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ABSTRACT
In numerical weather prediction (NWP), ensemble forecasting aims to quantify 
the flow-dependent forecast uncertainty. The focus here is on observation-based 
verification of the reliability of ensemble forecasting systems. In particular, at short 
forecast lead times, forecast errors tend to be relatively small compared to observation 
errors and hence it is very important that the verification metric also accounts for 
observational uncertainties. This paper studies the so-called filter likelihood score 
which is deep-rooted in Bayesian estimation theory and fits naturally to the filtering 
setup of NWP. The filter likelihood score considers observation errors, ensemble mean 
skill, and ensemble spread in one metric. Importantly, it can be made multivariate 
and effortlessly expanded to simultaneous verification against all observation types 
through the observation operators contained in the parental data assimilation scheme. 
Here observations from the global radiosonde network and satellites (AMSU-A channel 
5) are included in the verification of OpenIFS-based ensemble forecasts using different 
types of initial state perturbations. Our results show that the filter likelihood score is 
sensitive to the ensemble prediction system quality and compares consistently with 
other verification metrics such as the relationships between ensemble spread and 
ensemble mean forecast error, and Dawid-Sebastiani score. Our conclusion is that 
the filter likelihood score provides a very well-behaving verification metric, that can 
be made truly multivariate by including covariances, for ensemble prediction systems 
with a strong foundation in estimation theory.
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1. INTRODUCTION

Ensemble forecasting has been used for almost 30 
years in numerical weather prediction to predict the 
flow-dependent forecast uncertainty (Buizza and 
Richardson 2017). In theory, the ensemble of forecasts 
should represent the true analysis error covariance at 
the initial time and the forecast error covariance during 
the time-evolution. Since these are unattainable in 
their full extent, some numerical approximations need 
to be applied (Leutbecher and Palmer 2008). At the 
European Centre for Medium-Range Weather Forecasts 
(ECMWF), for instance, initial value uncertainties are 
represented through a combination of Singular Vectors 
(SV) and Ensemble of Data Assimilations (EDA) (Buizza, 
Leutbecher, and Isaksen 2008; Isaksen et al. 2010) 
and the forecast model uncertainties with stochastic 
parametrisations (Leutbecher et al. 2017; Ollinaho et al. 
2017). In fact, a host of approximations are available 
(Toth and Kalnay 1993, 1997; Houtekamer, Mitchell, and 
Deng 2009; Houtekamer et al. 2014; Bowler et al. 2008; 
Kay and Kim 2014; Miyoshi and Sato 2007; Zhang and 
Krishnamurti 1999; Wei et al. 2006, 2008; Christensen 
2020; Buizza 2019). Modelling uncertainties can also 
be considered using, e.g., a multi-model ensemble or 
a perturbed parameter approach. Besides initial value 
perturbations and uncertainties of the model, also the 
horizontal and vertical resolution of the model, forecast 
length, and the number of ensemble members affect 
the reliability of an ensemble forecast (Buizza 2019). 
Since these methods provide approximations of the true 
uncertainties, it is important to assess how well they can 
reproduce the true flow-dependent forecast uncertainty.

An ensemble forecasting system is considered reliable 
when the skill of the ensemble mean and the spread 
of the ensemble members are equal (Leutbecher and 
Palmer 2008). This can be measured through different 
verification metrics by comparing the ensemble forecast 
against analyses or observations. Traditional approaches 
for verifying ensemble forecasts include the assessment of 
ensemble spread-error relationship (Leutbecher and Palmer 
2008), rank histogram (Hamill 2001), and calculation of 
verification metrics such as continuous ranked probability 
score (CRPS, Hersbach 2000), and Dawid-Sebastiani score 
(the ignorance score for a Gaussian distribution, Dawid and 
Sebastiani 1999). These verification metrics do not directly 
account for errors of the observation or the analysis.

As weather prediction models improve and forecast 
errors gradually decrease, accounting for observational 
uncertainties in verification metrics becomes more 
important (see e.g., Ben Bouallegue et al. 2020; Ferro 2017; 
Duc and Saito 2018). Observation error in data assimilation 
is the sum of representativeness and instrumental 
errors, added with uncertainties from the observation 
operator. The observation error is estimated as a part of 
operational data assimilation and is therefore available 

for all observation types which are actively assimilated. 
Thus, a natural development step is to consider validation 
methods that account for observation errors.

Ferro (2017) considers proper scoring rules [scores 
that give honest results; the best forecast gets the lowest 
score (e.g., Gneiting and Raftery 2007)] for observation-
based verification. Ferro (2017) introduces methods for 
forming error-corrected proper scoring rules that are 
insensitive to the quality of the observation for both 
categorical and numerical predictands. The author 
focuses on scoring rules for numerical predictands and 
takes Dawid-Sebastiani score as a starting point for these; 
one of these derived scores is a score referred to as the 
error-convolved logarithmic score. These error-corrected 
scores are only derived for univariate data, but a way of 
computing error-corrected scores for multivariate data 
is mentioned: computing the score for each observation 
followed by an average over the scores.

Yamaguchi et al. (2016) present a form of ensemble 
spread-error relationship where observation errors are 
included in the metric. They compare ensemble forecasts 
from ECMWF’s Integrated Forecasting System (IFS) 
against analyses, radiosonde observations, and satellite 
measurements for 1 day- and 5 day-forecasts. Inclusion 
of observation error makes the comparison of spread and 
error more realistic especially at short lead times where the 
observation error is large compared to the ensemble spread. 
They conclude that using observations in the validation of 
ensemble forecasts can give useful information about the  
system, and they also point out that estimating observation 
errors is important for obtaining reliable results.

Candille and Talagrand (2008) take a slightly different 
approach with a perturbed ensemble and introduce an 
approach called observational probability. The idea is to 
form an observation distribution with errors considered 
and compare the observation distribution against the 
distribution formed by the ensemble. In the perturbed 
ensemble approach random noise is added to the 
ensemble members to account for errors, a method 
presented in details by Saetra et al. (2004), which 
increases the spread of the ensemble.

Ben Bouallegue et al. (2020) focus on representa-
tiveness errors of SYNOP observations. They use the 
perturbed ensemble approach to account for uncertainties 
of observations and parametric models to form uncertainty 
distributions from which perturbations are drawn. The 
focus is on two metre air temperature, 10 metre wind 
speed, and daily precipitation.

Duc and Saito (2018) use Bayesian theory to form 
verification metrics that consider observation errors. 
They present a thorough background starting from the 
Bayes theorem before deriving the verification metrics 
based on likelihoods: the logarithmic score and its 
derived forms called weighted root-mean squared error 
(WRMSE) and Kullback-Leibler divergence. They use the 
log-likelihood metric for deterministic and ensemble 
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forecasts for both univariate and multivariate data. As 
an application, WRMSE is used to analyse three different 
data assimilation techniques against radio soundings in 
a limited area around Japan.

The focus in this paper is on the filter likelihood score, a 
score similar to the ones described in (Duc and Saito 2018) 
and the error-convolved logarithmic score described in 
(Ferro 2017). As is later noted, the filter likelihood score 
could also be seen as a multi-dimensional extension of 
the error-convolved logarithmic score.

In Bayesian estimation, prior information is updated 
with measurements such that the uncertainty of the 
posterior estimate explicitly depends on the uncertainty of 
the prior information and measurements. In other words, 
the uncertainty of the forecast is estimated based on 
both the forecast itself and observations, once available. 
Since filter likelihood emerges from this principle, it 
naturally accounts for both forecast and observational 
uncertainties. In this study, we use OpenIFS-based 
ensemble forecasts and observations from radiosondes 
and satellites to pose the following questions:

(1)  Is filter likelihood score able to distinguish between 
different ensemble systems of a realistic model (i.e., 
is it sensitive enough to detect slight differences in 
initial state perturbations)?

(2)  Is it possible in practise to formulate a multivariate 
filter likelihood score with different observation 
types as an input?

(3)  How does a reduced ensemble size affect filter 
likelihood score?

In previous studies, filter likelihood has been used as a 
cost function for optimisation of parameters in idealised 
set-ups with the Lorenz’95 model (Hakkarainen et al. 
2012, 2013; Solonen and Järvinen 2013; Ekblom et al. 
2020). Hakkarainen et al. (2012) study three different 
methods for estimating closure parameters in a Lorenz’95 
system, and one of these methods is the filter likelihood 
approach. Hakkarainen et al. (2013) use filter likelihood 
from extended Kalman filter and ensemble adjustment 
Kalman filter for tuning closure parameters of a Lorenz’95 
system using a Markov chain Monte Carlo method. 
Solonen and Järvinen (2013) demonstrate with Lorenz’95 
model how filter likelihood can be used as an approach for 
tuning an ensemble prediction system by showing a link 
between the filter likelihood and traditional verification 
metrics (rank histogram, continuous ranked probability 
score, and ensemble spread-error relationship).

This paper extends the use of filter likelihood to realistic 
models and observations with the following outline. 
Section 2 presents the theory behind filter likelihood 
score (FLS) and Section 3 compares FLS to traditional 
verification metrics, Section 4 introduces the forecast 
data and observations used, and Section 5 presents the 
results. Sections 6 and 7 discuss and conclude the study.

2. FILTER LIKELIHOOD SCORE

In this section, we present the theory of filter likelihood 
score and derive the equation for the verification 
metric.

2.1. FILTER LIKELIHOOD SCORE (FLS)
We are interested in knowing how good forecasts a 
model produces when comparing the forecasts against 
observations. For an optimal forecast system, the forecast 
distribution reflects the actual forecast uncertainty 
(Gneiting, Balabdaoui, and Raftery 2007). We assume 
that a forecast system produces probabilistic forecasts 
from a forecast distribution depending on the model. 
This is denoted as ~ ( )pz z∣ , where z = {z1, … zN} is an 
ensemble with N independently sampled members from 
the forecast distribution and  the model. In addition, 
we assume that this ensemble has already been mapped 
to the observation space by an observation operator  
as ( )=z x , where x is the raw forecast representing the 
discrete model variables. Hence, the ensemble forecast 
z can be directly compared to the observation vector 
y. The dimension of the raw forecast x depends on the 
resolution of the model and the number of forecast 
variables. The dimensions of z and y depend on how 
many variables we observe and over how many spatial 
and temporal locations.

Observational uncertainty arises from the representa-
tiveness of observations and uncertainties both in the 
measurements and the operator  and this uncertainty 
is covered by the observation distribution p(y | z). The 
likelihood for observing y given the model  can be 
calculated by averaging over the forecast uncertainty

 ( ) ( ) ( ) .p p p d=òy y z z z∣ ∣ ∣   (1)

As in Duc and Saito (2018), this can be seen as 
observational evidence for the model  and be used as 
a score. The forecast ensemble as a sample from ( )p z∣  
can be used to evaluate the integral in (1).

For a perfect forecast system and with Gaussian 
observation uncertainty, we have ( ( , ) )p = yy z z∣  S , 
where Σy is the observation uncertainty covariance matrix, 
which is typically assumed diagonal. If, also, the 
forecast distribution can be approximated by a Gaussian 
distribution (or by the first two moments) we have 

( ) ( , )p m» Cz∣  , with ensemble mean z ̄and ensemble 
covariance matrix Σz as estimates for the forecast 
mean μ and the forecast uncertainty covariance C. The 
covariance is calculated between the forecast variables 
in each ensemble member, and in principle also between 
different forecast locations and times within the 
ensemble. In the applications, we will be using ensemble 
standard deviations, only.

Assuming Gaussianity, the ensemble provides an 
approximation of the evidence (1) as
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 ( ) ( , ),p » +z yzy∣  S S  (2)

which, when written as minus twice the logarithm of the 
likelihood, becomes

 12log( ( )) ) .( ( ( ) |log|)Tp -- µ - + - + +z y z yzy y y z∣ S S S S  (3)

In the equation above we have omitted the terms that 
do not depend on the model, but only on the correct 
probability scaling of the likelihood density. Equation 
(3) can be seen as the ignorance score for a Gaussian 
ensemble system that acknowledges the observation 
uncertainty (Siegert et al. 2019). We will call it filter 
likelihood score (FLS) as it can be directly motivated 
by considering the ensemble prediction system as 
an ensemble data assimilation system, which in turn 
connects the score to Kalman filter likelihood. This 
motivation is explained in more detail in Appendix A.

As with any ensemble system, the estimation of 
covariance matrices from ensembles with limited size will 
lead to spurious correlations between far away points in 
the state space and this calls for some kind of regularisation 
in a form of variance localisation. The simplest way is to 
assume all mutual correlations to vanish and use only 
the diagonal elements of the covariances. The univariate 
filter likelihood score is formed from individual ensemble 
standard deviations σz,i for the each observed quantity i 
and the observation uncertainty σo,i:
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where the zī is the ensemble mean, σz,i is the ensemble 
standard deviation, σo,i is the observation uncertainty 
standard deviation for yi, for variable i, and summation 
is over the L observations. Equation (4) is adopted from 
(Hakkarainen et al. 2013), but here we divide by the 
number of observations to assure comparability when 
the number of observations is not constant. Note that 
when equation (4) is multiplied by 2 and the number 
of observations is 1 (L = 1), the equation is the same as 
the error-convolved logarithmic score presented by Ferro 
(2017). The error-convolved logarithmic score is proper 
under the assumption of the white noise model, but is 
sensitive to the quality of observations.

A multivariate version of the score from equation (3) 
would be used, for example, when we want to account 
for the between variable correlation at the observing 
locations. We then have

 1
, , , ,
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where for each multivariate observation yi we calculate 
the corresponding ensemble covariance Σz,i = cov(zi) and 
Σy,i is the observation uncertainty covariance for yi. When 

assuming zero correlation between the variables the 
combined score will be equal to the univariate score in 
equation (4) when, in addition, summation is done over 
each of the variables.

3. VERIFICATION METRICS FOR 
ENSEMBLE PREDICTION

This section presents the different verification metrics 
used for comparing the filter likelihood score.

3.1. ENSEMBLE SPREAD-ERROR RELATIONSHIP
An ensemble forecast system is considered reliable when 
the relationship between the ensemble error and the 
ensemble spread is, on average, equal (Leutbecher and 
Palmer 2008). This can be formulated as

 2 2
,

1

1 1
0 for ,

1

M

i z i

i

N
M

M N
s

=

æ ö+ ÷ç -  ¥÷ç ÷÷çè ø-å   (6)

where M is the number of ensemble forecasts, N the size 
of the ensemble, ϵ = y–z is the ensemble mean error 
(deviation of the ensemble mean from observation, 
truth, or analysis) and σz is the spread of the ensemble 
members around the ensemble mean (and its square the 
variance of the ensemble).

3.2. ENSEMBLE SPREAD-ERROR WITH 
OBSERVATION ERRORS CONSIDERED
The original ensemble spread-error relationship does not 
consider any observational or analysis errors. Yamaguchi 
et al. (2016) derive a formula of the ensemble spread-
error relationship, where observation errors are 
included. In this error-corrected ensemble spread-error 
relationship, the ensemble mean skill should be in balance 
with the sum of ensemble spread and observation error 
(Yamaguchi et al. 2016, Eq. 7):

 2 2 2
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where σo is the observation error.

3.3. DAWID-SEBASTIANI SCORE (DSS)
Dawid-Sebastiani score (DSS, Dawid and Sebastiani 1999) 
comes from the ignorance score of a Gaussian distribution 
with ensemble mean z ̄and ensemble standard deviation 
spread σz. In the univariate case it takes the form (eq. 
6.10, Vannitsem, Wilks, and Messner 2018)

 
2

2
2

( )
DSS log z

z

y z
s

s
-

= +  (8)

and in the multivariate case (eq. 6.24, Vannitsem, Wilks, 
and Messner 2018)

 1DSS ( ) ( ) log| |,T
z z
-= - - +y z y zS S  (9)
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where y is the vector of observed values, z ̄ is the 
ensemble mean vector, and Σz is the covariance matrix 
of the ensemble.

If we ignore the correlations between observations in 
the ensemble, then Σz is a diagonal matrix and, similarly 
as for FLS, we can then approximate the DSS score with
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z ii
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where L is the number of observations, yi the observed 
value, zī is the ensemble mean, and σz,i the ensemble 
spread corresponding to observation i. Similarly as for FLS, 
we divide equation (10) by the number of observations 
L. This assures comparability when the number of 
observations varies.

Table 1 summarises the verification metrics used 
in this study. The table shows the similarities between 
the different metrics: the ensemble mean skill and the 
ensemble error are both present in all verification metrics. 
The filter likelihood score and the ensemble spread-
error relationship with observation errors also consider 
observation error in the calculations. Dawid-Sebastiani 
score is a special case of the filter likelihood score for cases 
where observation errors are zero. As is later seen, due to 
the absence of observational errors in DSS its behaviour 
can be quite different compared to FLS.

4. FORECAST DATA AND 
OBSERVATIONS

In this section, we describe the ensemble forecast data 
and observational data used in the verification metrics.

4.1. OPENIFS ENSEMBLE FORECASTS
The ECMWF OpenIFS model is a portable version of the 
ECMWF’s operationally active NWP model. OpenIFS is 
available upon registration to ECMWF member state 
hydro-meteorological services, universities, and research 
institutes for research and education purposes, and can be 

used in a variety of hardware setups. The OpenIFS model 
provides to the users in essence the same top-of-the-line 
NWP forecast model as the operational model. The key 
differences between the two models are: OpenIFS does 
not include the data-assimilation codes or capabilities 
of IFS, and the latest release version of OpenIFS is based 
on the IFS version operational between 2017–2018 
(CY43R3), for more details see e.g. Ollinaho et al. (2021).

In this study, data from two different OpenIFS 
ensemble runs is used:

(1)  OpenIFS version CY40R1 is here used to run 20 
member ensembles with horizontal resolution of 
∼32 km (TL639). We use this setup to run 10-day 
atmospheric forecasts for three different types of 
initial state perturbations: EDA only, SV only, and 
combined EDA and SV. We refer an interested reader 
to Ollinaho et al. (2021) for more details about the 
initial state perturbations. In total 44 ensembles are 
launched 8 days apart for dates between December 
1st 2016 and November 18th 2017. This ensemble 
set is used to compare different verification metrics 
and in calculating the filter likelihood score against 
sounding data.

(2)  OpenIFS version CY40R1v1 is used here with 
the same ensemble size and resolution as in (1) 
launched every 7 days apart between December 1st 
2016 and November 30th 2017 resulting in a total 
of 53 ensembles. The ensemble here is launched 
with EDA and SV perturbations in the initial 
states and with a stochastic model uncertainty 
component active in all model forecasts (SPPT). 
This ensemble is used to calculate filter likelihood 
against AMSU-A channel 5 data.

We will refer to these data sets as data set (1) and (2). 
The reason behind the two different ensemble sets lies 
in the observation operator for the satellite observations. 
The observation operator requires many model output 
fields, which were not available through the original 
ensemble sets. Due to computational resources we only 
included one ensemble set for the satellite observations.

The scores are calculated separately for each forecast 
lead time (or over a time window for the satellite data) 
at 12-h interval up to 240 hours. The resulting values are 
further averaged over different observation locations (or 
the three geographical regions for the soundings) and 
the 44 and 53 ensemble runs in data set (1) and (2), 
respectively.

4.2. OBSERVATIONS
In this study, we look at two types of observations: radio 
soundings and satellite data. The radio soundings are 
global TEMP observations launched at 00UTC and 12UTC. 
The satellite data are measurements from AMSU-A 
channel 5 at observation times of 00UTC and 12UTC.

VERIFICATION METRIC EQUATION

RMSE 2 2( ) zy z s- -

RMSE w/obs 2 2 2( ) o zy z s s- - -

DSS 2

2
( ) 21/ ( log( ))

z

y z
zlL

s
s-å +

FLS 2

2 2
( ) 2 21/ ( log( ))
z o

y z
z olL

s s
s s-

+
å + +

Table 1 Comparison of the different verification metrics: ensemble 
spread vs ensemble spread (with and without observation errors), 
Dawid-Sebastiani score, and filter likelihood score. (y–z)̄2 is the 
squared error of the ensemble mean, 2

zs  the ensemble variance, 
and 2

os  the error variance of the observations.
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4.2.1. Radiosondes
Radiosondes measure temperature, specific humidity, 
and horizontal wind components at different levels of 
the atmosphere. In this study, we use global radiosondes 
launched at 00UTC and 12UTC between 1 December 
2016 and 30 November 2017. The radiosondes 
including observation errors are downloaded from 
ECMWF’s Meteorological Archival and Retrieval System 
(MARS).

The raw sounding data are interpolated in vertical 
direction and the horizontal position is kept constant. The 
vertical interpolation is computed in log(p) coordinate to 
given pressure levels: 200 hPa, 500 hPa, and 850 hPa. For 
simplicity, the location of the observation for all levels is 
the position of the launching area. We only interpolate 
the data; values out of range are set to NotANumber. The 
observation errors are interpolated in a similar manner as 
the observations. Table 2 shows the observed quantities 
and their corresponding observation errors used in this 
study. The errors are calculated as the mean over all 
interpolated data points and are thus not held constant. 
We do not include covariances in the calculation of the 
verification metrics.

When comparing the model data against the radio 
sounding data, the gridded model data are interpolated 
in the horizontal plane to the observation points using 
Scipy RegularGridInterpolator with linear interpolation 
(Virtanen et al. 2020). The verification metrics are then 
calculated in observation space. When computing 
the verification metrics, the data are divided into 
three regions: Northern Hemisphere (>20°N), Tropics 
(20°S–20°N), and Southern Hemisphere (>20°S). Note  
that the number of observations in the Tropics and the 
Southern Hemisphere is smaller than in the Northern 
Hemisphere. The total number of observations at one 
time instance are about 460–500 in the Northern 
Hemisphere, about 100 in the Tropics, and about 50 in 
the Southern Hemisphere.

4.2.2. Satellite data
Besides conventional radiosondes, we use Advanced 
Microwave Sounding Unit A (AMSU-A) channel 5 
remote sensing observations. AMSU-A channel 5 
consists of two frequency bands at 53.596 ± 0.115 
GHz. AMSU-A channel 5 has been primarily designed 
to sound tropospheric temperature with a maximum 
of sensitivity at approximately 4 km altitude. However, 
AMSU-A channel 5 is also somewhat sensitive to 
tropospheric hydrometeors (e.g., cloud droplets and 
ice crystals) and surface temperature. The surface 
transmittance of AMSU-A channel 5 is about 12%. More 
details of AMSU-A channels can be found for example 
in Geer, Bauer, and English (2012) and Bormann and 
Bauer (2010).

The AMSU-A channel 5 data set covering 1 December 
2016 to 10 December 2017 was retrieved from MARS. 
During the chosen time period AMSU-A instrument was 
active on five satellites: METOP-A, METOP-B, NOAA15, 
NOAA18, and NOAA19. For each day of the time period 
observations at 00UTC and 12UTC are selected with 
a cut-off time of ±30 minutes resulting in batches of 
7000–8000 observations. Other cut-off times were also 
considered but ±30 min was chosen as a reasonable 
balance between selecting as many observations as 
possible and not deviating too much from the verification 
times. The observations are further corrected by 
subtracting the operational bias correction coefficients 
computed during the variational data assimilation. The 
bias correction intends to correct systematic biases 
caused by instrument calibration, satellite position 
drift, varying scan position, and other reasons (see, e.g. 
McNally 2006). We use the instrument and channel 
specific noise equivalent temperature (NET) as the 
observation error. NET represents how large brightness 
temperature variations are caused by internal noise of 
the instrument. For AMSU-A channel 5 NET is 0.25K (Geer 
Bauer, and English 2012).

Conversion of the model fields into brightness 
temperature in observation space is performed with 
Radiance Simulator software (NWP-SAF 2021). Radiance 
Simulator is a wrapper for the RTTOV library (Saunders 
et al. 2018) and uses the metadata associated with the 
observations to compute the model counterparts from 
the forecast fields of OpenIFS (see user guide of Radiance 
Simulator for details).

5. RESULTS

The results are divided into four different subsections:

(1)  How the filter likelihood score compares with 
ensemble spread-error relationships and Dawid-
Sebastiani score;

OBSERVED 
QUANTITY

PRESSURE 
LEVEL (HPA)

OBSERVATION 
ERROR

T 200 0.83 K

T 500 0.66 K

T 850 0.90 K

u,v 200 2.25 ms–1

u,v 500 1.89 ms–1

u,v 850 1.62 ms–1

q 500 0.000 38 kgkg–1

q 850 0.001 0 kgkg–1

Table 2 Radiosonde measured quantities and the (averaged) 
corresponding observation errors at different pressure levels.
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(2)  Combined filter likelihood score over several 
variables for different parts of the atmosphere and 
geographical regions;

(3)  How the filter likelihood score behaves when having 
two different types of observations;

(4)  How the filter likelihood score reacts on reduction of 
ensemble size,

where the first two use data set (1) and the last two use 
data set (2).

5.1. COMPARISONS BETWEEN DIFFERENT 
VERIFICATION METRICS
In Figure 1, we compare verification metrics for 
temperature at 500 hPa from radio soundings and the 
three different ensemble systems: EDA+SV, EDA, and 
SV. The area is the Northern Hemisphere (>20°N; NH). 
Panel (a) shows the ensemble spread-error relationship, 
(b) Dawid-Sebastiani score, (c) ensemble spread-error 
relationship with observation errors, and (d) filter 

likelihood score. All verification metrics are computed 
as the mean over all ensemble forecasts (a total of 44 
ensemble forecasts) with the shaded area showing one 
standard deviation uncertainty level.

When comparing the verification metrics in Figure 1, 
we note that the different ensemble systems are 
arranged in the same order for all four verification 
metrics. The system with EDA+SV (green) scores the 
best, followed closely by EDA (orange), and SV (purple) 
scores the worst. This shows that the filter likelihood 
score is consistent with traditional verification metrics 
(see e.g. Ollinaho et al. 2021) and is expected from 
previous studies with Lorenz’95 (Solonen and Järvinen 
2013). Similar results are obtained for horizontal wind 
components u and v and specific humidity q (see 
Figures 5, 6 and 7 in the Appendix). Figure 8 in the 
Appendix shows a more detailed analysis of the RMS 
error/spread relationship for temperature at 500hPa. 
We note that the FLS is negative for specific humidity, 
a result of small values in the logarithm term. Still, the 

Figure 1 Different verification metrics for T500 in NH. Comparison between different verification metrics for temperature at 500 hPa in 
the Northern Hemisphere: (a) Ensemble spread-skill relationship, (b) Dawid-Sebastiani score, (c) Ensemble spread-skill relationship with 
observation error, and (d) Filter likelihood score. The solid lines show the mean value of the metric and the shaded area one standard 
deviation uncertainty. The green lines show forecasts with EDA and SV initial conditions, orange with EDA, and purple with SV. The dots 
in panels (a) and (c) show the spread (+obs.error)/error relationship for different forecast lead times every 12h.
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order of the ensemble systems stays the same – the 
system with SV clearly has the highest value and the 
difference between the other two systems is small with 
EDA+SV scoring the best.

5.2. COMPARISONS BETWEEN DIFFERENT 
ENSEMBLE SYSTEMS
Next, we will look at how well the filter likelihood score 
preserves the order of the ensemble system when a 
combined FLS of several radio sounding observations is 

formed. Figure 2 presents the results for the combined 
filter likelihood score at three different pressure levels 
as well as the sum of the variables at these three levels. 
Panels (a, b, c) show FLS for the combination of horizontal 
wind components u and v, and temperature T at 200 hPa 
for the Northern Hemisphere (NH), the Tropics (TR), and 
the Southern Hemisphere (SH). Panels (d, e, f) and (g, h, i)  
show for the same regions the combination of specific 
humidity, temperature, and horizontal wind components 
at 500 hPa and 850 hPa, respectively. Panels (j, k, l) 

Figure 2 Combined FLS for different pressure levels. Sum of different variables for three different parts of the atmosphere, where the 
first row (a, b, c) shows temperature and horizontal wind components at 200 hPa, second row (d, e, f) shows temperature, horizontal 
wind components, and specific humidity at 500 hPa, third row (g, h, i) shows temperature, horizontal wind components, and specific 
humidity at 850 hPa, and the fourth row (j, k, l) the sum of above mentioned variables. The first column shows the results for the 
Northern Hemisphere, the second column for the Tropics, and the third column for the Southern Hemisphere. The green line shows 
EDA+SV, the orange EDA, and the purple SV. The solid line shows the mean value and the shaded area one standard deviation 
uncertainty.
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show the sum of the above mentioned variables as one 
overall metric for the three regions NH, TR, and SH. All 
verification metrics are computed as the mean over all 
ensemble forecasts with the shaded area showing one 
standard deviation uncertainty level. The results show 
consistency of the order of the ensemble systems for the 
three regions. The difference between EDA+SV and EDA 
is small, especially for the tropical region, whereas SV 
clearly scores higher (worse). The figure shows that for 
a combined FLS of different variables for different parts 
of the atmosphere, the order of the ensemble system 
stays the same as for the univariate case (Figure 1). Note 
that when including specific humidity in the metric, FLS 
becomes negative. This happens when the values in the 
logarithm term of eq. 4 are smaller than 1 as is the case 
for specific humidity (cf. Table 2 and Figure 7). However, 
this does not affect the interpretation of the score.

In the tropics, there is larger variation in the upper 
atmosphere than in the mid and lower troposphere 
[compare panels (b, e, h) in Fig 2], visible from the larger 
shaded area. The reason behind this is unknown to us 
and needs further studying, but could be related to 
the tropopause or diurnal variations. In the Southern 
and Northern Hemisphere, this is also noted, but the 
difference is smaller. As there are more observations in 
the Northern Hemisphere than in the Tropics, we can 
expect a smoother result here. However, this is not the 
case for the Southern Hemisphere as there are fewer 
observations than in the Tropics. The mean value is 
quite smooth for all three regions at the three different 
pressure levels.

5.3. FILTER LIKELIHOOD WITH SATELLITE 
DATA
Filter likelihood score shows consistency when comparing 
different ensemble systems for radio sounding measure-
ments. From equation (4), we note that summation over 
different observation types is possible if we form a vector 
containing observations of several variables y = {y1, …, yL} 
as we can split the sum into several sub-sums, one for 
each observed quantity. Figure 3 looks at the combined 
filter likelihood score of satellite data and radiosonde 
measurements (temperature at 200 hPa, 500 hPa, 850 
hPa, and specific humidity at 500 hPa and 850 hPa). The 
figure shows FLS for one ensemble system (EDA+SV with 
SPPT) for three different regions: Northern Hemisphere 
(green), Tropics (orange), and Southern Hemisphere 
(purple). In panel (a) and panel (b) the FLS is calculated 
for sounding data and satellite data only and in panel 
(c) FLS is calculated for the combination of sounding 
and satellite data. As FLS is weighted by the number of 
observations, we note that the total score in panel (c) for 
the Northern Hemisphere is pushed further down than 
the score for the Tropics and the Southern Hemisphere 
since there are more sounding observations in the NH 

area. Similarly, the total score is closer to the score with 
only satellite data than with only sounding data as 
more weight is put on the satellite data (higher number 

Figure 3 FLS for both satellite and sounding observations (a) 
Only sounding data, (b) Only satellite data, and (c) Combination 
of sounding and satellite data. Sum of different observation 
types: AMSU-A ch.5 brightness temperature and temperature 
at 200 hPa, 500 hPa, 850 hPa, and specific humidity at 500 hPa 
and 850 hPa for the ensemble system: EDA+SV+SPPT. The solid 
line shows the mean value over 53 ensemble forecasts and the 
shaded area one standard deviation uncertainty level for three 
different areas: green for the Northern hemisphere, orange for 
the Tropics, and purple for the Southern Hemisphere.
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of observations). The filter likelihood score behaves as 
before; the shorter the forecast, the better (lower) the 
score. An exception is in the Tropics, where the FLS for 
satellite data first decreases with forecast lead time 
before starting to increase with lead time. We also note 
a steady increase of the (averaged) score with forecast 
range. The error (shaded area) does not seem to vary 
with forecast lead time. However, we did not compare 

different ensemble systems when including satellite 
data. Instead, we analysed the effect of ensemble size 
for one example satellite and region.

5.4. SATELLITE DATA: EFFECT OF REDUCED 
ENSEMBLE SIZE
Figure 4 shows an example of how different verification 
metrics are affected when the ensemble size is reduced. 

Figure 4 Verification metrics for different ensemble sizes (5, 10, and 20 members): (a) Dawid-Sebastiani score, (b) Filter likelihood score, 
(c) ensemble skill vs ensemble spread, (d) ensemble skill vs ensemble spread+observation error, (e) RMS error vs standard deviation 
of ensemble, and (f) Bias. Note that the vertical line in panel (d) marks the observation error. The data come from satellite METOP-A 
and the region is the Northern Hemisphere. The plots show verification metrics averaged over 53 ensemble forecasts initialised 7 days 
apart over one year.



79Ekblom et al. Tellus A: Dynamic Meteorology and Oceanography DOI: 10.16993/tellusa.96

We consider only one satellite (METOP-A) in the Northern 
Hemisphere and compare the different verification 
metrics for ensembles with 5, 10, and 20 members. 
Figure 4 shows that the larger the ensemble size, 
the better (smaller) the scores are. This applies to all 
verification metrics compared. However, the difference 
between an ensemble of 10 and 20 members is small. 
When looking at panel (e), we note that the ensemble 
skill (ensemble mean error) is almost the same for the 
three ensemble sizes at shorter lead times. At short lead 
times, the difference between the ensemble spread and 
the ensemble skill is larger than at longer lead times. 
We also note that when including observation error in 
the validation (panel (d)), the ensemble spread-error 
relationship is closer to the one-to-one line.

Using different five-member subsets does not 
seem to change the results for the case of a five-
member ensemble. Similarly, a different subset for the 
10-member ensemble do not seem to change the results 
(not shown).

6. DISCUSSION

From studies with the idealised model Lorenz’95, we 
know that filter likelihood score is consistent with 
traditional verification metrics and sensitive to different 
set-ups of the ensemble system (Solonen and Järvinen 
2013). The results here show that this is the case also 
for a realistic NWP model. Moreover, it is possible to form 
a multivariate version of filter likelihood score, but here 
we did not use fully multivariate FLS as the covariance 
matrices were assumed diagonal. The filter likelihood 
score performs well for comparing different ensemble 
system set-ups for both uni- and multivariate data. Duc 
and Saito (2018) used a similar score with a different 
naming (weighted RMSE), but only for 12h forecasts 
and in a limited area. Here, we have shown that filter 
likelihood score also works for global data and different 
geographical regions, and longer range forecasts (up to 
10 days). Furthermore, we looked at different observation 
types and combined radio soundings and satellite 
measurements into one combined score. However, if 
FLS is to be used as a stand alone verification metric, 
verifying the results together with other verification 
metrics might be useful for a complete picture. For 
example, the filter likelihood score does not directly tell 
whether the system is over- or underdispersive. For this, 
a rank histogram or a spread-skill relationship could be 
used in addition to FLS.

Filter likelihood score is not the only option 
for computing a combined score over different 
observations. As an example, it is possible to compute 
a combined CRPS over several quantities, but the data 
need to be normalised before combining it into a single 

score. Computing a combined CRPS with normalised 
data of temperature, wind components, and specific 
humidity at 500hPa gives similar results with the 
ensemble systems appearing in the same order as for 
FLS (not shown). However, the original CRPS does not 
account for observation errors. This could be changed 
by using the technique proposed in (Saetra et al. 2004) 
or by changing the underlying cumulative distribution 
function (CDF) for the analysis in the definition of CRPS 
from a Heaviside function (see Hersbach 2000) to a 
CDF that accounts for the errors of the observations, 
e.g. by assuming the observations to be normally 
distributed. Alternatively, one could assume the 
forecast-observation distribution to be a homogeneous 
Gaussian (hoG) before computing an approximated 
CRPS (Leutbecher and Haiden 2021).

We did not include any covariances in the observation 
error matrix but assumed it being a diagonal matrix. 
This made it possible to approximate the filter likelihood 
score and thus make the calculations easier and 
computationally more efficient. The issue of having 
an ensemble of much smaller size than the number 
of observations, also called degeneracy problem in 
some fields, needs to be accounted for if considering 
any possible covariances in such computations. Duc 
and Saito (2018) solve the problem of having a much 
smaller ensemble than the number of observations 
by combing the multivariate logarithm score and the 
averaged logarithm score. They choose observations 
far enough from each other such that they can assume 
the observations being uncorrelated, and hence, use a 
diagonal matrix as covariance matrix.

Another important aspect is how good the estimates 
of the observation errors are. As we did not have access 
to the observation operators of the data assimilation 
scheme, our results may be affected by the interpolation 
method for retrieving the model counterparts in 
observation space. Ferro (2017) stresses that there could 
be a problem if the score is affected by the quality of 
the observations when assessing the performance of 
a forecast system over time. The author derives proper 
and unbiased scores for verification against observations 
to avoid this problem. Their error-convolved logarithmic 
score is a special case of FLS and the expected value 
of the score depends on the observation error. We see 
this same effect when comparing FLS, that includes 
observation error and DSS, which does not, see e.g., 
Figure 1.

Returning back to our third research question “How 
does a reduced ensemble size affect filter likelihood 
score?”, we will touch upon the concept of fair scores. A 
fair score is a score that behaves similarly for ensembles 
of different sizes; the score is corrected for its limited 
ensemble size so that the expected value of the score 
is the same, making the score comparable over all 
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ensemble sizes (Ferro 2014; Siegert et al. 2019). We 
noted that a decrease in the ensemble size worsens the 
scores for all metrics (cf. Figure 4). This is expected as 
none of the metrics is a fair score. A fair version of DSS 
exists (Leutbecher 2019) and because of the similarities 
between DSS and FLS, a fair version of FLS is also likely 
to exist. Siegert et al. (2019) derive a fair score for the 
logarithmic score. From this derivation, a fair version of 
the DSS is possible to derive. As the filter likelihood score 
differs from the DSS on one point only, the additional 
observation error, we believe that a fair version of the 
filter likelihood score exists. The difficulty here lies in 
finding the expectation of 2 2log( )o zs s+ , when 2

zs  follows 
a χ2 distribution.

One advantage of FLS is that it fits very well to 
operational NWP infra-structure with good access to 
the stream of quality-controlled Earth observations and 
data assimilation tools, such as dedicated observation 
operators. We envision an operational near real-time 
monitoring system where observation-minus-forecast 
departures (OmF) are computed for each ensemble 
member at all forecast ranges using the data assimilation 
system in a passive observation monitoring mode. 
This post-processing essentially implies projection of 
ensemble forecasts to observation space. The dimension 
of this projection depends on the user-defined selection 
of observation types that are used as a reference. It is 
important to operationally monitor ensemble prediction 
system since changes in deterministic model formulation 
or tuning can affect probabilistic forecast spread-skill 
relationship (Köhler et al. 2023).

7. CONCLUSIONS

In this study, we have looked at an ensemble forecast 
verification metric, filter likelihood score (FLS) that has its 
theoretical background in data assimilation methodology. 
FLS takes naturally into account observation errors, 
something that becomes more important as the forecast 
errors decrease when numerical weather prediction 
models improve. It is also possible to form a multivariate 
score of FLS that considers several observed quantities in 
one single metric. Here, we did not include covariances 
and the FLS over multiple variables is therefore referred 
to as combined FLS.

We compared the FLS to more traditional verification 
metrics: ensemble spread-error relationships with and 
without observation errors, and Dawid-Sebastiani score 
(DSS). The similarities between these four metrics are 
the inclusion of ensemble mean skill and spread of 
the ensemble in the metric. DSS and FLS also include 
a normalisation term in the form of a logarithm. 
Additionally, FLS considers the observation error, which 
is included in one version of the ensemble spread-

error relationship. To compare the different verification 
metrics, we analysed OpenIFS ensemble forecast data 
and compared the data against radio sounding data 
and satellite observations. The results show that FLS can 
distinguish between different ensemble systems and 
is consistent with the other metrics (Figure 1). Hence, 
FLS is sensitive enough to distinguish between different 
ensemble set-ups with small differences in initial value 
perturbations.

We analysed multivariate versions of FLS. Firstly, 
we focused on combined versions for different parts 
of the atmosphere (Figure 2; 200 hPa, 500 hPa, and  
850 hPa). Secondly, we considered combined FLS where 
observations from three pressure levels are merged into 
one overall score. The results show that it is possible to 
form a combined score that can distinguish between the 
different ensemble systems. This was expected from Duc 
and Saito (2018). In our study, we compared different 
regions (Northern Hemisphere, Tropics, and Southern 
Hemisphere) and 10-day forecasts. The results are 
similar for the different regions and the FLS also works 
for longer forecast ranges. However, the importance of 
observation errors is less important for longer lead times 
as the magnitude of forecast errors increases more than 
the magnitude of observation errors.

We studied how FLS behaves when using different 
types of observations by forming a combined score 
with both radio sounding and satellite observations. 
The results show that when including both types of 
observations, the filter likelihood score maintains its 
structure: in the beginning of the forecast, the score gets 
small values and values increase with forecast length. 
The values of the score are of the same magnitude as 
when only including one observation type. Hence, a 
combined verification metric for these two observation 
types seems possible. We did not however compare 
different ensemble systems when analysing the satellite 
observations as we only had model counterparts from 
one ensemble system (EDA+SV). Finally, we looked at 
the effect of a reduction of ensemble size by comparing 
the different verification metrics for three different 
ensemble sizes (5, 10, and 20 members). As the 
filter likelihood score is not a fair score, a reduction in 
ensemble size worsens the score. Deriving a fair version 
of FLS is however out of scope for this paper.

We conclude that filter likelihood score behaves 
similarly in a realistic model set-up with real observations 
as for an idealistic model set-up. Filter likelihood score is 
able to distinguish between different ensemble system 
set-ups for both univariate and multivariate data. As 
with other verification metrics, the score should be used 
with care alone. We recommend the score to be used 
along traditional verification metrics to provide an as 
diverse picture as possible of the ensemble system(s) 
analysed.
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APPENDIX

APPENDIX A. KALMAN FILTER MOTIVATION 
FOR THE SCORE
To motivate the assimilation point of view of the filter 
likelihood score, we use the state space form of an 
ensemble system as

 1

,

( )

( ) ,
t t t

t t o t

E-ì = +ïïíï = +ïî

x x

y x


 

 (A1)

where t is the assimilation time index, Et the model 
error term, and σo,t is the observational uncertainty. In 
many large scale forecast systems, the model error Et is 
assumed to be negligible, or it could be obtained from 
an ensemble prediction post-processing step that uses 
historical observations to make an average correction to 
ensemble bias and spread. The observational uncertainty 
ϵo,t will have Σy,t as its covariance. Under suitable 
assumptions, the system (A1) allows assimilation of 
observations by extended ensemble Kalman filter 
formulas (Evensen 2009).

We can write the state space equations (A1) in more 
general distributional form as
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Filtering methods, like the ensemble Kalman filter, provide 
recursive algorithms to estimate and forecast the state 
xt, as well as to estimate the likelihood function of the 
observations yt. Similarly as in equation (1), the likelihood 
for observations at time t is solved by integrating out the 
state xt in

 ( ) ( , ) ( ) ,t t t t tp p p d=òy y x x x∣ ∣ ∣    (A3)

where we are now using state xt instead of its projection 
on the observation space ( )t t=z x . The first term under 
the integral sign is the observation model in (A1) and the 
second term is the predictive distribution of the state 
that is provided recursively by the filtering equations. For 
each time step t, the model  gives forecasts from the 
previous step as 1( )f

t tx x -=  as well as its uncertainty, 
which could be the empirical covariance calculated from 
ensemble of predictions initialised using uncertainty of the 
previous state, or calculated using linearised propagation 

1
f T
t t tC MC M Q-= + , where Ct-1 is the covariance of the 

previous time and Qt is the covariance of model error 

Figure 5 Different verification metrics for u500 in NH. Comparison between different verification metrics for wind component u at 
500 hPa in the Northern Hemisphere: (a) Ensemble spread-skill relationship, (b) Dawid-Sebastiani score, (c) Ensemble spread-skill 
relationship with observation error, and (d) Filter likelihood score. The solid lines show the mean value of the metric and the shaded 
area one standard deviation uncertainty. The green line shows forecasts with EDA and SV initial conditions, orange with EDA, and purple 
with SV. The dots in panels (a) and (c) show the spread (+obs.error)/error relationship for different forecast lead times every 12h.
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Figure 7 Different verification metrics for q500 in NH. Comparison between different verification metrics for specific humidity q at 
500 hPa in the Northern Hemisphere: (a) Ensemble spread-skill relationship, (b) Dawid-Sebastiani score, (c) Ensemble spread-skill 
relationship with observation error, and (d) Filter likelihood score. The solid lines show the mean value of the metric and the shaded 
area one standard deviation uncertainty. The green line shows forecasts with EDA and SV initial conditions, orange with EDA, and purple 
with SV. Please note that in panel (a) and (c), the values are multiplied by 108. The dots in panels (a) and (c) show the spread (+obs.
error)/error relationship for different forecast lead times every 12h.

Figure 6 Different verification metrics for v500 in NH. Comparison between different verification metrics for wind component v at 
500 hPa in the Northern Hemisphere: (a) Ensemble spread-skill relationship, (b) Dawid-Sebastiani score, (c) Ensemble spread-skill 
relationship with observation error, and (d) Filter likelihood score. The solid lines show the mean value of the metric and the shaded 
area one standard deviation uncertainty. The green line shows forecasts with EDA and SV initial conditions, orange with EDA, and purple 
with SV. The dots in panels (a) and (c) show the spread (+obs.error)/error relationship for different forecast lead times every 12h.
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term Et. These can be projected to the observation 
space as ( ) f

t tx=z   and y f T
t t tC HC H R= + , where Rt is 

the observation covariance. For non-ensemble-based 
calculations, we would need to use linearised versions 
of the model and system operators as |

ttH ¶
¶= x
  and 

|
ttM ¶

¶= x
 .

If we assume Gaussian error models for both model error 
and observations, the filter based likelihood in (A3) will be 
just like in equation (3)

 12log ( | ) ( ) ( ) log .( 2 |) |T y y
t t t t t t tp C Cp-- » - - +y y z y z  (A4)

Here, the approximation comes from the fact that we 
are using a finite ensemble to calculate empirical mean 
and covariance and linearised versions of the non-linear 
operators  and .

The original reference for filter likelihood comes from 
Schweppe (1965) and a more detailed derivation than the 
one given above is given in (Särkkä 2013). In this article 
the likelihood is used as a verification score by normalising 
it with the number of observations. We are interested 
in the relative score of the forecast system  given the 
observations, when comparing different systems or 

Figure 8 Root-mean squared (RMS) error versus spread for temperature at 500 hPa at different forecast lead times (a) 24h, (b) 48h, (c) 
72h, (d) 120h, (e) 144h, and (f) 240h. One dot represents the RMS error/spread relationship for one ensemble forecast and the star is 
the mean over all ensembles. Green shows EDA+SV ensembles, orange EDA ensembles, and purple SV ensembles. The mean RMS error/
spread relationship (marked with stars) corresponds to the dots in panel (a) of Figure 1.
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perhaps monitoring the performance over time. In the case 
( )q=   contains tunable parameters θ, the likelihood 

provides means of objective model tuning. This was done, 
for example, by Hakkarainen et al. (2012) to tune closure 
parameters in forecast models. Solonen and Järvinen 
(2013) used likelihood score to tune parameters related 
to the ensemble system and Ekblom et al. (2020) used 
Kalman filter likelihood cost function to tune the spread–
skill relationship of an ensemble forecasting system.

DATA ACCESSIBILITY STATEMENT

OpenIFS model requires a license for usage. See https://
confluence.ecmwf.int/display/OIFS/OpenIFS+Licensing 
for details. OpenIFS ensemble initialisation states are 
available from https://a3s.fi/oifs-t639/YYYYMMDDHH.
tgz, where YYYYMMDDHH is the initialisation time of the 
forecast. (last access: 11 March 2021; about 19.5 GB 
per file). Observations are downloaded from ECMWF’s 
Meteorological Archival and Retrieval System (MARS).
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