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Introduction: Cinnamomi ramulus (CR) is one of the most widely used traditional
Chinese medicine (TCM) with anti-cancer effects. Analyzing transcriptomic
responses of different human cell lines to TCM treatment is a promising
approach to understand the unbiased mechanism of TCM.

Methods: This study treated ten cancer cell lines with different CR concentrations,
followed by mRNA sequencing. Differential expression (DE) analysis and gene set
enrichment analysis (GSEA) were utilized to analyze transcriptomic data. Finally,
the in silico screening results were verified by in vitro experiments.

Results: Both DE and GSEA analysis suggested the Cell cycle pathway was the
most perturbated pathway by CR across these cell lines. By analyzing the clinical
significance and prognosis of G2/M related genes (PLK1, CDK1, CCNB1, and
CCNB2) in various cancer tissues, we found that they were up-regulated in
most cancer types, and their down-regulation showed better overall survival
rates in cancer patients. Finally, in vitro experiments validation on A549, Hep
G2, and HeLa cells suggested that CR can inhibit cell growth by suppressing the
PLK1/CDK1/ Cyclin B axis.

Discussion: This is the first study to apply transcriptomic analysis to investigate the
cancer cell growth inhibition of CR on various human cancer cell lines. The core
effect of CR on ten cancer cell lines is to induceG2/M arrest by inhibiting the PLK1/
CDK1/Cyclin B axis.

KEYWORDS

Cinnamomi ramulus, transcriptomic analysis, differential expression analysis (DE), gene
set enrichment analysis (GSEA), cell cycle

1 Introduction

Cinnamomi ramulus (CR) or “Guizhi” is dried twigs of Cinnamomum cassia (L.) Presl,
which has been used in clinics frequently for thousands of years, with the property of
relieving exterior syndrome by diaphoresis, warming and smoothing the meridian,
reinforcing Yang to transform Qi (Rather et al., 2016). CR was first recorded in the
Traditional Chinese Medicine (TCM) book “Treatise on Cold Pathogenic and
Miscellaneous Diseases” in Han Dynasty, and it has been recorded in the Chinese
pharmacopeia since 1973. In TCM theory, CR is sweet in taste and warm in nature.
According to statistics, around 65 Traditional Chinese Medicine formulas containing CR
have been collected in the Chinese pharmacopeia, including Gui Zhi Fu Ling Wan, Waigan
Fenghan Keli, Wu Mei Wan, etc. Up to now, over 100 chemical compounds have been

OPEN ACCESS

EDITED BY

Jianqiang Xu,
Dalian University of Technology, China

REVIEWED BY

Peng-Xing He,
Zhengzhou University, China
Jayaprakash N. Kolla,
Institute of Molecular Genetics (ASCR),
Czechia

*CORRESPONDENCE

Hsien-Da Huang,
huanghsienda@cuhk.edu.cn

SPECIALTY SECTION

This article was submitted to
Pharmacology of Anti-Cancer Drugs,
a section of the journal
Frontiers in Pharmacology

RECEIVED 12 December 2022
ACCEPTED 13 February 2023
PUBLISHED 17 March 2023

CITATION

Li J, HuangH-Y, Lin Y-C-D, Zuo H, Tang Y
and Huang H-D (2023), Cinnamomi
ramulus inhibits cancer cells growth by
inducing G2/M arrest.
Front. Pharmacol. 14:1121799.
doi: 10.3389/fphar.2023.1121799

COPYRIGHT

© 2023 Li, Huang, Lin, Zuo, Tang and
Huang. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Pharmacology frontiersin.org01

TYPE Original Research
PUBLISHED 17 March 2023
DOI 10.3389/fphar.2023.1121799

https://www.frontiersin.org/articles/10.3389/fphar.2023.1121799/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1121799/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1121799/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2023.1121799&domain=pdf&date_stamp=2023-03-17
mailto:huanghsienda@cuhk.edu.cn
mailto:huanghsienda@cuhk.edu.cn
https://doi.org/10.3389/fphar.2023.1121799
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2023.1121799


identified from CR. Modern pharmacological studies have proved
that CR has antibacterial, anti-inflammatory, antipyretic, and
antiviral effects (Liu et al., 2020a). Clinically, CR is rarely used in
a single prescription and is often used in combination with other
herbs to treat diseases. Recently, several studies revealed that the
extracts/monomers from CR possess anti-tumor effects against
various cancer cells. Park et al. (2018) reported that the aqueous
extracts of CR could inhibit human colorectal cancer cell viability by
down-regulating cyclin D1 via GSK3β-dependent
T286 phosphorylation and downregulation of β-catenin.
Moreover, CR could also drive ROS-dependent apoptosis in
human colorectal cancer cells. Pan et al. (2022) reported oral
administration of CR inhibited the growth of colon cancer cells
in C57BL/6 mice via Akt/ERK signaling pathways. In summary, CR
is a widely used medicine in TCMs, but the underlying molecular
mechanism inhibiting cancer cell growth remain largely unknown.

Transcriptomic data have extensively promoted the discovery of
disease biomarkers and therapeutic drug targets (Yang et al., 2020),
providing new clues for TCM research. Transcriptomic responses of
human cancer cell lines to drug therapy is a promising approach to
understanding complex responses to drug treatment (Iwata et al.,
2019). Much research on TCM is currently based on traditional
research methods, such as chemical analysis and complex
pharmacological experiments, which is laborious and time-
consuming. In recent years, researchers performed sequencing and
bioinformatics analysis on herbal medicines with significant economic
and medicinal value to clarify the mechanisms of action, extensively
promoting the research and development of TCM (Chakraborty,
2018). Transcriptome analysis of mRNA reflects the collection of
all mRNA products of a cell under a given condition (drug treatment
or disease status), which provides a comprehensive view of biological
changes resulting from multiple genetic variations. Therefore, altered
transcriptome profiles can be used to elucidate the disease
mechanisms and drug mode of action (Kwon et al., 2019). The
application of transcriptomic data analysis combined with
bioinformatics analysis in TCM research can significantly reduce
the large number of experiments needed for screening pathways
and therapeutic targets in the early stage of TCM research.

Cancer cell lines have been widely used as models for cancer
studies. Many pharmaceutical companies have endorsed using
suitable cell models to test anti-cancer drugs (Lopez-Camarillo,
2013). Typical perturbation experiments are always performed in
specific cells to catch the responses by medicines that are often
context-dependent. Hub transcriptomic signatures influenced by the
drug are shared in multiple tissue types that remove specific
backgrounds and can reflect more upstream pathway changes.
Genome-wide expression profiles or perturbated expression
profiles by drug treatment have been constructed and applied to
drug discovery, including the Connectivity Map (cMap) and Cancer
Cell Line Encyclopedia (CCLE). The cMap was based on
564 reference gene expression profiles generated by
164 compounds which are FDA-approved drugs treating human
cell lines, including MCF7, PC3, SKMEL5, and HL60. A query gene
signature in cMap is a short list of genes whose expression represents
the biological state of interest. Then the query signature is compared
to the reference expression dataset to find the similarity using the
non-parametric, rank-based pattern-matching strategy (Lamb et al.,
2006). Driven by TCGA, a database to characterize the genetic basis

of human cancer, the CCLE performed sequencing on 947 human
cancer cell lines and included 24 anti-cancer drug pharmacological
profiles. CCLE is essential for anyone seeking to identify genetically
related drug responses. It helps researchers capture clinically
significant genomic features and use this information to
accelerate clinical diagnosis and improve treatment. Even today,
clinical trials are still costly, and there is an increasing need for
reliable biomarkers and drug targets (Barretina et al., 2012).

In our group, we chose the ten widely studied cancer cell lines to
test significant TCM drug effects across selected cancer cell lines, like
cMap but can guide users to find the relationship between TCM drug,
disease, and genes. And this study is a case study of the big project to
explore the effects of C. ramulus on ten cancer cell lines. In this study,
using RNA-seq data generated from ten cancer cells treated with CR
and comprehensive transcriptomic analysis, we found cell cycle
pathway was significantly associated with inhibition caused by CR.
Then, we used a series of in vitro experiments to demonstrate that CR
can dramatically inhibit the growth of ten cancer cell lines by blocking
the PLK1/CDK1/Cyclin B axis. This is the first study applying
transcriptomic analysis to explore the mechanism of CR on
various human cancer cell lines. This study’s general workflow and
research methods are shown in Figure 1; Supplementary Figure S1.

2 Materials and methods

2.1 UPLC-MS/MS analysis of CR granules

Analysis of CR chemical composition was performed using
UPLC-MS/MS. UPLC conditions: Chromatographic separation
was achieved using Vanquish Flex UHPLC (Thermo Fisher
Scientific, Bremen, Germany) (Wang et al., 2021), and the
chromatographic column used was ACQUITY UPLC T3 column
(100 mm*2.1 mm, 1.7 µm, Waters, Milford, United States). The
mobile phase consisted of solvent (A) 0.1% formic acid and (B)
Acetonitrile. The gradient elution was as follows: 0–0.8 min, 2% B;
0.8–2.8 min, 2%–70% B; 2.8–5.6 min, 70%–90% B; 5.6–6.4 min,
90%–100% B; 6.4–8 min, 100% B; 8–8.1 min, 100%–2% B;
8.1–10 min, 2% B. MS conditions: Mass spectra were obtained on
Q-Exactive (Thermo Scientific). Both positive and negative ion
modes were performed on Q-Exactive (Wang et al., 2021).

2.2 Cell culture

Ten human cancer cell lines, including A549, HeLa, Hep G2,
SKOV3, SKBR3, HCT116, MCF7, RBE, Hep 3B, and AsPC1, were
obtained from CellCook Co. Ltd. (China, Guangzhou). Cells were
incubated at 37°C and 5%CO2 in an incubator (Helgason andMiller,
2005).

2.3 CCK8 assay

CR granules were bought from E-FANG pharmaceutical
(Guangdong, China) and dissolved in their corresponding culture
medium. Then we performed CCK8 assay to detect the cell viability
after CR treatment (Li et al., 2019). Cells were treated with a series of
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concentrations (3.3 × 10−4, 1 × 10−3, 3.3 × 10−3, 1 × 10−2, 3.3 × 10−2, 1 ×
10−1, 3.3 × 10−1, and 1 g/mL) of CR for 24 h. After incubation, 110 μL
fresh medium, including 10 μL CCK8 solution, was added to each well.
The plates were incubated for an additional 2 hours at 37°C. Then the
absorbance was measured at 450 nmwavelength by a microplate reader
(BioTek).

2.4 CR gene targets identification

We collected the compound information from TCMSP (Ru
et al., 2014) (https://old.tcmsp-e.com/tcmsp.php), SymMap (Wu
et al., 2018) (http://www.symmap.org), ETCM(Xu et al., 2018)
(http://www.tcmip.cn/ETCM/), TCM-ID (https://bidd.group/
TCMID/), BATMAN (Liu et al., 2016) (http://bionet.ncpsb.org.
cn/batman-tcm/), HERB (Fang et al., 2020) (http://herb.ac.cn/),
and literature. Putative gene targets were collected from BioAssay
Results from Pubchem. Moreover, we only collected active
interactions between compounds and human genes. Finally,
857 compound-genes interactions from the 83 compounds and
341 distinct targets were obtained (Supplementary Table S1).

2.5 RNA extraction and next-generation
sequencing

Total RNAwas extracted from CR-treated cancer cell lines using
Trizol reagent (Invitrogen) following the manufacturer’s protocol.
We sequenced pair-end reads of 100 bp (PE100) on the BGISEQ-500
platform for subsequent data analysis (Zhu et al., 2018).

2.6 Transcriptome analysis and prognostic
analysis

MRNA-seq raw data were processed by nf-core/rnaseq pipeline
(v3.0) with the parameter of “–genome hg38 –gencode” to obtain the
read count matrix for all samples. iDEP (http://ge-lab.org/idep/),
integrated Differential Expression and Pathway analysis, was used to
perform read counts normalization and differential expression

analysis (Ge et al., 2018). Differential expression mRNA analysis
was performed with DESeq2 and selected DEGs with FDR<0.05 and
fold change≥2. Metascape (Zhou et al., 2019), Metacore TM
(©Clarivate Analytics), and GSEA (Subramanian et al., 2005)
were used for the functional enrichment analysis. For GSEA
analysis, the c2.cp.kegg.v7.5. symbols.gmt (curated) gene sets
database was used as the gene set collection for analysis. GSEA
performed 1,000 permutations. The maximum and minimum sizes
for gene sets were 500 and 15, respectively. The cutoff for significant
gene sets was false discovery rate <25%. Nominal p-value < 0.05.
Human Protein Atlas (Ponten et al., 2008) (HPA) was adopted to
check the gene expression specificity in different cell lines and
protein expression levels in tumor tissues. Timer (Li et al., 2017)
and Oncomine (Rhodes et al., 2004) were used to check the
expression level in clinical samples compared with non-cancer
ones. Survival analyses were performed using the GEPIA (Tang
et al., 2017). cBioportal (Gao et al., 2013) was used to analyze the hub
genes’ genetic aberration in cancers.

FIGURE 1
General workflow and research methods of this study.

TABLE 1 Primers used for qPCR assay.

Gene names Sequences (5′-3′)

CDK1-F GATGTGCTTATGCAGGATTCC

CDK1-R CATGTACTGACCAGGAGGGATAG

PLK1-F AGCCCCTCACAGTCCTCAATAA

PLK1-R TCGACCACCTCACCTGTCTCT

CCNB1-F AAGTCATGGAGAATCTGCTGCAT

CCNB1-R TGGCAGCAATCACAAGAAGAA

CCNB2-F CTGTACATGTGCGTTGGCATT

CCNB2-R AAGCCAAGAGCAGAGCAGTAATC

CDC25C-F GCGGCTACAGAGACTTCTTTCC

CDC25C-R CACCTCAGCAACTCAGTCTTGTG

GAPDH-F ACCCACTCCTCCACCTTTGAC

GAPDH-R TGTTGCTGTAGCCAAATTCGTT
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2.7 Quantitative real-time PCR (qPCR) assay

QPCR was used to analyze the mRNA expression of CDK1,
PLK1, CCNB1, CCNB2, and CDC25C in cancer cell samples. Total
RNA extraction was performed with the Direct-zol RNA miniprep
kit according to the manufacturer’s instructions. cDNA was
generated using SuperScript III Reverse Transcriptase
(Invitrogen). The total cDNA was mixed with SYBR Green and
master mix, then loaded into QuantStudio™ 6 Flex Real-Time PCR
System (Applied Biosystems) for amplification and detection
(Polaski et al., 2021). The primer sequences are listed in Table 1.

2.8 Western blotting

Western blot was performed as previously described (Kurien
and Scofield, 2015). The equal amount of protein was separated with
10% SDS-PAGE and then transferred onto polyvinylidene difluoride
membranes (Millipore, United States). Next, transferred membranes
were blocked with 5% BSA in TBST buffer for 1 hour at room
temperature. Then, membranes were probed with specific primary
antibodies anti-CDK antibody (#ab18, ABCAM), anti-PLK1
antibody (#ab17056), anti-Cyclin B1 (#ab32053, ABCAM), anti-
CyclinB2 (#ab185622, ABCAM), anti-CDC25C (#ab32444,
ABCAM) and anti-GAPDH (#60004-1-lg, Proteintech) at 4°C
overnight. Then, membranes were incubated with secondary
antibodies conjugated to horseradish peroxidase (A0216/A0208,
Beyotime, China). Finally, bands were visualized by enhanced
chemiluminescence.

2.9 Cell cycle analysis

Cell cycle assay was performed using a Cell Cycles and
Apoptosis Analysis Kit (C1052, Beyotime) (Luo et al., 2018).
Cells were collected and fixed with 70% ice-cold ethanol at −20°C
overnight. For cell cycle detection, cells were centrifuged, re-
suspended in a mixture of 50 μL/mL propidium iodide (PI) and
20 μL/mL RNase A, and incubated at 37°C for 30 min. The red
fluorescence was detected at the excitation wavelength of 488 nm by
flow cytometry (CytoFlex).

2.10 Statistical analysis

All experiment data were presented as mean ± SD and analyzed
using GraphPad Prism nine software. Statistical analysis of data was
performed with Student’s t-test. Results with p < 0.05 were
considered statistical significance.

3 Results

3.1 CR might be closely related to various
cancers and cancer-related pathways

We first performed UPLC-MS/MS to identify the characteristic
compounds in CR granules. Cinnamaldehyde, 2-hydroxycinnamic

acid, coumarin, and 2-methoxycinnamic acid were identified from
CR granules (Supplementary Figure S2). To investigate the
pharmacological action mechanism of CR, we collected
341 target genes for 83 compounds identified in CR
(Supplementary Table S1). Then we inputted these 341 genes
into the Metacore database to perform the pathway enrichment
analysis. We found that these genes were closely related to various
cancer types, including prostate cancer, SCLC, HCC, lung cancer,
ovarian cancer, pancreatic cancer, breast cancer, melanoma, and
gastric cancer. In addition, they were also involved in many critical
cancer-related pathways, including EGFR, TGF-β, and PI3K/AKT
signaling pathways (Figure 2A). We also performed KEGG
pathway enrichment analysis in Metascape to confirm the
Metacore enrichment results, and Pathways in cancer was the
top enriched pathway (Figure 2B). These results suggested that CR
might mediate multiple pathways in various cancers, which
motivates us to investigate CR’s common effects in different cell
types.

3.2 Differentially expressed genes analysis
across ten cancer cell lines treated with CR

To get the mRNA profiles of CR-treated cells, we first chose ten
commonly used cell lines in our lab (including A549, AsPC1,
HCT116, HeLa, Hep 3B, Hep G2, MCF7, RBE, SKBR3, and
SKOV3) and performed CCK8 assay to detect the IC50 of the CR
in different cell lines. Then, we treated ten cancer cell lines with
different concentrations of CR as L (Low dosage, IC10), M (Medium
dosage, IC30) and H (High dosage, IC50) group (Supplementary
Table S2). After mRNA sequencing, we used iDEP9.3 (http://
bioinformatics.sdstate.edu/idep93/) to process the sequencing
data, and hierarchical clustering results showed that the heatmap
could be clustered into ten different cell lines (Figure 3A). Then we
got common DEGs under three concentrations (Supplementary
Table S3) for each cell line (Supplementary Figures S3, S4) and
further acquired the common DEGs (upregulated, 204 genes;
downregulated, 118 genes) (Supplementary Table S4) across
10 cell lines. These final DEGs were inputted into Metacore for
functional enrichment analysis. And results showed that
upregulated genes were enriched in the Pentose phosphate
pathway, and downregulated genes were enriched in the cell
cycle process (Figures 3B, C).

3.3 Gene set enrichment analysis of the
transcriptomic data

The GSEA tool was further used for the pathway enrichment
analysis to confirm DEGs analysis results (Figure 1; Supplementary
Figure S1). For the GSEA enrichment analysis, we first inputted the
expression profiles at the same concentration for 10 cell lines
separately. This step was to verify whether different CR
concentration treatments affect different pathways in 10 cell
lines. We collected each cell line’s top 20 enriched pathways at
each concentration and the corresponding normalized enrichment
scores (Supplementary Table S5). Then at each concentration
treatment, the most common pathways that appeared in at least
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5 cell lines (n ≥ 5) were included for further analysis.
(Supplementary Tables S6, S7). Then we combined the
pathways from three concentrations (Supplementary Table S8).
Then we used these pathways combined from three concentrations
and their enrichment scores to plot the heatmap to compare the
pathway enrichment pattern at different concentrations. The
heatmap showed different treatment concentrations across ten
cancer cell lines presenting similar pathway enrichment patterns
(Figure 4A).

Next, we treated the different concentrations as three replicates
based on the first step since their pathway enrichment patterns were
similar. Then we moved to the second step. For each cell line, we
inputted expression profiles at different concentrations as three
replicates into GSEA to find the common influenced pathway
across ten cancer cell lines. Also, we collected the top
20 enriched pathways and their enrichment scores for each cell
line (Figure 4B).We found that the upregulated pathways influenced
by CR across ten cancer cell lines included Pentose phosphate
pathway and Fructose and mannose metabolism. In comparison,
downregulated pathways affected by CR across ten cancer cell lines
included the Cell cycle, Oocyte meiosis, and Basal transcription
factors (Figures 4C, D; Supplementary Figure S5). Besides, for RBE
cells, upregulated pathways by CR included Phenylalanine

metabolism and steroid biosynthesis pathways. For HCT116 cells,
upregulated pathways by CR included Steroid biosynthesis and
Porphyrin and chlorophyll metabolism. For SKBR3 cells,
downregulated pathways by CR included Cell cycle, TGF beta
signaling pathway, and Spliceosome (Figures 4C, D).

3.4 Identification of hub genes related to cell
cycle pathway

Since Cell cycle and Pentose phosphate pathways have been
identified as core pathways affected by CR in ten cell lines with DE
analysis and GSEA, we would like to further find the hub genes in
these two pathways affected by CR. We obtained the Cell cycle and
Pentose phosphate pathway-related genes from GSEA and
intersected them with CR targets genes. There were 17 CR target
genes overlapped with genes associated with Cell cycle and Pentose
phosphate pathway. One gene (PGD) from Pentose phosphate
pathway and 16 genes from Cell cycle pathway (Figure 5A). We
removed CCNB3 due to its low expression levels among ten cancer
cell lines, then the log2 fold change (CR treatment VS. CTRL)
heatmap of the remaining 16 genes was shown in Figure 5B. These
genes were significantly downregulated in most cancer cell lines

FIGURE 2
Functional enrichment analysis of CR target genes. (A) Functionally enriched pathways of the CR targets genes using Metacore. (B) Network of
pathways enrichment analysis by Metascape.
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except for gene PGD. Then we inputted these 16 genes into
Metacore and found that PLK1, CDK1, CCNB1, and
CCNB2 were enriched in the G2/M checkpoint pathway

(Figure 5C). These results suggested that CR might induce the
G2/M checkpoint arrest by suppressing the PLK1/CDK1/Cyclin B
axis in cancer cell lines.

FIGURE 3
Differentially expressed genes analysis of transcriptomic data from ten cancer cell lines treated with CR. (A) Heatmap was used to show the
expression profiles of mRNAs. L, Low dosage; M, M dosage; H, High dosage. (B) Up and (C) down DEGs functional enrichment analysis from ten cancer
cell lines treated with three concentrations using Metacore.
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3.5 Clinical significance and prognosis value
of hub genes

Several databases and web servers were used to evaluate hub
genes’ clinical significance and prognosis value, including Timer 2.0,
GEPIA, Oncomine, HPA, and cBioPortal. Using Timer 2.0, we
found that PLK1, CDK1, CCNB1, and CCNB2 were upregulated
in different cancer types compared with normal samples from the
TCGA data set (Figure 6A). And they were also upregulated in
tumors in the Oncomine dataset (Figure 6B). Besides, the low
expression levels of these four genes showed a better overall
survival rate in different cancer types from TCGA using GEPIA
(Figure 6C). We also performed the pair-wise gene expression
correlation analysis of these four genes; their gene expression
correlations were above 0.8 (Supplementary Figure S6). Then we
used cBioPortal to analyze the genetic aberration of four hub genes
in tumors (Figure 7A). We chose the TCGA pan-cancer panel,
which includes 2,565 patients/2,683 samples (Consortium, 2020).
Amplification was the most common genetic alteration in various
cancer types, which might be related to their higher expressions in
cancer samples. Then we wanted to clarify the cell specificity of the

hub genes in different cancer cell lines. In HPA, we checked the RNA
expression data of PLK1, CDK1, CCNB1, and CCNB2 values
(nTPM) of different tissue culture cell lines. The analyzed cell
lines are divided into 16 color-coded groups according to the
obtained organs. The four hub genes showed low specificity in
various cell lines (Figure 7B).

3.6 CR inhibited the expression of hub genes
in three chosen cancer cell lines

Since these genes are low cell line specificity, we randomly chose
A549, HeLa, and Hep G2 cell lines for the experimental validation.
After 24 h CR treatment, the H group showed many floating dead
cells and decreased cell adhesion (Figures 8A, B). From Figure 5C,
CDC25C is an essential link in the PLK1/CDK1/Cyclin B axis, and
its expression was downregulated across ten cancer cells. Therefore,
we added CDC25C in the following in vitro experiments. qPCR
results showed that all the hub genes were significantly
downregulated (Figure 9A). Western blot results also
demonstrated that protein expression levels of hub genes were

FIGURE 4
GSEA of the transcriptomic data to screen the critical pathway affected by CR among ten cancer cell lines. (A) Hierarchical clustering of enriched
pathways from the first GSEA enrichment step was inputting expression profile at the same concentration for 10 cell lines. (B) Hierarchical clustering of
enriched pathways from the second GSEA enrichment step was inputting different concentration expression profiles for each cell line as three replicates.
(C,D). Commonly enriched up- and downregulated pathways from the second GSEA enrichment step, treating expression profiles under different
concentrations in each cell line as three replicates to explore the CR effect in different cell lines.
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downregulated (Figure 9B). In addition, we also found that PLK1,
CDK1, CCNB1, and CCNB2 were upregulated in lung cancer, liver
cancer, and cervix cancer tissues from HPA (Supplementary Figure
S7). These results indicated that CR could significantly inhibit
cancer cell proliferation by inhibiting G2/M checkpoint proteins
PLK1, CDK1, CCNB1, CCNB2, and CDC25C.

3.7 CR induced the G2/M phase arrest

The flow cytometry assay was performed 24 h after the CR
treatment in A549, HeLa, and Hep G2 cell lines to validate the cell
cycle arrest by CR. As shown in Figure 10, the G2/M population of
CR-treated cells was significantly increased. For A549 cells, the cell
ratios at the G2/M phase were 6.51% ± 1.81% (CTRL), 9.18% ±
0.65% (L group), 13.63% ± 1.03% (M group), and 16.07% ± 5.47%
(H group), respectively. Meanwhile, the proportion of G0/G1 cells
was decreased. For Hep G2 cells, the cell ratios at the G2/M phase
were 11.70% ± 0.43% (CTRL), 18.56% ± 9.11% (L group), 19.85% ±
10.54% (M group), and 28.26 ± 0.94 (H group), respectively.
Meanwhile, the proportion of S-phase cells was decreased. For
HeLa cells, the cell ratios at the G2/M phase were 10.69% ±
0.81% (CTRL), 30.51% ± 1.03% (L group), 25.71% ± 2.13% (M
group), and 22.62 ± 1.72 (H group), respectively. Meanwhile, the

proportion of G0/G1 cells was decreased. These results further
demonstrated that CR arrested the cell cycle in the G2/M phase.

4 Discussion

In recent years, TCM has attracted global attention for its
promise in treating diseases, especially complex diseases like
diabetes, cardiovascular disease, and cancers (Xu et al., 2019b).
Many Chinese herbs’ bioactive components show powerful
cancer growth-suppressing effects. TCM can work as a
complementary therapy for cancer because 1) it can protect
normal cells or tissues against the damage caused by chemo/
radiotherapy; 2) it works in synergy with chemo/radiotherapy; 3)
it reduces inflammation of the surrounding cancerous tissues; 4)
improve immunity and body resistance; 5) extend the life and
improve the life quality of the patients with advanced cancer
(Hsiao and Liu, 2010). In this study, through the gene targets
analysis of CR, we discovered that CR is closely related to
different cancer types and cancer-related pathways. Then ten
cancer cell lines were selected to study the most critical pathway
disturbed by CR. We first performed the CCK8 assay to detect the
IC50 of CR and then used IC10 (L), IC30 (M), and IC50 (H) to treat the
chosen cell lines. From our results, ten cancer cell lines showed

FIGURE 5
Identification of G2/M cell cycle arrest as the hub targeted pathway by CR. (A) The intersection of the Cell cycle and Pentose phosphate pathways-
related genes with CR targets genes. (B) Log2 fold change heatmap of 16 genes among CR-treated cancer cell lines. Blue, downregulated; Red,
upregulated. (C) PLK1, CDK1, and CCNB enriched in the DNA damage_ATM/ATR regulation of G2/M checkpoint usingMetacore (p= 1.056*10−6). Red and
upward thermometers indicate upregulated genes in the corresponding cell line; Blue and downward thermometers indicate downregulated genes
in the corresponding cell line. The thermometer level was the mean log2 fold changes of CR treatment groups in each cell line.
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decreased cell viability. After CR treatment, Hep G2, A549, and
HeLa showed significant cell shrinkage and less adhesion.

Differential expression analysis and gene set enrichment are the
two most classic analysis methods for transcriptomic data
(Alhamdoosh et al., 2017). Differentially expressed genes (DEGs)
are genes that undergo mutations or structural changes at the
mRNA level under the influence of different environmental
conditions and are essential genes that lead to changes in cell
status and biological processes. Focusing on DEGs to find
biological clues often has limitations (Rahmatallah et al., 2014).
For example, no gene may reach the threshold of statistical

significance because the unavoidable noise of sequencing
technology may cover differences in biological significance.
Furthermore, for a long list of DEGs, the biological meaning
behind them is not uniform, and the interpretation of these
genes may depend randomly on the biological background of the
researcher. Besides, a single gene analysis often ignores the effect of
the whole pathway since cell biological reaction is often a
collaboration of multiple genes. To address these limitations,
Broad Institute developed GSEA. Its principle is based on the
known biological pathways of gene sets. It compares whether the
gene set appears at either end of the rank gene list to determine

FIGURE 6
Expressions of hub genes in different cancer types from TCGA andOncomine (A)mRNA expression levels of PLK1, CDK1, CCNB1, and CCNB2 across
various cancer types of TCGA dataset using Timer 2.0. The red box was the cancer sample, whereas the blue box was the normal sample. (B) mRNA
expression levels of PLK1, CDK1, CCNB1, and CCNB2 in different cancer types from the Oncomine database. The number in each unit was the number of
data sets. Upregulation was marked in red, and downregulation was blue. p-value, 10−4; fold change, two; gene ranking 10%. (C) The association of
PLK1, CDK1, CCNB1, and CCNB2 with overall survival in all cancer types in GEPIA. TPM, Transcripts per Million. The plots were achieved using the GEPIA
web server. Data are presented as the hazard ratio with a 95% confidence interval.
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whether this gene set is associated with a particular phenotype
(Myers et al., 2015). Using two methods in combination can
overcome the shortcomings of each approach and help
researchers screen the core pathways and genes affected by drugs
(Ma et al., 2020). Drug-treated cells were sequenced to elucidate the
molecular mechanism by which CR inhibits cell growth, regardless
of cell line background. DE and GSEA analyses were performed to
search for common perturbed pathways across ten cancer types. In
this study, through the enrichment of DEGs, we found that the
upregulated genes by CR treatment among ten cancer cell lines were
enriched in the Pentose phosphate pathway. In contrast, the
downregulated DEGs were enriched in the Cell cycle pathway.

Then we also used GSEA further to validate the common
influenced pathway after CR treatment. The transcriptome matrix
in this study is complex, containing the transcriptomes of ten cell
lines under three different concentrations of CR treatment, so we
needed to perform the GSEA in two steps (Supplementary Figure
S1). For the first step, we want to explore whether different
concentrations of CR influence different pathways across ten cell
lines. For the second step, we consider different treatment
concentrations as three replicates for the functional enrichment
analysis. Both analysis methods showed that the upregulated
pathway included the Pentose phosphate pathway, and the
downregulated pathway included the Cell cycle pathway. Next,

FIGURE 7
Genetic aberration and cell lines specificity of hub genes. (A) Genetic alteration analysis of hub genes using cBioPortal. Mutation, amplification, and
deep deletion events were identified in a pan-cancer analysis of whole genomes (ICGC/TCGA, nature 2020), which includes 2,565 patients/
2,683 samples. (B) RNA expression data as normalized transcript per million (nTPM) values of tissue culture cell lines from human protein atlas (HPA).
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we used the CR target genes to intersect with the Cell cycle-related
genes and Pentose phosphate pathway-related genes. Finally, we got
the 16 genes from the intersection, among which 15 genes were
associated with the Cell cycle pathway. Besides, the -log p values of
Cell cycle-related pathways are much larger than that of the Pentose
phosphate pathway (Figures 3B, C). Therefore, we hypothesized that
the cell cycle pathway is more affected by CR than the pentose
phosphate pathway is affected by CR.

Cancer is inevitably related to abnormal regulation of the cell
cycle process. Recently, many TCMs have proven that cell cycle
arrest is one of the common mechanisms of the toxicity of TCM on
cancer cells (Xu et al., 2011). Huganpian (HGP), a traditional
Chinese medicine consisting of six herbs, effectively suppressed
liver cancer growth with little toxicity. In vitro and in vivo
experiments demonstrated that HGP induced G0/G1 cell cycle
arrest by downregulating CDK4, CDK2, and Cyclin E1 (Gao

et al., 2019). Another TCM formula Ze-Qi-Tang can also induce
G0/G1 cell cycle arrest in non-small-cell-lung cancer cells, which
was associated with the upregulation of the p53 pathway (Xu et al.,
2019a). Feiyanning formula (FYN), which has been used for lung
cancer treatment for more than 20 years, can also induce G2/M cell
cycle arrest in lung cancer cells. Curcumin, a pigment extracted from
the rhizomes of Curcuma longa has been reported to arrest cells in
G2/M phase in NSCLC (Zhang et al., 2019), breast cancer (Hu et al.,
2018), neuroblastoma (Ye et al., 2021), and cervical cancer (Wang
et al., 2020). Cell-cycle checkpoint is a series of surveillance
mechanisms that ensure DNA replication and chromosome
allocation in the cell cycle. When abnormal events occur in cell
cycle progression, such as DNA damage or disruption of DNA
replication, such regulatory mechanisms are activated, inducing the
cell cycle arrest until the cells are repaired (Abraham, 2001). While
in cancers, these cell checkpoints are always inactivated because of

FIGURE 8
CR inhibited A549, Hep G2, and HeLa cell growth. (A) A549, Hep G2, and HeLa cell viability were determinedwith CCK8 assay. (B) A549, Hep G2, and
HeLa morphology changes after CR treatment with 24 h.
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genetic mutation. Our study focused on 16 target genes that
overlapped with the Cell cycle and Pentose phosphate pathway-
related genes. Metacore enrichment of these genes further helped us
screen out four hub genes (PLK1, CDK1, CCNB1, and CCNB2)
which are G2/M regulators. According to the Oncomine and TCGA
data, PLK1, CDK1, and CCNB are known to be elevated in different
cancer types.

The cell cycle is driven by a complex of CDKs and cyclin
(Williams and Stoeber, 2012). Cyclins can bind to a conserved
sequence of CDKs molecular structure domains in a non-
covalent manner. After CDK activation, it regulates the transition
of the cell cycle to different phases (Hochegger et al., 2008). Cyclin B
is a cyclin in the G2 phase when cells are preparing to enter mitosis.
It is synthesized in the S phase, and the protein is expressed in the
G2/M phase. In the G2 phase, Cyclin B combines with the cyclin-
dependent kinase CDK1 to form a complex to promote the cell cycle

to enter the mitotic phase (Hnit et al., 2020). Cyclin B has two
isoforms, Cyclin B1 and Cyclin B2. The expression of its subtypes in
tumor cells is significantly abnormal, indicating that it is closely
related to the occurrence, diagnosis, and treatment of tumors.
PLK1 is a mitotic serine-threonine kinase family member and is
an essential kinase for DNA damage checkpoints in G2/M phase
(Porter and Donoghue, 2003). PLK1 expression level peaks in
G2 and M phases and is highly expressed in cells with active
proliferation, like cancer cells. PLK1 phosphorylates CDC25C at
multiple sites and promotes its nuclear translocation to increase its
activity. After CDC25C is activated, it activates the Cyclin B-CDK1
complex by dephosphorylation and causes the complex
translocation into the nucleus to promote the G2/M progression
(Liu et al., 2020b). Since CDC25C is the link among CDK1, CCNB,
and PLK1, and the expressions of CDC25C among ten cancer cell
lines are also downregulated, we added CDC25C for the experiment

FIGURE 9
Hub genes expression in A549, HepG2, andHeLa cell lines treated by CR. (A)mRNA expression changes of hub genes after CR treatment. (B) Protein
expression changes of hub genes after CR treatment. *, p < 0.05 vs. CTRL; **, p < 0.01 vs. CTRL; ***, p < 0.001 vs. CTRL.
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validation step. Then, because of the low specificity of these genes in
different cell lines, we randomly selected 3 cell lines, A549, Hep G2,
and HeLa, for the in vitro validation experiment. Our study revealed
that CR could reduce the expression of the five G2/M phase
regulators at both protein and mRNA levels. In addition, the cell
cycle assay also demonstrated the increased G2/M cells after CR

treatment. CCK8 assay showed that CR could significantly inhibit
the proliferation of A549, HepG2, and HeLa cells. Cell cycle results
indicated that CR could induce G2/M phase arrest in A549, HepG2,
and HeLa cells, and western blot results also confirmed the G2/M
phase arrest effects. In addition, Figure 10 showed that cell numbers
in the G1 phase decreased in A549 and HeLa with CR treatment, but

FIGURE 10
CR increased cancer cells at the G2/M phase and impeded the transition fromG2 toM phase. A549, Hep G2, and HeLa cells were treated with CR for
24 h and harvested for PI-staining and flow cytometric analysis. *, p < 0.05 vs. CTRL.

FIGURE 11
The potential mechanism of CR inhibiting cell growth.
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cell numbers in the S phase did not present significant changes.
While in HepG2 cells, G1 phase cells showed no significant change,
and the S phase showed a decreased trend with CR treatment. This
might be caused by the specificity of different cancer cells and drug
incubation time. Therefore, all the analyses and experiments
indicated that CR could induce the G2/M arrest by suppressing
the PLK1/CDK1/Cyclin B axis, and ultimately inhibiting cancer cell
growth (Figure 11).

Cinnamaldehyde is considered to be the characteristic component
of CR and has been extensively studied in various diseases. Kim et al.
demonstrated that cinnamaldehyde could induce autophagic gastric
cell death via endoplasmic reticulum stress (Kim, 2022).
Cinnamaldehyde has also been proven to inhibit cell growth and
promote cell apoptosis in MDA-MB-231 (Liu et al., 2020c). A study
on the transcriptome analysis of cinnamaldehyde in non-small cell
lung cancer showed that cinnamaldehyde could inhibit cancer cells
growth both in vitro and in vivo (Chen et al., 2020). In our study,
UPLC-MS/MS analysis identified cinnamaldehyde from the CR
granules. Therefore, we hypothesized that cinnamaldehyde might
be the potential active compound which play core inhibitory
effects in different cell line. However, this hypothesis needs
experiments to validate, which will be included in our future study.

In summary, this study utilized transcriptomic analysis and
cellular experiments to investigate the inhibitory effects of CR
treatment on ten cancer cell lines. For the first time, we
demonstrated that CR treatment could inhibit cancer cell growth
by inhibiting the PLK1/CDK1/Cyclin B axis across ten cancer cell
lines based on gene expression profile analysis. We used integrated
data analysis methods, including DEG analysis, GSEA analysis, and
compound target genes analysis, to explore the mechanism of action
of CR, which can work as a template for TCM research. In future
studies, we will expand the number of cell lines and TCM and use
computational modeling techniques (machine learning and deep
learning) combined with experiments to clarify the TCM function.
Therefore, gene expression profiles in responses to TCM will
significantly accelerate the modernization of TCM and provide
clues for treating complex diseases.

Data availability statement

The data presented in the study are deposited in the GEO
repository, accession number GSE226982 (Available at: https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE226982).

Author contributions

Conceptualization, JL and H-YH; software, YT and HZ;
validation, JL; formal analysis, JL; writing-original draft
preparation, JL; writing—review and editing, HZ, and Y-C-DL;
visualization, JL; supervision, Y-C-D-L; project administration,
H-YH; funding acquisition, H-DH. All authors have read and
agreed to the published version of the manuscript.

Funding

This work is supported by the Warshel Institute for
Computational Biology funding from Shenzhen City and
Longgang District; Shenzhen-Hong Kong Cooperation Zone for
Technology and Innovation (HZQB-KCZYB-2020056, P2-2022-
HDH-001-A); National Natural Science Foundation of China
(No. 32070674); Guangdong Young Scholar Development Fund
of Shenzhen Ganghong Group Co., Ltd. (2021E0005, 2022E0035);
Key Program of Guangdong Basic and Applied Basic Research Fund
(Guangdong–Shenzhen Joint Fund) (2020B1515120069).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fphar.2023.1121799/
full#supplementary-material

References

Abraham, R. T. (2001). Cell cycle checkpoint signaling through the ATM and ATR
kinases. Genes Dev. 15 (17), 2177–2196. doi:10.1101/gad.914401

Alhamdoosh, M., Ng, M.,Wilson, N. J., Sheridan, J. M., Huynh, H., Wilson, M. J., et al.
(2017). Combining multiple tools outperforms individual methods in gene set
enrichment analyses. Bioinformatics 33 (3), 414–424. doi:10.1093/bioinformatics/
btw623

Barretina, J., Caponigro, G., Stransky, N., Venkatesan, K., Margolin, A. A., Kim, S.,
et al. (2012). The Cancer Cell Line Encyclopedia enables predictive modelling of
anticancer drug sensitivity. Nature 483 (7391), 603–607. doi:10.1038/nature11003

Chakraborty, P. (2018). Herbal genomics as tools for dissecting new metabolic
pathways of unexplored medicinal plants and drug discovery. Biochim. Open 6,
9–16. doi:10.1016/j.biopen.2017.12.003

Chen, R., Wu, J., Lu, C., Yan, T., Qian, Y., Shen, H., et al. (2020). Systematic
transcriptome analysis reveals the inhibitory function of cinnamaldehyde in non-
small cell lung cancer. Front. Pharmacol. 11, 611060. doi:10.3389/fphar.2020.
611060

Consortium, I. T. P.-C. A. o. W. G. (2020). Pan-cancer analysis of whole genomes.
Nature 578 (7793), 82–93. doi:10.1038/s41586-020-1969-6

Fang, S., Dong, L., Liu, L., Guo, J., Zhao, L., Zhang, J., et al. (2020). Herb: A high-
throughput experiment- and reference-guided database of traditional Chinese
medicine. Nucleic Acids Res. 49 (D1), D1197–D1206. doi:10.1093/nar/gkaa1063

Gao, J., Aksoy, B. A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S. O., et al. (2013).
Integrative analysis of complex cancer genomics and clinical profiles using the
cBioPortal. Sci. Signal 6 (269), pl1. doi:10.1126/scisignal.2004088

Frontiers in Pharmacology frontiersin.org14

Li et al. 10.3389/fphar.2023.1121799

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE226982
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE226982
https://www.frontiersin.org/articles/10.3389/fphar.2023.1121799/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphar.2023.1121799/full#supplementary-material
https://doi.org/10.1101/gad.914401
https://doi.org/10.1093/bioinformatics/btw623
https://doi.org/10.1093/bioinformatics/btw623
https://doi.org/10.1038/nature11003
https://doi.org/10.1016/j.biopen.2017.12.003
https://doi.org/10.3389/fphar.2020.611060
https://doi.org/10.3389/fphar.2020.611060
https://doi.org/10.1038/s41586-020-1969-6
https://doi.org/10.1093/nar/gkaa1063
https://doi.org/10.1126/scisignal.2004088
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1121799


Gao, X., Wang, Y., Li, Y., Wang, Y., Yan, M., Sun, H., et al. (2019). Huganpian, a
traditional Chinese medicine, inhibits liver cancer growth in vitro and in vivo by
inducing autophagy and cell cycle arrest. Biomed. Pharmacother. 120, 109469. doi:10.
1016/j.biopha.2019.109469

Ge, S. X., Son, E. W., and Yao, R. (2018). iDEP: an integrated web application for
differential expression and pathway analysis of RNA-Seq data. BMC Bioinforma. 19 (1),
534. doi:10.1186/s12859-018-2486-6

Helgason, C. D., and Miller, C. L. (2005). Basic cell culture protocols. Totowa, NJ:
Humana Press.

Hnit, S. S. T., Yao, M., Xie, C., Ge, G., Bi, L., Jin, S., et al. (2020). Transcriptional
regulation of G(2)/M regulatory proteins and perturbation of G(2)/M Cell cycle
transition by a traditional Chinese medicine recipe. J. Ethnopharmacol. 251, 112526.
doi:10.1016/j.jep.2019.112526

Hochegger, H., Takeda, S., and Hunt, T. (2008). Cyclin-dependent kinases and cell-
cycle transitions: Does one fit all? Nat. Rev. Mol. Cell Biol. 9 (11), 910–916. doi:10.1038/
nrm2510

Hsiao, W. L., and Liu, L. (2010). The role of traditional Chinese herbal medicines in
cancer therapy--from TCM theory to mechanistic insights. Planta Med. 76 (11),
1118–1131. doi:10.1055/s-0030-1250186

Hu, S., Xu, Y., Meng, L., Huang, L., and Sun, H. (2018). Curcumin inhibits
proliferation and promotes apoptosis of breast cancer cells. Exp. Ther. Med. 16 (2),
1266–1272. doi:10.3892/etm.2018.6345

Iwata, M., Yuan, L., Zhao, Q., Tabei, Y., Berenger, F., Sawada, R., et al. (2019).
Predicting drug-induced transcriptome responses of a wide range of human cell lines by
a novel tensor-train decomposition algorithm. Bioinformatics 35 (14), i191–i199. doi:10.
1093/bioinformatics/btz313

Kim, T. W. (2022). Cinnamaldehyde induces autophagy-mediated cell death through
ER stress and epigenetic modification in gastric cancer cells. Acta Pharmacol. Sin. 43 (3),
712–723. doi:10.1038/s41401-021-00672-x

Kurien, B. T., and Scofield, R. H. (2015). “Western blotting: An introduction,” in
Western blotting: Methods and protocols. Editors B. T. Kurien and R. H. Scofield (New
York, NY: Springer New York), 17–30.

Kwon, O. S., Kim,W., Cha, H. J., and Lee, H. (2019). In silico drug repositioning: From
large-scale transcriptome data to therapeutics. Arch. Pharm. Res. 42 (10), 879–889.
doi:10.1007/s12272-019-01176-3

Lamb, J., Crawford, E. D., Peck, D., Modell, J. W., Blat, I. C., Wrobel, M. J., et al.
(2006). The connectivity Map: Using gene-expression signatures to connect small
molecules, genes, and disease. Science 313 (5795), 1929–1935. doi:10.1126/science.
1132939

Li, T., Fan, J., Wang, B., Traugh, N., Chen, Q., Liu, J. S., et al. (2017). Timer: A web
server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res. 77
(21), e108–e110. doi:10.1158/0008-5472.CAN-17-0307

Li, Y., Liu, X., Du, A., Zhu, X., and Yu, B. (2019). miR-203 accelerates apoptosis and
inflammation induced by LPS via targeting NFIL3 in cardiomyocytes. J. Cell Biochem.
120 (4), 6605–6613. doi:10.1002/jcb.27955

Liu, J., Zhang, Q., Li, R. L., Wei, S. J., Huang, C. Y., Gao, Y. X., et al. (2020a). The
traditional uses, phytochemistry, pharmacology and toxicology of Cinnamomi ramulus:
A review. J. Pharm. Pharmacol. 72 (3), 319–342. doi:10.1111/jphp.13189

Liu, K., Zheng, M., Lu, R., Du, J., Zhao, Q., Li, Z., et al. (2020b). The role of CDC25C in
cell cycle regulation and clinical cancer therapy: A systematic review. Cancer Cell Int. 20
(1), 213. doi:10.1186/s12935-020-01304-w

Liu, Y., An, T., Wan, D., Yu, B., Fan, Y., and Pei, X. (2020c). Targets and
mechanism used by cinnamaldehyde, the main active ingredient in cinnamon, in
the treatment of breast cancer. Front. Pharmacol. 11, 582719. doi:10.3389/fphar.
2020.582719

Liu, Z., Guo, F., Wang, Y., Li, C., Zhang, X., Li, H., et al. (2016). BATMAN-TCM: A
bioinformatics analysis tool for molecular mechANism of traditional Chinese medicine.
Sci. Rep. 6 (1), 21146. doi:10.1038/srep21146

Lopez-Camarillo, C. (2013). Oncogenomics and cancer proteomics - novel approaches
in biomarkers discovery and therapeutic targets in cancer. Rijeka: InTech.

Luo, Z., Luo, W., Li, S., Zhao, S., Sho, T., Xu, X., et al. (2018). Reactive oxygen species
mediated placental oxidative stress, mitochondrial content, and cell cycle progression
through mitogen-activated protein kinases in intrauterine growth restricted pigs.
Reprod. Biol. 18 (4), 422–431. doi:10.1016/j.repbio.2018.09.002

Ma, Y., Sun, S., Shang, X., Keller, E. T., Chen, M., and Zhou, X. (2020). Integrative
differential expression and gene set enrichment analysis using summary statistics for
scRNA-seq studies. Nat. Commun. 11 (1), 1585. doi:10.1038/s41467-020-15298-6

Myers, J. S., von Lersner, A. K., Robbins, C. J., and Sang, Q. X. (2015). Differentially
expressed genes and signature pathways of human prostate cancer. PLoS One 10 (12),
e0145322. doi:10.1371/journal.pone.0145322

Pan, B., Xia, Y., Gao, Z., Zhao, G., Wang, L., Fang, S., et al. (2022). Cinnamomi
Ramulus inhibits the growth of colon cancer cells via Akt/ERK signaling pathways.
Chin. Med. 17 (1), 36. doi:10.1186/s13020-022-00588-6

Park, G. H., Song, H. M., Park, S. B., Son, H. J., Um, Y., Kim, H. S., et al. (2018).
Cytotoxic activity of the twigs of Cinnamomum cassia through the suppression of cell
proliferation and the induction of apoptosis in human colorectal cancer cells. BMC
Complement. Altern. Med. 18 (1), 28. doi:10.1186/s12906-018-2096-x

Polaski, J. T., Udy, D. B., Escobar-Hoyos, L. F., Askan, G., Leach, S. D., Ventura, A.,
et al. (2021). The origins and consequences of UPF1 variants in pancreatic
adenosquamous carcinoma. Elife 10, e62209. doi:10.7554/eLife.62209

Ponten, F., Jirstrom, K., and Uhlen, M. (2008). The human protein atlas--a tool for
pathology. J. Pathol. 216 (4), 387–393. doi:10.1002/path.2440

Porter, L. A., and Donoghue, D. J. (2003). Cyclin B1 and CDK1: Nuclear localization
and upstream regulators. Prog. Cell Cycle Res. 5, 335–347.

Rahmatallah, Y., Emmert-Streib, F., and Glazko, G. (2014). Comparative evaluation of
gene set analysis approaches for RNA-Seq data. BMC Bioinforma. 15 (1), 397. doi:10.
1186/s12859-014-0397-8

Rather, M. A., Dar, B. A., Sofi, S. N., Bhat, B. A., and Qurishi, M. A. (2016).
Foeniculum vulgare: A comprehensive review of its traditional use, phytochemistry,
pharmacology, and safety. Arabian J. Chem. 9, S1574–S1583. doi:10.1016/j.arabjc.2012.
04.011

Rhodes, D. R., Yu, J., Shanker, K., Deshpande, N., Varambally, R., Ghosh, D., et al.
(2004). Oncomine: A cancer microarray database and integrated data-mining platform.
Neoplasia 6 (1), 1–6. doi:10.1016/s1476-5586(04)80047-2

Ru, J., Li, P., Wang, J., Zhou, W., Li, B., Huang, C., et al. (2014). Tcmsp: A database of
systems pharmacology for drug discovery from herbal medicines. J. Cheminform 6 (1),
13. doi:10.1186/1758-2946-6-13

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M.
A., et al. (2005). Gene set enrichment analysis: A knowledge-based approach for
interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 102
(43), 15545–15550. doi:10.1073/pnas.0506580102

Tang, Z., Li, C., Kang, B., Gao, G., Li, C., and Zhang, Z. (2017). Gepia: A web server for
cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res.
45 (W1), W98–W102. doi:10.1093/nar/gkx247

Wang, S., Sun, X., An, S., Sang, F., Zhao, Y., and Yu, Z. (2021). High-Throughput
identification of organic compounds from polygoni multiflori radix praeparata
(zhiheshouwu) by UHPLC-Q-exactive orbitrap-MS. Molecules 26 (13), 3977. doi:10.
3390/molecules26133977

Wang, T., Wu, X., Al Rudaisat, M., Song, Y., and Cheng, H. (2020). Curcumin induces
G2/M arrest and triggers autophagy, ROS generation and cell senescence in cervical
cancer cells. J. Cancer 11 (22), 6704–6715. doi:10.7150/jca.45176

Williams, G. H., and Stoeber, K. (2012). The cell cycle and cancer. J. Pathol. 226 (2),
352–364. doi:10.1002/path.3022

Wu, Y., Zhang, F., Yang, K., Fang, S., Bu, D., Li, H., et al. (2018). SymMap: An
integrative database of traditional Chinese medicine enhanced by symptom mapping.
Nucleic Acids Res. 47 (D1), D1110–D1117. doi:10.1093/nar/gky1021

Xu, H.-Y., Zhang, Y.-Q., Liu, Z.-M., Chen, T., Lv, C.-Y., Tang, S.-H., et al. (2018).
Etcm: An encyclopaedia of traditional Chinese medicine. Nucleic Acids Res. 47 (D1),
D976–D982. doi:10.1093/nar/gky987

Xu, X., Zhang, Y., Qu, D., Jiang, T., and Li, S. (2011). Osthole induces G2/M arrest and
apoptosis in lung cancer A549 cells by modulating PI3K/Akt pathway. J. Exp. Clin.
Cancer Res. 30 (1), 33. doi:10.1186/1756-9966-30-33

Xu, Z., Zhang, F., Zhu, Y., Liu, F., Chen, X., Wei, L., et al. (2019a). Traditional Chinese
medicine Ze-Qi-Tang formula inhibit growth of non-small-cell lung cancer cells
through the p53 pathway. J. Ethnopharmacol. 234, 180–188. doi:10.1016/j.jep.2019.
01.007

Xu, Z., Zhang, F., Zhu, Y., Liu, F., Chen, X., Wei, L., et al. (2019b). Traditional Chinese
medicine Ze-Qi-Tang formula inhibit growth of non-small-cell lung cancer cells
through the p53 pathway. J. Ethnopharmacol. 234, 180–188. doi:10.1016/j.jep.2019.
01.007

Yang, X., Kui, L., Tang, M., Li, D., Wei, K., Chen, W., et al. (2020). High-Throughput
transcriptome profiling in drug and biomarker discovery. Front. Genet. 11, 19. doi:10.
3389/fgene.2020.00019

Ye, Z., Chen, D., Zheng, R., Chen, H., Xu, T., Wang, C., et al. (2021). Curcumin
induced G2/M cycle arrest in SK-N-SH neuroblastoma cells through the ROS-mediated
p53 signaling pathway. J. Food Biochem. 45 (9), e13888. doi:10.1111/jfbc.13888

Zhang, L., Tao, X., Fu, Q., Ge, C., Li, R., Li, Z., et al. (2019). Curcumin inhibits cell
proliferation and migration in NSCLC through a synergistic effect on the TLR4/
MyD88 and EGFR pathways. Oncol. Rep. 42 (5), 1843–1855. doi:10.3892/or.2019.7278

Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A. H., Tanaseichuk, O., et al.
(2019). Metascape provides a biologist-oriented resource for the analysis of systems-
level datasets. Nat. Commun. 10 (1), 1523. doi:10.1038/s41467-019-09234-6

Zhu, F.-Y., Chen, M.-X., Ye, N.-H., Qiao, W.-M., Gao, B., Law, W.-K., et al. (2018).
Comparative performance of the BGISEQ-500 and Illumina HiSeq4000 sequencing
platforms for transcriptome analysis in plants. Plant Methods 14 (1), 69. doi:10.1186/
s13007-018-0337-0

Frontiers in Pharmacology frontiersin.org15

Li et al. 10.3389/fphar.2023.1121799

https://doi.org/10.1016/j.biopha.2019.109469
https://doi.org/10.1016/j.biopha.2019.109469
https://doi.org/10.1186/s12859-018-2486-6
https://doi.org/10.1016/j.jep.2019.112526
https://doi.org/10.1038/nrm2510
https://doi.org/10.1038/nrm2510
https://doi.org/10.1055/s-0030-1250186
https://doi.org/10.3892/etm.2018.6345
https://doi.org/10.1093/bioinformatics/btz313
https://doi.org/10.1093/bioinformatics/btz313
https://doi.org/10.1038/s41401-021-00672-x
https://doi.org/10.1007/s12272-019-01176-3
https://doi.org/10.1126/science.1132939
https://doi.org/10.1126/science.1132939
https://doi.org/10.1158/0008-5472.CAN-17-0307
https://doi.org/10.1002/jcb.27955
https://doi.org/10.1111/jphp.13189
https://doi.org/10.1186/s12935-020-01304-w
https://doi.org/10.3389/fphar.2020.582719
https://doi.org/10.3389/fphar.2020.582719
https://doi.org/10.1038/srep21146
https://doi.org/10.1016/j.repbio.2018.09.002
https://doi.org/10.1038/s41467-020-15298-6
https://doi.org/10.1371/journal.pone.0145322
https://doi.org/10.1186/s13020-022-00588-6
https://doi.org/10.1186/s12906-018-2096-x
https://doi.org/10.7554/eLife.62209
https://doi.org/10.1002/path.2440
https://doi.org/10.1186/s12859-014-0397-8
https://doi.org/10.1186/s12859-014-0397-8
https://doi.org/10.1016/j.arabjc.2012.04.011
https://doi.org/10.1016/j.arabjc.2012.04.011
https://doi.org/10.1016/s1476-5586(04)80047-2
https://doi.org/10.1186/1758-2946-6-13
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1093/nar/gkx247
https://doi.org/10.3390/molecules26133977
https://doi.org/10.3390/molecules26133977
https://doi.org/10.7150/jca.45176
https://doi.org/10.1002/path.3022
https://doi.org/10.1093/nar/gky1021
https://doi.org/10.1093/nar/gky987
https://doi.org/10.1186/1756-9966-30-33
https://doi.org/10.1016/j.jep.2019.01.007
https://doi.org/10.1016/j.jep.2019.01.007
https://doi.org/10.1016/j.jep.2019.01.007
https://doi.org/10.1016/j.jep.2019.01.007
https://doi.org/10.3389/fgene.2020.00019
https://doi.org/10.3389/fgene.2020.00019
https://doi.org/10.1111/jfbc.13888
https://doi.org/10.3892/or.2019.7278
https://doi.org/10.1038/s41467-019-09234-6
https://doi.org/10.1186/s13007-018-0337-0
https://doi.org/10.1186/s13007-018-0337-0
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1121799

	Cinnamomi ramulus inhibits cancer cells growth by inducing G2/M arrest
	1 Introduction
	2 Materials and methods
	2.1 UPLC-MS/MS analysis of CR granules
	2.2 Cell culture
	2.3 CCK8 assay
	2.4 CR gene targets identification
	2.5 RNA extraction and next-generation sequencing
	2.6 Transcriptome analysis and prognostic analysis
	2.7 Quantitative real-time PCR (qPCR) assay
	2.8 Western blotting
	2.9 Cell cycle analysis
	2.10 Statistical analysis

	3 Results
	3.1 CR might be closely related to various cancers and cancer-related pathways
	3.2 Differentially expressed genes analysis across ten cancer cell lines treated with CR
	3.3 Gene set enrichment analysis of the transcriptomic data
	3.4 Identification of hub genes related to cell cycle pathway
	3.5 Clinical significance and prognosis value of hub genes
	3.6 CR inhibited the expression of hub genes in three chosen cancer cell lines
	3.7 CR induced the G2/M phase arrest

	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


