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Abstract 

Three dihalogenated methane derivatives (CH2F2, CH2FCl and CH2Cl2) were used as model 

systems to compare and assess the accuracy of two different approaches for predicting 

observed fundamental frequencies: canonical operator Van Vleck vibrational perturbation 

theory (CVPT) and vibrational configuration interaction (VCI). For convenience and 

consistency, both methods employ the Watson Hamiltonian in rectilinear normal coordinates, 

expanding the potential energy surface (PES) as a Taylor series about equilibrium, and 

constructing the wavefunction from a harmonic oscillator product basis. At the highest levels 

of theory considered here, fourth-order CVPT and VCI in a harmonic oscillator basis with up 

to 10 quanta of vibrational excitation in conjunction with a 4-mode representation sextic force 

field (SFF-4MR), the agreement between computed fundamentals is closer than 0.3 cm–1 on 

average, with a maximum difference of 1.7 cm–1. The major remaining accuracy-limiting 

factors are the accuracy of the underlying electronic structure model, followed by the 

incompleteness of the PES expansion. Nonetheless, computed and experimental fundamentals 

agree to within 5 cm–1, with an average difference of 2 cm–1, confirming the utility and 

accuracy of both theoretical models. One exception to this rule is the formally IR-inactive but 

weakly allowed through Coriolis-coupling H-C-H out-of-plane twisting mode of 

dichloromethane, whose spectrum we therefore revisit and reassign. We also investigate 

convergence with respect to order of CVPT, VCI excitation level and order of PES expansion, 

concluding that premature truncation substantially decreases accuracy, although VCI(6)/SFF-

4MR results are still of acceptable accuracy, and some error cancellation is observed at 

CVPT2 using a quartic force field (QFF). 

 

Keywords: Canonical Van Vleck Perturbation Theory, Vibrational Configuration Interaction, 

Sextic Force Field, Halogenated Methanes 
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1. Introduction 

Fluoro- and chloro-substituted derivatives of methane play major roles in the chemistry and 

spectroscopy of the Earth’s atmosphere and thus have attracted considerable attention from 

researchers. In particular, the vibrational and ro-vibrational spectra of difluoromethane,[1-8] 

fluorochloromethane [9-14] and dichloromethane [15-23] have been measured and assigned 

by group frequency theoretical analysis and parameterizing model Hamiltonians. Their 

equilibrium semi-experimental structures have also been obtained.[24] Recently, the 

experimental vibrational spectroscopy studies of these molecules have been supplemented by 

ab initio anharmonic computational models.[7,12,25,26] These models explicitly map the 

structural and energetic information contained in ab initio computed molecular potential 

energy and dipole moment surfaces to spectroscopically observable quantities, such as 

transition energies and intensities, by solving the nuclear vibrational Schrödinger equation.  

 Although ab initio nuclear vibrational models are powerful and flexible tools for 

interrogating the spectroscopic signature of halomethanes, they typically do not achieve 

“spectroscopic accuracy” (~1 cm–1) in predicting transition energies.[27-29] This deficiency is 

due to a superposition of underlying approximations, including: (1) the level of ab initio 

electronic structure theory used to construct the potential energy surface (PES); (2) the form 

and extent of the PES representation; and (3) the approach taken to solving the nuclear 

vibrational Schrödinger equation. In certain cases, fortituous error cancellation effects even 

for an economic DFT model can lead to a rather good agreement of a few cm–1 between 

predicted and observed vibrational states.[30] 

 We aim to disentangle these sources of error by assessing the convergence behaviour 

of nuclear vibrational structure models and independently estimating the error due to 

incomplete convergence in the electronic structure model underpinning the PES. 

Dihalomethanes are convenient model systems. As semi-rigid molecules with nine degrees of 
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vibrational freedom, they are sufficiently complex that they exhibit non-trivial vibrational 

structure but simple enough that numerically stable sextic potential energy surfaces can be 

computed. Additionally, high quality spectroscopic reference data are available for most of 

the vibrational transitions.[1-23] 

 There are two major classes of quantum mechanical ab initio “black-box” nuclear 

vibrational methods that can, in principle, converge to exact solutions within the single 

minimum conformer approximation; vibrational perturbation theory and vibrational 

configuration interaction or coupled cluster theory. Perturbation theory can approach the exact 

solution to the nuclear vibrational Schrödinger equation if the perturbative expansion is 

convergent and not prematurely truncated. The classic Rayleigh-Schrödinger formulation of 

vibrational perturbation theory (RSPT) [31-33] yields simple closed-form second-order 

energy expressions, from which it is straightforward to identify and variationally account for 

divergent (resonant) terms.[34,35] However, it is much harder to derive closed-form energy 

expressions as well as identify and appropriately account for vibrational resonances at fourth 

order.[36-38] The formidable algebraic and computational complexity of RSPT4 has 

prevented its general implementation to date. In principle, it is possible to find an RSPT 

solution at very high orders by resummation of divergent series,[39-42] but such approaches 

are rather scarce.  

 Therefore, we turn to the canonical van Vleck operator perturbation theory (CVPT) 

formalism,[33,43-56] in which the nuclear vibrational problem is solved by numerically 

manipulating the Hamiltonian operator [50,55-57] rather than pursuing purely analytical 

solutions.[33] In CVPT, a series of unitary transformations is applied to quasi-diagonalize the 

Hamiltonian to a given order, excluding blocks of strongly-coupled and degenerate terms that 

must be treated variationally. The required transformation operators are derived using 

perturbation theory, expanding both the transformation operator and the original and target 
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Hamiltonians in powers of a perturbation parameter, and then equating terms with like 

powers. The original Hamiltonian must be expressed as the sum of a dominant zeroth-order, 

analytically solvable component and a series of higher order correction terms and is 

particularly efficient using the Watson Hamiltonian with the PES expanded as a Taylor series 

about equilibrium in rectilinear normal mode coordinates. Like for RSPT, it is feasible to 

apply CVPT to higher than second order.[50,55-57] 

 In vibrational configuration interaction (VCI) [58-65] and vibrational coupled cluster 

theory,[66-68] there is a substantial freedom of choice in the potential energy surface 

representation and form of the vibrational wavefunction, which in turn affords a much higher 

degree of flexibility in choice of vibrational Hamiltonian and coordinate system.[69-71]   

 For example, (a) the Hamiltonian may be formulated in rectilinear [58-63] or 

curvilinear [72-80] coordinates; (b) the wavefunction may be expanded as a linear 

combination of direct product basis states [58-63] or nondirect product basis states,[64-65,81-

82] based upon either harmonic oscillator single-mode functions [61,62,83] or VSCF modals 

[84-91] or adaptively contracted linear combinations of harmonic oscillator functions [92-93], 

(c) the potential energy surface may be represented: analytically, using parameterized 

functional forms [94-95] or; semi-analytically, using Taylor series expansions about 

equilibrium [96-100] or; numerically, by mapping out energies on grids.[101-102] 

 While different approaches to solving the nuclear vibrational problem have been 

investigated previously (VSCF, VPT, VCI), direct comparison has been problematic due to 

different methodological and algorithmic choices between methods and because each method 

has not been pushed to near its convergence limit.[103-105]  

 In this work, we apply CVPT to fourth order and VCI to its convergence limit.[106]  

In both cases, we employ the Watson Hamiltonian and expand the wavefunction in a direct 

product basis of harmonic oscillator functions.[106] This choice enables the VCI and CVPT 
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methods to be directly compared by holding all other algorithmic choices constant. Additional 

advantages include computational expedience, simplicity and ease of implementation. 

 The ability to accurately approximate solutions to the nuclear vibrational Schrödinger 

equation is a necessary but not sufficient condition for predicting observed fundamental 

frequencies. The other key factor is the accuracy of the underlying potential energy surface 

over the conformational space accessed during molecular vibrations. These considerations 

raise two questions: which ab initio electronic structure methods should be used to predict 

how the energy changes as a function of molecular conformation, and how should these data 

be collated in a useable form, i.e. what is the most appropriate way of mathematically 

representing the potential energy surface? 

 Full sextic force fields are formally required for CVPT4 calculations, although due to 

computational cost and numerical instability associated with constructing them, they are 

usually truncated from 6-mode to 4-mode representation (SFF-4MR) by including only terms 

with up to four unique indices.[107-109] Hamiltonians based upon lower order PES 

expansions, on the other hand, do not require full fourth-order CVPT treatment. In particular, 

quartic force fields are both necessary and sufficient for CVPT2 calculations. 

 In previous work, we have shown that SFF-4MR are required to achieve spectroscopic 

accuracy in VCI calculations of fundamental frequencies.[99,106] However, this procedure 

can be computationally intensive and scales badly with the number of vibrational modes. 

Truncating the PES expansion at fourth order substantially decreases the computational cost 

of both constructing the PES and solving the nuclear vibrational Schrodinger equation but 

incurs a concomitant decrease in accuracy. Although the orders of the wavefunction and PES 

expansions are not coupled in principle, in practice it makes sense to balance the accuracy of 

the nuclear vibrational structure model against the accuracy of the underlying PES; i.e. use 

higher order wavefunction expansions with higher order PES expansions. 
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 Finally, it remains to determine the appropriate level of ab initio electronic structure 

theory to use in constructing each force field. Exact analytical Hessians are required to ensure 

numerical stability of the differentiation procedure used to obtain the requisite force 

constants, thereby precluding most density functional methods.[110] Computational 

efficiency is the other key constraint, as a large number of Hessian calculations are required 

during the numerical differentiation process. Fortunately, it has been shown that anharmonic 

force constants are relatively insensitive to the electronic structure model.[111] This finding 

motivates the use of “hybrid” force fields, in which the full anharmonic force field is 

generated at a modest level of theory, and empirically improved by replacing the harmonic 

force constants by values obtained at a higher level of theory.[112,113] Previous studies have 

shown that spectroscopic accuracy can only be acheived if this higher level of theory is at 

least CCSD(T) with a near-complete atomic orbital basis set.[114] 

 Finally, it must be noted that there are a range of higher order terms in the electronic 

Hamiltonian that are typically neglected in most electronic structure calculations, including 

relativistic effects, non-Born-Oppenheimer effects, and terms that depend explicitly on the 

inter-electronic distance. These terms are omitted because they are computationally expensive 

to compute and tend to only have small effects on computed properties for most common 

molecules near their equilibrium geometries. However, a recent benchmark study on the water 

molecule has shown that relativistic and non-adiabatic corrections typically contribute < 1 

cm−1 to predicted fundamentals,[115] while R12/F12 corrections ameliorate basis set 

incompleteness and can contribute up to 5 cm−1 (QZ basis) or 2 cm−1 (5Z basis).[114] We 

acknowledge that relativistic and non-adiabatic corrections are not accounted for in the 

present work, and basis set incompleteness errors are only estimated. 

 With this exception, we are now well-positioned to explore systematically the 

influence of different nuclear vibrational models, potential energy surface expansions, and 
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levels of ab initio electronic structure theory on the computed fundamental frequencies of 

halomethanes. We will also benchmark the computed fundamentals against available high-

resolution experimental data. All theory development and computation is performed in atomic 

units, but all results are reported in units of cm–1. 

 

2. Theory 
 

2.1 General formalism 
 

The Watson vibrational Hamiltonian, including Coriolis rotational coupling terms, reads: 

        (2.1) 

      (2.2) 

  (2.3) 

where the rectilinear normal coordinates, , are defined as the linear combinations of 

Cartesian atomic displacements that diagonalize the Hessian in mass-weighted Cartesian 

coordinates. The equilibrium rotational constants, , correspond to the eigenvalues of the 

molecular inertia tensor, and the rovibrational Coriolis coupling terms are calculated using the 

method of Meal and Polo.[116,117] The potential energy surface is expanded as a Taylor 

series in rectilinear normal coordinates: 

   (2.4) 
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force constants, , are the derivatives of the potential energy with respect to the normal 
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order force constants are all zero by definition. 
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 The Hamiltonian may be re-factored into a zeroth-order, analytically solvable term, 

and a smaller correction term, which itself may be expanded order-by-order: 

,        (2.5) 

,     (2.6) 

.  (2.7) 

 

2.2 VCI  

In the VCI model, the nuclear vibrational wavefunction is expanded in a basis of harmonic 

oscillator product functions, , referred to as basis states: 

,       (2.8) 

where  is a string of quantum numbers, , specifying the vibrational state across all 

M modes. The constituent harmonic oscillator functions, , are mode-specific analytic 

solutions to the zeroth-order harmonic oscillator Hamiltonian. VCI basis states are generated 

by specifying a maximum value for the sum of vibrational quantum numbers, Nmax: 

         (2.9) 
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The coefficients are determined by forming and diagonalizing the VCI matrix, comprised of 

the following matrix elements, for all unique combinations of basis states: 

.      (2.11) 

The formulae required to evaluate these matrix elements are detailed in the Supporting 

Information.   

 

2.3 CVPT 

Details of the derivation and implementation of canonical van Vleck perturbation 

theory (CVPT) are scattered throughout the literature.[33,43-57] For completeness and 

consistency in notation, we recapitulate our approach in the Supporting Information and 

summarize the salient points here. Van Vleck perturbation theory is based upon finding a 

unitary transformation operator , that diagonalizes , preserving the eigenvalue spectrum 

but modifying the wavefunction,  

        (2.12) 
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obtaining  for an arbitrary choice of . However, if the anharmonic part of  is 

expanded as a finite power series in rectilinear normal mode coordinates, Q, CVPT provides a 

well-defined procedure for constructing reduced-rank approximations to : 

         (2.13) 
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 As proposed by van Vleck, the transformation operators  are represented in 

complex exponential form, to ensure that they are unitary: 

         (2.14) 

A perturbation parameter is then introduced into the original and diagonalized (denoted by 

tilde) forms of the Hamiltonian and into the Taylor series expansion of the transformation 

operator, identifying terms order-by-order:  

 ,      (2.15) 

,       (2.16) 

.        (2.17) 

Substituting these expressions into the reduced-rank form of the transformation relation and 

equating terms with like powers of λ reveals the recursive transformation formulae:[54,56] 
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quanta creation and annihilation operators, a+ and a, also known as raising and lowering 

operators: 

,     (2.20) 

where  are paired strings of integers as defined in the VCI section above, that together 

specify the powers of creation and annihilation operators required to generate terms in the 

Hamiltonian to order K. At the first transformation step (K=1), the coefficients  are 

composed of the force constants within the potential energy expansion and pre-factors of 

kinetic energy terms. At later transformation steps they become complicated linear 

combinations of these original values.  

 The Hamiltonian can only be reduced to fully diagonal form if all the denominators in 

 are non-vanishing. In general, this is not true, and resonant terms must be identified and 

excluded from the transformation procedure according to the value of the dimensionless 

prefactor for each set of creation/annihilation operators indexed by : 

,       (2.21) 

and also the magnitude of its denominator: 

.       (2.22) 

Thresholds for each of these quantities are denoted  and , respectively.  

 This formulation results in a quasi-diagonal matrix in which only the resonant terms 

are coupled through off-diagonal matrix elements. They are then treated variationally on a 

symmetry block-by-block basis to complete the diagonalization of the Hamiltonian.  
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3. Methods 

3.1 PES construction 

Force constants for each SFF-4MR were obtained at MP2/cc-pVTZ by numerical 

differentiation of analytic Hessians along rectilinear normal modes from the equilibrium 

geometry. All ab initio calculations were carried out using the Gaussian09 program 

package.[118] To ensure sufficient precision in the computed Hessians, the following settings, 

screening and convergence thresholds were used (values are given in atomic units): 

(a) threshold for eliminating primitive basis functions from transformed contracted sets: 0, 

(b) two-electron integral screening threshold: 10–14, 

(c) SCF density matrix convergence threshold: 10–12, 

(d) coupled-perturbed Hartree-Fock (CPHF) convergence threshold: 10–12, 

(e) molecular and integral symmetry: turned off. 

Details of the implementation and validation of our numerical differentiation 

procedure are provided as Supporting Information.  

 Finally, MP2/cc-pVTZ harmonic force constants were replaced by CCSD(T)/aug-cc-

pVQZ equivalents. 

3.2 Basis set incompleteness estimates 

Basis set incompleteness errors in CCSD(T)/aug-cc-pVQZ harmonic force constants 

are estimated in one of two ways: 

(*) by comparison against complete basis set limit extrapolated values, obtained using the 

two-point extrapolation formula of Helgaker et al. [119]: 

        (3.1) 
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where  are the harmonic frequencies obtained for CCSD(T)/cc-pVTZ and 

CCSD(T)/cc-pVQZ models, respectively. Diffuse functions are omitted because they lead to 

non-monotonic convergence of energies and energy-related properties.  

(*) by computing the difference between CCSD(T)/aug-cc-pVTZ and CCSD(T)/aug-cc-

pVQZ harmonic frequencies, which is expected to provide an upper bound to the basis set 

incompleteness error. 

3.2 VCI 

VCI(10) calculations were performed using full quartic and four mode-representation 

sextic force fields, with no restriction on the extent of mode-coupling or a priori screening of 

VCI matrix elements. However, to limit memory requirements, only matrix elements larger 

than 10–10 a.u. were stored. We have previously shown that VCI(10) calculations converge to 

within 0.1 cm–1 of the full VCI limit, on average, provided that the underlying force field does 

not diverge in the relevant energy range [83]. 

3.3 CVPT 

CVPT2 is applied to second order to quasi-diagonalize Hamiltonians expanded to 4th 

order in the potential (QFF), including second-order kinetic Coriolis terms. Similarly, CVPT4 

is applied to quasi-diagonalize Hamiltonians incorporating up to sextic terms in the potential 

(SFF-4MR).[56] Out of curiosity, we also performed CVPT4 calculations using a QFF to 

assess the effect of premature truncation of the PES, although this procedure is not generally 

recommended because it is expected to provide an unbalanced treatment of even single-mode 

anharmonicities.  

 Resonant states identified using the thresholds  = 0.06,  = 600 cm–1 were 

excluded from the transformation procedure. Blocks of untransformed near-resonant states 

were then diagonalized using VCI in a basis of states constructed by allowing up to 4 quanta 

of vibrational excitation. 

QZ TZn n-

⌅⇤ �⇤
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3.4 Experimental Reference Data 

Experimental fundamental frequencies for halomethanes (35Cl isotopologues only) 

were extracted from spectroscopic data reported in the literature and correspond to ro-

vibrational band centres (Q-branches, J = 0).[1-23] The summary of existing literature data on 

fundamentals of the dihalomethanes is presented in Table 1. The reported observations were 

carefully re-evaluated for uncertainties in absolute frequency calibration, rather than the 

uncertainties in relative peak positions that are often reported. All values derived from high-

resolution infrared spectroscopy data are accurate to 0.005 cm-1. Comparison against 

computed values does not require this level of accuracy; all frequencies will subsequently be 

reported to a maximum of 2 decimal places.  

 

4. Results and Discussion 

VCI and CVPT predictions of fundamental frequencies for CH2F2, CH2FCl and CH2Cl2 are 

presented in Tables 2, 3, and 4, respectively, with symmetry labels in the first column, 

existing experimental reference data in the second column, reference VCI(10) computational 

results in the third column, and CVPT4 results in the fourth column. These results were 

obtained with the SFF4MR formulation of the sextic force field. In the last three columns are 

the results with VCI(10), CVPT4, and CVPT2 obtained with the QFF quartic force field. 

Before comparing these results in detail, we begin by establishing the accuracy of the 

benchmark VCI(10) values. 

4.1. Convergence of VCI fundamentals with respect to excitation level 

VCI/SFF4MR and VCI/QFF fundamentals at a range of different excitation levels are 

reported in the Supporting Information and average deviations from VCI(10) values 

summarized in Table 5.  
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 Clearly, the VCI(10)/SFF-4MR reference values are well converged with respect to 

excitation level, with a mean absolute deviation of 0.03 cm–1 to VCI(9), and a maximum error 

of only 0.33 cm–1. Their QFF counterparts are not quite as well converged, with mean and 

maximum differences between VCI(9) and VCI(10) of 0.07 cm–1 and 0.95 cm–1, respectively. 

Nonetheless, these deviations fall within the bounds of “spectroscopic accuracy”, commonly 

defined as 1 cm–1, and so can be considered acceptably converged for all practical intents and 

purposes. 

4.2. Comparing CVPT4 and VCI(10) based upon 4MR sextic force fields 

Comparing SFF-4MR data across Tables 2-4 reveals a number of trends apparent for 

all three dihalomethanes. CVPT4 reproduces benchmark VCI(10) results to within 0.5 cm–1 

for all fundamentals except the highest frequency stretching mode of each molecule. The 

CVPT4 values for these modes are in error by 1–2 cm–1. For low frequency modes (< 800 cm–

1), the agreement between VCI(10) and CVPT4 is particularly close, with errors less then 0.1 

cm–1.  

 Mean and maximum deviations between CVPT4/SFF-4MR and VCI(10)/SFF-4MR 

across all fundamentals of all three molecules are summarized in Table 5, alongside VCI 

convergence data. From this table, we observe that CVPT4 produces results intermediate in 

accuracy between VCI(6) and VCI(7). 

4.3. Comparing CVPT4 and VCI(10) based upon quartic force fields  

Upon initial consideration, the CVPT4/QFF fundamentals do not appear to display any 

clear pattern of deviation from the benchmark VCI(10)/QFF values. However, upon closer 

inspection, the comparison is actually a sensitive indicator of how well the QFF describes 

each vibrational mode and its couplings to other modes. Where there is very close agreement 

between CVPT4 and VCI(10) predictions for a given mode (deviations < 0.1 cm–1), the 

frequencies also do not change much if the quartic force field is extended to a four mode 
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representation sextic force field. For example, VCI(10)/QFF and VCI(10)/ SFF-4MR results 

for these modes agree to within 1.1 cm–1. 

 Similarly, there is much better agreement between QFF-based CVPT4 and VCI(10) 

results for difluoromethane, the least anharmonic of the molecules within our data set. 

Discrepancies increase as the fluorine atoms are substituted by chlorine, making the 

molecules progressively more anharmonic. The largest deviations occur in the high frequency 

stretching modes of CH2FCl and CH2Cl2. 

 Although it is difficult to predict a priori how well VCI/QFF and CVPT4/QFF results 

based upon quartic force fields will agree for any given vibrational mode, we note that the 

agreement is quite good overall; with a maximum deviation of < 5 cm–1 in the n1 stretching 

mode of CH2Cl2, and an average deviation of < 2 cm–1 across all fundamental modes. Further, 

CVPT4 remains intermediate in accuracy between VCI(6) and VCI(7) even when the SFF-

4MR is swapped for a QFF (Table 5). 

4.4. Comparing VCI(10) results based on quartic and 4MR sextic force fields 

As noted above, QFFs adequately describe the low frequency halogen-carbon-halogen 

bending modes and the internal H-C-H bending modes, because these modes are largely 

uncoupled from one another and from other fundamental vibrational modes within these 

molecules. 

 However, in the mid-range region of each spectrum (900 – 2000 cm-1), the vibrational 

modes become a complicated mix of carbon-halogen stretches, external H-C-H bends and 

wags. The coupling between these modes is not adequately captured by quartic force fields, 

introducing errors of 4-10 cm–1 relative to benchmark VCI(10)/SFF-4MR results. 

 The high frequency region of each spectrum (2000 – 3500 cm–1) contains symmetric 

and asymmetric C-H stretching modes that are again largely uncoupled to one another and 

other fundamental bending and stretching modes. In this case, the QFF no longer fails to 



 

 

18 

18 

capture coupling between fundamentals, but instead must not adequately describe 

anharmonicity along each mode and/or higher-order resonances, e.g. Fermi resonances, which 

arise from couplings between these modes and accidentally near-degenerate combination 

bands. VCI(10)/QFF and VCI(10)/SFF-4MR predictions differ by 1-5 cm–1 for these modes. 

4.5. Comparing CVPT2 with other approaches 

CVPT2 fundamentals reproduce benchmark VCI(10)/SFF-4MR values to within 1 cm–

1 for all modes except the high frequency C–H stretches where they can differ by up to 13 cm–

1. The accuracy of all CVPT models considered here is summarized in Table 6. CVPT2/QFF 

is, on the whole, more accurate than CVPT4/QFF, although with larger outliers amongst the 

stretching modes. 

 This overall high level of accuracy from CVPT2 can only be explained by mutual 

cancellation of higher order terms omitted from both the perturbation theory and force field 

expansions. This cancellation is known to be exact for the Morse oscillator,[120,121] a simple 

one-dimensional model system, but no such proof exists for coupled multi-dimensional 

oscillators. Nonetheless, the empirical evidence presented here is strong and is supported by 

comparing CVPT2 and VCI(10) results generated using the same quartic force field that show 

larger deviations, particularly in the mid-range region of the spectrum. 

 It is perhaps surprising that CVPT2 deviates most from VCI(10)/SFF-4MR in the high 

frequency C-H stretching region of the spectrum, because the region of the PES describing 

these modes should be well fitted using a concise series expansion in Morse oscillator 

coordinates. Yet, it is clear that these modes must not behave like uncoupled Morse oscillators 

but must display effects through strong mode-mode coupling, altered anharmonicity profiles 

along each mode, or both.  

 We have therefore investigated the underlying cause of the unusually large changes 

observed in some fundamental stretching mode transitions of halomethanes when upgrading 
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the model from CVPT2/QFF to CVPT4/SFF-4MR. By analysing the coupling strengths 

within blocks of accidentally near-degenerate fundamental and overtone modes, we find that 

the dominant cause of the discrepancy is due to changes in how well the coupling between the 

fundamentals and near-degenerate combination bands are modelled.  

 For example, the n6 mode of CH2F2 changes by –11.50 cm–1 going from CVPT2/QFF 

to CVPT4/SFF-4MR, because it is near-degenerate with the combination bands n2+n7 and 

n5+n8. The shift due to Fermi resonance is better modelled at CVPT4, decreasing from 61.5 

cm–1 to 45.4 cm–1 (–16.1 cm–1). This effect is somewhat offset by a decrease in the n6 single-

mode anharmonicity that increases the frequency. The n2+n7 and n5+n8 combination modes 

are coupled via Darling-Dennison resonance, but this only affects the n6 frequency indirectly 

by influencing the extent of configurational mixing of n2+n7 and n5+n8 with n6. Full details of 

our analysis are provided as Supporting Information. 

 Similarly, the n1 mode of CH2FCl exhibits three Fermi resonances, this time with 

doubly-excited fundamentals 2n2, 2n3 and 2n8, whose couplings are more accurately captured 

at CVPT4. This results in the fundamental frequency decreasing by 11.34 cm–1.  

 The n1 mode of CH2Cl2 also couples with its doubly-excited fundamentals 2n2 and 

2n8, and the frequency drops by 7.5 cm–1 going from CVPT2/QFF to CVPT4/SFF-4MR. We 

note that this direction of change is not universal; CVPT4/SFF-4MR fundamental frequencies 

can also be higher than their CVPT2/QFF counterparts. 

4.6. Comparing theory with experiment 

Both the CVPT4 and VCI(10) models based upon our hybrid CCSD(T)/MP2 SFF4MR 

PES yield fundamental frequencies within 2 cm-1 of experiment, on average, with maximum 

deviations < 5 cm-1, except for the ν5(A2) mode of CH2Cl2 whose computed frequency of 

1163 cm-1 is 10 cm-1 higher than the value of 1153 cm-1 reported from gas-phase Raman 

observations by Welsh et al. [15] and quoted in a gas-phase IR study by Duncan et al.[17] 
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This large discrepancy led us to re-evaluate the experimental observations for the A2 

mode. Welsh and coworkers [15] interpreted the observed band shape as being similar to a B-

type band in an IR spectrum. However, the selection rules for rotational transitions in the 

Raman effect differ from those in IR spectra; thus, such an analogy does not apply. A more 

likely interpretation of the Raman band shape is that it represents a fundamental on the high 

frequency end of the band accompanied by a hot band progression spilling to low frequency. 

This interpretation would make the frequency of the fundamental higher than 1153 cm–1. 

In response to our request, Dr. Thomas A. Blake at Pacific Northwest National 

Laboratory supplied a detailed gas-phase IR spectrum of CH2Cl2 in the 1150 cm-1 

region.[122] That spectrum is displayed in Figure 1. It clearly shows a sharp Q-branch feature 

at 1158.2 cm–1, which can be attributed to the A2 mode of CH2Cl2 made weakly active by 

Coriolis coupling. The broad band at 1184 cm-1 is assigned to 281.5(A1) + 898.66(B1). We do 

not have an assignment for the band with the sharp Q branch at 1223.1 cm-1. A possible 

explanation for the gas-phase Raman band at 1153 cm–1 [15] is a difference band, 1435(A1) – 

281.5(A1) = 1153.5 cm-1. 

4.7. Remaining sources of error 

We have demonstrated above that the VCI(10) fundamentals are converged to well 

within 1 cm-1 with respect to the completeness of the underlying harmonic oscillator product 

basis, from which the VCI wavefunction is constructed, and that CVPT4 fundamentals agree 

with VCI(10) results to within 1.7 cm-1, with a mean absolute deviation of only 0.3 cm-1. 

Therefore, differences between computed and observed fundamentals are not primarily due to 

deficiencies in the wavefunction and must be due to inaccuracy and/or incompleteness in the 

underlying PES expansion. 

 We have previously shown that four mode-representation sextic force fields reproduce 

results from full sextic force fields to within 1 cm–1 [83]. It is unlikely that including higher 
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order terms in the PES expansion would have a large effect. This supposition is supported by 

previous studies that have demonstrated close agreement between experimental fundamentals 

and those calculated using sextic force fields.[123] 

Consequently, the choice of electronic structure models used in constructing the PES 

is most likely the dominant remaining accuracy-determining factor. Others have shown that 

anharmonic force constants are relatively insensitive to the level of ab initio theory.[111] 

And, in any case, it is difficult to explore alternatives, due to the computational expense 

associated with calculating the required set of higher order force constants.  

 Therefore, we focus on estimating basis set incompleteness errors in the 

CCSD(T)/aug-cc-pVQZ harmonic force constant component of the potential energy surface 

expansions. This deficiency is expected to be the dominant source of error in the computed 

anharmonic frequencies, because the largest contribution to the anharmonic frequencies 

comes from the zeroth-order harmonic terms. 

 CCSD(T)/aug-cc-pVQZ harmonic frequencies are presented in Table 7, along with 

two different estimates of basis set incompleteness errors, as described in the methods section. 

Most of the estimated errors fall in the 2 – 5 cm-1 range, comparable to the magnitude of the 

difference between computed VCI(10)/SFF4MR fundamentals and corresponding experimental 

values.[124-126] 

 More detailed analysis reveals that the estimated basis set incompleteness errors in 

CCSD(T)/aug-cc-pVQZ harmonic frequencies are greater than the difference between 

computed anharmonic frequencies and experiment for any given vibrational mode. This 

finding suggests that either our error estimates are conservative, or that there is cancellation of 

electronic structure model errors between the harmonic and anharmonic parts of the potential, 

or both.  
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 Either way, having eliminated or controlled for all dominant sources of error, we are 

confident that errors due to the underlying electronic structure models account for the 

majority of the remaining difference between computed and experimentally observed 

fundamental frequencies. This finding is consistent with previous computational results that 

show errors of around 5 cm-1 in anharmonic CCSD(T)/AVQZ fundamentals.[114] 

4.8. Computational cost 

In choosing a computational model for simulating IR spectra, the key considerations 

are accuracy, ease of use, and computational cost. We have thoroughly investigated the 

relative accuracy of VCI and CVPT models. In principle, they are both equally easy to use 

and can be readily adapted to calculate intensities, provided appropriate dipole moment 

surfaces are available, although the calculation of intensities is not addressed in the current 

work. It remains to consider the computational cost of each nuclear vibrational model.  

In principle, the time required to compute all VCI matrix elements and the memory 

required to store them scales as   where M is the number of vibrational modes, but 

this may be reduced to  by judicious use of pre-screening and applying reduced mode-

coupling constraints on the VCI basis states.[83]  

 We have performed a preliminary investigation into the scaling of CVPT models with 

number of vibrational modes, using single C2v-symmetric molecules of different sizes (HF, 

H2O, H2CO, CH2F2). From the raw data presented in the Supporting Information, we find that 

CVPT2 scales approximately as O(M3-4) and CVPT4 approximately as O(M4-5). Clearly, 

CVPT is a more economic choice than VCI models of equivalent accuracy. Practically, we 

note that operator version CVPT2 has been applied to molecules with up to 12 atoms,[127-

128] VCI to molecules with up to 10 atoms,[83]  and  CVPT4 to molecules with up to 8 

atoms.[56]  
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5. Conclusions 

One of the major challenges in simulating anharmonic vibrational spectra is obtaining 

an appropriately accurate representation of the potential energy surface in a form that 

facilitates solving the nuclear vibrational Schrödinger equation. If this barrier can be 

overcome, e.g. by constructing ‘hybrid’ sextic four mode-representation force fields at the 

MP2/cc-pVTZ level and replacing the harmonic force constants with CCSD(T)/aug-cc-pVQZ 

equivalents, then both VCI(6) and CVPT4 are suitable methods for obtaining approximate 

solutions to the the nuclear vibrational Schrödinger equation. They are of comparable 

accuracy to one another, and both introduce errors far smaller (1-2 cm–1) than those inherent 

in the underpinning electronic structure models (~5 cm–1). However, should only a quartic 

force field be available, then CVPT2 often outperforms more sophisticated VCI models, due 

to fortuitous error cancellation that arises from simultaneously truncating both the 

perturbation theory and potential energy surface expansions. 
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Table 1. Ro-vibrational band centres for fundamental vibrational transitions in 

dihalomethanes. 

 CH2F2   CH2F35Cl   CH235Cl2  

 n (cm–1) ± (cm–1) Ref  n (cm-1) ± (cm–1) Ref  n (cm–1) ± (cm–1) Ref 

528.7044 0.0006 [1] 385b 1 [12] 281.5c 1.5 [16] 

1090.1264 0.0002 [8] 761.4403 0.0004 [13] 717.4675 0.0005 [21] 

1111.5162 0.0002 [8] 1002.3349 0.0004 [11] 759.8486 0.0005 [21] 

1178.6414 0.0002 [8] 1067.7991 0.0004 [14] 898.6648 0.005 [18] 

1255.8285 0.0002 [8] 1236.8219 0.0010 [10] 1153d 1.5 [16] 

1435.6357 0.0002 [6] 1353.3173 0.0008 [9] 1268.8514 0.0005 [22] 

1509.1492 0.0002 [6] 1473.6 0.5 [12] 1435.0 0.2 [17] 

2947.9a > 1 [7] 2992.57 0.1 [12] 2997.7 0.2 [17] 

3014.0503 0.0003 [4] 3035.38 0.1 [12] 3055 1.5 [16] 

a An uncertain assignment, based on a Q-branch feature that should be B-type and have no 

central Q branch. The uncertainty could be several cm-1. 

b A weak Q branch at ~ 385 cm-1 is probably the best estimate of the centre frequency for this 

band. 

c Mutual observations of frequencies from IR and Raman spectra suggest that the Raman 

observations below 2000 cm-1 are 1 cm-1 too low. Thus, a correction has been applied. 

d Assignment uncertain, will be revisited in the present work. 
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Table 2. Computed and experimental fundamental frequencies of CH2F2, according to VCI 

and CVPT models using quartic (QFF) and 4 mode-representation sextic (SFF-4MR) force 

fields. All quantities reported in cm–1. ∆ represents the signed deviation of the CVPT4/SFF-

4MR values from the benchmark VCI(10)/SFF-4MR data. 

Experimental  SFF-4MR  QFF 

Label Sym Freq  VCI(10) CVPT4 ∆  VCI(10) CVPT4 CVPT2 

 n4 A1 528.70  526.43 526.40 -0.03  526.35 526.34 526.42 

 n9 B2 1090.13  1088.46 1088.37 -0.09  1089.93 1089.78 1087.84 

 n3 A1 1111.52  1108.53 1108.53 -0.00  1109.65 1109.58 1108.36 

 n7 B1 1178.64  1177.34 1177.22 -0.12  1173.21 1173.78 1177.44 

 n5 A2 1255.83  1255.33 1255.22 -0.11  1250.54 1251.26 1255.38 

 n8 B2 1435.64  1432.63 1432.57 -0.06  1428.01 1428.70 1432.82 

 n2 A1 1509.15  1508.95 1508.89 -0.06  1504.57 1505.23 1509.64 

 n1 A1 2947.9  2948.33 2948.32 -0.01  2949.33 2949.07 2952.07 

 n6 B1 3014.05  3010.75 3011.95 +1.20  3015.42 3015.19 3023.45 
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Table 3. Computed and experimental fundamental frequencies of CH2F35Cl, according to 

VCI and CVPT models using quartic (QFF) and 4 mode-representation sextic (SFF-4MR) 

force fields. All quantities reported in cm–1. ∆ represents the signed deviation of the 

CVPT4/SFF-4MR values from the benchmark VCI(10)/SFF-4MR data. 

 

Experimental  SFF-4MR  QFF 

Label Sym Freq  VCI(10) CVPT4 ∆  VCI(10) CVPT4 CVPT2 

 n6 A’ 383.5  382.76 382.69 -0.07  382.63 382.64 382.75 

 n5 A’ 761.44  757.26 757.19 -0.07  757.47 757.47 757.21 

 n9 A” 1002.33  1002.99 1002.67 -0.32  995.99 997.22 1002.99 

 n4 A’ 1067.80  1066.89 1066.86 -0.03  1067.90 1067.88 1066.32 

 n8 A” 1236.82  1235.77 1235.64 -0.13  1230.12 1231.10 1235.71 

 n3 A’ 1353.32  1350.71 1350.33 -0.38  1344.37 1345.47 1350.77 

 n2 A’ 1473.6  1475.94 1475.76 -0.18  1470.25 1471.24 1476.27 

 n1 A’ 2992.57  2996.38 2995.97 -0.41  2992.87 2995.51 3007.32 

 n7 A” 3035.38  3033.96 3035.34 +1.38  3037.46 3039.14 3039.58 
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Table 4. Computed and experimental fundamental frequencies of CH235Cl2, according to VCI 

and CVPT models using quartic (QFF) and 4 mode-representation sextic (SFF-4MR) force 

fields. All quantities reported in cm–1. ∆ represents the signed deviation of the CVPT4/SFF-

4MR values from the benchmark VCI(10)/SFF-4MR data. 

Experimental  SFF-4MR  QFF 

Label Sym Expt  VCI(10) CVPT4 ∆  VCI(10) CVPT4 CVPT2 

 n4 A1 281.5  281.32 281.32 0  281.23 281.24 281.32 

 n3 A1 717.47  715.27 715.27 0  715.41 715.48 715.27 

 n9 B2 759.85  759.54 759.63 +0.09  759.83 759.91 759.38 

 n7 B1 898.66  899.11 898.73 -0.38  888.91 891.01 899.00 

 n5 A2 1158.2  1163.28 1163.09 -0.19  1155.41 1157.00 1163.36 

 n8 B2 1268.85  1270.54 1270.32 -0.22  1262.87 1264.47 1271.10 

 n2 A1 1435  1437.93 1437.58 -0.35  1430.03 1431.67 1437.94 

 n1 A1 2997.7  3001.06 3001.34 +0.28  2999.25 3003.79 3008.85 

 n6 B1 3055  3057.62 3058.93 +1.31  3062.84 3064.29 3058.31 
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Table 5. Mean absolute and maximum deviations of VCI(n) (5 < n < 10) and CVPT4 

fundamentals from VCI(10) reference data, across all modes of all 3 molecules. The force 

fields used with each method are given in the top row. All quantities reported in cm-1. 

n 
SFF-4MR QFF 

MAD MAX MAD MAX 

9 0.03 0.33 0.07 0.95 

8 0.09 0.81 0.16 2.08 

7 0.24 0.85 0.47 3.59 

6 0.69 2.19 1.12 5.90 

5 1.08 3.92 1.64 9.17 

CVPT4 0.29 1.68 0.93 4.54 

 

 

Table 6. Mean absolute and maximum deviations of CVPT2/QFF, CVPT4/QFF and 

CVPT4/SFF-4MR fundamentals from VCI(10)/SFF-4MR reference data, across all modes of 

all 3 molecules. All quantities reported in cm–1. 

 MAD MAX 

CVPT4/SFF-4MR 0.29 1.38 

CVPT4/QFF 3.24 8.23 

CVPT2/QFF 1.67 12.63 
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Table 7. CCSD(T)/aug-cc-pVQZ fundamental frequencies (n) and associated error estimates:  

∆CBS = CCSD(T)/CBSextrap – CCSD(T)/aug-cc-pVQZ,  

∆aTZ = CCSD(T)/aug-cc-pVQZ – CCSD(T)/aug-cc-pVTZ 

All quantities reported in cm-1. 

CH2F2  CH2FCl  CH2Cl2 

n  |∆CBS|  |∆aTZ|  n |∆CBS|  |∆aTZ|  n |∆CBS|  |∆aTZ| 

533.09 2.54 3.44  387.16 2.28 2.00  284.84 0.99 0.50 

1116.96 0.85 4.82  773.80 5.05 6.19  727.70 4.80 5.66 

1131.40 2.19 3.39  1018.38 4.00 0.28  779.82 5.33 8.61 

1197.72 3.79 5.45  1095.09 0.56 3.91  911.26 0.30 2.21 

1288.28 1.95 8.56  1266.75 2.79 5.58  1188.78 2.32 0.91 

1467.76 3.01 1.48  1381.31 4.73 2.72  1295.88 2.06 4.10 

1550.07 1.69 2.73  1516.52 0.79 2.33  1477.64 2.32 5.95 

3079.96 5.87 3.32  3104.41 3.52 2.18  3126.78 1.20 0.05 

3155.39 4.97 4.84  3182.51 3.96 3.92  3205.97 2.76 3.24 
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Figure 1. Dichloromethane IR absorption spectrum in the range 1200-1100 cm–1. Conditions: 

25ºC, 0.1 cm–1 instrument resolution, composite spectrum, sample pressure raised to 1 atm 

with nitrogen. 
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