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Simple Summary: Rapidly growing neuroendocrine neoplasms (NEN) often defy easy classification
by the pathologist. Machine learning approaches can improve the classification’s accuracy, but these
generally require large amounts of training data. As tumor-based training data will remain sparse
for very rare malignancies, such as NEN from the pancreas, we aimed for a machine learning-aided
classification on the basis of the tumors’ similarity to non-transformed pancreatic cell types. We
determined the relative contribution of the different healthy cell types to the transcriptome of each
NEN and used the information to train a model for predicting the overall patient survival time,
neoplastic grading, and carcinoma versus tumor subclassification. This approach does not use
proliferation as a feature, since healthy pancreatic epithelial cell types do not proliferate. Hence, our
approach is complementary to the established proliferation rate-based classification scheme, thereby
providing additional criteria for a confident classification of ambiguous cases.

Abstract: Pancreatic neuroendocrine neoplasms (panNENs) are a rare yet diverse type of neoplasia
whose precise clinical–pathological classification is frequently challenging. Since incorrect classifica-
tions can affect treatment decisions, additional tools which support the diagnosis, such as machine
learning (ML) techniques, are critically needed but generally unavailable due to the scarcity of suitable
ML training data for rare panNENs. Here, we demonstrate that a multi-step ML framework predicts
clinically relevant panNEN characteristics while being exclusively trained on widely available data
of a healthy origin. The approach classifies panNENs by deconvolving their transcriptomes into cell
type proportions based on shared gene expression profiles with healthy pancreatic cell types. The
deconvolution results were found to provide a prognostic value with respect to the prediction of the
overall patient survival time, neoplastic grading, and carcinoma versus tumor subclassification. The
performance with which a proliferation rate agnostic deconvolution ML model could predict the clini-
cal characteristics was found to be comparable to that of a comparative baseline model trained on the
proliferation rate-informed MKI67 levels. The approach is novel in that it complements established
proliferation rate-oriented classification schemes whose results can be reproduced and further refined
by differentiating between identically graded subgroups. By including non-endocrine cell types, the
deconvolution approach furthermore provides an in silico quantification of panNEN dedifferentiation,
optimizing it for challenging clinical classification tasks in more aggressive panNEN subtypes.
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1. Introduction

The personalization of a patient’s treatment is the prime focus of the current transla-
tional research in biomedicine. It is defined as the adjustment of the treatment to patient-
specific neoplastic characteristics and may identify more effective drug regimes, reduce side
effects, and, ultimately, prolong a patient’s survival time while reducing costs [1,2]. Per-
sonalized treatment constitutes a particularly urgent need in rare cancer types with highly
variable and unpredictable clinical courses, such as neuroendocrine neoplasms (NENs) and,
more specifically, pancreatic neuroendocrine neoplasms (panNENs) [3]. Well-differentiated
panNENs are referred to as neuroendocrine tumors (NETs) and typically exhibit a low
(G1, G2) or, in rare cases, high (G3) proliferative index, as quantified by Ki-67 staining,
with a median survival of the patients exceeding 10 years. NET patients are treated with a
variety of approaches, only rarely including conventional chemotherapy [3]. In contrast,
patients with poorly differentiated but highly proliferative neuroendocrine carcinomas
(NECs) face a dismal prognosis of a few months and may profit from more aggressive,
antiblastic therapies [4,5]. This diverse course of the disease stresses the need for a careful
balancing of the treatments’ benefits and side effects and requires a precise characterization
of each individual tumor.

The development of robust methods for characterizing patients with panNEN, or
NENs arising elsewhere in the gastroenteropancreatic system (GI-NEN), is difficult for mul-
tiple reasons. First, panNEN and GI-NEN (GEP-NEN) are rare, which limits the availability
of samples for research and model training purposes [5,6]. The age-adjusted incidence
rate of well-differentiated GEP-NENs is estimated as 6.98 cases per 100,000 persons per
year in the United States of America [6]. Second, the high degree of heterogeneity of
GEP-NENs further reduces the availability of biomaterial for a specific subtype [3,7–9]. The
frequency of subtypes is highly unbalanced: well-differentiated G1 (Ki-67 <3%) and G2
(Ki-67 3–20%) NETs occur distinctively more frequently than poorly differentiated NECs or
G3 NET (Ki-67 >20%) [5,6]. Third, ambiguity with respect to the current morphologic NEC-
versus-NET subtype classification can be very difficult to resolve. Even highly experienced
pathologists encounter scenarios where a precise morphological classification of a GEP-
NEN remains infeasible, prompting the inclusion of additional classification tools [10,11].
A precise classification, however, is mandatory for an effective personalization [1]. The
existing in vivo classification methods, such as medical imaging, and tissue-based in vitro
methods, such as Ki-67 immunohistochemistry staining (IHC), constitute the current gold-
standard approaches [3,12]. Nonetheless, even these tools are limited in their ability to
discern subtypes in samples with ambiguous morphologies and identical grades [11]. Fur-
thermore, transcriptomic and epigenetic profiling clusters NETs predominantly based on
their islet cell type resemblance or metastatic capacity rather than on their grading [13–18].
Therefore, novel tools for complementing and extending the current state-of-the-art in the
case of ambiguity are urgently needed.

Over the last decade, machine-learning (ML) on next-generation sequencing (NGS)
data has become the primary approach for the in silico characterization of neoplastic sam-
ples [19]. However, the training of robust and precise ML models, which can classify every
subtype sufficiently well, requires the availability of suitable training datasets, encompass-
ing large numbers of correctly classified samples with an unbiased and comprehensive
coverage of the whole range of neoplastic diversity [20]. For panNENs and rare cancers
in general, this poses a major challenge because the available training datasets are limited
in both their sample sizes and subtype comprehensiveness. Such data scarcity can be
countervailed with data augmentation in particular via the substitution of scarce data
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with more abundantly available training data, ideally without harming the predictive
performance [21].

2. Materials and Methods
2.1. Overview of the Developed Framework

We have developed a two-step framework which first deconvolves panNENs based on
their bulk-RNA-seq expression data, which are subsequently passed on to an ML algorithm
which predicts the clinically relevant characteristics, see Figure 1.
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Figure 1. Overview of the framework which predicts clinically relevant panNEN and GEP-NEN
characteristics based on a transcriptomic deconvolution. 1: Deconvolution algorithms are trained on
different scRNA-based cell type datasets of healthy origin: endocrine-only and endocrine exocrine-
like mixed. 2: The deconvolution p-values, cell type proportion predictions, and technical feature
values are quantified for pancreatic and non-pancreatic NENs, different grading, and NEC and NET
status. 3: Training of secondary ML models on the deconvolution results to predict clinically relevant
properties of NENs from different benchmark datasets. 4: The deconvolution-trained ML model’s
predictive power is compared to a baseline model. Additionally, the correlations between the cell
type predictions with NEN grading, MKI67, and the survival time is calculated.

2.2. Datasets

We procured three panNEN and 5 mixed, pancreatic, and non-pancreatic GEP-NEN
datasets (see Table 1 and Supplementary Tables S1 and S2 for details on the type and source
of the data and for their clinical properties). Deconvolution models were exclusively trained
on scRNA data from pancreatic endocrine, exocrine, and adult human small intestinal
stem cell types (HISC), respectively, which we refer to by the name of the first author, i.e.,
Baron [22], Lawlor [23], Segerstolpe [24], Tosti [25] or Haber [26] scRNA datasets. Epsilon
cells were omitted due to their limited availability in the scRNA datasets. The exocrine-like
cell type proportion consisted of the sum of the ductal cells and acinar cell type proportions
for the Lawlor, Segerstolpe, and Baron datasets and of the sum of the acinar-i, acinar-s,
acinar-reg+, ductal, and muc5b+-ductal cell types for the Tosti dataset.
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Table 1. Name, purpose with respect to transcriptomic deconvolution, source, and reference number
of the respective dataset.

Name Type Purpose ID—Source Reference

Baron scRNAseq Training GSE84133, GEO [22]
Califano bulk RNAseq Benchmark GSE98894, GEO [18]

Diedisheim bulk RNAseq Benchmark DOI: 10.1530/ERC-21-0051 [17]
Fadista bulk RNAseq Out-group test GSE50244, GEO [27]
Haber scRNAseq HISC Training GSE92332, GEO [26]
Lawlor scRNAseq Training GSE86473, GEO [23]

Fröhling bulk RNAseq Benchmark EGAS00001004813 [28]
Missiaglia microarray Benchmark GSE73338, GEO [29]

Riemer bulk RNAseq Benchmark EGAD00001006657 unpublished
Sadanandam microarray Benchmark GSE73339, GEO [15]

Sato bulk RNAseq Benchmark JGAS000237, NBDC [30]
Scarpa bulk RNAseq Benchmark EGAS00001001732, ICGC [16]

Segerstolpe scRNAseq Training E-MTAB-5061, Array Express [24]
Tosti snRNAseq Training EGAD00001006396, EGA [25]

Datasets were obtained and analyzed without any change to their data. The Fröhling,
Riemer, and Scarpa datasets were procured as ‘.fastq’ files and their expression data were
generated with best practice software pipelines. Where possible, MKI67 expression data
were obtained from the expression data by a look-up of the MKI67 entry in the expression
matrix. The Missiaglia dataset utilized a custom array which did not present with a MKI67
annotated entry; however, Ki-67 staining levels were annotated for the samples which we
used in lieu of the MKI67 expression data.

The differential expressions results were corrected for multiple testing, utilizing the
Benjamini–Hochberg method. The deconvolution results shown in Supplementary Table S3
were corrected for multiple testing with the Bonferroni method.

2.3. Bioinformatics Processing

Fastq read-based analyses of the Fröhling, Riemer, and Scarpa datasets were based
on the human reference genome GRCh38 [31]. The reads were clipped and the adapters
removed by the trim-galore software. Transcript per million (TPM) counts were utilized
for analyses and generated by the Salmon software after an inspection of the raw data’s
quality with fastqc [32]. Visualizations and findings other than differential expression were
based on the TPM counts.

Differential expression analyses were conducted with the ‘DESeq2′ R-package and
Love et al. best practice guidelines [33,34], whose design matrices were informed about
the cohort and study membership of each sample to exclude potential batch effects dur-
ing differential expression analysis. ‘Ggplot2′ and ‘ggbiplot’ were utilized for graphics
generation. ‘Survival’, ‘sleuth’, ‘biomaRt’, and ‘RocR’ were further R-packages utilized
for numeric analyses and the ‘stringR’ R-package for string-related operations [35–38].
The software ‘GSEA’, as provided by the Broad institute, Linux version 4.0.2 was uti-
lized for the enrichment analyses. The survival curves were calculated with R-package
‘Survminer‘, version 0.4.8. The BSeq-sc [22] 1.0 R-implementation algorithm was acquired
from cibersort.stanford.edu (accessed 23 November 2020). Beforehand, the most recent
version 1.4 of the csSAM [39] (accessed 11 June 2020) R-package required to run Bseq-sc
had been obtained from GitHub. The MuSiC algorithm version 0.1.1 was obtained from
the GitHub repository github.com/xuranw/MuSiC (accessed 10 June 2021). The Moffitt
et al. NMF algorithm [40] was trained (cell type signature matrix calculated) according to
the specifications laid out in the corresponding publication which were replicated with the
R-package ‘NMF’ version 0.2216.

cibersort.stanford.edu
github.com/xuranw/MuSiC
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2.4. Deconvolution Algorithms

We conducted preliminary studies and assessed multiple algorithms to the benchmark,
including but not limited to SCDC [41] and UNDO [42], but ultimately narrowed down the
selection to three algorithms. These three deconvolution algorithms were each trained on
four pancreatic scRNA datasets: the CIBERSORT-based framework called BSeq-sc, procured
from the Baron et al. publication [22], MuSiC [43], and Moffitt [40] (see Supplementary
Table S4A and Figure 1). At any point in the manuscript where the term ‘BSeq-sc’ is
utilized, we are referring to CIBERSORT [44] with its BSeq-sc framework [22]. Note that
CIBERSORTx [45] is a related but different algorithm from BSeq-sc, a single-cell adaptation
of CIBERSORT. Since CIBERSORT-based BSeq-sc and CIBERSORTx are related algorithms,
we compared their performance with respect to the tasks relevant to this manuscript
and have found their predictions to be comparable with a statistical significance at a
great statistical power (see Supplementary Table S3C–E), which is why we do not list
CIBERSORTx as an additional algorithm.

The ‘empirical p-value’ concept and its algorithmic implementation utilized to classify
a deconvolution as statistically significant has been taken from the original Newman et al.
publication and is explained in its methods section [44]. Neither normalization nor log-
transformation was applied during the deconvolution and the number of permutations
for the quantification of the empirical p-value of each deconvolution was set to 103, where
applicable. The cell type proportions were analyzed for the best performing combination
of BSeq-sc [22] and Baron et al. scRNA training data [22]. We utilized the coefficients of the
(ny) v-support vector regression underlying BSeq-sc for the cell type proportion predictions.
Relative cell type proportion predictions were generated by dividing all the absolute cell
type proportion coefficients by the overall sum of all the coefficients.

Before the models were trained, a differential expression analysis was performed to
identify 800 cell type-specific marker genes whose expression was significantly higher in a
given cell type compared to all other cell types, utilizing the limma R package [46]. Note
that models consisting of multiple cell types were thus trained on an aggregate of about
4000–5000 genes since each cell type created a partly unique set of marker genes. The
number of 800 genes per cell type was selected as a trade-off between the performance
and computational resource requirements. We as well lowered the number of genes in
multiples of 2 down to 50 marker genes per cell type while benchmarking the performance
to verify that a lower number of genes would not result in a better performance, which
could result from a reduced multicollinearity.

Pathologists classified the Riemer and Fröhling datasets’ tissue sections overall as
suitable for RNA sequencing. We determined the extent of immune infiltration or other
stromal tissue components via the application of the ESTIMATE algorithm to the datasets
that required processing (Fröhling, Riemer, and Scarpa) and found the tumor purity com-
parable between the datasets (range cohort means tumor purity ~80% for Fröhling and up
to 95% for Riemer) [47].

We chose BSeq-sc [22], MuSiC [43], and Moffitt et al. [40] due to their proven ability
to deconvolve either healthy pancreatic tissue (BSeq-sc, MuSiC) or cancerous exocrine
pancreatic tissue (Moffitt et al. [40]). Subsequently, we identified the combination of
training scRNA dataset and deconvolution algorithm, whose predictions were most suited
by comparing the stability, significance, and statistical power of the resulting correlations.
The Pearson product–moment correlations of the relative fractions and the MKI67 levels
were subsequently calculated to compare the performance to predict the sample grading
and overall patient survival time.

We ascertained that the marker genes used for the deconvolution models were ap-
proximately equally expressed in the non-pancreatic and the pancreatic NENs tissues by
conducting a differential expression analysis, followed by the determination of the intersect
of the significantly differentially expressed genes between the marker gene signatures. We
found that only 4% of the exocrine-like signature genes showed a differential expression ac-
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tivity between pancreatic and non-pancreatic tissue and therefore deemed the exocrine-like
cell type proportion to be free of any tissue-related bias.

We furthermore ensured that the exocrine-like marker genes were not associated
with proliferation activity by calculating their overlap with the proliferation-specific GO-
annotation gene set CELL PROLIFERATION GO 0008283. We found that the overlap
amounted to only 5% and therefore did not constitute a confounding factor for the de-
convolution, i.e., we deem the deconvolution results to be proliferation rate-independent.
The ML models which predicted the clinical characteristic were exclusively trained on
deconvolution-derived results, such as the relative cell type proportions, which did not
contain proliferation rate-informed features.

2.5. Machine Learning and Survival Time Prediction Test

We first generated a ‘baseline’ model containing gene expression data, which included
the expression levels of MKI67. MKI67 is crucial because the staining levels of its protein
Ki-67 are—among other factors—a key measurement for pathologists when classifying
panNEN. The current clinical practice assigns Grade 1 to NEN with Ki-67 positive tumor cell
fractions <3%, Grade 2 to NEN with Ki-67 fractions from 3 to 20%, and Grade 3 to NEN with
Ki-67 fractions >20%. The baseline model therefore serves as a proxy to classify panNENs
with special emphasis on MKI67, while the additionally generated deconvolution model
serves to assess the performance of a model without knowledge of MKI67 and instead
contains deconvolution results assumed to be informative with respect to a panNENs
clinical properties.

The baseline model was trained on the expression data of 3474 genes and not altered or
batch corrected. These 3474 genes were chosen on the grounds that they were shared by all
six panNEN datasets, which allowed for the generation of a model that was representative
for all the datasets. All panNEN datasets were merged into a matrix and random samples
(columns) of the matrix were selected for the model generation process without balancing
for study membership during the hold-out and the training data selection process. The
removal of multi-collinearly correlated genes was conducted as well as correction for
class-imbalance during the training time by selecting classes such that they were balanced.

We applied a softmax multi-class logistic regression algorithm trained by the PyC-
caret package for both the binary and ternary grading standards [48]. As features of the
deconvolution model, we used the root-mean-squared error (RMSE) of the transcriptomic
reconstruction, the correlation r value, reconstruction p-value, and the cell type proportions
depending on the model (endocrine-only, or endocrine and exocrine-like combined/mixed)
as features. The model’s architecture followed the automatic model and feature-tuning
approach of the utilized PyCarret software (version 3.0). A more detailed description of the
deconvolution model’s output features is provided in Supplementary Text S2: Supplemen-
tary Methods.

For each task, we trained on 80% of the data and predicted on the 20% hold-out
data that were not observed by the ML model during the training time. The correlation
was between the z-transformed marker gene signature (a centroid) and the deconvolved
transcriptome.

The Califano et al. [18] dataset did not provide grading information. Regardless,
we could use this dataset as an unsupervised deconvolution cohort and found that the
distribution of the resulting deconvolution models p-values were comparable to those of
all other panNEN and GEP-NEN datasets.

The thresholds for the Cox hazard-ratio tests subgroups were determined by averaging
the aggregated gradings’ cell type proportions or MKI67 levels, e.g., aggregated values
were summed up and divided by two to obtain the distinguishing threshold between the
‘low’ and ‘medium’ subgroups and an analogous approach was taken for the ternary design.
The grading survival statistics were utilized ‘as-is’ without any alteration.

The Riemer dataset encompassed morphologically ambiguous samples with a conflicting
classification between the study pathologists. These were defined as ‘NEC-like’ or ‘NET-like’
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based on their similarity to histomorphological unambiguous NET or NEC samples in su-
pervised clustering using the pNETassigner signature, established by Sadanandam et al. [15]
as a transcriptome-based classification scheme. To ascertain that our model’s ability to pre-
dict NET or NEC features was not dependent on this allocation of ambiguous samples by
non-standard criteria, we duplicated the analyses while excluding all the morphologically
ambiguous samples. We did not observe a significant change in any NEC/NET-related pre-
diction performances. Hence, we retained ambiguous samples to increase the sample size in
particular for the rare panNECs.

2.6. Data Availability

All data with the exception of the Riemer et al. dataset (Riemer, P.; Otto, R.; Detjen,
K.M., et al. Correspondence to pamela.riemer@charite.de, Laboratory of Molecular Tumor
Pathology and Systems Biology, Institute of Pathology, Charité Universitätsmedizin Berlin,
10117 Berlin, Germany. Manuscript in preparation) are publicly available. The Riemer
dataset can be accessed under the ID EGAD00001006657 on the EGA online repository.

2.7. Code Availability

The R-package ‘artdeco’, which contains the framework, is freely available on GitHub:
https://github.com/RaikOtto/artdeco (accessed on 1 November 2022). The CIBERSORT
(required for BSeq-sc) and MuSiC algorithms have to be installed separately due to the
license restriction of these third-party algorithms. A source code different from the frame-
work is available upon request.

3. Results
3.1. Creation of a Deconvolution Machine Learning Model in the Absence of Neoplastic
Training Data

Our approach to the classification of pancreatic neuroendocrine neoplasms (panNENs)
in the absence of suitable training data is centered on the hypothesis that a transcriptomic
deconvolution is informative with respect to the clinical characteristics. We corroborated
the hypothesis by benchmarking the approach on both panNENs and the wider group
of gastroenteropancreatic NENs (GEP-NENs). We structured the machine learning (ML)
software as a two-step framework whose first step incorporated deconvolution ML algo-
rithms, while the second step consisted of panNEN ML classification algorithms. The first
step deconvolves panNENs into relative cell type proportions, a step which only requires
the training of the deconvolution models on the data of healthy tissue. The second step
subsequently predicted the clinical characteristics of panNENs based on the deconvolution
results (see Figure 1). Importantly, the framework did not require the scarcely available
training data of neoplastic panNEN tissue and thus explicitly addresses the ubiquitous lack
of sufficient training data in rare cancers.

The implemented analysis process commences by instructing a deconvolution ML
model to differentiate between types of healthy, single-cell RNA (scRNA)-sequenced cells
based on the expression of the respective marker genes which distinguish the cell types
from each other. Next, the framework deconvolves panNEN transcriptomes to quantify the
relative cell type proportions that a panNEN consists of. Here, transcriptomic deconvolu-
tion is defined as a non-negative matrix factorization which aims to reconstruct a given
matrix with a signature and a proportion vector, i.e., an estimate which cell types make up
the sequenced convolute. Along with the cell type proportions, technical features such as
a panNEN sample-specific reconstruction error and an empirical deconvolution p-value
with respect to the quality of the reconstruction are obtained. Third, the deconvolution
output is utilized as the input data for a second ML model, which is trained to characterize
panNENs and non-pancreatic GEP-NENs with respect to their grading, carcinoma (NEC)
versus well-differentiated tumor (NET) status, and the overall patient survival time. For
the evaluation, we compared the predictive capacity of this proliferation rate-agnostic ML

https://github.com/RaikOtto/artdeco
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model to the performance of a baseline ML model trained on the mRNA expression and
MKI67 proliferation rate biomarker data from neoplastic tissue.

3.2. Deconvolution Algorithms, Cell Type Models, and Evaluation Datasets

The effectiveness of a deconvolution-based approach critically depends on the choice
of the deconvolution algorithm and the underlying scRNA cell type training data [41]. We
systematically evaluated three state-of-the-art deconvolution algorithms: BSeq-sc (based on
CIBERSORT) [22,44], MuSiC [43], and non-negative matrix factorization (NMF) as applied
by Moffitt et al. [40] on pancreatic adenocarcinoma (PDACs). We furthermore identified
three scRNA studies with a focus on the single-cell sequencing of islet cell preparations,
which contained endocrine and admixed exocrine cell types, and one single nuclei RNA
study aimed at the unbiased representation of the full repertoire of pancreatic cell types.
We refer to these datasets by the names of their first authors: Baron [22], Lawlor [23],
Segerstolpe [24], and Tosti [25] (see Supplementary Table S1).

We considered two different cell type models for the deconvolution of the data from
neoplastic tissue into cell type proportions. The endocrine-only cell type model consisted
exclusively of the endocrine cell types of alpha (α) to delta (δ). The second “mixed” model,
in turn, contained all the cell types of the endocrine-only model and, additionally, the
exocrine acinar and ductal cell types. Technically, the latter two were aggregated into a
single artificial cell type called ‘exocrine-like’ by summation over the acinar and ductal
proportions. The reasons for designing a mixed endocrine/exocrine model were: (i) the
trans-differentiation of endocrine to exocrine cell types and vice versa occurs in mouse
models of pancreatic injury, regeneration, and carcinogenesis [49–51], (ii) panNEC share
mutational profiles with pancreatic adenocarcinoma [52–54] and may exhibit areas of
pancreatic adenocarcinoma [12], (iii) the DNA methylation analyses in panNEC suggested
acinar cells as the cell of origin [55], and (iv) adult pancreatic stem or progenitor-like cells are
proposed to reside in the exocrine compartment [56–59]. Three panNEN and five GEP-NEN
datasets were deconvolved with twelve combinations of the deconvolution algorithm and
scRNA training dataset to uncover whether a transcriptomic deconvolution of panNENs
and non-pancreatic GEP-NENs was possible and to identify which combination was most
effective. To that end, we obtained 356 panNEN and 157 GI-NEN samples for a total
of 513 GEP-NENs to benchmark their deconvolution (see Supplementary Table S2). Of
these, 22 were organoid cultures and the remaining 491 samples were patient tissues. In
the following, we refer to the datasets by the name of their publication’s corresponding
authors, namely Califano [18], Diedisheim [17], Fröhling [28], Missiaglia [29], Riemer
(Riemer, P.; Otto, R.; Detjen, K.M., et al. Correspondence to pamela.riemer@charite.de,
Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology,
Charité Universitätsmedizin Berlin, 10117 Berlin, Germany. Manuscript in preparation),
Sadanandam [15], Sato [30], and Scarpa [16]. All panNEN datasets provided information
with respect to the neoplastic grading and NEC or NET status with the exception of the
Califano dataset, which only provided annotation information with respect to the primary
or metastasis status of a panNEN. The Riemer and Scarpa datasets annotated the disease-
related survival times for the sequenced samples. Additionally, 89 non-neoplastic samples
were grouped into the Fadista [27] dataset and were deconvolved to obtain a deconvolution
p-value baseline.

Grading annotation was available for 238 panNENs and NEC or NET status for 227
panNENs. The subgroup of G3 panNENs comprised 30 NETs and 16 NECs (see Figure 2
and Supplementary Table S2). The 157 non-pancreatic GI-NENs presented with grading
information in 54 cases, while the NEC or NET status was known for 46 GI-NENs, of
which 31 were NECs or annotated as ambiguous. The six panNEN or GEP-NEN datasets
with available grading and NEC or NET annotation exhibited a strong intra and inter-
dataset imbalance: Diedisheim [17], Missiaglia [29], Sadanandam [15], and Scarpa [16] were
skewed towards low- to medium-grade NETs, while Fröhling [28] and Riemer (Riemer,
P.; Otto, R.; Detjen, K.M., et al. Correspondence to pamela.riemer@charite.de, Laboratory
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of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, Charité Uni-
versitätsmedizin Berlin, 10117 Berlin, Germany. Manuscript in preparation) were skewed
towards NECs. Moreover, a technological bias was present: Missiaglia [29] utilized a
custom array, Sadanandam [15] a generic mRNA array, and the remaining five datasets the
bulk RNA-seq technology with the additional limitation that the Diedisheim [17] dataset
was limited to the expression data of 9000 genes.
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Figure 2. Overview of the benchmarked pancreatic and non-pancreatic NEN datasets. (A): Stratifica-
tion with respect to the site of the primaries of the benchmarked 513 pancreatic and non-pancreatic
NEN from eight studies. (B): Relative and absolute contributions of the seven panNEN datasets with
respect to the set of 356 benchmarked panNENs. (C): Available metadata annotation for the seven
panNEN datasets. Primary versus metastasis annotation is widely available while grading and NEC
versus NET status are less frequently available while pancreatic NECs are provided by four datasets.
Patient overall survival time data were available for the Riemer and Scarpa datasets.

3.3. Deconvolution of panNEN and Non-Pancreatic GEP-NEN Transcriptomes into Endocrine and
Exocrine-Like Cell Type Proportions

The deconvolution results were analyzed separately for the panNENs and non-
pancreatic NENs of the gastrointestinal tract (GI-NENs) (see Figure 3 for panNENs and
Supplementary Figure S1 for non-pancreatic GI-NENs). The statistical power of a deconvo-
lution, as measured by the empirical p-value, differed greatly between different gradings,
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deconvolution models, combinations of the respective algorithm, and the scRNA training
dataset as well as the underlying sequencing technology.
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Figure 3. Deconvolution p-values and predicted relative cell type proportions. Plots (A–C) show
the deconvolution p-value distributions aggregated by study of origin, primary or metastasis status,
grading and NEC or NET status. Plot (D) shows the relative cell type proportion prediction for the
endocrine-only (upper row) and the endocrine exocrine-like mixed model (lower row) aggregated
over different gradings and the NEC or NET status.

We could significantly deconvolve non-neoplastic control samples (overall p-value =
~<1 × 10−8) and G1 (mean p-value = ~1 × 10−5) and G2 (mean p-value = ~1 × 10−3) pan-
NENs, regardless of their status as primary or metastasis, with the endocrine-only model
(Supplementary Table S3). However, the endocrine-only model could not deconvolve most
G3 NECs and partially high-grade G3 NETs. The mixed endocrine and exocrine-like cell
type model could, in contrast, significantly and robustly deconvolve G3 NETs and NECs
with three out of the four scRNA cell type training datasets. The mixed model also achieved
the significant deconvolution of low-grade panNENs, independently from their grading,
site, or study of origin, but was less successful in the deconvolution of the non-neoplastic
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Fadista [27] dataset. Unlike the superior performance of the mixed model in G3 panNEN,
the improvement compared to the endocrine model was marginal for G1- and G2-graded
panNENs (see Supplementary Table S3). Deconvolution models trained on the Tosti scRNA
training dataset could effectively deconvolve low- to medium-grade paNENs but, unlike
the other three scRNA datasets, were unable to effectively deconvolve the majority of NECs
and, to a lesser extent, G3 NETs even with the mixed model.

Subsequently, we ranked every combination of the scRNA dataset and algorithm based
on their suitability to deconvolve panNENs and GEP-NENs regardless of their grading
and identified the combination of BSeq-sc and the Baron et al. [22]. The scRNA dataset
is most suited based on the statistical power of the Pearson product–moment correlation
p-values (see Supplementary Table S4A). If not stated otherwise, all the following results
were obtained with this combination.

In addition to the grading, we observed that the p-values differed based on the
technology applied to generate the underlying sequencing data. Overall, the bulk RNA-
sequencing technology was more readily deconvolved than the data generated with mRNA
arrays. Moreover, the number of genes present in the data was found to have an impact
as well: the deconvolution of the 9000 gene Diedisheim bulk RNA-seq dataset showed a
lower statistical power than the four full-transcriptome bulk RNA-seq studies.

3.4. Cell Type Proportion Predictions Differ by Grading, Study, and Deconvolution Model

Next, we analyzed the cell type proportion predictions of all seven panNEN datasets
based on the scRNA cell type training datasets, which could significantly deconvolve
G3 NETs and NECs, i.e., Baron [22], Segerstolpe [24], and Lawlor [23]. We found the
predictions of the endocrine-only model for G1 NETs to be similar to the healthy cell types
since they approximately resembled the expected cell type stratification observed in healthy
pancreatic endocrine tissue [22]. The cell type proportions were found to vary depending
on the grading of the neoplasms: the endocrine-only model altered its predictions from
a comparatively balanced cell type proportion prediction for low-grade panNENs to a
prediction dominated by a single-cell type for the high-grade G3 panNENs, which in case
of the endocrine-only model was the α cell type (see Figure 3).

Analogously to the endocrine-only model, the mixed endocrine and exocrine-like
model predicted the cell type composition of G1 panNENs as highly similar to the healthy
islet stratification, with the exocrine-like cell type proportions only ranging from 15% to
21%. The α cell type proportion was found to increase from low- to high-grade panNEN
for the mixed model. However, the exocrine-like cell type proportion increased at an even
greater rate than the α cell type proportion regardless of the scRNA training and panNEN
benchmark dataset.

3.5. Biological Contextualization of the Deconvolution Model Effectiveness and Cell Type
Proportions

In view of the high exocrine cell type fractions predicted for G3 NETs, the ineffec-
tive deconvolution when using training data from the Tosti [25] study with its deliberate
emphasis on the best possible representation of exocrine cell populations seemed coun-
terintuitive. We therefore inspected the protocols used by the scRNA studies to obtain
single-cell or -nuclei preparations for sequencing. The protocols stated that the Baron [22],
Segerstolpe [24], and Lawlor et al. [23] studies used islets and allowed cells to recover
from their isolation before being processed for sequencing, thereby exposing the cells to a
period of deliberate in vitro culturing. Different from the islet cells, acinar cells exposed
to in vitro culturing are reported to undergo trans-differentiation, referred to as acinar to
ductal metaplasia (ADM) [60–63], conceivably impinging on the marker gene sets of acinar
and ductal cell types. In contrast, Tosti et al. [25] processed their cells immediately with
minimal potential for ADM, consequently resulting in a lower percentage of acinar and
ductal trans-differentiation-associated marker genes. To quantify the representation of
trans-differentiation features in the exocrine cell type signatures, we calculated the overlap
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between the cell type marker genes and the sets of genes annotated by Schlesinger et al. [64]
as being involved in the trans-differentiation processes of murine pancreatic acinar cells
towards alternative cell types (see Supplementary Table S4B) in an oncogene-driven mouse
model of ADM. We found that the extent of the overlap was positively correlated with the
deconvolution performance as measured by the p-value for the subgroup of NECs and
high-grade NETs. The most effective Baron model possessed the highest percentage of
trans-differentiation-associated marker genes, Segerstolpe [24] was ranked second with
respect to its suitability and it also had the second highest percentage, analogously fol-
lowed by Lawlor [23], and, lastly, by Tosti [25] with the lowest overlap and suitability to
deconvolve high-grade panNENs (see Supplementary Table S4A,B).

Further GSEA analyses probed whether Baron-deconvolved panNENs with an above-
average exocrine-like cell type proportion prediction showed a statistically significant
similarity to the Schlesinger et al. [64] trans-differentiation clusters relative to below-
average exocrine-like panNENs. We discovered a significant enrichment (p-value: <10−6)
of the exocrine-like high panNENs for a murine gene set of acinar-derived cells undergoing
trans-differentiation into an intermediate ductal-like cell type (‘cluster A0 ductal-like’ of
the Schlesinger et al. [64] study) (see Supplementary Figure S2A). Next, we explored
the biological context of the trans-differentiation gene expression profiles in high-grade
panNENs and noted reports regarding a small subpopulation of nonmalignant acinar cells
called ‘acinar edge’ cells. This acinar cell subpopulation features ADM and progenitor-
associated expression profiles with the activation of multiple oncogenic pathways in the
absence of oncogenic mutations or evidence of injury [59]. We procured the set of 100 genes
with a greater differential upregulation in the ‘acinar edge’ relative to the remaining acinar
cells and found a significant enrichment of these genes in panNENs whose exocrine-like
cell type proportion predictions were above the average relative to the below average
panNEN subgroup (p-value: 0.008) (see Supplementary Figure S2B).

Since the lineage plasticity of the trans-differentiating cells was furthermore reported
as being connected to the reactivation of stem cell features, we generated a deconvolution
model trained on human intestinal stem cells (HISC) in lieu of the exocrine-like cell type
with scRNA data from Haber et al. [26] to observe whether stemness-related signature
genes similarly improved the deconvolution of NEC and high-grade NET transcriptomes.
The HISC model could deconvolve panNENs and GI-NEN and showed a comparable
suitability to deconvolve NECs but was subsequently found to be less suited than the
exocrine-like mixed model with respect to the derivation of the clinical characteristics of
panNEN, which was why we excluded it from further analyses.

The prediction of increasing α cell type proportions with higher grading fits with the
recent suggestions to stratify sporadic panNET based on their similarity to α or β-cells,
respectively, [14,65,66] with the expression of the α-cell-specific transcription factor ARX in
the more advanced stage panNET (see Supplementary Text S1 for an extended biological
contextualization).

3.6. Correlation of Predicted Cell Type Proportions with Prognostic and Clinical Characteristics

Next, we analyzed whether the deconvolution-derived results were correlated with
the clinical prognosis, cell proliferation rate, and overall patient survival time. To that
end, we determined how well the mixed model or the HISC model cell type marker
genes could cluster our NEN samples. A principal component analysis (PCA) revealed
that the marker genes separated NETs and NECs into different clusters, i.e., the marker
genes were statistically suited to differentiate NETs from NECs and ambiguous NEN (see
Supplementary Figure S3). Next, we analyzed the relationship between the deconvolution
predictions and the Sadanandam et al. gene set signature [15]. This signature specifies
distinct molecular subgroups for panNENs and identifies panNENs with an increased
metastatic potential. We observed common clustering patterns between the cell type
proportion predictions, NEC or NET status, and the clustering pattern of panNENs based
on those genes that are part of the Sadanandam et al. [15] classification scheme signature
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(see Supplementary Figure S4). However, the exocrine-like cell type proportion predictions
allowed the assignment of subclusters to NENs based on the Sadanandam et al. [15]
classification scheme which was not possible based on the proliferation rates alone since
these were indistinguishable between the subclusters.

We verified that the cell type proportion predictions did not cluster panNENs accord-
ing to their study of origin but according to their clinically relevant properties (Figure 4A).
Interestingly, panNENs with an identical grading were partially deconvolved differently
and therefore assigned to different deconvolution clusters, indicating a further subtyping
that extends beyond the grading. Upon the analysis of the Diedisheim dataset, we ascer-
tained visually that the prognostic clusters assigned to panNEN by Diedisheim et al. [17]
matched well with the clusters generated by the deconvolution of the panNEN (Figure 4B).
Likewise, the deconvolution-derived endocrine cell type assigned to functional and mostly
low-grade Diedisheim panNENs predominantly agreed with their classification, for in-
stance, for insulinoma. We analyzed whether G3 NETs could be discerned from NECs
exclusively by clustering them according to their relative cell type proportions and whether
a separation was both possible for pancreatic as well as GI-NENs. To that end, we clustered
the 67 panNENs and GI-NENs from datasets which included NECs and found that a
separation of NEC and NETs via cluster-assignment was possible in the majority of cases
regardless of an NENs study of origin or site of the primary tumor (Figure 4C). To increase
the statistical power, we next analyzed whether NETs and NECs could be more effectively
separated by non-linear uniform manifold approximation and projection (UMAP) [67],
which projected 128 panNENs and GI-NENs with NEC or NET annotation from the same
four datasets into a lower-dimensional space, which allowed for their linear separation
(Figure 4D).

Analyses with a focus on the MKI67 expression levels and exocrine-like cell type
proportions revealed a significant Pearson product–moment correlation between exocrine-
like cell type proportions and MKI67 expression levels for three out of six panNEN datasets
(range significant p-values: 1 × 10−3 to 4 × 10−3) (see Supplementary Table S4A for these
and the following statistics). Upon a closer inspection, we discovered that the insignificantly
correlated dataset had almost indiscernible MKI67 expression levels (Missiaglia [29]) or
were strongly skewed towards either G3 NECs (Fröhling [28]) or low-grade functional
panNENs (Diedisheim [17]).

Thereafter, we determined the correlation between the model’s exocrine-like cell type
proportion predictions and the histopathology-derived grading information for the six
panNEN datasets, which provided the required annotation. The cell type proportion
predictions were significantly correlated with the proliferation-associated grading in all
six datasets (p-value minimum 1 × 10−4, maximum 4 × 10−2), although only 5% of the
exocrine-like marker genes utilized for the proportion predictions were associated with the
proliferation activity. Subsequent analysis of variance (ANOVA) tests uncovered that the
exocrine-like cell type proportions could effectively separate G3 from G2 and G1 panNENs
(p-value minimum 4× 10−6, maximum 3.5× 10−2) while G1 panNENs could generally not
be effectively discerned from G2 panNENs. As a comparative baseline, we calculated the
MKI67 proliferation marker correlations with the grading and observed significant p-values
with a slightly stronger but overall similar statistical power (p-value minimum 4 × 10−7,
maximum 1 × 10−3) compared to the exocrine-like cell type proportions.

We further quantified the extent to which disaggregated exocrine-like cell types were
correlated with grading and found that the statistical power of the ductal cell type was sig-
nificantly greater than that of the acinar cell type, although their aggregation as an exocrine-
like cell type remained superior with respect to the predictive power. As mentioned above,
the cells assigned to the ductal lineage in our training datasets were characterized by a
high-level representation of the genes associated with acinar to ductal metaplasia (ADM).
This suggested that increased ductal cell type predictions reflected an enhanced lineage
plasticity in high-grade NEN.
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3.7. Machine Learning-Based Prediction of Grading, NEC, or NET Status and Patient Survival
Time

Due to the observed potential of discerning panNENs with a different grading and of
predicting the NEC or NET status, we scrutinized how well an ML model trained on the
deconvolution results could classify panNENs with respect to their clinical–pathological
characteristics. We therefore trained a baseline ML model on the expression data of all the
genes shared between the six annotated panNEN datasets and on the proliferation rate
gold-standard biomarker MKI67 levels, which determines the grading. We formulated
three classification tasks: (1) the separation of low and medium panNENs from high-grade
G3 panNENs, (2) the assignment of the precise G1 or G2 or G3 class, and (3) the prediction
of the NEC or NET status. We compared the results to a deconvolution model using eight
features, namely the α, β, γ, and δ endocrine and the exocrine-like cell type proportions,
p-value, reconstruction error, and correlation r value. Note that the latter model does not
contain proliferation-associated features.

In the binary classification task (G1 and G2 versus G3), we observed an accuracy of
85% for the baseline model and 81% for the deconvolution model, a sensitivity of 85%
(baseline), 80% (deconvolution), and a positive predictive value (PPV) of 79% (baseline)
and 75% (deconvolution) (see Figure 5). The volatility of the deconvolution model’s
performance was slightly greater than that of the baseline. The ternary classification
task (G1 versus G2 versus G3) revealed balanced accuracies of 75% for both models,
class-averaged sensitivities of 85% (baseline) and 83% (deconvolution), and a PPV of 78%
(baseline) and 79% (deconvolution).

NEC and NETs could be discerned with accuracies of 76% (baseline) and 78% (de-
convolution), sensitivities of 77% (baseline) and 78% (deconvolution), and PPVs of 73%
(baseline) and 66% (deconvolution). The ML model interestingly found the exocrine-like
cell type proportion to be most useful when discerning NECs from NETs, followed by the
reconstruction correlation and error, suggesting that the endocrine cell type properties were
of a limited relevance when discerning NECs from NETs (see Figure 5D).

Importantly, the standard deviation of the deconvolution and the baseline model’s
accuracy covered the averaged accuracy of the other model’s performance, indicating
the comparability of either models’ predictive performance with respect to their accuracy.
However, the PPV for the task of discerning NETs from NECs did differ slightly in favor of
the baseline model, indicating a limited superiority of the baseline model for this particular
task and performance characteristic.

Information on disease-related survival (DRS) was available for two datasets: Riemer
and Scarpa. Explorative analyses revealed a statistically significant Pearson Product–
moment correlation (r = −0.45, p-value 0.017) between the cell type proportions of the
32 high-grade GEP-NENs of the Riemer dataset and their corresponding DRS. We analyzed
the survival time prediction performances for the separated Riemer and Scarpa datasets,
respectively, as well as their combination into a single dataset to increase the sample size
(see Figure 5 and Supplementary Table S4A). We utilized two different cohort designs for
the survival tests. The first design used three subgroups (‘low’-, ‘medium’-, and ‘high’-risk
subgroups) while the second cohort design was tested on two subgroups (a combined ‘low’-
and ‘medium’- subgroup versus a ‘high’- risk subgroup). The three-arm design was chosen
to reflect the established ternary clinical standards, while the two-arm design was tested
because the previous ANOVA tests indicated that G3 panNENs could be well discerned
from G2 panNENs, but not G2 panNENs from G1 panNENs.
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Figure 5. Statistical power of a deconvolution-trained ML model to predict clinically relevant charac-
teristics. Plot (A): predictive power of a deconvolution model relative to a baseline model trained on
expression data and MKI67 levels. The baseline model shows slightly higher mean performances,
but the performance of either model remains comparable with respect to the discernibility of G3
panNENs from medium- and low-grade G2 and G1 panNENs. Plot (B): ternary grading classification
performances. The baseline model predicts the specific G1 or G2 or G3 class of a panNEN with a
comparable performance as the deconvolution model. Plot (C): the performance of the deconvolution
model with respect to the classification of a panNEN as either NET or NEC remains comparable to
the baseline model with the exception of the F1-score and the positive predictive value (PPV), which
is greater in the baseline model. Plot (D): feature importance of a deconvolution model tasked with
discerning pancreatic NECs from NETs. The exocrine-like cell type proportion was most informa-
tive when telling NECs apart from NETs, followed by the quality with which a panNEN could be
reconstructed during deconvolution. Endocrine cell type-related properties proved to be of limited
relevance. Plot (E): Kaplan–Meier plot of the overall survival time of all samples with survival time
annotation in the Riemer and Scarpa dataset. MKI67 baseline as well as the exocrine-like cell type
proportion stratified NEN patients into a ‘high’- or ‘low’- risk group membership with comparable
Cox hazard ratio test’s p-value for this binary task.
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The Cox hazard ratio tests revealed that the exocrine-like cell type proportion achieved sig-
nificance for all three datasets for the binary design (p-value minimum 0.006, maximum 0.041)
and the ternary design (p-value minimum 0.008, maximum 0.02). The statistical power of
a MKI67 baseline model was comparable to that of the exocrine-like cell type proportion in
the three-arm (p-value minimum 0.0026, maximum 0.049) and the two-arm design (p-value
minimum 0.0036, maximum 0.014). The grading ground truth showed the greatest statistical
power for every design (p-value minimum 0.0005, maximum 0.036). We therefore deemed the
predictive power of deconvolution-trained models comparable to that of a model trained on
the MKI67 expression levels on the ground of their comparable test statistics while simultane-
ously finding the statistical power of a ground-truth model trained on the pathologist-derived
grading superior to both in silico models with respect to the prediction of a patient’s overall
survival time.

4. Discussion

Various publications have shown that transcriptomic deconvolution can deconvolve
transcriptomes from healthy tissue accurately [41,43,44] and, to a lesser extent, also those of
the data derived from neoplastic tissue [68–72]. The first reason to apply a deconvolution
approach for the classification of panNENs was that aforementioned publications indicated
a relationship between the clinically relevant phenotypes and the deconvolution results.
Second, the training of a deconvolution model does not require training data derived from
neoplastic tissue but instead only requires widely available data derived from healthy
tissue, which counteracted the notorious scarcity of the suited training data for pancreatic
and non-pancreatic NENs. The approach was then structured as a two-step ML framework
whose first deconvolution step delivered the input for the second step, which predicted the
clinical characteristics.

A significant deconvolution of G1 and G2 pancreatic and non-pancreatic NETs was
possible regardless of the scRNA training dataset, deconvolution algorithm, or site or study
of origin, respectively, suggesting a high relative resemblance of low- to medium-grade
panNETs to fully differentiated endocrine cell types (see Figure 3). NECs and partially
G3 NETs could not be significantly deconvolved by means of exclusively endocrine cell
types, indicating a low resemblance to the fully differentiated endocrine cell types that the
deconvolution was based on. However, a mixed model that included exocrine-like cell
types in addition to endocrine cell types could effectively deconvolve NEC and partially
G3 NETs. The performance of the mixed model was related to the representation of
trans-differentiation-associated genes in the exocrine marker gene sets, suggesting an
enhanced lineage plasticity of high-grade NEN. Furthermore, an ML model tasked to
discern NECs from NETs found the exocrine cell type properties and reconstruction quality
to be significantly more relevant for the task than the properties associated with endocrine
cell types. These findings suggest that NECs and partially high-grade G3 NETs differ
with respect to the exocrine-like, trans-differentiation-associated properties from low- to
medium-grade NETs.

A direct quantification of the soundness of panNEN deconvolution remains challeng-
ing since no gold-standard dataset exists that would qualify a deconvolution result as
correct apart from cases such as, e.g., insulinomas, where deconvolution predominantly
provided correct classifications, and an empirical deconvolution p-value. Moreover, decon-
volution models tend to be susceptible for volatility of results depending on the choice of
deconvolution algorithm and the training dataset [41] (see Supplementary Table S4 Sheet
A). Therefore, biological interpretability is critical and was achieved by conciliating the
exocrine-like aspects with the current understanding of panNEN biology in the related
Results section (see Supplementary Text S1 for an extended contextualization).

We assessed whether the deconvolution method could replicate the existing prolif-
eration rate-oriented classification schematics while simultaneously introducing a novel
non-proliferation rate-based classification approach for panNENs. To the same end, we
compared the predictive performance of a proliferation-independent deconvolution ML
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model with the established proliferation rate-oriented model (trained on the transcriptome
of panNENs as well as the proliferation rate biomarker MKI67). We assessed how well the
grading, NEC, or NET subtype status and patient overall survival time could be predicted.
The proliferation rate model’s predictive performance was found to be comparable for all
the aforementioned clinical characteristics, with the slightly greater performance of the
proliferation rate model relative to the deconvolution model when differentiating between
three types of grading (G1 versus G2 versus G3) (see Figure 5). The slight superiority was,
however, anticipated because ANOVA tests revealed beforehand that deconvolution results
can efficiently discern between G2 versus G3 NENs but not as well between G1 and G2
NENs. Exocrine-like cell type proportion levels could furthermore add information to the
panNETassigner-based classification proposed by Sadanandam et al. [15], since subclusters
enriched for NEC emerged (see Supplementary Figure S4).

The deconvolution approach clustered and thereby classified panNENs not by their
proliferation rate and grading, respectively, but according to independent molecular mech-
anisms. PanNENs generally clustered according to their functionality and NEC or NET
status but not exclusively by their grading, with G3 panNENs being split between clusters
(see Figure 4). Furthermore, a deconvolution model could discern NEC and NET without
being informed of the proliferation rate, which suggests that deconvolution can refine
the classification scheme of panNENs from the perspective of the panNENs functionality,
degree of dedifferentiation, and the origin of the cell type (see Figure 4D). We therefore see
the application of the deconvolution approach in particular for the purposes of differenti-
ating between medium- versus high-grade NENs and G3 NETs versus NECs in cases of
non-informative proliferation rate measurements, which is also the use-case, where we see
the greatest need for an ML-based support of pathologists in case of ambiguity. Further
research is required to fully exploit the potential of the deconvolution approach with a deep-
ened understanding of how the clinical characteristics between the deconvolution-derived
panNEN classes and clusters differ.

5. Conclusions

The combination of transcriptomic deconvolution and ML modeling for the study
of panNENs and non-pancreatic GEP-NENs yielded clinically meaningful classifications.
Our proposed strategy reduces the dependency on scarcely available neoplastic training
data for panNENs and non-pancreatic GEP-NEN research in general. We also believe that
this strategy could as well be applied to other rare cancers, as long as the base cell types
are known and the scRNA data of these are available. Classification-by-deconvolution
has the potential to support pathologists with informative and complementary ML model
predictions in cases of an incongruous or uncertain grading and differentiation, which in
turn may lead to a better personalization of the clinical management of pancreatic and
non-pancreatic NEN patients.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers15030936/s1, Figure S1: Deconvolution p-values for the 157
non-pancreatic GEP-NEN based on BSeq-sc and Baron scRNA dataset; Figure S2: GSEA enrichment
results for Schlesinger et al. transdifferentiation cluster A0 and the Acinar edge differential gene
expression set; Figure S3: Principal component analysis of the united NEN transcriptomes of the
Riemer and Scarpa datasets reduced to sets of cell type marker genes; Figure S4: Correlation heatmap
of the panNENs contained in the Scarpa and Riemer datasets reduced to the Sadanandam et al.
classification scheme gene set signature genes; Table S1: Overview of the GEP-NEN and panNEN
datasets obtained to train and benchmark the deconvolution framework; Table S2: Stratification and
clinical annotations of the NEN and GEP-NEN datasets; Table S3: Results of the deconvolution of
the GEP-NEN datasets based on the BSeq-sc framework and Baron et al. scRNA training dataset;
Table S4: Gridsearch over different scRNA training datasets with BSeq-sc and the transdifferentiation
associated genes per cell type; Text S1: Biological Interpretation; Text S2: Supplementary Methods.
References [73–82] are cited in the supplementary materials.
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