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Abstract. This paper investigated the performance of Malaysian power plants from the year 2015 to 2017 using Malmquist Total Factor Productivity 
(TFP) index, which is based on Data Envelopment Analysis (DEA). This approach offers substantial advantages as compared to other existing methods 
as it can measure productivity changes over time for a variety of inputs and outputs. Moreover, it comprises two primary components: the technical 
efficiency change and the technological change indexes that provide clearer insight into the factors that are responsible for shifts in total factor 
productivity. This study uses a single input, installed generation capacity (MW), and two outputs, average thermal efficiency (%) and average 
equivalent availability factor (%). These output-input data included ten main power plants: TNB Natural Gas, SESB Natural Gas, SESB Diesel, SEB 
Natural Gas, SEB Coal, SEB Diesel, IPP Semenanjung Natural Gas, IPP Semenanjung Coal, IPP Sabah Natural Gas, and IPP Sabah Diesel. The results 
have two significant implications for fossil fuel power plants in Malaysia. First, technological change was the primary factor in boosting the TFP 
performance of the fossil fuel power plants in Malaysia. Meanwhile, the decline in TFP performance in Malaysian fossil fuel power plants may be 
attributed, in part, to a lack of innovation in technical components as the results found that the average technical efficiency changes in 2015 – 2016 
were at 146% and then dropped significantly to 2% in 2016 – 2017. Second, the average scale efficiency changes rose dramatically from -53% to 3% 
providing a significant contribution to the improvement of technical efficiency changes. The fossil fuel power plants become efficient as the power 
plants’ size increases. This indicates that the size of a power plant positively impacts the performance of the TFP.  
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1. Introduction 

Electricity is generated by power plants using a variety of 
energy sources, including coal, natural gas, oil, hydropower, and 
nuclear energy (James, 2019; Hannah et al., 2020; Bahman and 
Patrick, 2021). A power plant, or electrical generating station, is 
an industrial facility that converts raw energy sources into 
electricity. The majority of power plants incorporate one or 
more generators into their operations to facilitate the 
transformation of mechanical energy into electrical energy. The 
electrical energy then is transmitted to the electrical grid and 
fulfills the needs of society. Examples of power plants include 
coal-fired plants, diesel-fired plants, wind farms, nuclear plants, 
solar panel farms, hydroelectric plants, and natural gas-fired 
plants (NS Energy Staff Writer, 2020; James, 2019).  

According to U.S. Energy Information Administration, 
global energy consumption is expected to rise by twenty-eight 
percent between 2015 and 2040, as reported in International 

Energy Outlook 2017 (IEO2017) (Linda, 2017). The most recent 
report of International Energy Outlook 2021 (IEO2021) 
projected that both global energy demand and carbon emissions 
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related to energy will continue to increase up until the year 2050 
(U. S Energy Information Administration, 2021). The vast 
majority of the world's electricity supply originates from fossil 
fuels; this accounts for more than seventy-nine percent of the 
total energy mix in countries such as Australia, China, the 
United States, Russia, India, Indonesia, Singapore, Thailand, 
Philippines, and Malaysia. However, in recent years, countries 
such as Brazil, Canada, Norway, and Sweden have relied heavily 
on renewable energy sources to meet their electricity needs 
(IEA, 2019). 

As of March 2022, Malaysia is currently among the top oil 
producer in Southeast Asia and also among the top three in the 
world in exporting liquefied natural gases. Although it is known 
for being one of the top oil producers in Southeast Asia, 
according to Petronas Annual Report (2019), Malaysia’s oil 
reserves can last for only 28 years.  The issue of the decreasing 
amount of fossil fuel reserves is currently being faced by most 
countries worldwide (Pritish and Francis, 2022).  

In Malaysia, electricity is mainly generated via thermal and 
hydro-power plants. Thermal power plants convert coal, natural 
gas, biomass, and fuel oil into electricity, whereas hydro-power 
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plants use water turbines (Samsudin et al. 2016; Abdul Latif et 
al., 2021). Malaysia's electricity providers are Tenaga Nasional 
Berhad (TNB) in Peninsular Malaysia, Sabah Electricity Sdn. 
Bhd. (SESB) in Sabah, and Sarawak Energy Berhad (SEB) in 
Sarawak. and several Independent Power Producers (IPPs) such 
as IPP Semenanjung, IPP Sabah, and IPP Sarawak. These 
electricity providers are accountable for all aspects of electricity 
production, transmission, and distribution in Malaysia 
(Suruhanjaya Tenaga, 2021). As a result, they are responsible for 
ensuring that adequate electricity is delivered to customers on 
a regular and consistent basis. 

As part of the United Nations' Sustainable Development 
Goals (SDGs) initiative, Malaysia has committed to meeting all 
17 Sustainable Development Goal (SDG) indicators by the year 
2030 (Azhar, 2021). In response, policymakers are constantly at 
work devising new development plans to realize the SDGs. As 
stated in Green Technology Master Plan Malaysia 2017 – 2030 

report, several goals have the potential to change the 
direction of the energy agenda in SDG, namely Goal 7 
(Affordable and Clean Energy), Goal 11 (Sustainable 
Cities and Communities), Goal 12 (Responsible 
Consumption and Production) and Goal 13 (Climate 
Action). These SDGs are among the important metrics for the 
government of Malaysia to monitor and work to improve. 

Demand for energy needs to be managed so that both 
energy security and supply can be sustained (Ministry of 
Energy, Green Technology and Water (KeTTHA), 2017). 

The fossil fuel resources, such as oil, coal, diesel, and natural 
gas, have been playing a significant part in the transformation of 
the socioeconomic status in many countries especially Malaysia 

(Mushtaq et al. 2013). As reported by U.S. Energy Information 
Administration (2021), the vast majority of Malaysia's ever-
increasing demand for electricity is satisfied by the combustion 
of fossil fuels, specifically natural gas and coal. Sharvini et al. 
(2018), Babatunde et al. (2018), and Abdul Latif et al. (2021) also 
emphasized that Malaysia’s energy supply remains heavily 
dependent on conventional fossil fuels. They predicted the 
demand for conventional fossil fuels is likely to rise. It is 
anticipated that the production of power from conventional 
fossil fuels such as solid (coal), gas (natural gas), and liquid 
(crude oil, diesel) fossil fuels would see a significant increase 
over the next years, and eventually become the most significant 
source of energy. Hence, there is a pressing need to investigate 
the performance of Malaysian fossil fuel power plants in 
Malaysia. 

In Malaysia, there are several types of fossil fuel power plants 
run by the main electricity providers and Independent Power 
Producers (IPPs). TNB, SESB, SEB, IPP in Semenanjung, and 
IPP in Sabah are responsible for the power generation of gas-
fired power plants. Coal-fired power plants are run by SEB, and 
IPP in Semenanjung, whereas SESB, SEB, and IPP in Sabah are 
the companies responsible for the diesel-fired power plants 
(Suruhanjaya Tenaga, 2021). 

The remainder of the paper is structured as follows: Section 
2 discusses the literature survey on the performance of power 
plants. Section 3 presents the methodology and is followed by 
the results and discussion in Section 4. Section 5 is the 
concluding remarks.  

2. Literature Survey 

This section examines Data Envelopment Analysis-based 
past studies on fossil fuel power plant efficiency (DEA). The 
DEA is found to be an analytical tool for performance evaluation 

and ranking of similar entities or Decision-Making Units (DMUs) 
which transforms multiple inputs into multiple outputs (Cooper 
et al., 2004). According to the relevant literature, there has been 
extensive use of DEA and its variations for assessing the 
efficiency of fossil fuel power plants. 

Sarica and Or (2007) evaluated the efficiency of sixty-five 
Turkey’s private and public thermal, hydro, and wind power 
plants in 2007 using DEA. Their study considered two efficiency 
metrics that represent operational and investment performance. 
They employed three DEA models namely constant-returns-to-
scale (CRS), variable-returns-to-scale (VRS), and assurance 
region DEA models in their analysis. Besides, scale efficiency 
was examined. This study found that wind power systems had 
the highest efficiency values for operations and investments, 
showing their future potential. Coal-fired power stations were 
one of the main drivers of public investment inefficiency. 
Meanwhile, gas-fired natural plants had a better investment 
efficiency than coal gas plants, while natural gas public plants 
had slightly higher efficiency. 

Next, Sözen et al. (2010) assessed the efficiency of Turkey's 
lignite, hard coal, and natural gas-powered thermal power 
plants in 2008 using DEA. These thermal power plants were 
owned by Turkey's state electricity production company, which 
was known as the Electricity Generation Cooperation Company 
(EUAS). Both operational performance and environmental 
performance were considered efficiency metrics. In this study, 
they employed CRS and VRS DEA models as Sarica and Or 
(2007). The results showed that the Somas AB power plant was 
discovered as the most efficient power plant in both models of 
all hard coal-fired facilities. The power plant at Hamitabat was 
the most efficient plant among all the natural gas-fired plants. 
They mentioned that the energy efficiency of electricity plants 
should be evaluated by analysis revealing the unit costs of 
production of power plants.  

Munisamy and Arabi (2015) established a new slacks-based 
DEA measure to compute the Malmquiste-Luenberger 
productivity index. Throughout eight years of power sector 
reorganization, this technique was used to assess the 
productivity of forty-eight Iranian thermal power plants, 
including steam, gas, and mixed cycle. In addition, this 
technique analysed thermal power plant eco-efficiency changes 
operating under various technologies, as well as technological 
gap ratios, and investigated the degree to which power plants 
deviate from the meta-frontier. According to the findings, 
productivity grew faster in the latter years of the restructuring 
period, and all three kinds of thermal power plants increased 
their eco-efficiency over time.  

In Iran, Mahmoudi et al. (2019) integrated DEA, multistage 
Principle Component Analysis (PCA), clustering, and game 
theory to assess the twenty-four Iranian thermal power plants 
(TPPs)’s performance in 2019. According to the findings, the 
majority of Iranian TPPs performed poorly. Since the energy 
industry is so important to local and national governments, poor 
TPP performance may cause economic, environmental, and 
social concerns. Therefore, raising TPP revenue was the most 
effective approach for improving their performance. 

Later, Rezaee and Dadkhah (2019) proposed a new approach 
that combines DEA, Artificial Neural Network, and Inverse 
Problem to optimize the input parameters based on different 

output levels of a power plant. The Iranian thermal power 
plants were selected as a case study. First, a DEA model is 
used to determine efficient days. The efficient vectors obtained 
in the previous stage were then applied to an artificial neural 
network. The trained network's weights and biases were 
extracted and used in the inverse neural network model, which 
was known as a Gaussian nonlinear optimization problem. 
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In the context of market-based policies to mitigate the effects of 
climate change – Perform, Achieve, and Trade (PAT), Sahoo et 
al. (2018) explored the consequences of normalization on the 
energy consumption of the coal-based power industry in India. 
DEA and Tobit’s regression were used in this cross-sectional 
analysis. A total of sixty-nine coal-fired thermal power facilities 
under PAT provided the sample data for this analysis. System 
demand, maintenance window, unplanned outages, fuel quality, 
and fuel mix were all shown to substantially impacted energy 
use. However, the quality of the coal used and the fuel mix had 
a larger role than any other variables. A steady certificate 
market may be maintained by the use of clean coal to maintain 
consistent energy demand. 

Most studies on the efficiency of fossil fuel power plants were 
conducted in China. Wu et al. (2018) evaluated the ecological 

and economic efficiency of sixteen different coal-fired power 
plants located in China using a two-stage analysis model. In the 
first step, Principal Component Analysis (PCA) was used to 
minimize the number of dimensions and differentiate between 
the components that were prioritized. In the second step, a 
super-efficiency DEA was used to evaluate eco-efficiency with 
an overall ranking. In the third stage, Kruskal-Wallis rank sum 
tests were utilized to identify macro-environmental factors. Last 
but not least, after taking into account chain interactions and the 
influence of time, they employed Tobit regression to identify 
direct external factors. The findings showed that over sixty 
percent of coal-fired power plants were operating at an 
appropriate level of productivity, even though some of them 
were still dealing with challenges resulting from poor 
investment. A stable operation may be expected from plants 

Table 1  
An overview of data and methodology used in past research to access the efficiency of fossil fuel power plants 

Article Type Data Period Country Methodology 

Sarica and Or (2007) Thermal, Hydro 
and Wind 

11 2007 Turkey CRS, VRS and assurance region 
type DEA models 

Sözen et al. (2010) Coal, Natural 
Gas 

15 2008 Turkey CRS, VRS DEA models 

Munisamy and Arabi (2015) Thermal 48 2003 – 2010 Iran A new slacks-based DEA 

Mustapa and Majid (2017) Coal 48 2016 Malaysia VRS and SBM-based DEA  

Sahoo et al. (2018) Coal 69 2009 – 2010 India DEA and Tobit regression 

Sun et al. (2018) Fossil fuel 30 2005 – 2015  China A new DEA approach - 
Intermediate approach  

Li et al. (2018) Fossil fuel 30 2004 – 2012  China Static Unified Efficiency Indices 
(UEIs) and Meta-frontier 
Malmquist unified efficiency 
indices (MMUEI) 

Sueyoshi et al. (2018) Fossil fuel 30 2015 China Radial, non-radial and intermediate 
DEA approaches 

Tajbakhsh and Hassini (2018) Fossil fuel 135 2012 United States Two-stage DEA 

Wu et al. (2018) Coal 58 2015 China PCA, super efficiency DEA, 
Kruskal-Wallis rank sum tests, 
Tobit regression 

Mahmoudi et al. (2019) Thermal 24 2019 Iran Integrated DEA, multistage PCA, 
clustering and game theory 

Rezaee and Dadkhah (2019) Fossil fuel 8  March 2015 & 
November 

2016 

Iran A novel hybrid approach - DEA, 
Artificial Neural Network and 
inverse problem 

Sueyoshi et al. (2020a) Fossil fuel 14 2007 – 2017  China Intermediate approaches - Cross-
sectional approach, window 
efficiency analysis and window 
index approach 

Sueyoshi et al. (2020b) Fossil fuel 30 2009 – 2015  China Integrated DEA-Discriminant 
Analysis (DEA-DA), DEA 
environmental assessment and a 
rank sum test. 

Du et al. (2021) Fossil fuel 28 2005 – 2010  China A new approach - Environmental 
DEA and restricted cost function 

Zhang et al. (2022) Fossil fuel 91 2005 – 2015  China Meta-frontier hybrid DEA 
(MHDEA) model 
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that have a large installed capacity. The performance of local 
plants may be significantly influenced by macro-environmental 
factors such as policy preference and economic circumstances, 
whereas resource distribution has limited effects due to 
excellent transit conditions.  

The next study is a new DEA method presented by Sun et al. 
(2018), which involves a combination of an intermediate method 
and heterogeneity of a group in a time horizon. This technique 

was used to assess the unified efficiency of thirty fossil fuel 
power plants located in coastal and inland provinces of China 
between 2005 and 2015. The findings showed that coastal 
provinces outperformed inland provinces, indicating significant 

group heterogeneity. Besides, there was substantial variation 
in the unified efficiency measures between provinces.

 
 

 

Table 2  
A brief summary of the methodology and variables integrated into the data envelopment analysis efficiency assessment of fossil fuel power 
plants 

Article(s) Input Intermediate Output 

Sarica and Or (2007) Model 1 
1. Fuel cost 
2. Production 
3. Availability 

 
Model 2 
1. Investment cost 
2. Construction time 

 
None 

 
Desirable: 
1. Thermal efficiency 
2. Environmental cost 
3. Carbon monoxide (CO) 

 
Desirable: 
1. Installed power capacity 
2. Average utilization 

Sözen et al. (2010) Model 1 
Production 

 
Model 2 
Production 

 
None 

 
Desirable: 
Fuel cost per production 

 
Desirable: 

Gas emissions 

Munisamy and Arabi (2015) 1. Installed 
generation 
capacity 

2. Fuel consumption 

None Undesirable:  
1. SO2, emissions 
2. NO2, emissions  
3. CO2 emissions 
4. Operational availability/ deviation from 

generation plan 

Desirable: 
Electricity generation 

Mustapa and Majid (2017) 1. Coal consumption 
2. Energy 

consumption 
3. Sulphur dioxide 

emissions 
4. CO2 emissions 

None Desirable: 
1. Ratio of resource output 
2. Total output value per power generation  
        unit 

Sahoo et al. (2018) Controllable: 
1. Capacity 
2. Coal consumption 
3. Auxiliary power 

consumption 
4. Plant load factor 

 
Uncontrollable 
(Normalization): 
1. Unscheduled 

outage 
2. Forced outage 
3. Planned 

maintenance 
4. Fuel supply 

reliability 
5. Gross calorific 

value 
6. Specific secondary 

fuel consumption 

None Desirable: 
Electricity generation 
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Table 2 (cont.) 
A brief summary of the methodology and variables integrated into the data envelopment analysis efficiency assessment of fossil fuel power 
plants 

Article(s) Input Intermediate Output 

Tajbakhsh and Hassini (2018) 1. Annual fuel consumed  
2. Book value of plant and 

land  
3. Annual production 

expenses 
4. Plant nameplate capacity  
5. Annual number of 

employees 

1. Annual electricity 
net generation  

2. Availability factor  

Desirable: 
1. Number of deaths per year 
2. Number of heart attacks per year 
3. Number of asthma attacks per year 
4. Number of hospital admissions per year 
5. Number of chronic bronchitis per year 
6. Number of asthma ER visits per year 
7. CO2 emission  
8. N2O emission  
9. CH4 emission  
10. SO2 emission  
11. NO emission  
12. Annual revenue 

Wu et al. (2018) 1. Installed capacity 
2. Labor 
3. Coal consumption 
4. Auxiliary power 

consumption 
5. Oil consumption 
6. Water consumption 

None Undesirable: 
1. SO2, emissions 
2. NO2 emissions 
3. CO2 emissions 
4. Dust emissions 

 
Desirable: 
5. Electricity generation 
6. Equivalent available coefficient 

Sun et al. (2018) 1. Installed generation 
capacity 

2. Labor  
3. Energy consumption 

None Undesirable: 
CO2 emissions 
 
Desirable: 
Electricity generation 

 

Li et al. (2018) 1. Capital  
2. Labor   
3. Energy consumption 

None Undesirable: 
CO2 emissions 
 
Desirable: 
Electricity generation 

 
Sueyoshi et al. (2018) 1. Installed generation 

capacity 
2. Labor  
3. Energy consumption 

None Undesirable: 
CO2 emissions 
 
Desirable: 
Electricity generation 
 

Mahmoudi et al. (2019) 1. Installed generation 
capacity  

2. Total hours of operation 
per period  

3. Internal consuming  
4. Fuel consumption  
5. Number of non-

operational employees 
6. Number of operational 

employees 
7. Generated power cost per 

kWh  
8. Total cost of training 

None Desirable: 
1. Electricity generation 
2. CO2 emissions  
3. Total revenue  
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Li et al. (2018) further investigated a similar case study as Sun et 
al. (2018), however using data from 2004 – 2012. Besides, they 
used several approaches, static unified efficiency indices (UEIs) 
and dynamic unified efficiency indices – Meta-frontier 

Malmquist unified efficiency indices (MMUEI). The results 
found that MMUEIs provided more useful information 
compared to UEIs. For both coastal and inland areas, the 
MMUEI time paths followed an M-shaped curve. Besides, each 
UEI measured unified efficiency from various angles, and as a 
result, their time paths differed. Finally, there are significant 
variations either in MMUEI or UEI across China provinces. 

Sueyoshi et al. (2018) compared three different approaches 
namely radial, non-radial, and intermediate methods while 
taking into account the heterogeneity of the groups. Similar to 
Sun et al. (2018), these approaches were used to examine the 
sustainability of the thirty fossil fuel power plant industry in 
China's coastal and inland provinces but the data used in this 
study was only considered in 2015. Under the government's 
catching-up policy, Chinese provinces focused on operational 
efficiencies. Coastal provinces were found to be more efficient 

than inland ones, indicating there was a regional imbalance 
between these two groups.   

Furthermore, using data from 2007–2017, Sueyoshi et al. 
(2020a) compared the performances of fourteen Chinese fossil 
fuel power plants using three different types of intermediate 
approaches namely cross-sectional, window efficiency analysis, 
and window index. The findings of this study found that these 
three approaches differed significantly, indicating a 

methodological bias. China’s capital, Beijing outperformed 

other provinces in terms of air pollution measures because the 
regulations exercised by the government of Beijing focused on 
air pollution caused by fossil fuel power plants.  

A new method that incorporated Data Envelopment 
Analysis-Discriminant Analysis (DEA-DA), an evaluation of the 
DEA's environmental impact, and a rank sum test was proposed 
by Sueyoshi et al. (2020b). This study also used the same case 
study in China provinces as Sun et al. (2018), Li et al. (2018), 
Sueyoshi et al. (2018), and Sueyoshi et al. (2020). However, the 
data were collected from 2009 – 2015. This study indicated that 
the unified efficiency measurement showed that there was 

diversity between two groups of Chinese provinces. On top of 
that, there were significant differences in the level of 
unified efficiency between provinces. Besides, provinces 
that performed poorly in both natural and managerial 
disposability should receive special attention. Lastly, the 
DEA and DEA-DA models differentiated between the two 
types of disposability-natural and managerial. 

In 2021, Du et al. proposed a regulatory stringency index 
using DEA's non-parametric distance function. The proposed 
model was integrated with the restricted cost function to 
measure the impact of environmental regulation, productivity, 

and substitution elasticities on power plants. The impact of 
environmental regulation on productivity growth appeared to 
be approximately U-shaped, according to the findings. Besides, 
the advancement of technology was the primary factor in rising 
productivity. 

In a recent article, Zhang et al. (2022) introduced a meta-

Table 2 (cont.) 
A brief summary of the methodology and variables integrated into the data envelopment analysis efficiency assessment of fossil fuel power 
plants 

Article(s) Input Intermediate Output 

Rezaee and Dadkhah (2019) 1. Energy 
consumption  

2. Water 
consumption 

3. Internal electricity 
consumption  

None Desirable: 
Power or output load  

Sueyoshi et al. (2020a) 1. Installed 
generation 
capacity  

2. Labor   
3. Energy 

consumption 

None Undesirable:  
CO2 emissions 
 
Desirable: 
Electricity generation 

Sueyoshi et al. (2020b) 1. Installed 
generation 
capacity  

2. Labor   
3. Energy 

consumption 

None Undesirable:  
CO2 emissions 
 
Desirable: 
Electricity generation 

Du et al. (2021) 4. Installed 
generation 
capacity  

5. Labor   
6. Energy 

consumption 

None Undesirable:  
SO2 emissions 
 
Desirable: 
Electricity generation 

    

Zhang et al. (2022) 1. Labor  
2. Capital 
3. Energy 

consumption 
 

None Desirable: 
1. Electricity generation 
2. Sales  

  
Undesirable: 
CO2 emissions  
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frontier hybrid data envelopment analysis (MHDEA) model that 
combines group heterogeneity, undesirable outputs, and hybrid 
metrics. This method was utilized to examine the total factor 
carbon performance index of twenty-eight of China’s fossil fuel 
power plants between 2005 and 2015. This model accounted for 
group heterogeneity, undesirable outputs, and hybrid metrics. 
The efficiency change, best-practice gap, and technology gap 
change (TGC) were examined as drivers of productivity growth 
using the Malmquist-Luenberger (ML) index. 

U.S. researchers Tajbakhsh and Hassini (2018) built on prior 
work on centralized DEA models for two-stage systems to 
introduce a nonlinear DEA model. They introduced an accurate 
and efficient algorithm to tackle the problem and then applied it 
to a case study of fossil fuel power plants in the United States. 
When compared to other models, this algorithm yielded more 
stable computational results. 

To the best of our knowledge, there is a lack of studies on 
the performance of fossil fuel power plants in Malaysia. Mustapa 
and Majid (2017) were the only researchers that evaluated the 
efficiency of coal-fired power plants in Malaysia using DEA. The 
sample of data consisted of four individual plants, with each 
plant's data covering a period of the year 2016. The simulation 
results suggested that the Banker, Charnes, and Cooper (BCC) 
or VRS and Slack-Based Measure (SBM) based DEA models can 
be used to identify inefficient units of coal-fired power plants for 
improvements. Several unit plants were identified as circular 
economy benchmarks to improve Malaysia's electricity 
generation. For a better understanding, Table 1 provides an 
overview of the data and methodology used in past research to 
evaluate the efficiency of fossil fuel power plants.  

Several studies investigated the performance of renewable 
power plants such as solar (Wang et al., 2017; Wang et al. 2018; 
Wang et al., 2021; Mariano et al., 2021; Wang et al., 2022), hydro-
electric (Sarica and Or, 2007; Seyma et al., 2019), wind (Sarica 
and Or, 2007; Khanjarpanah and Jabbarzadeh, 2019), biomass 
(Nattanin et al., 2015; Rentizelas et al., 2019) and hybrid wind-
photovoltaic (Khanjarpanah et al., 2022). 

In contrast to the methods that were utilized in earlier 
studies, the purpose of this paper is to investigate the 
performance the Malaysian fossil fuel power plants using the 
DEA-based Malmquist Total Factor Productivity (TFP) Index. 

  
3. Data and Methodology 

This paper employed a DEA-based output-oriented Malmquist 
Total Factor Productivity (TFP) Index to maximize outputs 
while keeping inputs constant and to compare efficiency over 
two different periods. Data Envelopment Analysis (DEA) and 
the Malmquist index techniques, which are both linear 
programming methods, are two of the most common methods 
that are used to evaluate the relative efficiency and productivity 
of multiple DMUs or similar entities. Both of these approaches 
are linear programming methods. The DEA was first developed 
by Charnes et al. (1978) to assess the efficiency of portfolios. On 
the other hand, the Malmquist index was introduced by Fare et 
al. (1989) to measure the growth of productivity in Swedish 
hospitals.  

The Malmquist index is a tool for comparing the total change 
in a Decision-Making Unit’s (DMU) productivity factor over 
time. It can be divided into technical efficiency and 
technological changes. To be specific, this Malmquist index 
calculates the ratio of the distance function over two different 
periods to determine the change in TFP between two data 
points: 

( , )
( , , , )

( , )

t t t

s st t s s s

W y x
E y y x x

W y x
=                           (1)    

 
which the function E(.) is denoted as the technical efficiency 
change index, with the subscript s and t referring to the time 
period. The numerator in this Equation (1) represents the data 
period, while the denominator represents the technology 
period. 

This Malmquist TFP productivity index employs a distance 
function approach. When a set of input requirements describes 
the production technology, the distance function is said to be 
meaningful. Fare et al. (1994) calculated the productivity 
technical change component as a mixed index that measures 
time period data s versus time period technology t, (Wt(ys,xs)) and 
another mixed index that measures time period t versus time 
period technology s, (Ws(yt,xt)) as follows: 
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where, T(.) is a non-negative input vector that denotes the 
technological change index, x = (x1,x2,…,xn) and y is a non-
negative output vector, y = (y1,y2,…,yn). The overall change in 
output-oriented Malmquist TFP index productivity factor across 
time periods s and t, according to Fare et al. (1994), is: 
 

= 
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        (3)      

The Malmquist productivity index in Equation (3) has two 
components: technical efficiency change and technological 
change. If the function M > 1 is employed, TFP increases from 
the time s to time t. If M < 1, on the other hand, it shows that 
TFP drops from the time s to time t. 

This paper uses an enhanced decomposition of the 
Malmquist index (Fare et al. 1994). The enhanced 
decomposition separates the technical efficiency change 
component of the Malmquist index, which is calculated relative 
to CRS technology, into two distinct components namely a pure 
efficiency component, and a scale efficiency change component 
as: 

 
= Technical Efficiency Pure Efficiency  Scale Efficiency 

change                         change                  change
       (4) 

         
 Changes in pure efficiency analyze a company's ability to 

effectively transform inputs into outputs, while scale efficiency 
examines how well a company can exploit returns to scale by 
changing its size to the appropriate scale 
 

3.1 Selection of Input and Output 

This paper focuses on fossil fuel power plants, and the models 
are applied to three types of fossil fuel power plants: gas-fired, 
coal-fired, and diesel-fired power plants. Table 2 presents an 
overview of prior research that provides researchers with a 
roadmap for identifying the most relevant input-output variables 
as well as intermediate variables for data envelopment analysis 
efficiency assessment of fossil fuel power plants.  
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The input and output variables considered in this study were 
selected based on prior research and data availability. The input-
output variables used for measuring the efficiency of Malaysian 
fossil fuel power plants are listed in Table 3, and they were 
determined based on the availability and access to data in the 
non-public domain.  

This paper considers three variables: one input and two 
outputs. Installed generation capacity (MW) (Munisamy and 
Arabi 2015; Sahoo et al. 2018; Wu et al. 2018; Sun et al., 2018; 
Sueyoshi et al., 2018; Mahmoudi et al. 2019; Sueyoshi et al. 
(2020a); Sueyoshi et al., 2020b; Du et al., 2021) was selected as 
input. Most previous studies utilized installed capacity, 
represented as capital input in MW, which is the total of all 
operating turbine capacity.  

As stated in Table 3, the outputs used in this study were the 
average thermal efficiency (%) (Sarica and Or 2007) and average 
equivalent availability factor (%) (Sarica and Or 2007; Wu et al. 
2018). The first output, the average thermal efficiency measures 
how much the heat is transformed into electrical energy. 
Maximizing thermal efficiency provides environmental and 
economic benefits since it reduces emissions and energy use. 
The second output, the average equivalent availability factor 
measures the amount of time that the power plant can provide 
electricity without interruption. An increase in availability is a 
significant positive indicator. 

3.2 Data Sources 

For this study, a total of ten fossil fuel power plants, 
categorized by producer were collected from 2015 to 2017. The 
input-output data used in this study was limited to three (3) years 
and also did not consider environmental factors due to data 
availability. 

 

Table 4  
List of fossil fuel power plants by producer 

Producer Source of energy 

Tenaga Nasional Berhad (TNB) Natural gas 

Sabah Electricity Sdn. Bhd. (SESB) Natural gas and diesel 
 

Sarawak Energy Berhad (SEB) Natural gas, coal and diesel 

IPP Semenanjung Natural gas and coal 

IPP Sabah Natural gas and diesel 

Sources: Suruhanjaya Tenaga Malaysia (2020); Suruhanjaya Tenaga Malaysia 
(2021) 

The primary source of data was the Performance & Statistical 
Information on the Malaysian Electricity Supply Industry 2018, 
obtained from Suruhanjaya Tenaga Malaysia (2020).  

Electricity in Peninsular Malaysia is generated by three 
different types of fossil fuel power plants:  

i. Peninsular of Malaysia – TNB Natural Gas, IPP 
Semenanjung Natural Gas, and IPP Semenanjung Coal. 

ii. Sabah – SESB Natural Gas, SESB Diesel, and IPP Sabah 
Natural Gas.  

iii. Sarawak – IPP Sarawak Diesel, SESB Natural Gas, and 
SESB Diesel.  

Table 4 presents a list of fossil fuel power plants by the producer. 
These data and selected models were analyzed using DEAP 
software Version 2.1, and Microsoft Excel. 
 

4. Results and Discussion 

4.1 Descriptive Statistics 

Table 5 presents descriptive statistics for the input-output of ten 
fossil fuel power plants in Malaysia between 2015 and 2017. 
Fossil fuel power plants had an average installed generation 
capacity (MW), average thermal efficiency (%), and average 
equivalent availability factor (%) of 2,330.97 MW, 32.46%, and 
86.59% in 2015 – 2017, respectively. To determine whether a 
standard deviation number is large or low, the coefficient of 
variation (CV) of each variable was calculated. 
The greater the coefficient of variation, the more spread out the 
data is around the mean. When the coefficient of variation value 
is greater than one means that the standard deviation is greater 
than the mean. 
 

Table 5  
Descriptive statistics of inputs-outputs Malaysian fossil fuel power plants 
between 2015 and 2017 

Description 

Input Output 

Installed 
Generation 
Capacity 

(MW) 

Average 
Thermal 

Efficiency 
(%) 

Average 
Equivalent 
Availability 
Factor (%) 

Mean 2,330.97 32.46 86.59 

Median 537.50 33.27 87.65 

Standard deviation 3,280.65 4.16 6.63 

Minimum 36.00 24.35 71.70 

Maximum 10,066.00 39.22 98.05 

 
 

Table 3  
Input-output variables definitions 

Variables Definition 

Input: 
Installed generation capacity (MW) 

The plant's maximum potential capacity is often known as its nameplate rating. It is the amount 
of power that the plant is capable of producing. Performance tests are often used to estimate a 
plant’s capacity, which in turn allows utilities to predict the maximum load that a plant can safely 
handle. Megawatts and kilowatts are the usual units of capacity measurement.  

Output 1: 
Average thermal efficiency (%) 
 
 

Thermal efficiency is defined as a ratio of the amount of electrical energy generated to the 
amount of energy released by the fuel that was used. It can be expressed in a percentage which 
must be between 0% and 100% 

Output 2: 
Average equivalent availability factor (%) 

The percentage of a particular operational time when a generator is available without outages 
or equipment deratings. 

Sources: Resource Adequacy Planning (2020); Suruhanjaya Tenaga Malaysia (2021); James (2022) 
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The lower the coefficient of variation value, the more precise 
the estimate. In this study, the coefficient of variation of installed 
generation capacity was recorded at 1.4. This implies the 
installed generating capacity's standard deviation was above 
the mean. Meanwhile, the CV for both outputs was less than 1, 
indicating that the spread of data values is low relative to the 
mean. 

Specifically, IPP Sabah Diesel produced the least amount of 
inputs in the year 2017, while IPP Semenanjung Coal produced 
the highest amount of inputs in the same year. In regards to the 
outputs, IPP Sabah Diesel gained the least thermal efficiency in 
2017 and SESB Natural Gas obtained the least equivalent 
availability factor in 2016. In 2016, IPP Sabah Natural Gas had 
the best thermal efficiency and SEB Diesel had the best 
equivalent availability factor. 

4.2 Relative Efficiency 

The fundamental component of the Malmquist productivity 
index is associated with efficiency measures. If the values are 

equal to or greater than one suggests that the power plant is 
operating at the industrial frontier, while values that are less 
than one indicate the power plant is inefficient. In other words, 
the farther values are from one, the less efficient they are. Table 
6 depicts the change in efficiency for the ten fossil fuel power 
plants from 2015 to 2017 for both constant-returns-to-scale 
(CRS) or known as Charnes, Cooper, and Rhodes (CCR), and 
variable returns-to-scale (VRS) or known as Banker, Charnes, 
and Cooper (BCC) indices. The best performance among all 
DMUs is indicated in boldface. 

As reported in Table 6, SEB Diesel was the sole efficient 
power plant for both CRS and VRS in 2015 and 2016. In 2017, 
only IPP Sabah Diesel maintained the performance that was 
deemed to represent the industry's frontier under both CRS and 
VRS models. In addition, SEB Diesel, IPP Sabah Natural Gas, 
and IPP Sabah Diesel were consistently efficient for three 
consecutive years, 2015 – 2017 in terms of VRS. SESB Natural 
Gas and IPP Semenanjung Coal were also efficient in 2015 
under the VRS model. On average, in 2015, fossil fuel power 
plants generated the highest potential output level about 37.1% 
under CRS. and 96% under VRS. 

Table 6 
Efficiency of Malaysian fossil fuel power plants, 2015 – 2017 

No. Power plants (DMUs) 

CCR model                                                    
(Constant-return-scale,CRS) 

BCC model                                                       
(Variable-return-scale,VRS) 

2015 2016 2017 2015 2016 2017 

1 TNB Natural Gas 0.0270 0.0100 0.0190 0.9400 0.9420 0.9740 

2 SESB Natural Gas  0.8710 0.3260 0.3470 1.0000 0.7320 0.8470 

3 SESB Diesel 0.5520 0.2330 0.2400 0.8760 0.8480 0.9600 

4 SEB Natural Gas 0.1670 0.0650 0.0730 0.8550 0.8490 0.8170 

5 SEB Coal 0.2490 0.0930 0.0950 0.9500 0.8450 0.9120 

6 SEB Diesel 1.0000 1.0000 0.4040 1.0000 1.0000 1.0000 

7 IPP Semenanjung Natural Gas 0.0200 0.0070 0.0060 0.9800 0.9530 0.9370 

8 IPP Semenanjung Coal 0.0160 0.0060 0.0050 1.0000 0.9610 0.8850 

9 IPP Sabah Natural Gas 0.1340 0.0550 0.0670 1.0000 1.0000 1.0000 

10 IPP Sabah Diesel 0.6700 0.5100 1.0000 1.0000 1.0000 1.0000 

Average 0.3710 0.2300 0.2260 0.9600 0.9130 0.9330 

 

Table 7 
Malaysian fossil fuel power plants relative Malmquist TFP, technological and technical efficiency changes, 2015 – 2017 

No. Power plants (DMUs) 

Malmquist TFP productivity 
change 

Technological change Technical efficiency change 

2015-2016 2016-2017 2015-2016 2016-2017 2015-2016 2016-2017 

1 TNB Natural Gas 0.9020 1.9110 2.4840 0.9710 0.3630 1.9690 

2 SESB Natural Gas  0.9120 1.0330 2.4370 0.9720 0.3740 1.0640 

3 SESB Diesel 1.0090 1.1020 2.3880 1.0740 0.4230 1.0260 

4 SEB Natural Gas 0.9510 1.0910 2.4590 0.9590 0.3870 1.1370 

5 SEB Coal 0.9270 0.9810 2.4840 0.9590 0.3730 1.0230 

6 SEB Diesel 2.4360 0.3990 2.4360 0.9870 1.0000 0.4040 

7 IPP Semenanjung Natural Gas 0.8770 0.7890 2.4840 0.9590 0.3530 0.8220 

8 IPP Semenanjung Coal 0.9040 0.8580 2.4840 0.9590 0.3640 0.8950 

9 IPP Sabah Natural Gas 1.0180 1.1630 2.4840 0.9590 0.4100 1.2130 

10 IPP Sabah Diesel 1.8910 2.0340 2.4840 1.0380 0.7610 1.9600 

Geomean 1.1053 1.0405 2.4622 0.9830 0.4489 1.0586 
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According to CRS or VRS, the efficiency of five power plants 
was found to be above average for all of the years of the study 
(9.9% for CRS), whereas according to VRS, the efficiency of six 
power plants was found to be above the average of 93.26%. SEB 
Diesel had the highest CRS (73.93%) and VRS (100%) scores, 
making it the most efficient power plant. Besides, IPP Sabah 
Natural Gas and IPP Sabah Diesel also obtained 100% efficiency 
under the VRS model. The power plants with the lowest 
efficiency ratings were IPP Semenanjung Coal (0.78%) under 
the CRS and SEB Natural Gas (84.02%) under the VRS.  

As observed in Table 6, the overall industrial efficiency 
under CRS declined from 37.1% to 23% between 2015 and 2016 
and further decreased to 22.6% in 2020.  In regards to VRS, the 
average efficiency in 2015 diminished to 91.3% from 96%. The 
efficiency improved slightly to 93.3% in the following year. On 
average, the efficiency of Malaysian fossil fuel power plants for 
CRS model demonstrated a downward trend over a three-year 
period of study. However, the VRS model showed an 
inconsistent trend. These findings suggest that some power 
plants require a strategic action plan in order to enhance their 
levels of efficiency.  

4.3 Productivity Performance  

Table 7 presents the performance of fossil fuel power plants 
from 2015 to 2017 in terms of the change in total factor 
productivity (TFP) as well as the TFP change's two 
subcomponents, namely the change in technical efficiency and 
the change in technology. TFP productivity indices and their 
components that have a value that is less than one imply a loss 
of productivity or deterioration in productivity. On the other 
hand, values that are more than one suggest that there has been 
an increase in production in the relevant area. Given the 
relevant time period and relevant performance metric, the 
average yearly growth or decline is determined by subtracting 

one from the value shown in the table. Also, note that these 
measures are based on best-practice decision-making unit 
performance (DMU). 

According to Table 7, SEB Diesel and IPP Sabah Diesel had 
the greatest average TFP growth at an annual average rate of 
143.6% and 103.4% for the period of 2015 – 2016 and 2016 – 
2017, respectively. On the contrary, IPP Semenanjung Natural 
Gas had the greatest decline in TFP for 2015 – 2016, at an 
annual average rate of –12.3%, while SEB Diesel had the slowest 
growth for 2016 – 2017 at –60.1%. On average, however, TFP 
changes both improved at an annual rate of 10.53% and 4.05%, 
between 2015 – 2016 and 2016 – 2017, respectively. 

In regards to the technological changes, the average growth 
in technological change for all power plants over the years 2015 
– 2016 was positive, with yearly growth rates of 146.22%. On 
the other hand, the growth rate in technological change was 
slightly negative from 2016 to 2017 (–1.7%). Specifically, TNB 
Natural Gas, SEB Coal, and all IPPs such as IPP Semenanjung 
Natural Gas and Coal, and IPP Sabah Natural Gas and Coal had 
the greatest technological growth in 2015 – 2016 at 148.4% and 
SESB Diesel in 2016 – 2017 with the annual growth of 7.4%. 
SESB Diesel had a minimum annual growth of 138.8% in 2015 – 
2016. Several power plants had the largest technological regress 
of 1.7%, on average for 2016 – 2017, with the lowest 
technological growth at 4.1%. They were SEB Natural Gas, SEB 
Coal, IPP Semenanjung Natural Gas, IPP Semenanjung Coal and 
IPP Sabah Natural Gas. 

Lastly, the average of technical efficiency change for the 
whole industry was positive only in 2016 – 2017, with an annual 
rate of 5.86%, however, it was technically inefficient throughout 
2015 – 2016, at –55.11%. There was no improvement in SEB 
Diesel's efficiency between 2015 and 2016 while others were 
technically inefficient. Nonetheless, from 2016 – 2017, TNB 
Natural Gas was technically efficient, recorded at 96.9% of 
annual growth.  

 
 
 
 

 
 
 
 
 

Table 8 
Changes in efficiency components of Malaysian fossil fuel power plants, 2015 – 2017  

No. Power plants (DMUs) 
Pure efficiency change Scale efficiency change 

2015-2016 2016-2017 2015-2016 2016-2017 

1 TNB Natural Gas 1.0020 1.0340 0.3620 1.9050 

2 SESB Natural Gas  0.7320 1.1570 0.5110 0.9190 

3 SESB Diesel 0.9680 1.1320 0.4370 0.9060 

4 SEB Natural Gas 0.9930 0.9620 0.3890 1.1820 

5 SEB Coal 0.8890 1.0790 0.4200 0.9480 

6 SEB Diesel 1.0000 1.0000 1.0000 0.4040 

7 IPP Semenanjung Natural Gas 0.9730 0.9830 0.3630 0.8360 

8 IPP Semenanjung Coal 0.9610 0.9220 0.3790 0.9710 

9 IPP Sabah Natural Gas 1.0000 1.0000 0.4100 1.2130 

10 IPP Sabah Diesel 1.0000 1.0000 0.7610 1.9600 

Geomean 0.9480 1.0245 0.4735 1.0332 
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To sum up, the majority of the changes in TFP that occurred 
over 2015 – 2016 were caused by changes in technological 
change rather than efficiency change. As a result of 
improvements in technological change efficiency, the growth 
rates of TFP were positive in 2015 – 2016. Conversely, in 2016 
– 2017, most of the shift in TFP was due to changes in efficiency 
change rather than technological change. Furthermore, the TFP 
change, on average, produced positive growth rates, with 
10.53% between 2015 and 2016, and deteriorated to 4.05% 
between 2016 and 2017. This demonstrates a gradual decline 
during the years 2015 and 2017. 

Next, Table 8 presents the efficiency change components 
of Malaysian fossil fuel power plants between 2015 – 2017. The 
efficiency change can be decomposed into two subcomponents 
namely the pure efficiency change and the scale efficiency 
change. Based on Table 8, pure efficiency and scale efficiency 
were the essential sources for the growth and reduction in 
efficiency change. TNB Natural Gas had the highest 
advancement in pure efficiency in 2015 – 2016, with an annual 
growth rate of only 0.2%. This was followed by SEB Diesel, IPP 
Sabah Natural Gas, and IPP Sabah Diesel, however without any 
improvements. Conversely, SESB Natural Gas showed the 
highest decline in pure efficiency in 2015 – 2016 with a decline 
of 26.8% as compared to IPP Semenanjung Coal in 2016 – 2017 
with merely a 7.8% decline.  

With an average decline rate of 52.65% in 2015 – 2016, 
SEB Diesel was the only power plant that had positive scale 
efficiency, despite the fact that it did not improve. In addition, 
in 2016 – 2017, IPP Sabah Diesel achieved the highest progress 
in scale efficiency with 96%. On the other hand, IPP Sabah 
Diesel showed the largest degradation in scale efficiency, with 
– 59.6% in 2016 – 2017. 

Generally, the negative average rates of pure efficiency 
(–5.2%) and scale efficiency (–52.65%) were recorded between 
2015 and 2016. On the other hand, between 2016 and 2017, the 
average rates of pure efficiency (2.4%) and scale efficiency 
(3.32%) were slightly improved.  

4.4 Industry Productivity  

The performance of the Malmquist TFP index of the fossil fuel 
power plants in Malaysia between 2015 and 2017 is summarised 
in Table 9. On average, about 50% (5 out of 10) of fossil fuel 
power plants recorded improvements in their TFP performance. 

The highest improvement was made by IPP Sabah Diesel at 
96.1%, while IPP Semenanjung Natural Gas experienced the 
largest decline in TFP, with annual rates of –16.9%. In addition, 
about 30% of power plants had TFP performances above the 
industry average of 7.24%.  

In regard to technological change, the annual average 
growth rates of each fossil fuel power plant were completely 
optimized. IPP Sabah Diesel had the largest growth, at 60.6%, 
followed by SESB Diesel (60.1%) and TNB Natural Gas (55.3%). 
SEB Natural Gas had the lowest growth rate in efficiency, with 
an annual rate of 53.6%. Approximately 20% of fossil fuel power 
plants improved their efficiency over the industry average of 
55.6%. 

With an average rate of –31.05%, the fossil fuel power plants 
in Malaysia were deemed to be technically inefficient. IPP 
Semenanjung Natural Gas experienced the highest deterioration 
in technical efficiency (–46.1%), followed by IPP Semenanjung 
Coal (–42.9%) and SEB Coal (–38.2%). 

 

 
 
Fig. 1 Average changes in TFP, technical efficiency and 
technological, 2015 –2017 
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Table 9 
Mean summary of Malmquist TFP index of Malaysian fossil fuel power plants, 2015 – 2017  

No. Power plants (DMUs) 
Total of Malmquist TFP 

productivity change 
Technological 

change 

Technical 
efficiency 
change 

Pure 
efficiency 
change 

Scale 
efficiency 
change 

1 TNB Natural Gas 1.3130 1.5530 0.8460 1.0180 0.8310 

2 SESB Natural Gas  0.9710 1.5390 0.6310 0.9200 0.6850 

3 SESB Diesel 1.0550 1.6010 0.6590 1.0470 0.6290 

4 SEB Natural Gas 1.0180 1.5360 0.6630 0.9780 0.6780 

5 SEB Coal 0.9540 1.5440 0.6180 0.9800 0.6310 

6 SEB Diesel 0.9860 1.5510 0.6360 1.0000 0.6360 

7 IPP Semenanjung Natural Gas 0.8310 1.5440 0.5390 0.9780 0.5510 

8 IPP Semenanjung Coal 0.8810 1.5440 0.5710 0.9410 0.6060 

9 IPP Sabah Natural Gas 1.0880 1.5440 0.7050 1.0000 0.7050 

10 IPP Sabah Diesel 1.9610 1.6060 1.2210 1.0000 1.2210 

Geomean 1.0724 1.5560 0.6895 0.9856 0.6994 
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About 70% of fossil fuel power plants demonstrated average 
declines in technical efficiency that were lower than the industry 
average of –31.05%. Overall, the average industry TFP had 
slightly improved (7.24%) mainly due to technological change 
(55.6%). Also, the decline in technical efficiency change was 
mostly due to scale efficiency (–30.06%) rather than pure 
efficiency (–1.44%).  

Figure 1 demonstrates the average changes in total factor 
productivity (TFP) with technical efficiency and technology. 
Meanwhile. Figure 2 depicts the average changes in technical 
efficiency with pure efficiency and scale efficiency. As 
mentioned earlier, the increment of TFP change was due to the 
technological change where its average change in 2015 – 2016 
at 146% while dropped drastically to 2% in 2016 – 2017. 
However, technical efficiency also somewhat contributed to the 
TFP. According to Figure 2, the changes in technical efficiency 
on average were negative from 2015-2017 but improved from 
2016-2017 due to an increase in scale efficiency. 

5. Concluding Remarks 

Conventional fossil fuels continue to provide a significant 
portion of Malaysia's total energy supply. It is predicted that 
there would be an increase in the demand for conventional fossil 
fuels. As a result, fossil fuel power plants will be subjected to 
performance evaluations to guarantee their efficiency and 
productivity. In this paper, the performance of Malaysian fossil 
fuel-based power plants was examined for the years 2015 
through 2017. The input-output data of fossil fuel power plants 
were evaluated using the DEA-Malmquist Total Factor 
Productivity (TFP) Index technique. This approach can measure 
the efficiency and productivity of DMUs with multiple inputs 
and outputs either over a single-period, multi-period, or cross-
period changes. Besides, the two main components of 
Malmquist TFP: technical efficiency changes and technological 
changes provide better understanding about the factors that 
affect the total factor productivity. In general, several power 
plants such as TNB Natural Gas, IPP Sabah Natural Gas, and 
Diesel experienced improvements in efficiency as TFP 

performances were above the industrial average. Based on our 
findings, only IPP Sabah Diesel was technically efficient and 
contributed substantially to the increment of TFP. The positive 
technological change in all power plants impacted TFP 
performances as a whole. In addition, the decline in the average 
change in technical efficiency was mostly impacted by scale 
efficiency as opposed to pure efficiency. This demonstrated that 
there is a positive relationship between the size of the power 
plants and the TFP performance of the power plants. In 
addition, the reduction in TFP in Malaysian fossil fuel power 
plants was shown to be associated with a lack of technical 
efficiency. These insights should assist power plant owners to 
optimize the production of output from a given set of inputs. 

Acknowledgement 

This study was supported by Universiti Pertahanan Nasional 
Malaysia under Short Term Research Grant: 
UPNM/2021/GPJP/STG/4. 

Conflicts of Interest: No conflict of interest. 

References 

Abdul Latif, S. N., Chiong, M. S., Rajoo, S., Takada, A., Chun, Y. Y., 
Tahara, K., & Ikegami, Y. (2021). The Trend and Status of 
Energy Resources and Greenhouse Gas Emissions in The 
Malaysia Power Generation Mix. Energies, 14(8), 2200. 
https://doi.org/10.3390/en14082200 

Azhar Noraini (2021) Malaysia’s Voluntary National Review (VNR) 2021. 
United Nations. 
https://sustainabledevelopment.un.org/memberstates/malay
sia. Accessed on 18 October 2022. 

Babatunde, K. A., Said, F. F., Nor, N. G. M., & Begum, R. A. (2018). 
Reducing Carbon Dioxide Emissions from Malaysian Power 
Sector: Current Issues and Future Directions. Engineering 
Journal, 1(6), 59-69. https://doi.org/10.17576/jkukm-2018-
si1(6)-08 

Bahman Z., & Patrick M. (2021). Chapter 9 - Energy Insight: An Energy 
Essential Guide. In Introduction to Energy Essentials. Academic 
Press, 321-370. https://doi.org/10.1016/B978-0-323-90152-
9.00009-8 

Charnes, A., Cooper, W., & Rhodes, E. (1978). Measuring the Efficiency 
of Decision-Making Units. European Journal of Operational 
Research, 2(6), 429–444. https://doi.org/10.1016/0377-
2217(78)90138-8 

Cooper, W.W., Seiford, L.M., Zhu, J. (2004). Data Envelopment 
Analysis. In Cooper, W.W., Seiford, L.M., Zhu, J. (eds) 
Handbook on Data Envelopment Analysis. International Series in 
Operations Research & Management Science. Springer. 
https://doi.org/10.10 07/1-4020-7798-X_1  

Du, M., Liu, Y., Wang, B., Lee, M., & Zhang, N. (2021). The Sources of 
Regulated Productivity in Chinese Power Plants: An Estimation 
of the Restricted Cost Function Combined with DEA 
Approach. Energy Economics, 100, 105318. 
https://doi.org/10.1016/j.eneco. 2021.105318  

Fare, R., Grosskopf, S., Norris, M., & Zhang, Z. (1994). Productivity 
Growth, Technical Progress, and Efficiency Change in 
Industrialized Countries. The American economic review, 66–83.  

Fare, R., Shawna, G., Bjorn, L., & Ross, P. (1989). Productivity 
Development in Swedish Hospitals: A Malmquist Output Index 
Approach. In Charnes, A., Cooper, W.W., Lewin, A., & Seiford, 
L. (Eds), Data Envelopment Analysis: theory, Methodology and 
Applications. Kluwer Academic Publisher. 
https://doi.org/10.1007/978-94-011-0637-5_13  

Hannah R., Max R. and Pablo R. (2020) Energy, OurWorldInData.org. 
https://ourworldindata.org/energy. Accessed on 18 October 
2022. 

IEA (2019). Electricity Information Overview, Technical Report IEA. 

 
Fig. 2 Average changes in technical efficiency, pure efficiency 

and scale efficiency, 2015 –2017 

-5%
2%

-53%

3%

-60%

-40%

-20%

0%

20%

2016 2017

A
v
e
ra

g
e
 C

h
a
n

g
e
 (

%
)

Year

Technical Efficiency Change

Pure Efficiency Change

Scale Efficiency Change

https://doi.org/10.3390/en14082200
https://sustainabledevelopment.un.org/memberstates/malaysia
https://sustainabledevelopment.un.org/memberstates/malaysia
https://doi.org/10.17576/jkukm-2018-si1(6)-08
https://doi.org/10.17576/jkukm-2018-si1(6)-08
https://doi.org/10.1016/B978-0-323-90152-9.00009-8
https://doi.org/10.1016/B978-0-323-90152-9.00009-8
https://doi.org/10.1016/0377-2217(78)90138-8
https://doi.org/10.1016/0377-2217(78)90138-8
https://doi.org/10.10%2007/1-4020-7798-X_1
https://doi.org/10.1016/j.eneco.%202021.105318
https://doi.org/10.1007/978-94-011-0637-5_13
https://ourworldindata.org/energy


A.S.A.Rahman et al  Int. J. Renew. Energy Dev 2023, 12(2), 247-260 

|259 

 

ISSN: 2252-4940/© 2023. The Author(s). Published by CBIORE 

James D. (2022). What is Thermal Efficiency? 
https://www.aboutmechanics.com/what-is-thermal-
efficiency.htm. Accessed on 18 October 2022.  

James J. (2019). Power Plant Explained, Working Principles. 
https://realpars.com/power-plant/. Accessed on 13 October 
2022.  

Khanjarpanah, H., Jabbarzadeh, A., & Seyedhosseini, S. M. (2018). A 
Novel Multi-Period Double Frontier Network DEA to 
Sustainable Location Optimization of Hybrid Wind-
Photovoltaic Power Plant with Real Application. Energy 
Conversion and Management, 159, 175-188. 
https://doi.org/10.1016/j.encon man.2018.01.013  

Khanjarpanah, H., & Jabbarzadeh, A. (2019). Sustainable Wind Plant 
Location Optimization using Fuzzy Cross-Efficiency Data 
Envelopment Analysis. Energy, 170, 1004-1018. 
https://doi.org/10.1016/j. energy.2018.12.077  

Li, A., Zhang, A., Huang, H., & Yao, X. (2018). Measuring Unified 
Efficiency of Fossil Fuel Power Plants Across Provinces in 
China: An Analysis Based on Non-Radial Directional Distance 
Functions. Energy, 152, 549-561. 
https://doi.org/10.1016/j.energy.2018.03.164  

Linda D. (2017) EIA projects 28% Increase in World Energy Use by 2040. 
U.S. Energy Information Administration. 
https://www.eia.gov/todayinenergy/detail.php?id=32912. 
Accessed on 18 October 2022. 

Mahmoudi, R., Emrouznejad, A., Khosroshahi, H., Khashei, M., & Rajabi, 
P. (2019). Performance Evaluation of Thermal Power Plants 
Considering CO2 Emission: A Multistage PCA, Clustering, 
Game Theory and Data Envelopment Analysis. Journal of 
Cleaner Production, 223, 641–650. 
https://doi.org/10.1016/j.jclepro.2019.03.047  

Mariano, J. R. L., Liao, M., & Ay, H. (2021). Performance Evaluation of 
Solar PV Power Plants in Taiwan Using Data Envelopment 
Analysis. Energies, 14(15), 4498. 
https://doi.org/10.3390/en14154498  

Ministry of Energy, Green Technology and Water (KeTTHA) (2017) 
Green Technology Master Plan Malaysia 2017 – 2030. 
https://www.pmo.gov.my/wp-
content/uploads/2019/07/Green-Technology-Master-Plan-
Malaysia-2017-2030.pdf. Accessed on 13 October 2022. 

Munisamy, S., & Arabi, B. (2015). Eco-efficiency Change in Power 
Plants: Using A Slacks-Based Measure for the Meta Frontier 
Malmquist Luenberger Productivity Index. Journal of Cleaner 
Production, 105, 218–232. 
https://doi.org/10.1016/j.jclepro.2014.12.081  

Mushtaq, F., Maqbool, W., Mat, R. & Nasir Ani, F. (2013). Fossil Fuel 
Energy Scenario in Malaysia-Prospect of Indigenous 
Renewable Biomass and Coal Resources. In 2013 IEEE 
Conference on Clean Energy and Technology (CEAT), 232 -237. 
https://doi.org/10.1109/ceat.2013.6775632  

Mustapa, S. M., & Majid M. B.  (2017). Efficiency Assessment of 
Malaysian Coal-Fired Power Plant: A Circular Economy 
Perspective. In 8th International Economics and Business 
Management Conference (IEBMC 2017). 
https://doi.org/10.15405/epsbs.20 18.07.02.66  

Nattanin U., Shu-Yi L., Anupong W. (2015). The Technical Efficiency of 
Rice Husk Power Generation in Thailand: Comparing Data 
Envelopment Analysis and Stochastic Frontier Analysis. Energy 
Procedia, 75, 2757-2763. 
https://doi.org/10.1016/j.egypro.2015.07.518  

NS Energy Staff Writer (2020). What are the Different Types of Power Plants 
Used to Generate Energy? NS Energy. 
https://www.nsenergybusiness.com/features/newsmajor-
types-of-power-plants-to-generate-energy-151217-6004336y/. 
Accessed on 13 October 2022.  

Petronas Annual Report 2019 (2019). Petronas. 
https://www.petronas.com/sites/default/files/Media/PETR
ONAS-Annual%20Report-2019-v2.pdf. Accessed on 23 
October 2022. 

Pritish B. and Francis E. H. (2022). Malaysia’s Oil and Gas Sector: Constant 
Expectations despite Diminishing Returns. ISEAS Yusof Ishak 
Institute. https://www.iseas.edu.sg/wp-
content/uploads/2022/01/ISEAS_Perspective_2022_21.pdf. 
Accessed on 23 October 2022. 

Rentizelas, A., Melo, I. C., Junior, P. N. A., Campoli, J. S., & do 
Nascimento Rebelatto, D. A. (2019). Multi-criteria efficiency 
assessment of international biomass supply chain pathways 
using Data Envelopment Analysis. Journal of Cleaner 
Production, 237, 117690. 
https://doi.org/10.1016/j.jclepro.2019.117690  

Resource Adequacy Planning (2020) PJM Manual 22: Generator Resource 
Performance Indices. PJM. 
https://pjm.com/~/media/documents/manuals/m22.ashx . 
Accessed on 18 October 2022. 

Rezaee, M. J., & Dadkhah, M. (2019). A Hybrid Approach Based on 
Inverse Neural Network to Determine Optimal Level of Energy 
Consumption in Electrical Power Generation. Computers & 
Industrial Engineering, 134, 52-63. 
https://doi.org/10.1016/j.cie.2019.05.024  

Sahoo, N. R., Mohapatra, P. K., & Mahanty, B. (2018). Examining the 
Process of Normalising the Energy-Efficiency Targets for Coal-
based Thermal Power Sector in India. Renewable and 
Sustainable Energy Reviews, 81, 342–352. 
https://doi.org/10.1016/j.rser.2017.08.005  

Samsudin, M. S. N., Rahman, M. M. & Wahid, M. A. (2016). Power 
Generation Sources in Malaysia: Status and Prospects for 
Sustainable Development. Journal of Advanced Review on 
Scientific Research, 25(1), 11-28.  

Sarica, K., & Or, I. (2007). Efficiency Assessment of Turkish Power 
Plants using Data Envelopment Analysis. Energy, 32(8), 1484–
1499. https://doi.org/10.1016/j.energy.2006.10.016  

Sözen, A., Alp, ˙I., & ozdemir, A. (2010). Assessment of Operational and 
Environmental Performance of the Thermal Power Plants in 
Turkey by Using Data Envelopment Analysis. Energy Policy, 
38(10), 6194–6203. 
https://doi.org/10.1016/j.enpol.2010.06.005  

Şeyma, E. M. E. Ç., Tuba, A. D. A. R., Akkaya, G., & Delice, E. K. (2019). 
Efficiency Assessment of Hydroelectric Power Plant in Turkey 
by Data Envelopment Analysis (DEA). Avrupa Bilim ve Teknoloji 
Dergisi, 34-45. https://doi.org/10.1016/j.eneco.2011.04.001  

Sharvini, S. R., Noor, Z. Z., Chong, C. S., Stringer, L. C., & Yusuf, R. O. 
(2018). Energy Consumption Trends and Their Linkages with 
Renewable Energy Policies in East and Southeast Asian 
Countries: Challenges and Opportunities. Sustainable 
Environment Research, 28(6), 257-266. 
https://doi.org/10.1016/j.serj.2018.08.006  

Sueyoshi, T., Li, A., & Gao, Y. (2018). Sector Sustainability on Fossil Fuel 
Power Plants Across Chinese Provinces: Methodological 
Comparison among Radial, Non-Radial and Intermediate 
Approaches Under Group Heterogeneity. Journal of Cleaner 
Production, 187, 819-829. 
https://doi.org/10.1016/j.jclepro.2018.03.216  

Sueyoshi, T., Liu, X., & Li, A. (2020a). Evaluating the Performance of 
Chinese Fossil Fuel Power Plants by Data Environment 
Analysis: An Application of Three Intermediate Approaches in 
a Time Horizon. Journal of cleaner production, 277, 121992. 
https://doi.org/10.1016/j.jclepro.2020.121992  

Sueyoshi, T., Qu, J., Li, A., & Xie, C. (2020b). Understanding the 
Efficiency Evolution for the Chinese Provincial Power Industry: 
A New Approach for Combining Data Envelopment Analysis-
Discriminant Analysis with an Efficiency Shift Across 
Periods. Journal of Cleaner Production, 277, 122371. 
https://doi.org/10.1016/j.jclepro.2020.122371  

Sun, C., Liu, X., & Li, A. (2018). Measuring Unified Efficiency of Chinese 
Fossil Fuel Power Plants: Intermediate Approach Combined 
with Group Heterogeneity and Window Analysis. Energy 
Policy, 123, 8-18. https://doi.org/10.1016/j.enpol.2018.08.029  

Suruhanjaya Tenaga Malaysia (2020) Performance & Statistical 
Information on the Malaysian Electricity Supply Industry 2018. 
https://meih.st.gov.my/   

Suruhanjaya Tenaga Malaysia (2021) Malaysia Energy Statistics 
Handbook 2020. Energy Data and Research Unit. 
https://meih.st.gov.my/ . 

Tajbakhsh, A., & Hassini, E. (2018). Evaluating Sustainability 
Performance in Fossil-Fuel Power Plants Using a Two-Stage 
Data Envelopment Analysis. Energy Economics, 74, 154-178. 
https://doi.org/10.1016/j.eneco.2018.05.032  

Tapia, J. F. D., Promentilla, M. A. B., Tseng, M. L., & Tan, R. R. (2017). 
Screening of Carbon Dioxide Utilization Options using Hybrid 

https://www.aboutmechanics.com/what-is-thermal-efficiency.htm
https://www.aboutmechanics.com/what-is-thermal-efficiency.htm
https://realpars.com/power-plant/
https://doi.org/10.1016/j.encon%20man.2018.01.013
https://doi.org/10.1016/j.encon%20man.2018.01.013
https://doi.org/10.1016/j.%20energy.2018.12.077
https://doi.org/10.1016/j.energy.2018.03.164
https://www.eia.gov/todayinenergy/detail.php?id=32912
https://doi.org/10.1016/j.jclepro.2019.03.047
https://doi.org/10.3390/en14154498
https://www.pmo.gov.my/wp-content/uploads/2019/07/Green-Technology-Master-Plan-Malaysia-2017-2030.pdf
https://www.pmo.gov.my/wp-content/uploads/2019/07/Green-Technology-Master-Plan-Malaysia-2017-2030.pdf
https://www.pmo.gov.my/wp-content/uploads/2019/07/Green-Technology-Master-Plan-Malaysia-2017-2030.pdf
https://doi.org/10.1016/j.jclepro.2014.12.081
https://doi.org/10.1109/ceat.2013.6775632
https://doi.org/10.15405/epsbs.20%2018.07.02.66
https://doi.org/10.1016/j.egypro.2015.07.518
https://www.nsenergybusiness.com/features/newsmajor-types-of-power-plants-to-generate-energy-151217-6004336y/
https://www.nsenergybusiness.com/features/newsmajor-types-of-power-plants-to-generate-energy-151217-6004336y/
https://www.petronas.com/sites/default/files/Media/PETRONAS-Annual%20Report-2019-v2.pdf
https://www.petronas.com/sites/default/files/Media/PETRONAS-Annual%20Report-2019-v2.pdf
https://www.iseas.edu.sg/wp-content/uploads/2022/01/ISEAS_Perspective_2022_21.pdf
https://www.iseas.edu.sg/wp-content/uploads/2022/01/ISEAS_Perspective_2022_21.pdf
https://doi.org/10.1016/j.jclepro.2019.117690
https://pjm.com/~/media/documents/manuals/m22.ashx
https://doi.org/10.1016/j.cie.2019.05.024
https://doi.org/10.1016/j.rser.2017.08.005
https://doi.org/10.1016/j.energy.2006.10.016
https://doi.org/10.1016/j.enpol.2010.06.005
https://doi.org/10.1016/j.eneco.2011.04.001
https://doi.org/10.1016/j.serj.2018.08.006
https://doi.org/10.1016/j.jclepro.2018.03.216
https://doi.org/10.1016/j.jclepro.2020.121992
https://doi.org/10.1016/j.jclepro.2020.122371
https://doi.org/10.1016/j.enpol.2018.08.029
https://meih.st.gov.my/
https://meih.st.gov.my/
https://doi.org/10.1016/j.eneco.2018.05.032


A.S.A.Rahman et al  Int. J. Renew. Energy Dev 2023, 12(2), 247-260 

|260 

 

ISSN: 2252-4940/© 2023. The Author(s). Published by CBIORE 

Analytic Hierarchy Process-Data Envelopment Analysis 
Method. Journal of Cleaner Production, 165, 1361-1370. 
https://doi.org/10.1016/j.jclepro.2017.07.182  

U.S. Energy Information Administration (2017) International Energy 
Outlook 2017. 
https://www.eia.gov/outlooks/ieo/pdf/0484(2017).pdf . 
Accessed on 18 October 2022. 

U.S. Energy Information Administration (2021) International Energy 
Outlook 2021. https://www.eia.gov/outlooks/ieo/ Accessed 
on 13 October 2022. 

U.S. Energy Information Administration (2021) Country Analysis 
Executive Summary: Malaysia. 
https://www.eia.gov/international/content/analysis/countrie
s_long/Malaysia/malaysia.pdf. Accessed on 12 October 2022. 

Wang, C. N., Dang, T. T., & Wang, J. W. (2022). A Combined Data 
Envelopment Analysis (DEA) and Grey Based Multiple Criteria 
Decision Making (G-MCDM) for Solar PV Power Plants Site 
Selection: A Case Study in Vietnam. Energy Reports, 8, 1124-
1142. https://doi.org/10.1016/j.egyr.2021.12.045  

Wang, C. N., Dang, T. T., & Bayer, J. (2021). A Two-Stage Multiple 
Criteria Decision Making for Site Selection of Solar Photovoltaic 

(PV) Power Plant: A Case Study in Taiwan. IEEE Access, 9, 
75509-75525. https://doi.org/10.1109/access.2021.3081995  

Wang, Z., Li, Y., Wang, K., & Huang, Z. (2017). Environment-Adjusted 
Operational Performance Evaluation of Solar Photovoltaic 
Power Plants: A Three Stage Efficiency Analysis. Renewable and 
Sustainable Energy Reviews, 76, 1153-1162. 
https://doi.org/10.1016/j.rser.2017.03.119  

Wang, C. N., Nguyen, V. T., Thai, H. T. N., & Duong, D. H. (2018). Multi-
Criteria Decision Making (MCDM) Approaches for Solar Power 
Plant Location Selection in Vietnam. Energies, 11(6), 1504. 
https://doi.org/10.3390/en11061504  

Wu, Y., Ke, Y., Xu, C., Xiao, X., & Hu, Y. (2018). Eco-efficiency 
Measurement of Coal-Fired Power Plants in China Using Super 
Efficiency Data Envelopment Analysis. Sustainable Cities and 
Society, 36, 157–168. 
https://doi.org/10.1016/j.scs.2017.10.011  

Zhang, N., Zhao, Y., & Wang, N. (2022). Is China's Energy Policy 
Effective for Power Plants? Evidence from The 12th Five-Year 
Plan Energy Saving Targets. Energy Economics, 112, 106143. 
https://doi.org/10.1016/j.eneco.2022.106143  

 

 
 
 
 
 

 © 2023. The Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons 
Attribution-ShareAlike 4.0 (CC BY-SA) International License (http://creativecommons.org/licenses/by-sa/4.0/) 

https://doi.org/10.1016/j.jclepro.2017.07.182
https://www.eia.gov/outlooks/ieo/pdf/0484(2017).pdf
https://www.eia.gov/outlooks/ieo/
https://www.eia.gov/international/content/analysis/countries_long/Malaysia/malaysia.pdf
https://www.eia.gov/international/content/analysis/countries_long/Malaysia/malaysia.pdf
https://doi.org/10.1016/j.egyr.2021.12.045
https://doi.org/10.1109/access.2021.3081995
https://doi.org/10.1016/j.rser.2017.03.119
https://doi.org/10.3390/en11061504
https://doi.org/10.1016/j.scs.2017.10.011
https://doi.org/10.1016/j.eneco.2022.106143

