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Abstract
1. Climate change is expected to increase wildfire activity in boreal ecosystems, thus 

threatening the carbon stocks of these forests, which are currently the largest 
terrestrial carbon sink in the world. Describing the ecological processes involved 
in fire regimes in terms of frequency, size, type (surface vs. crown) and severity 
(biomass burned) would allow better anticipation of the impact of climate change 
on these forests. In Fennoscandia, this objective is currently difficult to achieve 
due to the lack of knowledge of long- term (centuries to millennia) relationships 
between climate, fire and vegetation.

2. We investigated the causes and consequences of changes in fire regimes during 
the Holocene (last ~11,000 years) on vegetation trajectories in the boreal forest 
of northern Finland. We reconstructed fire histories from sedimentary charcoal 
at three sites, as well as vegetation dynamics from pollen, moisture changes from 
Sphagnum spore abundance at two sites, and complemented these analyses with 
published regional chironomid- inferred July temperature reconstructions.

3. Low- frequency, large fires were recorded during the warm and dry mid- Holocene 
period (8500– 4500 cal. year BP), whereas high- frequency, small fires were more 
characteristic of the cool and wet Neoglacial period (4500 cal. year BP onward). 
A higher proportion of charcoal particles with a woody aspect— characterizing 
crown fires— was recorded at one of the two sites at times of significant climatic 
and vegetational changes, when the abundance of Picea abies was higher.

4. Synthesis. Our results show both a direct and an indirect effect of climate on fire 
regimes in northern Fennoscandia. Warm and dry periods are conducive to large 
surface fires, whereas cool and moist periods are associated with small fires, ei-
ther crown or surface. Climate- induced shifts in forest composition also affect 
fire regimes. Climatic instability can alter vegetation composition and structure 
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1  |  INTRODUC TION

The rise in temperature during the 21st century is expected to 
increase tree growth in high- latitude boreal forests more than 
in southern boreal forests (Kellomäki et al., 2018; Ruiz- Pérez & 
Vico, 2020). However, there is evidence that climate change also 
increases the probability of occurrence of extreme natural distur-
bance events such as large and severe wildfires, leading to increased 
tree mortality (Bright et al., 2014; Gaboriau et al., 2020; Kuuluvainen 
et al., 2017). The vulnerability of high- latitude boreal forests to fu-
ture disturbance regimes could cancel out the positive effects of 
higher temperatures on tree growth (Timoney et al., 2019).

Recent large and severe wildfire events around the world, such 
as in the summers of 2014 in the Northwest Territories (Canada), 
2018 in Scandinavia, 2019 in Australia, and 2020 in Siberia, were 
linked to exceptionally dry conditions (Ponomarev et al., 2021; 
Pyne, 2021; Stephens et al., 2014). In boreal forests, the balance 
between temperature (annual and summer) and precipitation is the 
main factor that controls fire activity. Global change will likely favour 
the development of dry spells leading to anomalous fire events, as 
increased precipitation will not compensate for increased evapo-
transpiration due to higher temperature (Ruosteenoja et al., 2018). 
This scenario is particularly alarming for the boreal biome where 
wildfire is omnipresent and plays a key role in ecosystem dynamics 
and vegetation composition (Goldammer & Furyaev, 2013; Young 
et al., 2017). As the boreal biome holds the largest terrestrial car-
bon stocks in the world, it could transform into a carbon source due 
to increased wildfire activity (Bowman et al., 2020; Bradshaw & 
Warkentin, 2015). However, our understanding of the interactions 
between fire, vegetation and climate in Eurasian boreal forests is 
hampered by the short time spans covered by historical records. 
Palaeoecological investigations can improve our understanding of 
the effect of past climate on fire activity and provide key informa-
tion for modelling- based fire predictions (Marlon, 2020; McMahon 
et al., 2010; Whitlock et al., 2010).

The boreal forest of northern Fennoscandia (Northern Finland, 
Sweden, Norway and the Kola Peninsula in Russia) is dominated by 
Pinus sylvestris (Scots pine) and Betula pubescens (downy birch), as well 
as Betula pubescens ssp. tortuosa (mountain birch) at higher elevations. 
Pinus sylvestris dominates forests on well- drained poor soils and on 
forested nutrient- poor bogs, while Betula pubescens is found on more 
productive mesic upland sites and on mires (Kuuluvainen et al., 2017). 

Picea abies (Norway spruce) has a more southerly distribution com-
pared to Pinus sylvestris or Betula spp., but in those parts of the region 
where it is present, it dominates late- successional stands on mesic up-
land soils and on forested mires (Heiskanen & Mäkitalo, 2002).

In northern Fennoscandia, fires in the past millennium have been 
less frequent but more severe in forests dominated by Picea abies than 
in those dominated by Pinus sylvestris (Pitkänen et al., 2003; Wallenius 
et al., 2010). However, knowledge of fire history and its interactions 
with climate and vegetation is limited at longer time- scales. Based on 
the concentration of charcoal fragments in lake sediments, a previous 
study suggested that maximum fire frequencies were recorded be-
tween 7500 and 5000 calibrated years before present (hereafter, cal. 
year BP) and after 2500 cal. year BP in northern Sweden (Carcaillet 
et al., 2007). Increased temperature and dryness induced by orbital 
forcing during the early-  to mid- Holocene (before 4500 cal. year BP) 
caused higher fire activity and facilitated the migration and expansion 
of Pinus sylvestris (Bjune et al., 2004; Carcaillet et al., 2007; Seppä 
et al., 2002). From approximately 5500 cal. year BP, pollen records 
show the spread of Picea abies (Giesecke & Bennett, 2004; Seppä, 
Alenius, Bradshaw, et al., 2009). Cooler and moister conditions during 
the Neoglacial period (after 4500 cal. year BP), as well as lower fire 
frequency between 5000 and 2500 cal. year BP, could have favoured 
Picea abies over Pinus sylvestris or Betula pubescens as shown further 
south in the boreal forest (Clear et al., 2015; Kuosmanen et al., 2014). 
Although Carcaillet et al. (2007) suggested that drier conditions, more 
conducive to fire occurrence, prevailed after 2500 cal. year BP, Picea 
abies remained abundant in the landscape until today (Kremenetski 
et al., 1999; Reinikainen & Hyvärinen, 1997; Soloviena & Jones, 2002). 
Hence, the causes of the persistence of Picea abies are unknown, es-
pecially considering that the species is adapted to cool and humid cli-
mates and sensitive to high fire frequencies (Ohlson et al., 2011).

Studies on contemporary vegetation dynamics in response to 
changes in fire regimes have shown that Pinus sylvestris benefits 
from frequent low- severity surface fires, whereas Picea abies re-
places Betula after infrequent severe (stand- replacing) crown fires 
(Gromtsev, 2002; Rogers et al., 2015). Thus, a regime shift from 
frequent surface fires in the early-  to mid- Holocene, to infrequent 
crown fires in the late Holocene could explain the persistence of 
Picea abies in northern Fennoscandia.

To better understand the interactions among climate, fire and veg-
etation during the Holocene (last ~11,000 years) in northern Finland, 
we performed palaeoenvironmental reconstructions based on proxies 

and lead to fuel accumulation favouring stand- replacing crown fires. Considering 
the ongoing climate warming and the projected increase in extreme climatic 
events, Fennoscandian forests could experience a return to a regime of large 
surface fires, but stand- replacing crown fires will likely remain a key ecosystem 
process in areas affected by climatic and/or vegetational instability.

K E Y W O R D S
boreal forest, charcoal, climate change, crown fire, pollen, spruce, surface fire
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sampled in lake sediments in Finnish Lapland. To reconstruct fire his-
tory, vegetation dynamics and moisture, we analysed charcoal parti-
cles, pollen grains and Sphagnum spp. spores, respectively. To define 
past fire regimes, we reconstructed biomass burned, fire frequency, 
area burned and fire type (surface versus crown) inferred from char-
coal morphology. We used temperature reconstructions from chirono-
mid analyses performed by Luoto et al. (2014) and Seppä et al. (2002). 
Based on previous studies conducted in northern Fennoscandia, we 
hypothesized (1) that Pinus sylvestris expansion was favoured by warm 
and dry climate conditions in the early-  and mid- Holocene (before 
~4500 cal. year BP), which were conducive to high- frequency, large, 
low- severity surface fires; and (2a) that the spread and persistence 
of Picea abies were favoured by cooler and moister climate conditions 
during the Neoglacial period (after 4500 cal. year BP) and/or (2b) by a 
regime shift to low- frequency, small, high- severity crown fires.

2  |  MATERIAL S AND METHODS

2.1  |  Study sites

We sampled sediments at lakes Charly, Rosalia (unofficial names) 
and Pikku Härkäjärvi (official name, hereafter ‘Pikku’), located near 
Nellim, at the southeast of Lake Inari (Figure 1; Table S1). The sam-
pling was done with a permission from Metsähallitus Forestry Ltd. 
Deglaciation of the area occurred between 12,500 and 10,700 cal. 

year BP (Cuzzone et al., 2016; Stroeven et al., 2016). According to the 
Köppen- Geiger classification (Peel et al., 2007), the current climate is 
subarctic, with long cold winters and short mild summers. The cur-
rent average temperatures of the warmest (July) and coldest (January) 
months are 14.2°C and −12.1°C, respectively. Mean annual precipita-
tion is about 474 mm, with snow falling from November to April (Inari 
Nellim station, Finnish Meteorological Institute, 1990– 2020 data). The 
vegetation surrounding the studied lakes is dominated by Pinus syl-
vestris L. with some stands of Betula pubescens Ehrh. and rare stands 
of Picea abies (L.) H. Karst. The understorey is dominated by lichens 
(mostly Cladonia spp.), mosses (mostly Pleurozium spp.) and several 
shrub species such as Betula nana L., Empetrum nigrum L., Vaccinium ul-
iginosum L., Vaccinium vitis- idaea L. and Juniperus communis L. In terms 
of geology, the studied lakes are located at the transition between 
the Lapland Granulite Belt (in the south) and the Inari craton (in the 
north) (Rasilainen et al., 2008). Thus, the watersheds of Lakes Charly 
and Pikku are mainly on tills derived from acid granulite, whereas the 
watershed of Lake Rosalia is characterized by gneiss rocks. Lakes Pikku 
and Charly are surrounded by coarse rocky and well- drained soils, 
while lake Rosalia is surrounded by peat and more humid soils.

2.2  |  Sediment sampling and chronology building

We used a Russian corer to sample sediment sequences from the 
three lakes in July 2017. These lakes were chosen due to their small 

F I G U R E  1  Location of the study area (a) and sampled lakes (b). Source: National Resources Institute Finland (The Multi- source National 
Forest Inventory Raster Maps of 2019).

(a) (b)
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surface area (<4 ha), relatively deep water column (>5 m) and ab-
sence of inlet or outlet. To collect the water– sediment interface, 
we used a Kajak- Brinkhurst gravity corer (Glew et al., 2001). The 
sediment sequences were sliced into contiguous 0.5- cm- thick sub- 
samples to obtain fine- scale time resolution for analysis. The dif-
ferent cores composing the sediment sequences at each site were 
sampled so that there was a certain overlap from core to core. Then, 
in the laboratory, the alignment of the different cores was verified by 
comparing the synchronicity of the charcoal signatures.

Because the sediments were poor in plant macroremains, the 
core chronologies were realized from radiocarbon dating of bulk 
gyttja samples by 14C accelerator mass spectrometry (Table S2). 
Dates from bulk sediments can be affected by a carbon- reservoir ef-
fect (Björck et al., 1998; Grimm et al., 2009). However, this effect is 
not systematic (i.e. it does not occur in all lakes and not at all sediment 
depths within a single lake). Furthermore, the studied watersheds 
did not have clay mineral or carbonate deposits that could increase 
the risk of dating error (Ojala et al., 2019; Strunk et al., 2020). We 
used the Bchron v.4.7.6 R package (Parnell et al., 2008) to recon-
struct Bayesian sediment accumulation histories and calibrate age- 
depth models (Figure S1). We used the IntCal20 calibration curve for 
terrestrial northern hemisphere material (Reimer et al., 2020). Ages 
were interpolated at contiguous 0.5- cm depth intervals and all dates 
are expressed in calibrated years before present (cal. year BP).

2.3  |  Pollen analysis and reconstruction of 
vegetation dynamics

A total of 248 subsamples were extracted from the Pikku sedi-
ment sequence, and 284 subsamples from the Rosalia sediment 
sequence for palynological analysis. Prior to chemical treatment, 
one Lycopodium spore tablet was added to each sub- sample (batch 
No. 1031 with 20848 spores per tablet or batch No. 124961 with 
12542 spores per tablet) to estimate the concentration of micro-
scopic objects per cm3 (Stockmarr, 1971) and pollen accumulation 
rates (PARs; pollen grains cm−2 year−1). Sub- samples of 0.25 cm3 and 
1- cm thickness were treated using the standard pollen preparation 
procedure (10% HCl; 10% KOH for 10 min in a hot water bath). We 
used the acetolysis method in a hot water bath for 3 min (Berglund 
& Ralska- Jasiewiczowa, 1986) to remove polysaccharides. The pre-
pared samples were stored in glycerine. At least 500 terrestrial 
pollen grains per sample were counted to the lowest possible taxo-
nomic level using published pollen keys and the reference collection 
of the Department of Geography at the University of Latvia. The 
percentage of taxa was estimated using arboreal and non- arboreal 
pollen sums. The pollen zones were established through constrained 
incremental sums of squares (CONISS) cluster analysis of the relative 
abundance of pollen taxa (Grimm, 1987) using the rioja R v.0.9– 26 
package (Juggins, 2017). The rate of change was computed at 
each level using the rratepol R v.0.6.1 package (Mottl et al., 2021) 
with an age- weighted average smoothing method applied for each 
species. The PAR was used as a proxy of changes in tree biomass 

and density, with higher PAR reflecting denser tree populations 
(Bennett et al., 1986; Davis et al., 1964; Seppä, Alenius, Muukkonen, 
et al., 2009).

2.4  |  Fire regime reconstructions

To reconstruct fire regimes at the three study sites (Pikku, Rosalia 
and Charly), we first took a 1- cm3 subsample from each 0.5 cm- thick 
slice of sediment and shook it for 24 h in an aqueous solution of 5% 
sodium hexametaphosphate (Na6O18P6), 5% KOH and 10% NaCl 
to facilitate deflocculation and to differentiate black charcoal from 
bleached organic matter (Bamber, 1982; Schlachter & Horn, 2010). 
The solution was then passed through a sieve to collect charcoal 
particles larger than 160 μm, assumed to originate from fire events 
having occurred up to 30 km away from the lakeshores (Higuera 
et al., 2007; Oris et al., 2014). Charcoal particles were measured 
and counted using an image analysis software (WinSEEDLE, Regent 
Instruments Inc.), allowing to calculate charcoal concentration 
(pieces cm−2).

We reconstructed an index representing past biomass burning 
(hereafter BB; no unit) at each study site based on charcoal accu-
mulation rates (hereafter CHAR, i.e. pieces cm−2 year−1), using sed-
iment accumulation rates obtained from the age- depth models. To 
remove bias induced by variations in sedimentation rate at the site 
level, we interpolated individual CHAR series using a constant time 
resolution corresponding to the median sample resolution of each 
lake (between 19 and 25 years). We pooled and smoothed the se-
ries (using a 500- year window) by (1) rescaling initial CHAR values 
using min- max transformation, (2) homogenizing the variance using 
Box- Cox transformation and (3) rescaling the values to Z- scores 
(Power et al., 2008) using the paleofire R package v.1.2.3 (Blarquez 
et al., 2014). The average of individual BB series is interpreted as the 
pooled regional biomass burned (hereafter RegBB; unitless).

We used the CharAnalysis v.1.1 software (Higuera et al., 2010; 
available at https://github.com/phigu era/CharA nalysis) to detect 
past fire events for each interpolated individual CHAR series. We 
estimated and removed background noise, corresponding to char-
coal particles resulting from re- deposition processes, sampling bias 
or extra- regional transport (Figure S2; Higuera et al., 2007; Remy 
et al., 2018). We considered that our charcoal reconstructions in 
each of the three lakes did not necessarily detect all fires, and that 
charcoal peaks could have represented one or several fire events 
(Higuera et al., 2010; Magne et al., 2020). We minimized this bias by 
using the Signal- to- noise index to evaluate the effectiveness of the 
discrimination between fires (Figure S2; Brossier et al., 2014; Kelly 
et al., 2011). We calculated the fire frequency (hereafter FF; fire.
year−1) at each site with a kernel density estimation procedure based 
on a 500- year smoothing bandwidth (Ali et al., 2012). The pooled 
regional fire frequency (hereafter RegFF; fire.year−1) was constructed 
by averaging the FF series.

We used the ratio between BB and FF as well as between 
RegBB and RegFF to assess fluctuations in fire size through time 
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for individual and regional records (hereafter FS index and RegFS 
index; Ali et al., 2012). BB and RegBB values are correlated with long- 
term changes in area burned inferred from fire histories (Higuera 
et al., 2010; Kelly et al., 2013). Fire size is related to the temporal 
trajectory of mean biomass burned per fire, reflecting part of the 
loss of organic matter (BB and RegBB), and modulated by the num-
ber of fires through time (FF and RegFF). High values of FS index 
and RegFS index are indicative of a high mean area burned per fire, 
whereas low FS index values reflect a low mean area burned per fire 
(Ali et al., 2012; Remy et al., 2017).

2.5  |  Charcoal morphology

We analysed charcoal morphology for the Rosalia and Pikku sam-
ples, the two sites for which we also carried out vegetation recon-
structions, to compare the two types of records at the site scale. We 
calculated the aspect ratio L∕W with L the longest axis and W the 
shortest axis for each charcoal particle to qualify their plant source, 
that is elongated graminoid charcoal particles with high aspect ratios 
vs more cubic tree and shrub (wood and leaves) charcoal particles 
with low aspect ratios (Feurdean, 2021; Vachula et al., 2021). We 
used the thresholds established by Vachula et al. (2021) from data 
collected worldwide and the ones estimated for the Siberian taiga by 
Feurdean (2021) to discriminate non- woody fuel types (L∕W  > 3.5), 
characterizing surface fires, and woody fuel types (L∕W  < 2.5), char-
acterizing crown fires, the charcoal particles having a L∕W between 
3.5 and 2.5 do not allow to determine fuel type.

2.6  |  July temperature data

We used chironomid- based reconstructions of mean July air tempera-
ture already published for lake Toskaljavri (latitude 69°12′N, longitude 
21°28′ E; Seppä et al., 2002) and lake Varddoaijavri (latitude 69°53′N, 
longitude 26°31′ E; Luoto et al., 2014), whose locations are shown in 
Figure 1a. The chironomid- based mean inferred July temperature was 
9.62°C with a root mean square error of prediction (RMSEP) of 0.73°C, 
and 11.06°C with a RMSEP of 0.84°C, for Toskaljavri and Varddoaijavri 
lakes, respectively (Figure S3). July air temperature records were aver-
aged over a 136- year time step corresponding to the average time res-
olution of sediment samples from lakes Toskaljavri and Varddoaijavri 
and smoothed over a 500- year moving- window for comparison with 
the reconstructed fire histories.

2.7  |  Statistical analyses of the interactions 
between climate, fire and vegetation

We used Pearson's correlation analyses to assess relationships be-
tween vegetation changes (inferred from pollen data) and tempera-
ture variability (chironomid- inferred July temperature in °C) as well 
as fire activity (charcoal- inferred biomass burned and fire frequency 

reconstructed from each sediment sequence, and fire size averaged 
for the three sequences) and fire type (inferred from the proportion 
of charcoal particles with a woody aspect, averaged by time unit). We 
computed the distributions of correlation coefficients using boot-
strap resampling with 999 iterations (von Storch & Zwiers, 2002). 
We conducted the correlation analyses on the period from 8000 cal. 
year BP to the present to avoid bias due to lower sample size and 
higher climatic and vegetational instability in the early Holocene 
(Barker et al., 2019; Panizzo et al., 2008). For each iteration, we used 
half of the non- interpolated pollen records (randomly sampled) and 
the corresponding interpolated values for temperature and fire ac-
tivity (i.e. 110 values for Rosalia and 108 values for Pikku). For the 
correlations with the proportion of charcoal particles with a woody 
aspect, we removed the samples without recorded charcoal particles 
(i.e. 84 samples for Rosalia and 92 samples for Pikku). All numerical 
analyses were performed with R (v.4.0.3, R Core Team, 2021).

3  |  RESULTS

3.1  |  Chronologies

The age- depth models indicate 7600 years of sedimentation at 
Charly, 9500 years at Pikku and 11,000 years at Rosalia (Figure S1). 
Mean sedimentation rates are comparable, with Charly having the 
highest at 0.0318 cm per year, followed by Rosalia at 0.0148 cm per 
year, and Pikku at 0.0145 cm per year (Table S1). The age- depth mod-
els exhibit episodes with higher sedimentation rates between 2400 
and 1800 cal. year BP at Charly and between 7800 and 6500 cal. 
year BP at Rosalia. As the time span covered by individual sediment 
records is unequal, caution must be exercised when interpreting the 
period before 7600 cal. year BP.

3.2  |  Fire histories and climate variability

While the sedimentation process started around 11,000 cal. year 
BP at Rosalia, we analysed proxies only from 9000 cal. year BP 
to present for direct comparison with Pikku. The number of fires 
detected per sediment record during the last 9000 years ranged 
from 36 to 49 (Figure S2). Regional biomass burned (RegBB) in-
creased drastically between 9000 and 6500 cal. year BP, before 
stabilizing until 3000 cal. year BP. Then, RegBB decreased until 
1500 cal. year BP and remained low thereafter, at a level com-
parable to the one before 7500 cal. year BP (Figure 2). Regional 
fire frequency (RegFF) tended to increase from about 1 fire every 
280 years around 9000 years BP to reach 1 fire every 180 years 
around 4000 years BP and then stabilize over the last 4000 years 
(Figure 2). During the last 500 years, RegFF decreased to about 1 
fire per 250 years. Fire size (RegFS index) followed the opposite 
trend to RegFF and was higher during the early and mid- Holocene, 
from 9000 to 4000 cal. year BP, than during the late Holocene, 
from 4000 to the present (Figure 2).
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The mean July air temperature was higher between 8500 and 
4000 cal. year BP than before and after (Figure 2). The highest mean 
temperatures occurred between 7500 and 6000 cal. year BP, and 
between 4500 and 4000 cal. year BP, whereas the lowest mean 

temperatures occurred between 9500 and 8500 cal. year BP and 
during the last 2500 years.

3.3  |  Vegetation dynamics

The landscapes were initially dominated by Betula with some 
Alnus, and Juniperus, along with Poaceae in the understorey 
(Figure 3). Then, afforestation began around 7800 cal. year BP at 
Rosalia (Zone R- 4) and 8700 cal. year BP at Pikku (Zones P- 6 and 
P- 5) with a sharp increase in Pinus to the detriment of Betula and 
Poaceae. This period was characterized by a high rate of change at 
both sites. Forest composition remained dominated by Pinus and 
Betula until the arrival/expansion of Picea around 6500 cal. year 
BP at Rosalia (Zone R- 3) and 5000 cal. year BP at Pikku (Zone P- 
4), the two periods with highest mean July air temperature on re-
cord. At Rosalia, this period was marked by a high rate of change. 
Between 6000 and 4000 cal. year BP, Alnus decreased, whereas 
Ericaceae and Sphagnum increased (Zones R- 2 and P- 3). At Pikku, 
PAR (as a proxy of tree density) was 2.5 times higher, and the rate 
of change increased between 4000 and 2000 cal. year BP, com-
pared to before and after (Zone P- 2). Forest composition remained 
stable until 1000 cal. year BP, when Picea increased at Rosalia 
(Zone R- 1) and decreased at Pikku concurrent with a high rate of 
change (Zone P- 1).

3.4  |  Individual fire histories and variations in 
fuel types

The same trends in fire histories are recorded at Rosalia and Pikku, with 
higher biomass burned between 7500 and 2000 cal. year BP, peaks in 
fire frequency around 7000, 4000 and 500 cal. year BP, and larger fire 
size before 8000 cal. year BP and between 6500 and 4500 cal. year BP 
(Figure 4). There are two episodes when biomass burned and fire fre-
quency were lower at Pikku than at Rosalia, and fire size larger (around 
6500 cal. year BP and around 2000 cal. year BP).

General trends of charcoal aspect indicate mostly non- woody 
fuel types throughout the Holocene at both sites, although there 
was a tendency toward aspect values indicative of woody fuel types 
at Pikku between 5500 cal. year BP and 2500 cal. year BP (Figure 4).

3.5  |  Correlation between climate, vegetation and 
fire parameters

Overall, the correlations between vegetation variables, fire regime 
variables and July temperature followed the same trends at both 
sites, except for Pinus which increased at Rosalia and decreased at 
Pikku during periods of high fire frequency (Figure 5). The corre-
lations between fire size and vegetation variables were generally 
higher at Pikku than at Rosalia, with more Pinus, Betula and Alnus and 
less Picea when large fires occurred. The PAR and the rate of change 

F I G U R E  2  Individual and regional fire histories reconstructed 
from charcoal particles retrieved from the sediments of Lakes 
Rosalia, Pikku and Charly, and relative (i.e. the average July 
air temperature over the whole period was subtracted from 
all observations for each site) mean July air temperature 
reconstructed from chironomid remains retrieved from sediments 
of Lakes Toskaljavri and Varddoaijavri.
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F I G U R E  3  Pollen percentages (taxa with summed percentage >10% through the entire period), rate of change (ROC) and pollen 
accumulation rate (PAR) for lakes Rosalia and Pikku. Dotted lines demarcate the zonation based on cluster analysis (see Figure S3). 
Background colours differentiate warm (red) and cool (blue) periods.
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increased with biomass burned and fire frequency and decreased 
with fire size at Pikku, while they tended to be less correlated with 
the fire regime variables at Rosalia. Overall, warm periods were as-
sociated with higher abundance of Betula and Alnus and lower abun-
dance of Picea, Ericaceae, Poaceae and Spagnum.

Correlations between the proportion of charcoal particles with a 
woody aspect and fire regime variables were higher at Pikku than at 
Rosalia (Figure 6). The proportion of charcoal with a woody aspect 
increased with biomass burned and fire frequency and decreased 

with fire size. The correlation of the proportion of charcoal particles 
with a woody aspect and July temperature was negative at Pikku and 
positive at Rosalia. Similarly, the correlation between the proportion 
of charcoal particles with a woody aspect and vegetation variables 
showed mostly opposite trends at Pikku and Rosalia. Correlations 
were positive with Picea, Salix, Ericaceae, Poaceae, Sphagnum and 
PAR at Pikku, compared to Pinus, Betula and Alnus at Rosalia. The 
rate of change was positively correlated to the proportion of char-
coal with a woody aspect at both sites.

F I G U R E  4  Charcoal count, biomass burned (BB), fire frequency (FF), fire size (FS) and charcoal aspect reconstructed from charcoal 
particles retrieved from sediments of Lakes Rosalia and Pikku. The thick red lines are moving averages (500- year window) from Figure 2 for 
BB, FF and FS, and from loess smoothing for charcoal aspect (span at 30% with grey areas corresponding to confidence intervals). Black dots 
correspond to fire events. Grey dots correspond to charcoal aspect for individual samples. Horizontal dashed lines show the mean for the 
entire period by site. Horizontal dotted lines show the thresholds used to discriminate charcoal particles from woody and non- woody fuel 
types. Vertical dotted lines show the pollen zones (see Figure 3). Background colours differentiate warm (red) and cool (blue) periods.
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4  |  DISCUSSION

Our analyses of pollen and charcoal from lake sediments in 
northern Finland allowed us to reconstruct Holocene vegetation 

dynamics and fire regimes and to discuss their links with en-
vironmental processes. Our results partially support our first 
hypothesis, as warmer and drier climatic conditions promoted 
Pinus sylvestris expansion. However, this occurred under a regime 

F I G U R E  5  Density distributions of the 999 Pearson correlation iterations between vegetation (pollen) variables, fire regime variables 
(biomass burned (a), fire frequency (b) and fire size (c) from Rosalia and Pikku); and average chironomid- inferred mean July air temperature (d) 
throughout the Holocene for lakes Rosalia and Pikku.
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characterized by lower fire frequencies than expected, with 
medium– large surface fires since the beginning of the Holocene 
and more so during the Holocene Thermal Maximum (between 
8500 and 4500 cal. year BP). Then, regarding the spread of Picea 
abies and its persistence until current times, our two alternative 
(but not mutually exclusive) hypotheses were not fully supported. 
The first— related to climate— was partially supported. Picea abies 
was more abundant under cooler mean July temperatures, and the 
species' establishment coincided with the beginning of the cool 
and moist Neoglacial period (after 4500 cal. year BP) at Pikku. 
The earlier arrival of Picea abies at Rosalia, at the middle of the 
Holocene Thermal Maximum, could be explained by a moister 
microclimate. The second alternative hypothesis— related to fire— 
was also partially supported, as the expansion and persistence of 
Picea abies at Pikku were associated with crown fires, and highest 
Picea abies abundances were recorded when fires were smaller at 
both sites, but at mid- high rather than low frequencies, contrary 
to what was expected. The shift in fire regime from mid to late 
Holocene was not solely climate related, but involved feedback 
loops among vegetation, fire and climate.

4.1  |  Early Holocene

Following deglaciation of the region in the early Holocene, 
the landscapes were dominated by Betula, shrubs and grasses 
(Hyvärinen, 1975; Seppä, 1996). This vegetation composition re-
sulted from humid and cool climate conditions from 9500 to 8500 cal. 
year BP (Davis et al., 2003; Korhola et al., 2002; Luoto et al., 2014; 
Seppä et al., 2002; Shala et al., 2017), likely more pronounced at 
Rosalia than at Pikku. Fire frequency was very low, because of moist 
conditions and/or low vegetation flammability (Cumming, 2001; 
Hoecker et al., 2020).

4.2  |  Transition to Mid- Holocene: Establishment of 
Pinus sylvestris

A shift in vegetation composition occurred around 8700 cal. year BP at 
Pikku and 7800 cal. year BP at Rosalia, leading to dominance of Pinus 
sylvestris (Figure 3). This vegetation change has been noted in other 
regional- scale Holocene vegetation reconstructions across northern 
Fennoscandia (Reinikainen & Hyvärinen, 1997; Seppä et al., 2004; 
Soloviena & Jones, 2002), and is explained by warmer and drier con-
ditions during the period known as the Holocene Thermal Maximum 
(Barnekow, 2000; Bjune et al., 2004; Donner et al., 1978; Heikkilä 
et al., 2010; Korhola, 1995; Korhola et al., 2005; Luoto et al., 2014; 
Seppä & Birks, 2001; Seppä & Hammarlund, 2000). The later increase 
in Pinus sylvestris at Rosalia might be explained by wetter conditions 
due to the proximity of the large Lake Inari and more basic soils due to 
bedrock composition, considering the preference of Pinus sylvestris for 
drier, acid and nutrient- poor habitats (Heiskanen & Mäkitalo, 2002; 
MacDonald et al., 2000; Richardson, 2000; Sutinen et al., 2002; 
Sutinen & Middleton, 2020). However, the timing difference could 
also be the consequence of a reservoir effect on radiocarbon dates 
(Björck et al., 1998; Grimm et al., 2009) having differentially affected 
the Rosalia and Pikku chronologies. Indeed, the pollen grains of Pinus 
sylvestris and Betula spp. are dispersed over long distances and should 
display a common regional signal (Prentice, 1985). Following Pinus syl-
vestris establishment, fire frequency gradually increased in response 
to warmer and drier conditions but remained relatively low (Figure 2). 
The fire return interval was approximately 250 years, a result in line 
with other reconstructions in Fennoscandia (Carcaillet et al., 2007; 
Clear et al., 2015). It is reasonable to assume that surface fires were 
the main fire type, as the self- pruning ability of Pinus sylvestris de-
creases the probability of crown fire occurrence by hampering vertical 
fire spread to the canopy for lack of ladder fuel (low- lying branches; 
de Groot et al., 2013; Johnston et al., 2015; Schwilk & Ackerly, 2001).

4.3  |  Mid-  to late- Holocene: Establishment of 
Picea abies

Large fires were recorded during the culmination of the Holocene 
Thermal Maximum (6500– 4700 cal. year BP) at both sites, a period 

F I G U R E  6  Density distributions of the 999 Pearson correlation 
iterations between environmental variables (fire, climate and 
vegetation) and average proportion of charcoal with a woody 
aspect for Lakes Rosalia and Pikku.
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characterized by high temperature and low humidity in northern 
Fennoscandia (Hyvärinen & Alhonen, 1994; Korhola et al., 2005; 
Seppä, Alenius, Bradshaw, et al., 2009). At Pikku, severe fires oc-
curred, as suggested by the increase in the proportion of charcoal 
particles with a woody aspect around 5500 cal. year BP. However, 
such severe fires remained relatively infrequent until about 4800 cal. 
year BP. The moist microclimate at Rosalia might have prevented 
crown fire occurrence, as evidenced by the continuous predomi-
nance of non- woody fuel charcoal types in the sediment record 
(Feurdean, 2021; Vachula et al., 2021).

At Pikku, the spread and persistence of Picea abies were 
recorded around the beginning of the Neoglacial period (ca. 
4500 cal. year BP), in line with our hypothesis and other recon-
structions in northeastern Fennoscandia and northwestern Russia 
(Kremenetski et al., 1999; Reinikainen & Hyvärinen, 1997; Seppä 
et al., 2004; Soloviena & Jones, 2002). Picea abies is known to be 
favoured by cool and moist environments (Carcaillet et al., 2007; 
Clear et al., 2015; Kuosmanen et al., 2016). It is also known as a 
fire- sensitive species favoured by low- frequency stand- replacing 
fires creating forest gaps allowing its establishment (Giesecke & 
Bennett, 2004; Seppä et al., 2004).

At Rosalia the expansion of Picea abies occurred earlier, be-
tween 6500 and 4700 cal. year BP. This result is counterintuitive 
considering the species' climatic preferences. However, early 
arrival of Picea abies has also been recorded in other lakes and 
bogs in Karelia, to the southeast of our study area (Babeshko 
et al., 2021; Soloviena & Jones, 2002). The difference in timing 
could also be the consequence of a reservoir effect on radiocar-
bon dates (Björck et al., 1998; Grimm et al., 2009). However, the 
presence of a reservoir effect at this period is unlikely for two 
reasons: (i) the temporal coincidence of the largest charcoal peak 
(around 6500 cal. year BP) at both sites and (ii) trace abundance 
of Picea abies pollen at Pikku between 6500 and 5000 cal. year 
BP, indicating that regional populations established at the same 
time at both sites, although local expansion occurred later at Pikku 
(Figure S5). Thus, our interpretation is that the arrival of Picea abies 
occurred around 6500 cal. year BP at both sites, but that earlier 
expansion at Rosalia could be attributed to the proximity of Lake 
Inari and to the type of bedrock, leading to moister, less acidic and 
more nutrient- rich habitat conditions (Henne et al., 2011; Miller 
et al., 2008; Sutinen & Middleton, 2020).

Between 4500 and 2500 cal. year BP, the fire regime shifted 
towards smaller but more frequent events, as was observed in 
other regional- scale reconstructions (Matthews & Seppälä, 2014; 
Pitkänen et al., 2003). Previous studies in north European and 
northwestern Russian boreal forests suggest that increased fire 
frequency during the Neoglacial period could have resulted from 
changes in the inter- annual precipitation pattern controlled by the 
North Atlantic sea surface temperature, leading to more lightning 
strikes and/or periodic summer droughts (Barhoumi et al., 2019; 
Brown & Giesecke, 2014; Drobyshev et al., 2016; Pitkänen 
et al., 2003). Smaller fires were likely due to higher annual pre-
cipitation (inferred by increased Sphagnum abundance; Heikkilä 

et al., 2010; Korhola et al., 2005) preventing fire spread. The 
cooler and moister Neoglacial climatic conditions were favour-
able to Picea arrival at Pikku and persistence at Rosalia. Increased 
Sphagnum abundance and PAR during the Neoglacial period can be 
attributed to the expansion of peat deposits and to densification 
of the forest cover, respectively (Barnekow et al., 2008). An in-
crease in crown fire occurrence was recorded at Pikku, especially 
between 3000 and 2500 cal. year BP, as shown by the large pro-
portion of charcoal particles with a woody aspect. Denser forest 
stands, together with the high proportion of Picea abies (with high 
vertical fuel continuity) likely increased ecosystem vulnerability 
to stand- replacing fires during severe episodic dry periods (Rogers 
et al., 2015; Van Wagner, 1977; Weise et al., 2018).

A shift towards reduced Picea abies abundance was recorded 
at Pikku during the last 2000 years, likely due to reduced humidity 
as expressed by decreasing Sphagnum abundance. Lower woody 
fuel charcoal type and lower fire activity were also recorded, in-
dicating a return to a regime consisting mainly of surface fires, 
except around 900– 600 cal. year BP when crown fires likely oc-
curred during the Medieval Warm Period (1150– 650 cal. year 
BP; Ljungqvist, 2010), which opened the landscape and favoured 
Betula. Despite this change in vegetation composition, fire sever-
ity did not increase, probably because fuel levels remained too low 
to sustain crown fires. At Rosalia, Picea abies abundance remained 
high until today, probably due to moister habitat conditions 
than at Pikku (Pitkänen et al., 2003; Tryterud, 2003; Wallenius 
et al., 2010).

Our results show that climate can directly affect fire regimes in 
northern Fennoscandia, as warm and dry periods were more asso-
ciated to low- frequency, large surface fires, whereas cool and wet 
periods were more associated with high fire frequency. However, an 
indirect effect of climate on fire regimes is also caused by a feedback 
loop with vegetation depending on local abiotic conditions. Indeed, 
higher Picea abies abundance together with denser forest stands can 
cause fuel accumulation favouring small crown fires, which, in turn, 
favour Picea abies and so on. Therefore, as noted in other boreal eco-
systems (Gaboriau et al., 2022), understanding fire regimes necessi-
tates to consider not only the interactions between climate and fire, 
but also with vegetation.

4.4  |  Perspectives for future northern 
Fennoscandian boreal forests

Despite the possibility of increased annual precipitation in the 
future, higher temperature will increase evapotranspiration, lead-
ing to decreased moisture in the soil surface layer during the 
more frequent anomalously dry climatic events (Ruosteenoja 
et al., 2018). Our results indicate that, under future warmer and 
drier conditions, forests in northern Fennoscandia could expe-
rience a return to a fire regime characterized by large surface 
fires favouring Pinus sylvestris and Betula, as observed during the 
Holocene Thermal Optimum. However, greater climatic instability 
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could alter vegetation succession patterns by locally increasing 
Picea abies abundance, resulting in denser forest stands, higher 
fuel abundance and increased ecosystem vulnerability to episodic 
small stand- replacing crown fires. A more in- depth understand-
ing of the impact of climatic instability on the composition and 
structure of forest stands according to soil types would make it 
possible to better anticipate fire regimes at the local scale in bo-
real Fennoscandia.
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SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.
Table S1. Main characteristics of the sampled lakes. Mean sediment 
accumulation rates and median time resolutions of each individual 
core were derived from their respective age- depth models.
Table S2. AMS 14C dates.
Figure S1. Age- depth models for each lake sediment profile.
Figure S2. Charcoal accumulation rates (CHAR) series from the 
studied lake sediment cores. CHAR series were interpolated to 
median sample resolution and were decomposed into a background 
component and a peak component. The background component 

results from long- distance burning and/or redeposition processes of 
charcoal particles that are unrelated to watershed fire occurrences. 
It was estimated by applying the LOWESS- smoothing technique 
robust to outliers, and removed by subtracting the charcoal values 
lower than the LOWESS- smoothing function from the interpolated 
CHAR series to isolate the peak component (Higuera et al., 2007).
Figure S3. Chironomid- based reconstructions of mean July 
air temperature from lakes Toskaljavri (Seppä et al. 2002) and 
Varddoaijavri (Luoto et al. 2014).
Figure S4. Broken stick model used to find the appropriate number 
of groups in CONISS. The changes in total sum- of- squares indicates 
4 groups for the Lake Rosalia and 6 groups for the Lake Pikku.
Figure S5. Pollen percentage of Picea abies at Pikku before local 
expansion (see Fig.3).
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