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Genomic selection (GS) plays an essential role in livestock genetic improvement
programs. In dairy cattle, the method is already a recognized tool to estimate the
breeding values of young animals and reduce generation intervals. Due to the
different breeding structures of beef cattle, the implementation of GS is still a
challenge and has been adopted to a much lesser extent than dairy cattle. This
study aimed to evaluate genotyping strategies in terms of prediction accuracy as
the first step in the implementation of GS in beef while some restrictions were
assumed for the availability of phenotypic and genomic information. For this
purpose, a multi-breed population of beef cattle was simulated by imitating the
practical system of beef cattle genetic evaluation. Four genotyping scenarios were
compared to traditional pedigree-based evaluation. Results showed an
improvement in prediction accuracy, albeit a limited number of animals being
genotyped (i.e., 3% of total animals in genetic evaluation). The comparison of
genotyping scenarios revealed that selective genotyping should be on animals
from both ancestral and younger generations. In addition, as genetic evaluation in
practice covers traits that are expressed in either sex, it is recommended that
genotyping covers animals from both sexes.
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1 Introduction

In livestock breeding programs, genomic selection (GS) is a method that uses genomic
information to estimate breeding values and rank selection candidates. GS has shaped
modern breeding programs and contributed substantially to the increase of genetic progress
for various economically important traits, especially in dairy cattle (VanRaden et al., 2009;
Meuwissen et al., 2016). The advantages of GS over traditional selection include; shorter
generation intervals, increased selection intensity, greater selection accuracies, not limited to
sex, and can be generalized to any trait that is recorded in the reference population
(Schaeffer, 2006; Aguilar et al., 2010).

Genomic selection has a high potential for improving the genetic gain in beef cattle
because reproduction, health, growth rate, meat quality, and feed efficiency are vital traits
that contribute to the profitability of this industry, which are difficult and expensive to
measure routinely (Van Eenennaam et al., 2011; Montaldo et al., 2012; Hayes et al., 2013).
However, the accuracies of genomic breeding values for economic traits in beef cattle are low
to moderate (Saatchi et al., 2011; Van Eenennaam et al., 2014). This is for two possible
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reasons: i) the reference populations that have been assembled for
beef cattle are generally smaller than those for dairy cattle, and there
are fewer sires with highly accurate progeny tests in comparison with
dairy cattle; and ii) unlike dairy cattle, where populations around the
world are dominated by just a couple of breeds, there are numerous
breeds of importance and even two subspecies (Bos taurus and B.
indicus) in the beef industry (Hayes et al., 2013).

Genomic selection in beef cattle was first performed based on
pseudo-data withmultiple-step methods, such as estimated breeding
value (EBV) or daughter yield deviation (VanRaden et al., 2009).
This method needs many animals (hundreds of thousands) to be
genotyped and have phenotypic measurements for the trait of
interest to serve as the reference population. The reference
population also needs to be updated, i.e., new animals with both
phenotype and genotype need to be added. Although the multiple-
step method is practical, it rests on several assumptions that are not
met in all situations; for instance, it is impossible to genotype all
animals. Also, the predicted accuracy using the multistep procedure
is lower when compared to single-step BLUP. Also, the large number
of breeds and crossbreds, poor extent of phenotyping, limited use of
artificial insemination, less advanced structures and breeding
programs, low number of offspring per female, incomplete
relationships between identical traits in different countries, and
limited data recording on economically important traits have
resulted in limited adoption of GS in beef cattle (Goddard, 2009;
Johnston et al., 2012; Van Eenennaam et al., 2014). Despite these
difficulties, results of applying GS have been reported in some
studies (Hayes et al., 2019; Wang et al., 2019; Zhu et al., 2019).
All studies reported the benefits of applying GS in beef cattle and
showed that GS could be a practical alternative to traditional
selection approaches. Due to the mentioned limitations, the
single-step genomic best linear unbiased prediction (ssGBLUP)
method that combines all types of information (phenotype
records, pedigree, genotypes) seems to work best in practical
genetic evaluation in beef cattle. The main benefit of this method
is that all animals in evaluation can get genomic-enhanced breeding
values, even if not all have been genotyped (Misztal et al., 2009;
Legarra et al., 2014).

Berry et al., 2016 reviewed prediction accuracy with the use of
genomic data for some traits in beef cattle. However, guidelines to
implement the method in practice are lacking. The main challenge
in the implementation of GS for a breeding organization would be
which and how many animals to be genotyped as the initial
step. Even though, the cost of genotyping is not an obstacle
nowadays, but contrary to dairy, the beef industry is much
smaller, and genetic evaluation is performed on a much smaller
scale in most countries. This is because beef production is highly
influenced by the dairy sector with calves and cattle not required
for dairy products being fattened to produce meat (Deblitz, 2008).
Smaller industries can easily translate to the fact that breed
associations and companies have much fewer resources to
spend on genotyping. In the ideal situation, there may be
possibilities to spend some funding on genotyping of the semen
sires that are in service. However, a large proportion of genotyping
costs for younger animals would be paid by the farms which
traditionally are slower adopters of technology than dairy
farmers. This could be due to a multitude of reasons, including
the lower business margin.

While genotyping of the ancestral sires in a sense that they have
contributed much more than their contemporaries to the current
generations seems logical, however, sustainable genetic gain in a
breeding scheme needs accurate selection in younger generations as
well. In addition, similar to dairy cattle, genetic progress in a
breeding scheme in beef is not only driven by bulls but also

TABLE 1 Parameters of the simulation process.

Population structure

Step 1: Historical generations (HG)

Number of generations phase 1 1,000

Size 1,000

Number of generations phase 2 200

Size 2020

Step 2: Expanded generations (EG)

Number of founder males from HG 100

Number of founder females from HG 100

Number of generations 8

Number of offspring per dam 5

Selection and mating Random

Step 3: Breed formation (BF)

Number of males/females from BF for all 5 breeds 100/100

Number of generations 30

Number of offspring per dam 2

Selection and mating Random

Step 4: Breeds A, B, C, D and E

Number of males/females from A 220/1800

Sire replacement and growth rate 0.5065 0.072

Dam replacement and growth rate 0.30 0.098

Number of males/females from B 160/1,100

Sire replacement and growth rate 0.5851 0.1038

Dam replacement and growth rate 0.30 0.1629

Number of males/females from C 140/1,200

Sire replacement and growth rate 0.5252 0.073

Dam replacement and growth rate 0.30 0.103

Number of males/females from D 120/600

Sire replacement and growth rate 0.6256 0.118

Dam replacement and growth rate 0.30 0.182

Number of males/females from E 100/500

Sire replacement and growth rate 0.5392 0.06

Dam replacement and growth rate 0.30 0.117

Selection High EBV

Mating system Random

Number of generations 15

Number of offspring per dam 1

Genome

Number of chromosomes 29

Number of SNPs 50,000

SNP distribution Evenly spaced

Number of QTL 800

QTL distribution Random

MAF of SNPs 0.1

MAF of QTL 0.1

Additive allelic effects for QTL Gamma

Rate of recurrent mutation 2.5 × 10−5
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depends on the superiority of the dams of the candidates. Based on
this, we hypothesized that prediction accuracy in selection
candidates might differ when genotyping is only on ancestors,
younger generation, and is restricted for males or females. Thus,
the main aim of this study was to evaluate genotyping strategies in
terms of prediction accuracy as the first step in the implementation
of GS in beef. In particular, the goal was to compare and to contrast
the importance of genotyping the ancestors and distributing the
genotyped individuals for the two sexes on the predicting accuracy.
The study was conducted under the assumption that a number of
animals being genotyped is the main constraint.

2 Materials and methods

2.1 Definition of the population structure

Using QMSim software, a historical population of beef cattle was
simulated based on the forward-in-time process (Sargolzaei and
Schenkel, 2009). In total, 2020 generations were considered for the
historical population. For the first 1,000 generations, the population
size (n = 1,000) was constant and gradually decreased to
200 individuals to generate linkage disequilibrium (LD) during
generations 1,001 to 2020.

In the second step, to enlarge the base population, 100 Founder
males and 100 Founder females were selected randomly from the last
generation of the historical population (Expanded generations) and
were mated randomly for another eight generations. In the third step
(Breed formation), five random samples, as the base for five breeds
(A-E), were randomly chosen from the last generation of the
previous step. In this step, mating and selection were also
random within each breed, producing two offspring per dam for
30 generations. In the last step (step 4), population structure was
simulated to mimic the production and genetic evaluation system in
practice such that parameters were chosen to be realistic five breeds
with different sizes were simulated for 15 generations. Selection in all

breeds was based on EBVs using pedigree-based BLUP, and the
culling of animals was based on age. It was assumed that pedigree
was available for all breeds without error, and base animals in this
step were considered as meta founders (i.e., one meta-founder per
breed). Sire and dam replacement ratio was different across breeds
(Table 1).

2.2 Scenarios

Five scenarios were compared in terms of prediction accuracy of
selection candidates in the last generation (15th generation).
Scenarios included a reference scenario (Ref. Sc) without
genotypic data and scenarios with both genotypic and phenotypic
information (Sc. 1 to Sc. 4). In all scenarios, it was assumed that
phenotypic and pedigree data were available for the last
15 generations, and animals could be genotyped from the 7th
generation onward. In all genomic scenarios, 5,000 animals could
be genotyped. Genotyping scenarios differed in the method applied
for the selection of 5,000 animals to be genotyped. In Sc. 1, the
genotyping strategy was focused on young animals and only male
progenies from the pool of selection candidates of generation
15 were selected randomly. In Sc. 2, genotyping was only on
males but both young animals and ancestral sires could be
genotyped. The criteria for selection of ancestral sires were that a
sire should have at least 10 progenies in the population to be selected
for genotyping. In Sc. 3, both male and female progenies from
generation 15 could be genotyped. In Sc. 4, randomly selected
ancestral sires, ancestral dams, and selection candidates (both
males and females) were selected to be genotyped. The number
of male and female animals with genotypic record in each scenario
across breeds is presented in Table 2.

In all scenarios, irrespective of the availability of genotypic data,
two other factors were considered to evaluate their impact on the
prediction accuracy of the selection candidates. The first factor was
the number of phenotypic records which could be collected and used

TABLE 2 Number of male and female animals with genotyping record in each scenario according to breeds.

aScenarios Sex Breeds

A B C D E Total

Sc. 1 Male progeny 1,349 1,317 1,087 759 488 5,000

Sc. 2 Ancestral sires 621 463 382 305 229 2000

Male progenies 780 811 647 468 294 3,000

Sc. 3 Male selection candidates 648 670 545 394 239 2,496

Female selection candidates 654 665 547 402 236 2,504

Sc. 4 Ancestral sires 464 305 303 252 176 1,500

Ancestral dams 450 386 310 228 126 1,500

Male selection candidates 249 258 198 167 116 988

Female selection candidates 259 247 234 175 97 1,012

aSc. 1: 5,000 randomly selected male progenies from 15th generation were genotyped, Sc. 2: 2000 ancestral sires with more than 10 progenies and 3,000 randomly selected male progenies from

15th generation were genotyped, Sc. 3: 5,000 selection candidates (both males and females) from 15th generation were genotyped, SC 4: randomly selected 1,500 ancestral sires, 1,500 ancestral

dams and 2000 selection candidates (both males and females) from 15th generation were genotyped.

Frontiers in Genetics frontiersin.org03

Esrafili Taze Kand Mohammaddiyeh et al. 10.3389/fgene.2023.1083106

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1083106


for the genetic evaluation. It was assumed that 20, 60, and
100 percent of the animals could have phenotypic observations
(cases 1–3: 100 MF, 60 MF, and 20 MF). This phenotyping scenario
was considered to cover a range of traits such as birth weight, where
data are collected routinely in practice, and a scarcely recorded trait
such as meat quality, where normally 20% of animals in the
evaluation would have records available in practice. The second
factor was the simulation of a sex-limited trait where either males
(e.g., scrotal circumference) (cases 3–6: 100 M, 60 M, and 20 M) or
females (cases 6–9: 100 F, 60 F, and 20 F) could have phenotypic
records. A schematic representation of the genotyping and
phenotyping scenarios is in Figure 1.

2.3 Genome architecture

A genome consisting of 29 pairs of chromosomes with a total
length of 2,319 cMwas simulated. For each animal, single nucleotide
polymorphisms (SNPs) markers with the density of 50 K and n =
800 QTL were considered. Both SNPs and QTL were selected from
the segregating loci of the last generation of the historical population

with a Minor Allele Frequency (MAF) of greater than 0.1 and were
randomly spaced across the genome. Recurrent mutation rate of
2.5 × 10−5 for both marker and QTL was considered. The additive
allelic effect for each QTL was sampled from gamma distribution
with shape parameters equal to 0.4 (Table 1).

2.4 Simulation of phenotypes and GEBV

A single trait with a heritability of 0.3 and phenotypic variance of
1.0 was simulated. The True Breeding Values (TBV) for each animal
were calculated as follows:

TBVk � ∑nQTL
j�1

βj.Qkj (1)

Where βj is the additive effect of QTL j,Qkj is the QTL genotype
at locus j, coded as 0, 1, or 2, as the number of copies of a specified
QTL allele is carried by an individual (k). The phenotypes (yi) were
simulated by adding residual term sampled as εi ~ N(0, σ2e), where
σ2e is the residual variance.

FIGURE 1
Schematic representation of the genotyping and phenotyping scenarios.
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2.5 Genetic evaluations

2.5.1 BLUP with unknown parent groups (UPGs)
For the reference scenario, a single-trait BLUP with UPG was

used to estimate the breeding values. In this scenario, all five breeds
were analyzed together in a multi-breed model. EBVs were
estimated based on the model (2):

y � 1μ + Xb + Za + ZQs + e (2)
Where y is the vector of simulated phenotypes, µ is the constant

average, X is the design matrix connecting records to fixed effects
(sex, breed), Z is an incidence matrix relating animals to
observations that connects animals to observations; a is the
vector of random additive genetic effects; Q is a matrix that
contains UPG compounds for all individuals; s is the vector of
UPG effects, and e is the vector of random residuals. The trait of
interest was considered to be the same across all breeds (i.e., rg = 1).
Random effects were assumed to be independent and normally
distributed:

a ~ N 0,Aσ2
a( ) and e ~ N 0, Iσ2

e( )
Where A is the numerator relationship matrix, I is the identity

matrix, σ2
a is the direct additive genetic variance, and σ2

e is the
residual variance. In this model, the EBV was

u � Qs + a (3)
where u was the total EBV, including UPG effects.

2.5.2 ssGBLUP with meta-founder
For genomic scenarios (Sc. 1–Sc. 4), the ssGBLUP with meta-

founder was used. In themeta-founder approach, a modified (HΓ)−1
is substituted for the traditionalH−1 matrix (Christensen et al., 2015;
Legarra et al., 2015)

HΓ( )−1 � AΓ( )−1 + 0 0
0 GΓ( )−1 − AΓ

22( )−1( ) (4)

Where (HΓ)−1 is the inverse of the realized relationship matrix
with meta-founder, AΓ is pedigree relationship matrix formed with a
Γmatrix,AΓ

22 is a submatrix ofAΓ for the genotyped animals, andGΓ

is genomic relationship matrix with meta-founder constructed as:

GΓ � ww′
s

(5)

Where w is the incidence matrix with elements of 1,
0 and −1 for AA, Aa, and aa, respectively; s is the half of the
number of markers.

Matrix G represents within and across population relationship
matrix. The structure of variance-covariance of meta-founder was
estimated as Γ � 8Cov(P), according to the method presented by
Christensen et al. (2015), where P is a matrix with m columns (m =
total number of meta-founder) and n rows (n = total number of
markers), containing the frequency of the second allele per breed.

The genetic evaluation analysis was performed under the
restricted maximum likelihood (REML) approach using an
animal model in the BLUPF90 family software (Misztal et al.,
2015). The prediction accuracy in each scenario was computed as
the correlation between TBV and (G)EBV in the 15th generation.

3 Results

In all scenarios, the use of genomic information irrespective of
phenotyping strategy, increased the prediction accuracy compared
to the Ref. Sc (Table 3). The range of prediction accuracy in Ref. Sc
scenario was between 0.14 and 0.34 and for GS scenarios between
0.19 and 0.50. The average prediction accuracy across scenarios were
0.23, 0.31, 0.38, 0.28 and 0.41 for Ref. Sc and Sc. 1 to 4, respectively.
Among the GS scenarios, Sc. 4 had the highest accuracy across
phenotyping strategies, followed by Sc. 2. In both Sc. 4 and Sc. 2,
ancestral animals with contributions to the population (i.e., had
some progenies) were genotyped in addition to selection candidates.
For scenarios where genotyping was limited to the young selection
candidates (Sc. 1 and Sc. 3), prediction accuracy was lower than the
scenarios where genotyping was on animals from young and older
generations.

Figure 2 shows the prediction accuracy in males and females.
Nearly in all scenarios and cases, males were predicted more
accurately than females. Even when only 20% of males had a
phenotypic record, the accuracy is higher than when 20% of
male and female animals or only 20% of female animals had a
phenotypic record, which shows the more significant effect of male
phenotypic records on the prediction accuracy.

As expected within each scenario, higher percentage of
phenotype availability, resulted in higher prediction accuracy.
The trend was similar for all scenarios and irrespective of the
availability of records on both or either of sex. Results also show
that when the trait of interest could be measured on both sex (Cases
100, 60, 20 MF), on average prediction accuracy was higher than
when trait was sex-limited. For sex-limited traits, prediction
accuracy was similar whether it was measured on males or
females, however, mean accuracy were slightly higher when trait
of interest was measured on male animals (0.34 in females and
0.36 in males).

Table 4 shows the prediction accuracy for animals without
phenotypic records in different cases for selection candidates.
The aim would be to realize how genotyping strategy would

TABLE 3 Prediction accuracy across scenarios under different phenotyping
scenarios.

Cases Scenarios

Ref. Sc Sc. 1 Sc. 2 Sc. 3 Sc. 4

100 MF 0.34 0.45 0.49 0.39 0.50

60 MF 0.25 0.36 0.43 0.28 0.44

20 MF 0.14 0.21 0.28 0.19 0.34

100 F 0.24 0.35 0.40 0.27 0.41

60 F 0.21 0.30 0.38 0.27 0.35

20 F 0.19 0.24 0.32 0.20 0.38

100 M 0.27 0.36 0.42 0.36 0.45

60 M 0.25 0.30 0.39 0.31 0.42

20 M 0.17 0.26 0.34 0.26 0.39

Details about cases, and scenarios are in Figure 1.
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affect prediction accuracy in animals without records in the last
generation. Prediction accuracy in males without records was
highest based on Sc. 2 and lowest based on Sc. 3 with an average

of 0.41 and 0.24, respectively. Prediction accuracy for females
without records was highest in Sc. 4 and Sc. 3 with an average of
0.41 and 0.28, respectively. Note that prediction accuracy for some

FIGURE 2
Prediction accuracy in males and females.

TABLE 4 Prediction accuracy for animals without phenotypic records in males and females according to cases.

Sex Cases Number of animals Accuracy in scenarios

Ref. Sc Sc. 1 Sc. 2 Sc. 3 Sc. 4

Male 100 MF — — — — — —

60 MF 5,330 0.39 0.43 0.46 0.28 0.44

20 MF 5,445 0.20 0.24 0.29 0.19 0.33

100 F 6,797 0.38 0.43 0.44 0.27 0.41

60 F 2,719 0.53 0.37 0.43 0.27 0.35

20 F 5,437 0.18 0.29 0.37 0.20 0.38

100 M — — — — — —

60 M 2,719 0.36 0.34 0.43 0.31 0.42

20 M 5,437 0.24 0.31 0.37 0.26 0.38

Female 100 MF — — — — — —

60 MF 2,686 0.40 0.45 0.51 0.28 0.43

20 MF 5,452 0.21 0.26 0.29 0.18 0.35

100 F — — — — — —

60 F 2,719 0.20 0.38 0.46 0.25 0.35

20 F 5,437 0.18 0.31 0.25 0.19 0.37

100 M 6,797 0.40 0.45 0.36 0.35 0.44

60 M 2,719 0.35 0.35 0.33 0.31 0.41

20 M 5,437 0.25 0.34 0.28 0.26 0.38

Note that in 100 MF, 100% of animals have phenotypic records and as a result accuracy was not calculated for this case. Details about cases, and scenarios are in Figure 1.
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phenotyping cases is not presented as either all animals had
phenotypic records (Case 100 MF) or trait was sex limited (Case
100 M and Case 100 F). (The solution for UPG was similar among
breeds and Supplementary Table S1 shows mean solution for UPG
each breed across cases.)

4 Discussion

We investigated the potential of applying GS in beef cattle when
the aim was improving prediction accuracy in selection candidates.
Four selective genotyping scenarios were compared to traditional
pedigree-based evaluation. Results showed fair improvement in
prediction accuracy, albeit a limited number of animals being
genotyped.

One challenge with applying GS in practice is that there are
many selection candidates, and genotyping all of them is often
impractical. Genotype scenarios should only genotype small
proportions of selected candidates welcomed by breeders because
results have shown that significant investments in the genotype of
selected candidates are not necessary to take full advantage of the
benefits of genomic selection (Pryce and Daetwyler, 2012; Howard
et al., 2018). As the results showed that the determination of the
genotype of only the selected candidates, regardless of gender, has
the lowest prediction accuracy (Sc. 3). Our study investigated the
importance and effect of genotyping and phenotyping scenarios on
prediction accuracy. The results showed that genotyping of both the
selection candidates), and male and female ancestors, could be used
to maximize the advantage of genomic selection (Sc. 4). In fact, Sc.
4 confirms the more significant effect of the female genotype than
the male genotype and the more significant influence of the ancestral
genotype than the selected candidates on the prediction accuracy
(because they have more offspring, more information). The lower
effect of male genotypes on the accuracy of predictions in this study
can be allocated to the effect of the pedigree relationship between
individuals. This makes it difficult to make accurate sire selection
decisions (Nwogwugwu et al., 2020). In addition, in beef cattle, the
offspring are smaller per male and more significant in each female
than in dairy cattle. Determining the female genotype in beef cattle
can significantly contribute to genetic accuracy and development. As
a result, selective genotyping of only part of the selection candidates,
males and females of the ancestors, can increase the prediction
accuracy. In addition, we can make the most of the benefits of
genome selection while saving on genotype costs.

Natural mating of multiple sires is the most common mating
system in beef cattle production, despite themanagement advantages of
this mating system, it does not allow for identification the paternity of
the progeny (Tonussi et al., 2017). So, because the information of the
cows is known, the genotype of females is easier Given that the
genotypic data of females are usually more available than males
(Mrode, 2019), accuracy can be increased by increasing the
genotypic data of females (Tsuruta et al., 2013). Various studies
have examined the effect of female genotype on prediction accuracy,
including a study using a multi-step method that reported a decrease in
accuracy using female genotype (Wiggans et al., 2011). However, in our
study using the ssGBLUP approach, accuracy was increased by
including the female genotype, and also consistent with the results
reported by Tsuruta et al., 2013; Lourenco et al., 2014. In addition, in all

genomic scenarios, by examining prediction accuracy in males and
females separately, it can be concluded that increasing the genotypic
information of females, the prediction accuracy increases (Figure 2).

In practical situation, all animals being evaluated rarely have
phenotypic information, and the records are not widely available for
traits such as disease and meat quality. To address this issue, we
considered different phenotypic scenarios in our simulation. In all
studied scenarios, with decreasing phenotypic records, prediction
accuracy also decreases, which indicates a direct relationship
between phenotypic records and prediction accuracy (Goddard,
2009; Takeda et al., 2020).

Genomic prediction in beef cattle provides accuracy higher than the
average of parents based on the pedigree of selected candidates. It can be
equivalent to progeny tests based on a maximum of 10 offspring
(Garrick, 2011). In addition, ssGBLUP is superior to traditional
evaluation methods because ssGBLUP uses phenotypes instead of
pseudo-phenotypes and considers the entire population structure for
GEBV estimation (Lourenco et al., 2014). This can be used for beef
cattle selection in that only a tiny proportion of animals have pedigree
and genotype. Estimated breeding value assessment with BLUP
depends on the phenotype, parents, and progeny. But the ssGBLUP
method is less sensitive to scenarios where animals selectively genotyped
and, or genomic preselection exists compared to the multiple-step
methods. Hence, ssGBLUP in conventional evaluations is attractive
(Masuda et al., 2018). The ssGBLUP method is conceptually and
practically simpler than the multiple-step GBLUP method, and in
addition, it does not have shortcomings such as bias and loss of
information of with few progenies, as well as operational complexity
(Christensen and Lund, 2010; Legarra et al., 2014). Therefore, the
ssGBLUP method is simpler and applicable to complex models and is
generally as accurate as multiple-step methods (VanRaden, 2012;
Mehrban et al., 2019). Also, Due to the lower sensitivity of the
ssGBLUP method to genotyping scenarios, this method can be used
to determine the best genotyping scenario to reduce genotype costs
while increasing accuracy (Howard et al., 2018).

In our study, genetic evaluation was based on multiple breeds
information. When several breeds are combined in one assessment,
there is generally no pedigree information among breeds. As a result,
UPG (Quaas, 1988) has been developed to model missing pedigrees
and to explain breed differences in multi-breed evaluations(Legarra
et al., 2007; VanRaden et al., 2007). However, UPG solutions, when
evaluated with the ssGBLUP model, may be biased due to genomic
incompatibility (G) and pedigree-based relationship (A) matrices
due to the lack of genotypes of all animals in the pedigree (Misztal
and Legarra, 2017; Kudinov et al., 2020). Legarra et al. (2015)
developed a meta-founders theory to solve this problem and
consider the relationships within and between the founding
population. Several studies have reported improved genetic
evaluation performance using meta-founder (Bradford et al.,
2019; Junqueira et al., 2020). Accordingly, we used the method to
account for the genetic level of base animals of each breed in step 4.

The pedigrees used in genetic evaluations may go back to a few
base populations thought to be unrelated due to a lack of access to
information (Legarra et al., 2015). In addition, information is not
available at the beginning of the pedigree, and animals of several
generations may have missing pedigree information (Tsuruta et al.,
2019). Also, populations are selected, and animals with missing
parents are unlikely to be chosen as parents of the next-generation
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because their breeding value is reduced to zero (Legarra et al., 2015;
Kluska et al., 2021). Unknown parent groups andMeta-Founder can
be used to calculate missing pedigree and breed structure in multi-
breed populations such as beef cattle (Kluska et al., 2021).

We investigated the potential of applying GS in beef cattle when
the aim was improving prediction accuracy in selection candidates.
Four selective genotyping scenarios were compared to traditional
pedigree-based evaluation. Results showed fair improvement in
prediction accuracy, albeit a limited number of animals being
genotyped. Comparison of GS scenarios revealed that selective
genotyping should be on animals from both ancestral and
younger generations. In addition, as genetic evaluation in practice
cover traits that are expressed on either sex, it is recommended that
selective genotyping covers animals from both sexes as well.
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