
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

1972

An approach to software reliability prediction
and quality control

Schneidewind, Norman F.

Schneidewind, Norman F. "An approach to software reliability prediction and quality
control." Proceedings of the December 5-7, 1972, fall joint computer conference,
part II. 1972.
https://hdl.handle.net/10945/71710

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

An approach to software reliability
prediction and quality control*

by NORMAN F. SCHNEIDEWIND
Naval Postgraduate School
Monterey, California

INTRODUCTION

The increase in importance of software in command
and control and other complex systems has not been
accompanied by commensurate progress in the develop-
ment of analytical techniques for the measurement
of software quality and the prediction of software
reliability. This paper presents a rationale for imple-
menting software reliability programs; defines software
reliability; and describes some of the problems of
performing software reliability analysis. A software
reliability program is outlined and a methodology for
reliability prediction and quality control is presented.
The results of initial efforts to develop a software
reliability methodology at the Naval Electronics
Laboratory Center are reported.

RATIONALE OF SOFTWARE RELIABILITY

The purpose of a software reliability and quality
control program is to provide a means for establishing
quantitative criteria for the acceptance or rejection
of software and to provide a method for predicting
the reliability of software under operating conditions.
A computer system consists of hardware, software
and human operators. Within the software sub-system,
there may exist a number of modules or programs. A
total reliability analysis would address the reliability
requirements of each major sub-system: hardware,
software and operators and for each component within
a sub-system. Within the hardware sub-system, re-

* This work was supported by the Computer Sciences Depart-
ment of the Naval Electronics Laboratory Center under Project
P509001. The opinions and assertions contained herein are the
private ones of the writer and are not to be construed as official,
or as reflecting the views of the Department of the Navy or the
Naval service at large.

liability estimates should be provided for the central
processing unit, discs, magnetic tapes, and other pe-
ripheral units. Within the software sub-system, reli-
ability estimates should be provided for each module
or program.

Relatively little work has been done in the areas of
software and human operator reliabilities, despite the
fact that these sub-systems are as important as hard-
ware in determining total system reliability. This
research effort is directed toward the goals of develop-
ing methodologies and programs for software reliability
prediction and quality control.

SOFTWARE RELIABILITY PROGRAM

A description of the elements of a software reliability
program follows.

Reliability specification

Reliability specifications are established in advance
of software production in order to provide quantita-
tive criteria for the acceptance or rejection of software
products. Without such a specification there is no
objective criteria on which to judge the quality of a
program. Software reliability specifications would be
determined from an analysis of total computer system
reliability requirements. Individual program or module
specifications would be determined by allocating to a
program the reliability necessary to achieve the desired
total computer system reliability, when all hardware,
software and operator reliabilities are considered. Pre-
vailing practice is to consider only hardware when
establishing reliability specifications. The matter of
establishing software reliability specifications has been
largely ignored. The reliability program described here
would make explicit provision for software reliability.

837

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1480083.1480107&domain=pdf&date_stamp=1972-12-05

838 Fall Joint Computer Conference, 1972

RELIABILITY
SPECIFICATION

r — '

^ 1
TEST PLAN

"
PROGRAM

TEST

TEST RESULTS
JL ,

RELIABILITY
PREDICTION

" ^ ^ V S . PREDICTIONL^^ACCEPT

REJECT
T

I 1 ADDITIONAL TEST
REQUIREMENTS

Figure 1—Reliability sequence

Reliability specifications are also used to establish
initial test performance requirements in terms of test
time and number of troubles. These requirements
pertain to the formal test period which starts after
the program has been released by the programmer
and submitted for independent test. This period also
constitutes the reliability demonstration period. During
the formal test period, a program must operate for a
period of time with less than a specified number of
troubles. Satisfying this requirement constitutes meet-
ing the reliability specification. Testing and computa-
tion of test requirements proceeds in stages. A stage
is a test period during which an attempt is made to
qualify a program. The number of stages is governed

by the number of test periods which are required to
demonstrate reliability.

Reliability prediction

The main purpose of reliability prediction is to pro-
vide an estimate of future probability of successful
program operation. As in any reliability program, this
estimate is based on historical and current test results.
The reliability prediction is updated with new test
data at the end of each stage of testing. In addition
to prediction, reliability is used for quality control.
Predicted reliability is compared with specified reli-
ability. If a program does not qualify at a given stage,
test requirements are computed for the next stage
which, if satisfied, will result in the program satisfying
the reliability specification. For example, assume on
the basis of the reliability specification, that a program
must operate for 100 hours during the first stage with
no more than one trouble of a specified severity level
in order to qualify. Assume that three troubles occur
during the first stage; the program fails the first test.
The test requirements for stage two which are neces-
sary in order for the predicted reliability to equal or
exceed the specified reliability would be determined.
In this case, the additional requirement might be to
operate another 200 hours without trouble. This pro-
cess is repeated until the required reliability has been
demonstrated. When a program does qualify, the final
estimate of predicted reliability (applicable to actual
operation) is computed. The process is summarized in
Figure 1.

PROBLEMS IN SOFTWARE RELIABILITY
ANALYSIS

There are many conceptual and definitional problems
associated with software reliability. Some of these
problems are described below.

Classification of troubles

Frequently the source of an error—whether it be
hardware or software—cannot be definitely established.
For example, a memory-to-memory transfer may
produce incorrect data at the destination locations.
Was this error due to a marginal memory unit or to a
defective program? I t may require days or weeks
before the cause of the error can be positively identi-
fied. Another difficulty is that software errors can

Approach to Software Reliability Prediction and Quality Control 839

result from either an operating system or applications
programs. It may be difficult to establish whether:

1. The error was actually an error in the applica-
tion program, or

2. was a violation of operating system protocol
(Job Control Language), or

3. was the result of an error in the operating sys-
tem itself.

Severity and type of trouble

Software troubles must be defined and classified in
terms of severity and type. Software troubles differ
as to their impact on system operation. A few incorrect
characters in textual information which can still be
deciphered is much less serious than a transfer outside
the memory bounds of a program. Reliability predic-
tions should specify the severity of troubles that are
included in the prediction. A reliability predictor may
involve one, more than one, or all severity levels. I t
may be appropriate to have a reliability predictor for
each severity level and one which includes all severity
levels.

Difference between test and operating environments

I t may be difficult to completely duplicate the actual
software operating environment during a test. The
operating environment may comprise certain inputs,
system load or operator actions which cannot be simu-
lated during test. The inability under test conditions
to fully duplicate the influence of inputs and stresses
placed on the system by uncontrollable external inputs,
operator performance, equipment reliability and equip-
ment maintenance practice means that a reliability
prediction is only an estimate of the actual reliability
which will be obtained in operation. The accuracy of
the reliability prediction will improve as the test
environment approaches conditions of actual operation.

Adequacy of detail in trouble reporting

I t is reasonable to assume that lower levels of pro-
gram structure will provide greater accuracy of pre-
diction than higher levels. For example, a subroutine
may be critical with respect to the operation of a
program. Trouble report data at the subroutine level
may be more useful than data at the program level.
However, in practice, software troubles may not be
documented at the level which is most desirable for
analysis purposes. Assuming an adequate sample size,

j » »
TSI TEI TS2 TFI TS3 TE2 TS4 TE3

* „ ' y w ' + < * ' y ** '

"TIME TO ERROR" DATA
E l ERROR (DESCRIPTION ft SEVERITY)

TSI START RUN TIME
TEI ERROR TIME
TF: FINISH RUN OK TIME

Figure 2—Data collection requirements

the smaller the unit of programming for which error
information is obtained, the more accurate the reli-
ability prediction, since many detailed reliability
analyses can be combined for the purpose of system
reliability estimation. However, a counterbalancing
effect is that sample size, in terms of number of trou-
bles, decreases as the unit of programming is decreased.
Also, if the unit is too small, the number of program
units which must be analyzed in order to compute total
system reliability becomes excessive. In practice, the
analyst seldom has a choice of levels of program error
documentation. The problem is more one of uncovering
any usable data!

Another problem is the absence of data which
records the start time of each program test and the
times at which trouble occurs, in order that the dis-
tribution of time between troubles can be determined.
What is required is a time trace of program testing
and trouble reporting such as that depicted in Figure 2.

Selection of test sample

Another problem is the possible nonrepresentative-
ness of trouble report data. The selection of program
functions for testing should be proportional to the
criticality of a function to mission success and also to
the frequency of occurrence of the function during
program operation. Frequency of program function
testing based on the product of criticality and frequency
of use in operation appears to be a reasonable basis
for selecting functions for test. To the extent that
testing does not occur in accordance with criterion, it
will be nonrepresentative of the importance and fre-
quency of use of functions in actual operation, thus
causing a bias in reliability prediction. The problem
posed by a nonrepresentative sample is difficult to
counteract due to the following reasons:

• The selection of the sample is under the control
of the test group—not the reliability analyst.

840 Fall Joint Computer Conference, 1972

• It may be difficult to obtain information regarding
the criticality and frequency of occurrence of
program functions.

• Attempts at selecting a representative sample
from the available test report data may be in-
feasible due to existing small samples.

A partial solution to these problems can be obtained
by proper design of test procedures or by changes to
existing procedures. Software troubles can be classified
in detail, test environments can be made realistic to
the limit of economic feasibility and representative
program functions can be selected for test. The most
important and least expensive improvement would be
to make test reporting responsive to the needs of reli-
ability analysis. This involves reporting software trou-
bles at least down to the level of the program entity
used for reliability prediction and of providing time
histories of program troubles. However, even if ad-
ministrative procedures are changed, the problem of
identifying the source of a trouble as to hardware,
software or human action will remain. This situation
illustrates the need for extensive documentation of
program troubles at the time of their occurrence.

DEFINITIONS

Software trouble

In order to provide a method for predicting software
reliability, it is first necessary to define software errors
or troubles. The following definition will be utilized:

A software trouble is any logical or clerical error
made by a programmer in creating or coding an
algorithm which causes the algorithm to produce
an incorrect result when the algorithm is pre-
sented with a correct input.

The above definition excludes errors due to hard-
ware, input or operator action. In addition, it will be
understood to exclude compilation errors and errors
caused by the operating system. In short, the errors
considered in this study are application program errors.

Software reliability

Software reliability R(t) is the probability that a
program will operate without a single occurrence of a
specified severity of trouble, or worse, for a specified
length of time t, and with a specified input load. This
is equivalent to the probability that a program will
operate successfully for at least time t.

Software probability density function

A probability law f(t) which governs the occurrence
of troubles in the operating time domain (distribution
of time between troubles). f(t)dt is the probability of
trouble in the interval dt. It is the time rate of change
of probability of trouble.

Hazard rate

The instantaneous trouble rate z(t). z(t) is the time
rate of change of probability of trouble, given that
there has been no trouble in the time interval 0 to t.
Thus, this conditional time rate of change of trouble
is given by z(t)=f(t)/R(t).

RELIABILITY PREDICTION AND QUALITY
CONTROL

Background

Much of reliability theory is based on probability
concepts which are independent of the physical form
or characteristics of systems or devices. Since hardware
has a long history relative to software, it is natural
that almost all reliability literature and experience is
based on the application of theory to hardware. Al-
though certain modifications are necessary, it appears
that important elements of reliability theory can
validly be applied to software.

The classical model of reliability as applied to hard-
ware involves three distinct periods in the life of equip-
ment. During the burn-in period, when major bugs in
equipment are identified and corrected or marginal
components are forced to fail, equipment experiences
a decreasing hazard rate. During this period the hazard
rate is a function of the equipment operating time. In
this period, the occurrence of failures is dependent on
the failure history. If failures occur and are corrected
prior to time t, this will have the effect of reducing the
hazard rate at time t.

According to the classical model, following the
burn-in period, failures are assumed to occur at a
constant rate. This, means that the occurrence of fail-
ures is independent of the age or operating time of the
equipment. The expected number of failures during a
given time interval is the same regardless of when
the time interval starts, provided the equipment is
operating within the constant hazard rate region.
Failures within this region are said to occur suddenly
or by chance, for example, when operating require-
ments or environmental requirements exceed the
capabilities of the equipment. Another way of viewing

Approach to Software Reliability Prediction and Quality Control 841

the constant hazard rate region is that there is no
preferred time of failure or time about which failures
cluster.

The third region occurs when equipment is subject
to rapid deterioration and wearout. This is the region
of increasing hazard rate. During this period, the
hazard rate is a function of operating time; hazard rate
increases with time.

It has been found that certain probability density
functions are appropriate for representing the distri-
bution of time between failures or time to failure
during the three regions of equipment life. For exam-
ple, the two parameter (amplitude and shape) Weibull
probability density function f(t) = afit^e-atf has a de-
creasing hazard rate function z(t)=afi$-1, when /3<1,
where t is the time to failure or time between failures,
a is an amplitude parameter and /3 is a shape parame-
ter. The probability density and hazard rate functions
can, in certain situations, be employed to represent
the distribution of time between failures and the
hazard rate, respectively, during the burn-in period.

During the operational, or constant hazard rate
period, the time between failures is exponentially
distributed. The exponential distribution corresponds
to a Weibull distribution with 0 = 1 . Then, the prob-
ability density function and hazard rate are given by
f(t) = ae~at and z — a, where a is the constant hazard
rate and 1/a is the mean time between failures.

Finally, during the wearout stage, when the hazard
rate is increasing, a Weibull distribution with J 8 > 1
may be the appropriate distribution for representing
time between failures. The log-normal and gamma
(with appropriate choice of parameters) are other
functions with an increasing hazard rate which may
also be appropriate for this phase.

There are also major differences between hardware
and software reliability. These are listed below:

• Stresses and wear do not accumulate in software
from one operating period to another as in the
case of certain equipment; however, program
quality may be different at the start of each run,
for the reason given below.

• In the case of hardware, it is usually assumed
that between the burn-in and wearout stages an
exponential distribution (which means a constant
hazard rate) applies and that the probability of
failure in a time interval t is independent of
equipment age. However, for software, there may
be a difference in the initial "state of quality"
between operating periods due to the correction
of errors in a previous run or the introduction of
new errors as the result of correcting other errors.
Thus it is appropriate to employ a reliability
growth model which would provide a reliability
prediction at several points in the cumulative
operating time domain of a program.

• For equipment, age is used as the variable for
reliability prediction when the equipment has
reached the wearout stage. Since with software,
the concern is with running a program repeatedly
for short operating times, the time variable which
is used for reliability purposes is the time between
troubles. However, cumulative operating time is a
variable of importance for predicting the timing
and magnitude of shifts in the reliability function
as a result of the continuing elimination of bugs
or program modification.

Over long periods of calendar or test time, there will

Application of Reliability Theory to Software

When applied to software reliability, many of the
basic concepts and definitions of reliability theory
remain intact. Among these are the following:

• Definition of reliability R(t) as the probability
of successful program operation for at least t hours

• Probability density function f(t) of time between
software troubles, or, equivalently, the time rate
of change of the probability of trouble

• Hazard rate z(t) as the instantaneous trouble rate,
or, equivalently, the time rate of change of the
conditional probability of trouble (time rate of
change of probability of trouble, given that no
trouble has occurred prior to time t)

OPERATING TIME

T, T 2

CUMULATIVE TEST TIME

Figure 3—Reliability growth

842 Fall Joint Computer Conference, 1972

POINT AND
CONFIDENCE
LIMIT
ESTIMATES

RELIABILITY
AND <

CONFIDENCE
LIMIT

TEST DATA i
ASSEMBLE

DATA

IDENTIFY
STATISTICAL
DISTRIBUTION

ESTIMATE
RELIABILITY
PARAMETERS

ESTIMATE
RELIABILITY
FUNCTION

MAKE RELIABILITY
PREDICTION

Step 1. Assemble Data

Data must first be assembled in the form of a time
between troubles distribution as was indicated in
Figure 2. At this point, troubles are also classified by-
type and severity.

Step 2. Identify Statistical Distribution

In order to identify the type of reliability function
which may be appropriate, both the empirical relative
frequency function of time between troubles (see
example in Figure 5) and the empirical hazard function
are examined. The shapes of these functions provide
qualitative clues as to the type of reliability function
which may be appropriate. For example:

• A monotonically decreasing f{t) and a constant
z(t) suggest an exponential function.

• An f(t) which has a maximum at other than t = 0
and a z(t) which monotonically increases suggests:

—Normal function or
—Gamma function or
—Weibull function with j8 > 1.

• A monotonically decreasing f(t) and a mono-
tonically decreasing z{t) suggest a Weibull
function with j8 < 1.

After some idea is obtained concerning the possible
distributions which may apply, point estimates of the
parameters of these distributions are obtained from
the sample data. This step is necessary in order to
perform goodness of fit tests and to provide parameter

Figure 4—Steps in reliability prediction

be shifts in the error occurrence process such that
different hazard rate and probability density functions
are applicable to different periods of time; or, the same
hazard and probability density functions may apply
but the parameter values of these functions have
changed. This shift is depicted in Figure 3, where the
reliability function, which is a decreasing function of
operating time is shown shifted upward at various
points in cumulative test time, reflecting long-term
reductions in the trouble rate and an increase in the
time between troubles.

Approach

Time Between Troubles Distributions

Ship I Program I

Normal
Exponential

Empirical Frequency
Distribution N= 10

Mean =2.94 Hours
S. d. =4.32 Hours

Time Between Troubles (Hours)
The steps which are involved in one approach to

software reliability prediction are shown in Figure 4. Figure 5—Probability density functions

Approach to Software Reliability Prediction and Quality Control 843

.0
.9
8
.7

.2

.1

.09

.08

.07

.06

.05

.04
.03

.02

01

\ x \

\ * X

Kolmogorov-
Progra

- Smirnov Exponential Test
m 1 Many Ships*

I.O-Program Run Time Distribution Functior

xV

1 1

X

Lower Confidence Limi

Theore
Distrib
e - . 4 8 1

Empir

1

sctical Exponentu
ution Function

ical Data

Ships lt 2, 3,4,
1 1

t /
11 V

5, 6, 7.

i l ' *
d = + .139 Confidence Band
a = .05 Level of Significance
N = 93 Data Points

>v

/ X

Upper Confidence Limit

X

•*

l

* H . i i
From i aoie OT a
Distribution Values -

X

2 3 4 5 6
Program Run Time (Hours)

8

Figure 6—Goodness of fit test

844 Fall Joint Computer Conference, 1972

estimates for the reliability function. In order to make
a goodness of fit test, it is necessary to provide an
estimate of the theoretical function to be used in the
test. This is obtained by making point estimates of
the applicable parameters. In the case of the one
parameter exponential distribution, the point estimate
would simply involve computing the mean time be-
tween troubles = total cumulative test time/number
of troubles, which is the maximum likelihood esti-
mator of the parameter T in the exponential prob-
ability density function f(t) = l/Te~tlz.

In the case of a multiple parameter distribution,
the process is more involved, For the Weibull distribu-
tion, the following steps are required to obtain pa-
rameter point estimates:

— A logarithmic transformation of the hazard
function is performed in order to obtain a linear
function from which initial parameter values can
be obtained.

— The initial values are used in the maximum
likelihood estimating equations in order to ob-
tain parameter point estimates.

— The probability density, reliability and hazard
functions are computed using the estimated
parameter values.

At this point, a goodness of fitness test can be per-
formed between the theoretical probability density
and the empirical relative frequency function or be-
tween the theoretical and empirical reliability func-
tions. The Kolmogorov-Smirnov (K-S) or Chi Square
tests can be employed for this purpose. An example
of using the K-S test is shown graphically in Figure 6.
This curve shows a test with respect to an exponential
reliability function. Shown are the upper and lower
confidence limits, the theoretical function and the
empirical data points. Since the empirical points fall
within the confidence band, it is concluded that the
exponential is not an unreasonable function to employ
in this case.

Step 3. Estimate Reliability Parameters Confidence
Limits

The point estimate of a reliability parameter pro-
vides the best single estimate of the true population
parameter value. However, since this estimate will, in
general, differ from the population parameter value
due to sampling and observational errors, it is appro-
priate to provide an interval estimate within which
the population parameter will be presumed to lie. Since
only the lower confidence limit of the reliability func-

tion is of interest, one-sided confidence limits of the
parameters are computed. In Figure 7 is shown an
example of the results of the foregoing procedure,
wherein, for an exponential distribution, the point
estimate of mean time between troubles (MTBT) is
2.94 hours (hazard rate of .34 troubles per hour) and
the lower confidence limit estimate of MTBT is 2.27
hours (hazard rate of .44 troubles per hour). The lower
confidence limit of MTBT for an exponential distribu-
tion is computed from the expression T\- = 2nt/xtn,i-a
where T: is the lower confidence limit of MTBT, n is
number of troubles, t is the MTBT (estimated from
sample data), x2 is a Chi-Square value and a is the
level of significance.

Step 4- Extimate Reliability Function

With point and confidence limit estimates of pa-
rameters available, the corresponding reliability func-
tions can be estimated. The point and lower limit
parameter estimates provide the estimated reliability
functions R = e~Mt and R = e~-ut, respectively, in
Figure 7. In this example, the predicted reliabilities
pertain to the occurrence of all categories of software
trouble, i.e., the probability of no software troubles
of any type occurring within the operating time of t
hours.

Step 5. Make Reliability Prediction

With estimates of the reliability function available,
the reliability for various operating time intervals can
be predicted. The predicted reliability is then com-
pared with the specified reliability. In Figure 7, the
predicted reliability is less than the specified reliability
(reliability objective) throughout the operating time
range of the program. In this situation, testing must
be continued until a point estimate of MTBT of 5.88
hours (.017 troubles per hour hazard rate) and a
lower confidence limit estimate of MTBT of 4.55
hours (.022 troubles per hour hazard rate) are obtained.
This result would shift the lower confidence limit of
the predicted reliability function above the reliability
objective.

Estimating test requirements

For the purpose of estimating test requirements in
terms of test time and allowable number of troubles,
curves such as those shown in Figure 8 are useful. This
set of curves, applicable only to the exponential reli-
ability function, would be used to obtain pairs of (test

Approach to Software Reliability Prediction and Quality Control 845

Reliability Function and Its Confidence Limit
for Program I, Ship I Using Exponential
Reliability Function.

a =.05 Level of Significance

Reliability Required to Satisfy Reliability Objectives
R = e - . o i 7 r

5 Lower Confidence Limit
R = e - . 0 2 2 T

Reliability Objective (Assumed)

Exponential Reliability (Existing)
R = e - . 3 4 T

Lower Confidence Limit (Existing)
- . 4 4 r

2 3 4 5 6 7
Operating Time (Hours) T

Assuming Zero Troubles During Remaining Tests.
-.020 T

R =e For 10 Troubles During Remaining Tests.

Figure 7—Reliability prediction

846 Fall Joint Computer Conference, 1972

8 0 0

7 0 0

- 600
§
x 500

1 400
5 300

! 2 0 0 . 2 0 0

100

Amount of Test Time Required to Achieve
Indicated Lower Limit of Reliability

Exponential Reliability Function

^>
^^^

s ^

r? I 1 1 1 1 L i _i i i i i

^ ° * i
^ ^ T,

_ - - * l
Tl

. -oR

1 1

«.99, T « 1 hf.
= 19.5 hr«.

*.90,r«lhr.
•9.48 hrt.
».85,r = lhr.
•6.19 hrt.

10 12 14 16 18 2 0 2 2 2 4 26 2 8 30
Number of Trouble* During Teat

Figure 8—Test requirements

time, number of troubles) values. The satisfaction
during testing of one pair of values is equivalent to
satisfying the specified lower limit of reliability Ri for
t hours of operation. For example, if a program reli-
ability specification calls for a lower reliability confi-
dence limit of .95 after 1 hour of operating time, this
requirement would be satisfied by a cumulative test
time of 100 hours and no more than 2 troubles; a
cumulative test time of 200 hours and no more than 6
troubles; a cumulative test time of 300 hours and no
more than 10 troubles, etc. The required test time is
estimated from the relationship T = [txln,i-a/
2Ln(l/Ri)], where T is required test time, t is required
operating time, x2 is a Chi Square value, n is number
of troubles, R i is the required lower limit of reliability
and a is level of significance.

PRELIMINARY RESULTS AND CONCLUSIONS

variation) is more important in determining
program reliability than is the stage of program
checkout or cumulative test time utilized (source
of within program variation). This result indi-
cates a potential for obtaining a better under-
standing of the determinants of software reli-
ability by statistically correlating program and
programmer characteristics with measures of
program reliability.

2. Goodness of fit tests indicated much variation
among programs in the type of reliability func-
tion which would be applicable for predicting
reliability. This result and the Analysis of
Variance results suggest that program reliability
should be predicted on an individual program
basis and that it is not appropriate to merge sets
of trouble report data from different programs
in order to increase sample size for reliability
prediction purposes.

3. Based on its application to NTDS data, the
approach for reliability prediction and quality
control which has been described appears
feasible. However, the methodology must be
validated against other test and operational
data. Several interactive programs, written in
the BASIC language, which utilize this ap-
proach, have been programmed at NELC*.

Another model by Jelenski and Moranda* has been
developed and validated against NTDS and NASA
data. Other approaches, such as reliability growth
models, multiple correlation and regression studies
and utilization of data smoothing techniques will be
undertaken as part of a continuing research program.

A Naval Electronics Laboratory Center (NELC)
sponsored study* was performed, employing the con-
cepts and techniques described in this report, on
Naval Tactical Data System (NTDS) data. The data
utilized involved 19 programs, 12 ships and 325 soft-
ware trouble reports. The major preliminary results
and conclusions follow:

1. On the basis of Analysis of Variance tests, it
was found that NTDS programs are hetero-
geneous with respect to reliability characteris-
tics. There was greater variation of reliability
between programs than within programs. This
result suggests that program and programmer
characteristics (source of between program

* N. F. Schneidewind, "A Methodology for Software Reliability
Prediction and Quality Control," Naval Postgraduate School,
Report No. NPS55SS72032B, March 1972.

BIBLIOGRAPHY

1 R M BALZER
EXDAMS—extendable debugging and monitoring system
AFIPS Conference Proceedings Vol 34 Spring 1969
pp 567-580

2 W J CODY
Performance testing of function subroutines
AFIPS Conference Proceedings Vol 34 Spring 1969
pp 759-763

3 J C DICKSON et al
Quantitative analysis of software reliability
Proceedings—Annual Reliability and Maintainability
Symposium San Francisco California 25-27 January 1972
pp 148-157

* Programmed by Mr. Craig Becker of the Naval Electronics
Laboratory Center.
* Jelenski, Z. and Moranda, P. B., "Software Reliability Re-
search," McDonnell Douglas Astronautics Company Paper
WD1808, Navember 1971.

Approach to Software Reliability Prediction and Quality Control 847

4 BERNARD ELSPOS et al
Software reliability
Computer January-February 1971 pp 21-27

5 ARNOLD F GOODMAN
The interface of computer science and statistics
Naval Research Logistics Quarterly Vol 18 No 2 1971
pp 215-229

6 K U HANFORD
Automatic generation of test cases
IBM Systems Journal Vol 9 No 4 1970 pp 242-256

7 Z JELINSKI P B MORANDA
Software reliability research
McDonnell Douglas Astronautics Company Paper
WD 1808 November 1971

8 JAMES C KING
Proving programs to be correct
IEEE Transactions on Computers Vol C-20 No 11
November 1971 pp 1331-1336

9 HENRY C LUCAS
Performance evaluation and monitoring
Computing Surveys Vol 3 No 3 September 1971
pp 79-91

10 R B MULOCK
Software reliability engineering
Proceedings—Annual Reliability and Maintainability Sym-
posium San Francisco California 25-27 January 1972
pp 586-593

11 R J RUBEY R F HARTWICK
Quantitative measurement of program quality
Proceedings—1968 ACM National Conference pp 672-677

12 N F SCHNEIDEWIND
A methodology for software reliability prediction and quality
control
Naval Postgraduate School Report No NPS55SS72032B
March 1972

