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Menthol, a widely used natural, active compound, has recently been shown to
have anticancer activity. Moreover, it has been found to have a promising future in
the treatment of various solid tumors. Therefore, using literature from PubMed,
EMBASE, Web of Science, Ovid, ScienceDirect, and China National Knowledge
Infrastructure databases, the present study reviewed the anticancer activity of
menthol and the underlying mechanism. Menthol has a good safety profile and
exerts its anticancer activity via multiple pathways and targets. As a result, it has
gained popularity for significantly inhibiting different types of cancer cells by
various mechanisms such as induction of apoptosis, cell cycle arrest, disruption of
tubulin polymerization, and inhibition of tumor angiogenesis. Owing to the
excellent anticancer activity menthol has demonstrated, further research is
warranted for developing it as a novel anticancer agent. However, there are
limitations and gaps in the current research on menthol, and its antitumor
mechanism has not been completely elucidated. It is expected that more basic
experimental and clinical studies focusing on menthol and its derivatives will
eventually help in its clinical application as a novel anticancer agent.
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1 Introduction

Cancer is one of the major health conditions that negatively impact human life and health,
and its incidence is increasing annually. According to the Cancer Surveillance Branch at the
International Agency for Research on Cancer, an estimated 19.3 million people worldwide
were newly diagnosed with cancer, with 10 million cancer-related deaths in 2020. In addition,
the risk of developing cancer in a lifetime (before 75 years) is 20%, with the risk of dying from
cancer being 10% (Ferlay et al., 2021). This means that approximately 20,000 out of
100,000 people will get cancer in their lifetime, and 10,000 of them will die. Currently,
surgery, radiotherapy, immunotherapy, and targeted therapy are the primary modalities for
treating cancer. However, these available treatments cannot completely treat or eliminate
cancer and are associated with considerable toxic side effects, sequelae. More importantly, the
economic burden of cancer is profound on both patients and their families. Altice et al.
reported that in the United States, the direct cost of oncology treatment ranges from $316 to
$741 per month, with 12%–64% of survivors facing debt due to treatment expenses, 47%–49%
experiencing financial hardship, and 4%–45% discontinuing treatment owing to high cost
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(Altice et al., 2016). In addition, the financial losses incurred by
patients’ families owing to patient care and treatment are becoming a
social issue of concern (Alzehr et al., 2022). Chemotherapy,
immunotherapy, gene therapy, and radiation therapy are the
mainstay of cancer treatment (Malik et al., 2021). However, these
are associated with low cure rates, prohibitive costs, and numerous
residual effects. Owing to these limitations of the existing treatment
options, researchers have been constantly searching for new
therapeutic strategies. Natural phytochemicals have been proven to
play a key role in the prevention and treatment of diseases, especially
various types of cancer. Paclitaxel is one such natural phytochemical
that has been successfully used as an anticancer drug. Thus, owing to
their rich biological origin and safety, an increasing number of
researchers have been attempting to synthesize novel anticancer
drugs from natural products. From 1981 to 2019, 1,881 natural
phytochemicals, including 247 anticancer drugs, were approved for
therapeutic purposes, and the number continues to increase (Newman
and Cragg, 2020). Among these natural products, monoterpenes offer
distinct advantages in cancer treatment (Zielińska-Błajet et al., 2021).

Menthol (5-methyl-2-propan-2-ylcyclohexan-1-ol), also known
as mint camphor, is a cyclic monoterpene alcohol derived mainly
from mint and aromatic plants, such as Nepeta nuda L. and those
belonging to the genera SennaMill. And Ephedra L. It is commonly
used in food and healthcare products (Cohen et al., 2020). Menthol
possesses three stereo genic centers and thus has four pairs of optical
isomers (+)- and (−)-menthol, (+)- and (−)-neomenthol, (+)- and

(−)-neoisomenthol, and (+)- and (−)-isomenthol (Gpp et al., 2013;
Zielińska-Błajet et al., 2021). The most common, naturally found
isomer of menthol found is (−)-menthol (L-menthol), with 1R, 3R,
4S configuration. At room temperature (25°C), menthol is a white or
colorless, flaky, solid, crystalline substance, with a density of
0.890 kg/dm3 and a melting point of 41°C−44°C depending on its
purity. Menthol is not entirely soluble in water (435.5 mg/L at 25°C)
but is freely soluble in alcohol, diethyl ether, and chloroform (Gpp
et al., 2013). Notice that when menthol is mentioned alone, it usually
refers to all isomers in general, or (−)-menthol (also known as
L-menthol) if mentioned for experiments, and so in this paper
(Figure 1).

Owing to its numerous biological properties, menthol is
extensively used in multiple diseases, including inflammatory
diseases (Du et al., 2020; Zhang et al., 2020), cancer (de Mesquita
et al., 2019; Zielińska-Błajet et al., 2021), pain disorders (Hilfiger
et al., 2021), respiratory disorders (Kanezaki et al., 2021),
cardiovascular diseases (Silva, 2020), and skin diseases
(Chrisman, 1978; Patel and Yosipovitch, 2010). Particularly,
in vitro experiments have revealed the anti-proliferative potential
of menthol against various tumor cell lines (Fatima et al., 2021).
Mechanistically, menthol induces apoptosis in cancer cells,
indicating its role as an anticancer agent (Beck et al., 2007)
against a variety of cancers, such as prostate cancer (Kim et al.,
2009), colon cancer (Faridi et al., 2016), skin cancer (Fatima et al.,
2021), uveal melanoma (Walcher et al., 2018), pancreatic ductal

FIGURE 1
Plant sources of menthol and isomer’s structure.
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adenocarcinoma (Cucu et al., 2014), gastric cancer (Santo et al.,
2021), liver cancer (Lin et al., 2001), leukemia (Lu et al., 2007a), and
bladder cancer (Li et al., 2009) (Figure 2). Irrespective of these data,
the anticancer properties of menthol have not been sufficiently
implemented in clinical practice. Moreover, no study has
systematically reviewed the available anticancer data on menthol.
Accordingly, the present article reviews advances in research on the
anticancer properties of menthol as well as the underlying
mechanisms in vivo and in vitro. In addition, the current
anticancer applications and limitations of menthol in clinical
practice are mentioned.

2Menthol and its selective isomers, and
the related derivatives

Natural menthol is mainly obtained from cornmint oil that is
produced by steam distillation, and the menthol content of cornmint
oil is 55%–85% (Gpp et al., 2013). Alternative methods to the
expensive and inefficient distillation of cornmint oil have been
attempted over the years, and synthesis was the first method
practiced by scientists. The synthesis steps of menthol are relatively
complex, condensation of isopentenyl diphosphate and dimethyl allyl

pyrophosphate yields the universal monoterpene precursor geranyl
diphosphate, which is then converted to (−)-limonene by cyclization.
(−)-Limonene is converted to (−)-trans-isopentenol by hydroxylation
with NADPH- and oxygen-dependent. (−)-Isothiopentenone is
formed by allylic oxidation followed by NADPH-dependent
reduction to (+)-cis-isothiopentenone. The (+)-cis-isopentanone
was isomerized to form (+)-isopentanone, a precursor of
(+)-menthofuran, (−)-menthone and (+)-isopentanone. Reduction
of these ketones gave (−)-menthol, (+)-neomenthol,
(+)-isomenthol and (+)-neoisomenthol (Croteau et al., 2005).

Due to the disadvantages of menthol’s volatility and short
duration of action, there are more researchers have started to focus
on the synthesis of menthol derivatives, such as menthyl lactate (Api
et al., 2018), menthyl acetate (Api et al., 2017), Menthone 1, 2-glycerol
ketal(FrescolatMGA), etc., Each of these derivatives builds on the
strengths of menthol by being less irritating, evaporating more slowly
or retaining their fragrance longer (Api et al., 2017; Api et al., 2018).
These early menthol derivatives were mostly used in the household
products and cosmetics industries, but as the medical value of
menthol has received more attention, scientists have come to
expect more from the derivatives. Attempts have been made to
combine menthol with other known effective groups or substances
to obtain a new compound that incorporates the advantages. For

FIGURE 2
Role of menthol in a variety of human cancers.
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instance, menthol sulfamate and menthol carbonyl sulfamate,
synthetic derivatives of sulfamate and menthol, have been shown
to have a significant positive effect on Alzheimer’s disease (Daryadel
et al., 2018).Menthol carbonates synthesized by Clemente’s teamwere
validated to have anti-parasitic activity and have the potential to be
orally active drug candidates (Clemente et al., 2022). In general,
similar to menthol itself, menthol derivatives have also been found
to have anti-cancer effects (Singh et al., 2022).

3 Mechanism underlying the anticancer
activity of menthol

Over the years, both the anticancer targets and mechanisms
underlying the anticancer activity of natural products have been
extensively studied. Menthol exerts its anticancer activity by

inducing cancer cell death via apoptosis, cell cycle arrest,
inhibiting tubulin polymerization, and cell necrosis as well as by
inhibiting tumor cell invasion, metastasis, angiogenesis, and
proliferation (Figure 3; Table1).

3.1 Effect of menthol on cell apoptosis

Apoptosis is an orchestrated cellular process that occurs in both
physiological and pathological conditions. Aberrant apoptosis is a
primary mechanism underlying the pathogenesis of many diseases,
including cancer, inwhich apoptosis occurs too infrequently resulting in
undying malignant cells. Accordingly, studies have revealed that
apoptosis can be an important target of anticancer agents (Wong,
2011). As an anticancer agent, menthol has been found to induce the
apoptosis of cancer cells via several mechanisms (Fatima et al., 2021).

FIGURE 3
Anticancer strategy of menthol.
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TABLE 1 Mechanisms underlying the anticancer activity of menthol.

Cellular, biochemical, and molecular mechanisms Diseases Cell line Isomer References

Induction of cancer cell
apoptosis

Via inhibition of hyaluronidase activity Skin cancer A431 cells Neomenthol Fatima et al. Fatima
et al. (2021)

Via inhibition of hyaluronidase activity Ehrlich ascites
carcinoma

Ehrlich ascites
carcinoma mouse
model

Neomenthol Fatima et al. Fatima
et al. (2021)

Via modulation of heat shock protein 90 and
activation of caspase3 and caspase10

Colon
adenocarcinoma

Caco-2 cells L-menthol Faridi et al. Faridi et al.
(2011)

Faridi et al. Faridi et al.
(2016)

Via stimulation of TRPM8 channels Prostate cancer LNCaP cells menthol Berk et al. Beck et al.
(2007)

In liver tumor cells Leukemia Mouse leukemia
model

(−)-menthol Lu et al. Lu et al.
(2007b)

Effect of menthol on cell
cycle arrest

Inhibition of G0/G1 phase Prostate cancer DU145 cells Menthol Wang et al.Wang et al.
(2012)

Inhibition of the G2/M phase, possibly associated with
polo-like kinase 1

Prostate cancer PC-3 cells Menthol Kim et al. Kim et al.
(2012)

Inhibition of the G2/M phase and increased sub-
diploid cells

Skin cancer A431 cells Neomenthol Fatima et al. Fatima
et al. (2021)

Effect of menthol on
tubulin polymerization

Induction of tubulin aggregation Colon
adenocarcinoma

Caco-2 cells L-menthol Faridi et al. Faridi et al.
(2011)

Faridi et al. Faridi et al.
(2016)

Inhibition of tubulin aggregation Skin cancer A431 cells Neomenthol Fatima et al. Fatima
et al. (2021)

Increase [Ca2+]i-
mediated cell death

Activation of the calcium endocytosis pathway to
increase (Ca2+)i

Prostate cancer PC-3 cells Menthol Kim et al. Kim et al.
(2009)

Grolez et al. Grolez
et al. (2019)

Asuthkar et al.

Asuthkar et al. (2015)

Reduction of store-operated channel current Prostate cancer LNCaP cells Menthol Berk et al. Beck et al.
(2007)

Thebault et al.
Thebault et al. (2005)

Release of (Ca2+)i stores Prostate cancer LNCaP cells Menthol Zhang et al. Zhang and
Barritt (2004)

Increased TRPM8-induced (Ca2+) levels Bladder cancer T24 cells Menthol Li et al. Li et al. (2009)

Increased (Ca2+)i concentration Promyelocytic
leukemia

HL60 cells Menthol Lu et al. Lu et al. (2006)

Inhibition of tumor
invasion and metastasis

Activation of TRPM8 channels to inhibit cell motility Pancreatic ductal
adenocarcinoma

Panc-1 cells Menthol Cucu et al. Cucu et al.
(2014)

Down-regulation of PTK2 to reduce cell motility Prostate cancer DU145 cells Menthol Wang et al.Wang et al.
(2012)

Down-regulation of PTK2 to reduce cell motility Prostate cancer PC-3 cells Menthol Yang et al. Yang et al.
(2009)

Zhu et al. Zhu et al.
(2011)

(Continued on following page)
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An experimental study assessed the anticancer activity of
neomenthol in the skin cancer cell line A431 and the Ehrlich
Ascites Carcinoma mouse model. The study found that
neomenthol altered hyaluronidase structure and inhibited
hyaluronidase activity, which prevented hyaluronic acid
degradation and thus induced apoptosis (Fatima et al., 2021). In
another study using Caco-2 cells, L-menthol was found to
downregulate heat shock protein 90, which is a molecular
chaperone that mediates the activation of disparate client
proteins; It additionally activated caspase3 and caspase10. These
alterations further inhibit AKT (plays a key role in multiple cellular
processes such as apoptosis)-related pathways to induce the release
of the pro-apoptotic factor BAD from the BAD and
BCL2L1 complexes (Faridi et al., 2011; Faridi et al., 2016). In
addition, another study has shown that menthol induces
apoptosis in LNCaP cells by stimulating the transient receptor
potential melastatin subtype 8 (TRPM8) channel (Beck et al.,
2007). Lu et al. found that (−)-menthol induces apoptosis in liver
tumor cells of BALB/c mice, in whom leukemia was induced using
the mouse leukemia cells WEHI-3 (Lu et al., 2007b).

3.2 Effect of menthol on cell cycle arrest

The cell cycle regulates cell growth, replication of genetic
material, and cell division. While the cell cycle is tightly
controlled in normal cells, that in tumor cells is dysregulated
owing to genetic alterations, which often results in tumors
(Malumbres and Barbacid, 2009). Therefore, individual cell cycles
and inhibition of cell cycle proteins have become targets for cancer
therapy (Suski et al., 2021).

Menthol has been found to suppress the development of cancer
cells by mediating cell cycle arrest. In the prostate cancer cell line
DU145, menthol induced G0/G1 phase cell arrest (Wang et al.,
2012). In another prostate cancer cell line, PC-3, menthol likely
altered gene expression, inhibiting the G2/M phase; In addition,
menthol may be associated with the downregulation of polo-like
kinase 1, which plays an important role in the initiation,
maintenance, and completion of mitosis (Kim et al., 2012).

Moreover, menthol retards the growth of tumor cells in the
human epidermoid carcinoma A431 cells by arresting the G2/M
phase and increasing the number of sub-diploid cells (Fatima et al.,
2021).

3.3 Effect of menthol on tubulin
polymerization

Tubulin polymerization involves the assembly of the highly
conserved a- and ß-tubulin heterodimers into dynamic
microtubules, which perform multiple important cellular
functions such as providing structural support, allowing
intracellular substance transport, and generating force for cell
division. Therefore, the degree of tubulin aggregation in cells is
highly correlated with cell morphology and division, and alteration
in this aggregation may cause cell death. Notably, tubulins are
expressed in different forms by specific genes. A few tubulins are
differentially expressed between normal and tumor cells, which
could provide a basis for the development of anticancer drugs
(Binarová and Tuszynski, 2019). Menthol has been shown to play
a role in regulating tubulin in cancer cells, providing a basis for its
use as an anticancer agent. Faridi et al. found that high
concentrations of L-menthol (IC50 = 12 mg/mL) promoted
microtubule protein polymerization, prompting cell death in
Caco-2 cells (Faridi et al., 2011). In addition to L-menthol,
neomenthol (100 μm) inhibits tubulin polymerization, thus
arresting the proliferation of A431 skin cancer cells (Fatima
et al., 2021).

3.4 Intracellular Ca2+ concentration-
mediated cell death

Calcium ions (Ca2+) are the key secondary messengers in both
excitable and non-excitable cells. There is now a large body of
research showing that intracellular Ca2+ [(Ca2+)i] fluxes are
associated with cancer progression and could be a potential
target for cancer therapy, particularly targeting tumor growth

TABLE 1 (Continued) Mechanisms underlying the anticancer activity of menthol.

Cellular, biochemical, and molecular mechanisms Diseases Cell line Isomer References

Inhibition of tumor
angiogenesis

Via activating TRPM8 to block the trans-activation of
TRPV1 by VEGF

Prostate cancer PC-3 cells Menthol Zhu G et al. Zhu et al.
(2011)

Via inhibition of angiogenesis by activating TRPM8 to
block the trans-activation of TRPV1 by VEGF

Human uveal
melanoma (UM)

UM92.1 cells Menthol Walcher et al. Walcher
et al. (2018)

Inhibition of tumor
proliferation

By interfering with the N-acetylation of 2-
aminofluorene, thus inhibiting NAT activity

Liver cancer J5 Menthol Lin et al. Lin et al.
(2001)

By promoting hematopoietic stem cell differentiation
and increasing LGALS3, ITGAM, and CD19 in blood

Leukemia Mice leukemia
models

(−)-Menthol Lu et al. Malumbres
and Barbacid (2009)

By inhibiting the expression of cyclooxygenase-2 and
proinflammatory cytokines nuclear factor kappa B,
mitogen-activated protein kinase, and extracellular
signal-regulated kinase

Skin cancer Female ICR mice Menthol Liu et al. Liu et al.
(2015)

By reducing early genotoxicity, cell proliferation, and
apoptosis induced by benzo(a)pyrene

Gastric cancer Female Swiss mice Menthol Santo et al. Santo et al.
(2021)
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and metastasis (Marchi et al., 2018; Marchi et al., 2020). In addition
to this, research has demonstrated the involvement of Ca2+ in cell
death (Marchi et al., 2018) as well as in the necrotic process of cancer
cells (Danese et al., 2021). Menthol has been reported to induce cell
necrosis primarily by upregulating (Ca2+)i within cancer cells via
TRPM8, a non-selective, multimodal ion channel, activated at low
temperatures (<28°C), pressure, and cooling compounds (e.g.,
menthol and icilin). Menthol additionally increases (Ca2+)i
concentration in other ways, which are still unclear (Kim et al.,
2009).

In the prostate cancer cell line PC-3, menthol increases (Ca2+)i
concentration and induces cell death by activating the calcium influx
pathway and other unclear channels (Kim et al., 2009; Asuthkar et al.,
2015; Grolez et al., 2019). Similarly, in LNCaP cells (lymph node-
derived prostate cancer cells), menthol induces cell death by reducing
store-operated channel current (Thebault et al., 2005; Beck et al., 2007),
thus releasing the small amount of calcium stored in the cell (Zhang and
Barritt, 2004). Menthol can induce a dose-dependent increase in (Ca2+)i
through TRPM8, resulting in the death of T24 cells (human bladder
cancer cells) (Li et al., 2009). In HL60 (human promyelocytic leukemia)
cells, menthol was found to increase (Ca2+)i concentration, thus
inducing necrosis (Lu et al., 2006).

3.5 Inhibition of tumor invasion and
metastasis

Metastatic cancer is responsible for a vast majority of cancer-
related deaths and is extremely difficult to treat. Intrinsic factors
both in the tumor cells and the host contribute to tumor metastasis;
thus, inhibiting metastasis involves the alteration of key pathways in
multiple stages of tumor progression. In addition, scientists believe
that motility is a key driver of metastasis and may be used as a target
for the development of anticancer treatment and prevention of
metastasis (Stoletov et al., 2020). Menthol has been found to
impede tumor cell motility (Wang et al., 2012). In Panc-1 cells
(pancreatic ductal adenocarcinoma cells), menthol was found to
significantly reduce cell motility and motility by activating
TRPM8 channels (Cucu et al., 2014).

Further studies have found that in DU145 and PC-3 prostate
cancer cells, menthol inhibits cell motility by inhibiting the
phosphorylation of protein tyrosine kinase 2 (PTK2) through the
TRMP8 pathway (Yang et al., 2009; Zhu et al., 2011; Wang et al.,
2012). PTK2 is a non-receptor tyrosine kinase that is considered to
play a key role in tumor cell migration, invasion, and metastasis (Lee
et al., 2020).

3.6 Inhibition of tumor angiogenesis

In 1971, Folkman first proposed that angiogenesis is essential for
the development and growth of solid tumors beyond the size of
1–2 mm (Folkman, 1971). Since then, treatments targeting
angiogenesis have been considered a promising therapeutic
approach for solid tumors and have been focused on by various
research groups after experimental validation by several research
teams (Li et al., 2018). Accordingly, researchers have focused on the
anti-tumorigenic activity of menthol.

Vascular endothelial growth factor (VEGF) is one of the most
potent and specific angiogenic factors that is closely associated with
tumor progression (Carmeliet, 2005). Zhu andWalcher’s et al. found
that in uveal melanoma UM92.1 cells and PC-3 cells, menthol can
block the trans-activation of transient receptor potential vanilloid 1
(TRPV1;) by activating TRPM8, which further inhibits VEGF-
induced angiogenesis (Zhu et al., 2011; Walcher et al., 2018).

3.7 Inhibition of tumor proliferation

In addition to the aforementioned six anti-cancer mechanisms,
menthol can inhibit the proliferation of cancer cells by other
mechanisms, such as by antagonizing cancer inducers.

In human liver cancer cells (J5), menthol was found to down
regulate the N-acetylation of 2-aminofluorene by inhibiting
N-acetyltransferase (NAT) activity in a dose-dependent manner
(Lin et al., 2001). NAT has been reported to play a role in
carcinogenesis induced by a few chemicals (Grant et al., 1991;
Minchin et al., 1992). Another study demonstrated that menthol
induces cytotoxicity in WEHI-3 cells in a dose-dependent manner.
In BALB/c mice with leukemia (induced by WEHI-3 cells), menthol
inhibited liver and spleen enlargement; increased the number of
megakaryocytes in the spleen; and increased the blood levels of
LGALS3, integrin alpha M, and CD19 antigen. This implies that
menthol inhibits tumor development and promotes hematopoietic
stem cell differentiation (Lu et al., 2007b).

In female ICR mice with skin cancer (induced by 9, 10-
dimethylbenz[a]anthracene/12-O-tetradecanoylphorbol-13-
acetate), menthol could inhibit tumor formation and growth in a
dose-dependent manner, reducing tumor incidence and volume.
Mechanistically, menthol inhibits the expression of cyclooxygenase-
2 and proinflammatory cytokine nuclear factor kappa B, mitogen-
activated protein kinase protein, and extracellular signal-regulated
kinase, resulting in an anti-tumor effect (Liu et al., 2015). In mice,
menthol demonstrated an obvious inhibitory effect on
azoxymethane/dextran sulfate sodium-induced colon cancer. In
another study, female Swiss mice were administered benzo(a)
pyrene to induce cancer. Treatment with menthol (50 mg/kg of
body weight, twice a week) at the initial stage of benzo(a)pyrene
administration showed a reduced incidence of precancerous gastric
lesions owing to reduced genotoxicity, reduced cell proliferation,
and regulated apoptosis (Santo et al., 2021).

4 Critical considerations

Despite the vast evidence regarding menthol’s anticancer
activity, not many human clinical trials have been conducted for
this agent. Therefore, researchers are currently looking at more
anticancer potentials of menthol from following perspectives.

4.1 Synergistic interactions of menthol with
other treatments

Many natural products have synergistic effects with other listed
anticancer drugs. The main advantage of combined therapy is
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reducing the dose and toxicity of chemotherapy while maintaining
or even increasing its efficacy. Several studies have explored the
advantages of combining natural compounds with classical
chemotherapeutic drugs (Chen et al., 2022).

For example, menthol has been found to reduce the resistance of
human hepatocellular carcinoma HepG2 cells to the anticancer
drugs paclitaxel and vincristine by inhibiting the expression of
cytochrome P450 family 3 subfamily A member 4 (CYP3A4),
thus preventing cancer. Reportedly, CYP3A4 is implicated in the
metabolism of anticancer drugs. The induction of CYP3A4 increases
the metabolism of paclitaxel and vincristine, thus reducing response
and eventually conferring resistance against these anticancer drugs
(Yao et al., 2000; Martínez et al., 2002; Nagai et al., 2019). In
addition, studies have shown that some natural compounds, such
as menthol, combine with non-toxic digitalis glycosides to enhance
cytotoxicity and inhibit cancer cells proliferation by downregulating
the expression of ATP binding cassette subfamily B member 1
(ABCB1) (Eid et al., 2012; Eid et al., 2013).

It is worth mentioning that menthol can reduce the incidence of
microadenomas by increasing the concentration of butyric acid in
the feces of AD mice and increasing the abundance of bacteria. This
reduces intestinal inflammation and inhibits colon cancer cell
proliferation (Luo et al., 2021).

These studies provide a new perspective on the use of menthol in
combination anticancer therapy. Although reports on the synergistic
effects of menthol with other drugs are currently limited to those

mentioned above, more potential anticancer options are waiting to
be explored.

4.2 Clinical application

As with many natural products, clinical evidence on menthol
remains scarce. However, we have found that menthol continues to
play an important role in some anticancer therapies (Figure 4).

Long-term treatment-related neuropathic pain due to
chemotherapy-induced peripheral neuropathy (CIPN) or surgical
scars is increasingly affecting the lives of patients with cancer
(Cavaletti et al., 2011). A clinical study has found that the
menthol receptor TRPM8 plays a role in relieving pain and may
be a promising target in CIPN treatment (Singh et al., 2021).
Menthol has long been used as a topical pain reliever, and
modern studies have shown that it can be used as an alternative
to opioid analgesics for relieving local pain (Finch and Drummond,
2015; Pergolizzi et al., 2018). Fallon et al. evaluated changes in pain
after topical treatment with 1% menthol cream in 51 patients with
CIPN (35/51) or scar pain due to cancer (10/51). They found that
82% (31/38) patients showed improvement in median pain scores
[from 47 (interquartile range: 30–64) to 34 (6–59), p < 0.001] (Fallon
et al., 2015). In another study, Cortellini et al. reported improvement
in CIPN in a male patient following treatment with an aqueous
menthol emulsion (Cortellini et al., 2017). These reports suggest that

FIGURE 4
Clinical application of menthol.
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the topical use of menthol has the potential as a new analgesic in
cancer-related neuropathic pain.

In addition to pain, menthol plays a special role in other cancer
residual effects. For example, in an animal study of head and neck
cancer, Sanz et al. used an Orabase® platform-loading Transcutol®

(10%) and menthol (5%) for the buccal vehiculation of doxorubicin
(DOX). Comparison with no menthol loading, this increased the
residue of DOX in animal mucosa which helped better relieve oral
mucositis-related pain following radiotherapy and chemotherapy
(Sanz et al., 2017). Tourlaki et al. assessed the effect of using a
detergent containing dihydroavenanthramide D 5% + 1% menthol
moisturizer daily. They found that the intervention improved
chronic pruritus associated with xerosis in elderly adults with
Kaposi’s sarcoma (Tourlaki et al., 2020).

Previous animal studies have shown that menthol can inhibit
calcium influx and potassium depolarization, resulting in reduced
calcium uptake (Hawthorn et al., 1988; Hills and Aaronson, 1991;
Amato et al., 2014), which relaxes gastrointestinal smooth muscles
(Kim et al., 2016). In addition, a few studies have described the
efficacy and safety of menthol in clinical practice (Alammar et al.,
2019; Ford et al., 2008; Pittler and Ernst, 1998; Li et al., 2019;
National Collaborating Centre for Nursing and Supportive Care
(UK), 2008). Moreover, accumulating evidence from clinical trials
has shown that directly spraying L-menthol onto the gastrointestinal
mucosa significantly improves spasms; it also improves the adenoma
detection rate (ADR) during an endoscopic procedure (You et al.,
2020). In 2011, a study proposed that during upper gastrointestinal
endoscopy, direct endoscopic spraying of L-menthol inhibits gastric
peristalsis with almost no adverse reactions (Hiki et al., 2011a; Hiki
et al., 2011b). Since then, more research has been conducted in this
regard to validate the use of L-menthol in therapeutic endoscopies,
such as endoscopic submucosal dissection of gastric tumors
(Fujishiro et al., 2014; Ishiyama et al., 2021). In addition, during
endoscopic surgery, L-menthol was found to effectively inhibit
gastrointestinal motility, thus improve the ADR (Inoue et al.,
2014; Inoue et al., 2020) and endoscopic imaging in early gastric
cancer (Kikuchi et al., 2021). However, other researchers have
pointed out that L-menthol could indeed alleviate adverse
reactions such as gastrointestinal peristalsis and even spasm
during endoscopy. Thus, the correlation between L-menthol and
ADR requires further investigation (Shah et al., 2019; Aziz et al.,
2020; You et al., 2020).

Recently, the timely use of menthol in some cancer treatments,
such as photothermal therapy (PTT) and radiofrequency, has been
found to improve treatment outcomes. Mechanistically, L-menthol-
mediated heating triggers a tri-phase transition that produces
continuous gas microbubbles, aiding drug release and enhanced
ultrasound imaging (Zhang et al., 2016a; Zhang et al., 2016b; Feng
et al., 2017; Ma et al., 2019; Shi et al., 2019; Yang et al., 2019; Zhang
et al., 2019; Xu et al., 2020; Li et al., 2021). In addition, menthol is
highly permeable, allowing it to deliver drugs to tumor lesions faster
and more efficiently in nanotechnology applications (Liang et al.,
2018; Gao et al., 2019; Liang et al., 2019; Otake et al., 2021). In one
such application, gold nanoshell cerasome-encapsulated L-menthol
(GNC-LM) has been shown to greatly prolong the ultrasound
imaging time in vivo with good contrast enhancement, via the
continuous release of gas microbubbles (Guan et al., 2019).
Meanwhile, PTT based on the GNC-LM system could effectively

ablate tumors, indicating the potential use of GNC-LM as a
therapeutic nanoprobe for ultrasound imaging and in PTT (Guan
et al., 2019). For glioma treatment, menthol-modified casein
nanoparticles encapsulating anti-cancer drugs showed deeper
tumor penetration and higher brain tumor distribution than
unmodified nanoparticles. Thus, menthol excelled in overcoming
the concern of blood-brain barrier permeability (Gao et al., 2019;
Liang et al., 2019).

Although menthol is a promising anticancer drug, it needs to be
further developed based on its pharmacological activity. In addition,
studies on menthol, such as those related to its pharmacokinetic
properties, toxicity, and bioavailability, are crucial and can provide a
scientific and theoretical basis for its clinical application. Thus,
studies on toxicity, combination therapy, and clinical application
of menthol should be the focus of future research.

4.3 Limitations and controversies

Menthol has been demonstrated to have considerable anticancer
activity but has been greatly restricted in clinical use because of its
poorly defined toxic side effects and pharmacokinetics, in addition
to other shortcomings. Despite extensive research on the role and
use of menthol in the prevention and treatment of cancer, only a few
studies have assessed its toxicity and pharmacokinetics. We collected
the toxicity and pharmacokinetics reports of menthol from the
literature, which can provide useful data for further research and
development of new drugs containing menthol. Overdose of
menthol administered orally (lethal dose: 50–150 mg/kg) has
been known to cause convulsions, agitation, dizziness, ataxia, and
coma (Opdyke, 1976). Reportedly, the median lethal dose (LD50) of
L-menthol administered to mice via oral gavage is 3.4 g/kg, whereas
the LD50 of L-menthol administered intradermally to rabbits is >
5 g/kg (Bhatia et al., 2008). Currently, no acute toxicity studies of
menthol in humans have been reported. However, animal studies
have shown that excessive use of L-menthol results in euphoria,
coma, convulsions, and alterations in the liver and kidneys, but most
of these symptoms disappear after discontinuing the agent for a
while (Bhatia et al., 2008). Particularly, a study reported the case of
an 86-year-old American who had been receiving a menthol-based
cough suppressant for 20 years. At presentation, he was in a coma
and had ataxia, recurrent oral ulcers, intermittent diarrhea, chronic
dizziness, heartburn, macular skin, oliguria, and dark brown urine.
However, all these symptoms disappeared after 6 months of
discontinuing the cough suppressant and while receiving
alternate treatment (Baibars et al., 2012). Two cases of patients
presenting with coma shock possibly due to an overdose of
peppermint oil were reported in India. One patient improved
after hospitalization (Nath et al., 2012). However, the other
patient experienced recurrent convulsions and intermittent
hematuria and died after 10 days of persistent coma under
hospital care (Kumar et al., 2016). Pharmacokinetic studies in
humans have revealed that L-menthol (100-mg capsules) has an
area under the curve of 1,214 μmol/L·min/L and a plasma half-life of
56 ± 8 min (range: 45–74 min). In addition, the peak blood
concentration (Cmax) of menthol was 16.73 ± 5.53 μmol/L (range:
7.95–29.10 μmol/L), and the time to reach Cmax was 61 ± 26 min
(range: 30–120 min) (Gelal et al., 1999). In rats, the half-life of
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inhaled and intravenously administered L-menthol was 8.53 and
6.69 h, respectively. The peak blood concentration was noted at 1.0 h
after inhalation, with an absolute lung bioavailability of 50.24%
(Feng et al., 2019). These data suggest that menthol is rapidly
metabolized.

Studies have reported increased (Ca2+)i, following menthol
treatment in DBTRG cells by activating TRPM8 channels. This
would further activate BK ion channels (large-conductance Ca2+-
activated K+ channels) to promote tumor cell migration and
accelerate tumor metastasis (Wondergem et al., 2008;
Wondergem and Bartley, 2009). In HSC3 and HSC4 cells (oral
squamous cell carcinoma cell line), menthol enhances the migration
and invasion of tumor cells by inducing the activity of matrix
metalloproteinase-9 (Okamoto et al., 2012). A study
demonstrated that pretreatment with menthol reduces the
cytotoxicity of DOX in HepG2 cells; This occurs via reduced
concentrations of intracellular DOX following the upregulation of
ABCB1 (Nagai et al., 2020). Owing to the beneficial effects of
menthol and following the advent of menthol cigarettes, many
people believe that smokers have been consuming more cigarettes
and that menthol cigarettes increase the chances of lung cancer.
However, a large body of research shows that smoking menthol
cigarettes do not increase the risk of lung cancer; Instead, it may
reduce the risk and post-lung cancer mortality (Richardson, 1997;
Carpenter et al., 1999; Brooks et al., 2003; Blot et al., 2011; Lee, 2011;
Rostron, 2012).

Although menthol is widely regarded as a safe and effective
anticancer agent, it is essential to monitor its toxic side effects and be
cautious when using it. Researchers should be careful about doses
when developing drugs to prevent dose-related toxicity. More
research is needed to further clarify the specific effects and
mechanisms of menthol against different cancers, to optimize its
clinical applications.

5 Conclusions and perspective

Plants have provided us with several pharmacologically active
molecules, such as artemisinin and paclitaxel. Further research and
optimization of these molecules will contribute to the betterment of
human health. The effectiveness of menthol as an anticancer agent
has been extensively documented. Mechanistically, menthol acts on
several key molecular targets and mechanisms involved in cancer
pathogenesis, indicating its potential as an anticancer agent.
Menthol mediates its anticancer activity by exerting a
combination of proliferative, invasive, and apoptotic effects on
tumor cells as well as inhibiting tumor growth through multiple
pathways. In addition to these, its low side effects makes menthol a
suitable candidate for the treatment of cancer.

Despite the potential anticancer activity of menthol, it has not
been widely used in human clinical trials. Accordingly, research in
this direction is the need of the hour. In addition, as an
underestimated anticancer agent, more studies are required to
broaden the scope of traditional uses and provide better
formulations, particularly those involving additional active
molecules, which require more extensive and interdisciplinary
efforts. Existing research has demonstrated that combining
menthol with other agents can help reduce menthol dose and

associated toxicity while maintaining or even increasing its
efficacy. In addition, menthol has proven effective in cancer
sequelae and can play a crucial adjunctive role in other
therapeutic approaches like PTT and RF.

Further in-depth studies are required regarding
pharmacokinetics in humans, toxicology, and mechanisms
underlying combination therapy. In addition, research on new
menthol-based biomaterials is required for reducing drug toxicity
and developing structurally optimized analogs. All these will further
enhance the efficacy and safety of menthol. Moreover, clinical
studies are warranted to validate preclinical studies on the
anticancer activity of menthol. This review has summarized the
anticancer activity and the underlying mechanisms of menthol as
well as its limitations and current problems. We believe that this
review can help guide the clinical application of menthol as an
anticancer drug in the future.
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