unused part of the licensed channel to improve offloading
throughput. Hence, channel reservation can improve channel
availability for type 1 and type 2 users.

Without loss of generality, we assumed that each task is
offloaded on a single sub-channel. Hence, the number of
arriving tasks equals the number of needed cells or sub-
channels. To characterize the channel availability indicator,
we modeled the proposed multi-class channel access scheme
using the DTMC, where the feasible states in the DTMC
are represented as F with each state of the DTMC model
corresponding to the multi-class channel access scheme given
as s = (np,N , nT1,N , nT2,N , np,R, nT1,R, nT2,R). The total
number of unavailable sub-channels in the N-SCH and R-
SCH for any typical state s is thus given as BN (s) =
np,N + nT1,N + nT2,N and BR(s) = np,R + nT1,R + nT2,R

respectively, while the total unavailable sub-channels are ob-
tained as B(s) = BN (s)+BR(s). From this, we know that the
total number of available/vacant sub-channels in the state s is
given as M −B(s). Let the number of reserved sub-channels
in the state s based on Algorithm 1 be given as R(s), then the
transition probability associated with different transition states
can be obtained as a one-step transition matrix P . Using the
transition probability matrix, the steady-state probabilities πd
can be obtained for each state s ∈ F .

If we assumed an event-centric environment where the
system changes based on events (such as arrivals and de-
partures) and not time, we can neglect the time notation
for simplicity and focus on changes due to events. The
transition rate matrix Q in Table I matches the continuous-
time Markov chain (CTMC) model and can be used to obtain
a uniformized DTMC [34], [35]. Let P represents the one-
step transition probability matrix for the DTMC, while πd and
πc represent the steady-state probability of the DTMC and
CTMC respectively. By adopting uniformization (otherwise
called randomization) technique, we know that the steady-state
distributions πd and πc coincide [35], i.e.,

πc(s) = πd(s),∀s ∈ F, (23)

∑
s∈F

πc(s) =
∑
s∈F

πd(s) = 1.

Given that π(s) is the steady-state probability of being in
state s, then the steady-state vector of the uniformized DTMC
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TABLE I
TRANSITION RATE BETWEEN DIFFERENT STATES WITH s = (np,N , nT1,N , nT2,N , np,R, nT1,R, nT2,R)

Event Destination state Transition rate Conditions
1. n number of PUs arrived.
There are n vacant cells in N-SCH (np,N + n, nT1,N , nT2,N , np,R, nT1,R, nT2,R) αp

BN (s) < M −R(s);
B(s) < M

2. n number of PUs arrived. n type 1 CUs
perform handover to vacant cells in R-SCH (np,N + n, nT1,N − n, nT2,N , np,R, nT1,R + n, nT2,R) αp

BR(s) < R(s);
np,R = 0

3. n number of PUs arrived. n type 1 CUs
switch to underlay mode (np,N , nT1,N , nT2,N , np,R + n, nT1,R − n, nT2,R) αp

nT1,R > 0;
nT2,N = nT2,R = 0

4. n number of PUs arrived. n type 2 CUs
perform handover to vacant cells in R-SCH (np,N + n, nT1,N , nT2,N − n, np,R, nT1,R, nT2,R + n) αp

BR(s) < R(s); np,R = 0
nT1,N = nT1,R = 0

nT2,N > 0
5. n number of PUs arrived. n type 2 CUs
are forced terminated in R-SCH (np,N , nT1,N , nT2,N , np,R + n, nT1,R, nT2,R − n) αp nT2,R > 0

6. n number of type 1 CUs arrived.
There are n vacant cells in N-SCH (np,N , nT1,N + n, nT2,N , np,R, nT1,R, nT2,R) α1

BN (s) < M −R(s);
B(s) < M ; np,N = 0

7. n number of type 1 CUs arrived.
n type 2 CUs perform handover to vacant
cells in R-SCH

(np,N , nT1,N + n, nT2,N − n, np,R, nT1,R, nT2,R + n) α1
BR(s) < R(s); np,R = 0
nT1,R = 0; nT2,N > 0

8. n number of type 1 CUs arrived. n type
2 CUs are forced terminated in R-SCH (np,N , nT1,N , nT2,N , np,R, nT1,R + n, nT2,R − n) α1 nT2,R > 0

9. n type 2 CUs arrived. There are n
vacant cells in N-SCH (np,N , nT1,N , nT2,N + n, np,R, nT1,R, nT2,R) α2

BN (s) < M −R(s);
B(s) < M ;

np,N = nT1,N = 0
10. n PUs depart from N-SCH++ (np,N , nT1,N , nT2,N , np,R − n, nT1,R, nT2,R) κp np,N = np,R > 0
11. n PUs depart from N-SCH.
No PU in R-SCH (np,N − n, nT1,N , nT2,N , np,R, nT1,R, nT2,R) κp np,N > 0; np,R = 0

12. n PUs depart from R-SCH. (np,N , nT1,N , nT2,N , np,R − n, nT1,R, nT2,R) κp np,R > 0
13. n type 1 CUs depart from N-SCH++ (np,N , nT1,N , nT2,N , np,R, nT1,R − n, nT2,R) κ1 nT1,N = nT1,R > 0
14. n type 1 CUs depart from
N-SCH. No type 1 CUs in R-SCH (np,N , nT1,N − n, nT2,N , np,R, nT1,R, nT2,R) κ1 nT1,N > 0; nT1,R = 0

15. n type 1 CUs depart from R-SCH. (np,N , nT1,N , nT2,N , np,R, nT1,R − n, nT2,R) κ1 nT1,R > 0
16. n type 2 CUs depart from N-SCH++ (np,N , nT1,N , nT2,N , np,R, nT1,R, nT2,R − n) κ2 nT2,N = nT2,R > 0
17. n type 2 CUs depart from
N-SCH. No type 2 CUs in R-SCH (np,N , nT1,N , nT2,N − n, np,R, nT1,R, nT2,R) κ2 nT2,N > 0; nT2,R = 0

18. n type 2 CUs depart from R-SCH. (np,N , nT1,N , nT2,N , np,R, nT1,R, nT2,R − n) κ2 nT2,R > 0
++ – When PUs depart from N-SCH, active PUs in the R-SCH switch to the N-SCH. Type 1 or Type 2 CUs similarly switch from R-SCH to N-SCH
when an appropriate sub-channel exists in N-SCH.

satisfies
πdP = πd,

πd1 = 1.
(24)

From [31], the probability that a typical PU packet find an
available sub-channel is given as

APU = 1−
∑
s∈F

B(s)=M ; nT1,N=nT1,R=0;
nT2,N=nT2,R=0

π(s). (25)

Similarly, the probability that a typical type 1 CU finds an
available sub-channel for overlay channel access is given as

Atype1 = 1−
∑
s∈F

B(s)≤M−R(s); np,N=np,R>0 OR
BN (s)=M ; np,N=np,R=0; nT2,N=nT2,R=0

π(s),

(26)
while the probability that a typical type 2 CU find an available
sub-channel is given as

Atype2 = 1−
∑
s∈F

B(s)≤M−R(s); np,N=np,R>0 OR
B(s)≤M−R(s); nT1,N=nT1,R>0 OR

BN (s)=M ; np,N=np,R=nT1,N=nT1,R=0

π(s), (27)

D. Offloading delay

Offloading delay depends on the channel availability period
and is measured as the number of slots between the end of the
slot in which a packet was generated at the users’ level and
the end of the slot in which such a packet was successfully
received at the server. We assumed that packets belonging to
the same class are offloaded following first come first serve. As
previously mentioned, type 1 CUs packets are permitted to be
offloaded anytime. Type 2 CUs’ packets, however, are delay-
tolerant and can only be offloaded when no delay-sensitive
and PU traffic is present in the system. Also, type 2 packets
in the system are interrupted at the beginning of each slot if
any PU or type 1 CU packet arrived. Such an interrupted type
2 packet will only be re-offloaded in the next available slot.
With this, PUs and type 1 CUs possess preemptive priority
over type 2 CUs.

Since packets arrivals were considered to follow indepen-
dent Bernoulli processes with inter-arrival times following ge-
ometric distributions, packets’ departure rates provided in (12)
and (22) can similarly be considered to follow independent
general distributions. From this, we know that the offloading
delay of any type 1 CU’s packet can be expressed as

∆1 =
1− α1

κ1 − α1
. (28)
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Fig. 2. Game tree for the offloading cost.

For type 2 CUs, the arrival at the higher priority classes must
be considered. Let the joint arrival rate at the higher priority
classes be αh and the average joint departure rate be κh, the
offloading delay of any type 2 CU’s packet is given as

∆2 =
1

2

(κefVα2
+ α2

2Vκef
α2(1− ρef )

+(1− τ)ςVb + κef − (1− τ)(1− τςb)b
)
, (29)

where κef = τ
ς(1−τ) [ 1

κ2
( 1
τ )−1] is the effective offloading time

for preemptive repeat scheme, with τ being the probability that
the channel is available for type 2 CU in two consecutive time
slots. Furthermore, ς represents the fraction of time slots that
the channel is available for type 2 user offloads. The parameter
ρef < 1 is the effective system load for a stable system, while
b represents the busy period of high priority classes, which
depends on αh and κh. Finally, V[∗] is the variance of [∗].
The expression in (29) is derived following the analysis of the
repeat after interruption Geo/G/1 queueing system. Its proof
is straightforward from [36] and is omitted for brevity.

V. GAME THEORY TECHNIQUE FOR OFFLOADING COST
MODELING

In this section, we obtain the offloading cost ΛE given in
(19) through the adoption of the game theory approach via
the mixed strategy Nash equilibrium [37], [38]. Let CQ and
CI represent the penalty for violating the offloading queue-
ing constraints and the penalty for violating power control
requirements respectively, while G and cs represent the cost
of offloading on a channel/sub-channel including the cost of
channel sensing and cost of switching channels or waiting for
appropriate offloading opportunity respectively. Similarly, let
cm and GU depict the cost of violating the offloading channel
access requirement and cost of offloading under appropriate
power control scheme respectively with GU < G, then the
offloading cost of any generated packet at any tagged user
can be formulated through game constraints given as

CQ > CI > G > cs; cm > G;G > GU . (30)

The condition CQ > CI is necessary to ensure that
violation of queueing constraints is discouraged, i.e., type 2
users do not pretend to be type 1 users, while the constraint
CI > G ensures that penalty for violating the power control
requirement is more than the cost of actual offloading - a

parameter that is also greater than the cost of waiting or
switching channel access mode. To minimize cost, a user will
prefer to switch channels or channel access modes to violating
offloading constraints. These constraints ensure that the cost
of violating offloading channel access requirement is more
than the cost of actual offloading thereby encouraging users
to respect the channel access requirement. The game tree for
the proposed offloading cost method is given in Fig. 2 and
summarized in Table II.

From Table II, it is straightforward to obtain the upper and
lower offloading costs. The upper offloading cost is obtained
when the offloading cost is maximum. In such a case, the
offloading process is achieved while all the required channel
access constraints are violated. For instance, when at least
one PU is active, a typical type 1 CU is expected to switch to
R-SCH or offload its packet following the underlay channel
access mode. A channel access constraint is violated when
such a type 1 CU continues to offload in the overlay channel
access mode. The situation is made worse when a type 2 CU
also continues to offload in such a case. This increases the
level of interference in the network thus increasing the cost
of offloading to the maximum. Similarly, the lower offloading
cost is obtained when the offloading cost is minimum. Such
a case is obtained when all the constraints are satisfied (See
Fig. 2). The offloading cost constraints are properly formulated
through the game theory to ensure that users obey the offload-
ing requirements thereby offloading with minimum offloading
cost. When the offloading requirements are respected, packet
offloading and processing times can be significantly reduced.
This will ensure that the QoE requirements of essential and
delay-tolerant applications are satisfied. We will demonstrate
the performance of the proposed scheme in Section VI.

VI. RESULTS AND SIMULATION

In this section, we evaluated the performance of the pro-
posed channel access mechanism and validated the perfor-
mance through independent Monte Carlo simulations. Except
otherwise stated, the following parameters were used for
simulations: Po = −32 dB, Pu = −36 dB, σ2 = 10−9,
pq = 0.9, pf = 0.2, pm = 0.2, β = 0.25, ρ = 0.2β,
θ1 = θ2 = 9.5 dB, α1 = 0.15, α2 = 0.2, Cχk = 1 CPU cycle
per task, fe = 10 computations per time slot and f c = 1000
computations per time slot.
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TABLE II
PAYOFF MATRIX FOR THE COST OF OFFLOADING

Active PU Inactive PU
Type 1 CU, Type 2 CU Offload Wait Offload Wait

Overlay CQ + CI + cm +G, CQ + CI + cm +G, G+ cs, G+ cs,
G+ CQ + CI + cm G+ cs G+ CQ + CI + cm G+ cs

Underlay GU + cs, GU + cs, GU + cs, GU + cs,
G+ cQ + CI + cm G+ cs G+ CQ + CI + cm G+ cs
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Fig. 3. Average departure rate for type 1 CUs, αp = 0.1.

A. Average departure rate and offloading delay

The average departure rate depends on the SINR threshold
for each class of user. As shown in Fig. 3, the departure
rate reduces with θ1, while a frequent switching rate between
modes by type 1 CUs further reduces the departure rate of type
1 CUs’ packets owing to the reduced offloading power when
offloading in the underlay mode (i.e. when sharing channel
with at least on PU). Notwithstanding this, essential packets
can experience better departure rates under the proposed
scheme, since the packet departure rates are observed to be
lower than the arrival rate even at a higher SINR threshold.
Similar results were obtained for type 2 users as shown in Fig.
4 at αp = 0.1 and α1 = 0.15. As expected, the higher arrival of
packets further reduces the departure rate. The lower departure
rate at α2 = 0.4 shows the impact of arrivals of the higher
priority class packets, which makes the channel unavailable
for type 2 CU offloading.

The impacts of PU packet arrivals on the average departure
rates of both type 1 and type 2 CUs are presented in Fig. 5.
The departure rate of type 1 CU decreases as the PU arrival
rate increases. This is necessary since a higher arrival of PU
packets causes type 1 CUs to switch often to underlay channel
access mode, which reduces the overall throughput. Similarly,
type 2 CUs receive lower offloading opportunities when PU
and type 1 CU packets are generated hence the justification
for the observed lower departure rate.

The offloading delay of type 1 users is presented in Fig. 6.
This metric increases with an increase in packets arrival rate
since more packets will have to wait for offloading opportunity
when higher number of packets are generated at the same
time. Interestingly, the offloading delay of CUs increases with
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Fig. 4. Average departure rate of type 2 CUs, pm = pf = 0.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

PU arrival rate (αp)

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
ve
ra
ge

d
ep
ar
tu
re

ra
te

β = 0.25 (Type 1 CU)

β = 0.5 (Type 1 CU)

α
2
 = 0.2 (Type 2 CU)

α
2
 = 0.3 (Type 2 CU)

Fig. 5. Average departure rate.

activities of PUs as also suggested from Algorithm 2. With
an increase in the required SINR threshold for successful
reception of type 2 users’ packets at the edge server, of-
floading delay increases provided that other parameters remain
unchanged. Also, an increase in the arrival rate of type 2
packets as shown in Fig. 7 further increases the offloading
delay of type 2 packets, since the average departure rate of
type 2 packets depends on the departure rates at the higher
priority queues. Interestingly, a lesser delay is experienced at
a reduced SINR threshold.

The offloading delay is also shown to be affected by the
probability of false alarm in Fig. 8. An increase in the false
alarm rate in the system implies that type 1 CUs offload in the
underlay channel access mode with lower throughput instead
of the overlay channel access mode that enhances higher
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overall throughput. It is then important to ensure accurate
detection of PU signals to ensure effective offloading of
packets to the edge server.

B. Comparision with existing approach

The total offloading latency captures both the offloading and
computation delay. As shown in Fig. 9, the total offloading
latency depends on the fraction of packets computed at the
edge and cloud servers. The total offloading latency increases
when the fraction of packets computed at the cloud server
increases under the assumption that the transmission latency
between the edge and the cloud servers is negligible. For
type 2 CU, the increase in the total offloading latency is due
to the activities of PUs and type 1 CU. Reduced offloading
latency is achieved for type 2 users with lower arrival rates of
higher priority packets. To demonstrate the performance of the
proposed channel access scheme over the existing conventional
priority-based schemes, we compared the performance of the
existing schemes [5]–[7] for type 1 and type 2 users with
the proposed scheme. As presented in Fig. 9, the proposed
scheme achieves lower total offloading latencies for both
type 1 and type 2 CUs. This demonstrates the ability of the
proposed scheme to satisfy lower priority users’ channel access
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Fig. 9. Packet offloading latency, dχk = 2.

demands in the presence of higher-priority users as described
in Algorithm 2.

Finally, the offloading cost of type 1 and type 2 packets
is investigated in Fig. 10. The presented result was achieved
at CQ = 6.5, CI = 6, G = 2, cm = 2.5, cs = 1.5,
GU = 1.5. The computation costs at the edge server and
local CPU were set to 1, while the capacity of the local CPU
was set to be 0.03 computation per slot. The cost is upper
bounded when there is sensing inaccuracy which resulted in
higher interference hence a lower delivery rate in the network.
The offloading cost is lower bounded when the sensing is more
accurate. Since there is lower available computation capacity
at the local CPU, offloading to the edge server can improve
the computation experience of CUs. This performance can
be improved further with a more reliable channel sensing
technique. When compared with the conventional approach,
the proposed approach showed a reduced offloading cost as in
Fig. 11.

Generally, an increase in the average departure rate reduces
the average transmission time and offloading cost, while a
decrease in offloading delay will improve users’ QoE. The
proposed channel access mechanism can ensure that the of-
floading process of essential packets is prioritized while also
improving the offloading efficiency for all users.
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VII. CONCLUSION AND FUTURE WORK

Tremendous emerging issues are associated with the de-
ployment of IoT-based systems in various environments. For
instance, a large amount of data traffic is expected to be
produced in IoT industries through the deployment of ex-
tensive IoT-based wireless area networks. This, of course,
will require efficient radio resource management. This paper
presents a multi-class delay-constrained channel access mech-
anism in cognitive EdgeIoT networks. Essential IoT devices
were granted priority over delay-tolerant users. We showed
that such a multi-class channel access mechanism is required
to meet the spectrum access demands of numerous EdgeIoT
users. The proposed mechanism improves the channel access
experience of essential IoT users, while also ensuring that
channel access demands of delay-tolerant IoT users are met
with limited offloading delay.

The proposed approach considered two classes of cognitive
users – essentials and delay-tolerant users. This proposed
approach can be extended to accommodate more classes of
users with different priority levels, where each of these classes
seeks to satisfy its offloading requirement on PUs licensed
channels. To improve the computation model, the effects of
parallel computing in multi-server systems may be captured
in the computation cost analysis. The proposed multi-class

channel access scheme provides an insight into how the QoE
of essentials applications can be met in cognitive edge-based
IoT networks. This is important towards the deployment of
next-generation networks such as 5G and beyond 5G, where
multiple users are expected to compete for channel resources
to satisfy their offloading requirement when accessing com-
putation opportunities at the edge server. We believe that the
multi-class channel access scheme presented in this paper can
be significant towards improving channel access demands in
more complex emerging large-scale communication systems
such as multi-hop reconfigurable intelligent surfaces-based
communications systems [39], [40].
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