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A B S T R A C T

We consider non-linear Bayesian inversion problems targeting the geostatistical hyperparameters of a random
field describing hydrogeological or geophysical properties given hydrogeological or geophysical data. This
problem is of particular importance in the non-ergodic setting as there are no analytical upscaling relationships
linking the data to the hyperparameters, such as, mean, standard deviation, and integral scales. Full inversion
of the hyperparameters and the local properties of the field (typically involving many thousands of unknowns)
brings substantial computational challenges, such that simplifying model assumptions (e.g., homogeneity or
ergodicity) are typically made. To prevent the errors resulting from such simplified assumptions while also
circumventing the burden of high-dimensional full inversions, we use a pseudo-marginal Metropolis–Hastings
algorithm that treats the random field as latent variables. In this random effects model, the intractable
likelihood of observing the data given the hyperparameters is estimated by Monte Carlo averaging over
realizations of the random field. To increase the efficiency of the method, low-variance approximations of
the likelihood ratio are obtained by using importance sampling and by correlating the samples used in the
proposed and current steps of the Markov chain. We assess the performance of this correlated pseudo-marginal
method by considering two representative inversion problems involving diffusion-based and wave-based
physics, respectively, in which we infer the hyperparameters of (1) hydraulic conductivity fields using apparent
hydraulic conductivity data in a data-poor setting and (2) fracture aperture fields using borehole ground-
penetrating radar (GPR) reflection data in a more data-rich setting. For the first test case, we find that the
correlated pseudo-marginal method generates similar estimates of the geostatistical mean as classical rejection
sampling, while an inversion assuming ergodicity provides biased estimates. For the second test case, we find
that the correlated pseudo-marginal method estimates the hyperparameters well, while rejection sampling is
computationally unfeasible and a simplified model assuming homogeneity leads to biased estimates.
1. Introduction

The scale dependence of most environmental processes poses signif-
icant challenges for hydrogeological and geophysical modeling (e.g.,
Klemeš, 1983; Blöschl and Sivapalan, 1995). The governing partial
differential equations (PDEs) traditionally employed to describe fluid
flow, chemical or electrical transport (Neuman and Di Federico, 2003)
are solved at some support volume scale assumed to be a ‘‘Represen-
tative Elementary Volume’’ (REV; Hill, 1963). That is, it is assumed
that smaller-scale heterogeneity averages out and can be represented
(with regard to the process under consideration) by averaged phys-

∗ Correspondence to: Géopolis, Quartier Mouline, 1015 Lausanne, Switzerland.
E-mail address: lea.friedli@unil.ch (L. Friedli).

ical or chemical properties. In practice, the conditions necessary for
the existence of a REV are often not met because geological media
exhibit heterogeneity over a wide range of scales (Neuman and Di
Federico, 2003). Errors occurring when only partially accounting for
or ignoring heterogeneity generally grow with the non-linearity of
the physical or chemical process under study and can result in mis-
leading predictions (e.g., Dentz et al., 2011; Yu and Michael, 2021).
For this reason, it is essential to characterize and account for the
statistical properties of small-scale heterogeneity even when targeting
mean properties.
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We consider non-linear inversion problems targeting geostatistical
hyperparameters (e.g., mean, standard deviation, integral scale and
anisotropy factor) of a random field describing hydrogeological or
geophysical properties given indirect data. This problem setting is
applicable when the main properties of interest are the hyperparam-
eters and not the local field properties. The geostatistical literature is
full of studies (e.g., Rehfeldt et al., 1992; Hess et al., 1992; Bohling
et al., 2016) focusing on hyperparameter estimation based on direct
data (e.g., permeability data along boreholes), but much less work has
considered indirect data (e.g., pressure data, tracer breakthrough data)
as in the present study. In what follows, we only discuss this latter
case. One of the first approaches considering unknown hyperparam-
eters in such an inversion setting was the quasi-linear geostatistical
approach by Kitanidis (1995), which optimizes the hyperparameters
along with the spatial field. Another approach enabling joint infer-
ence of a Gaussian random field and its variogram parameters relied
on so-called sequential Gibbs sampling (Hansen et al., 2012; Hansen
et al., 2013a; Hansen et al., 2013b). Zhao and Luo (2021) applied an
iterative approach based on principal components which is updating
biased or unknown hyperparameters while solving a non-linear inver-
sion problem. Recently, Wang et al. (2022) proposed an hierarchical
Bayesian inversion targeting first global variables (such as hyperparam-
eters but also physical variables) and later the posterior of the whole
field (referred to as spatial variables). Note that none of these studies
focus on inferring the hyperparameters only.

We rely on a Bayesian framework and infer the hyperparameters’
posterior probability density function (PDF) given indirect hydrogeo-
logical or geophysical measurements. To sample from the posterior,
we apply a Markov chain Monte Carlo (MCMC) method building on
the Metropolis–Hastings algorithm (MH; Hastings, 1970; Metropolis
et al., 1953). The basic procedure of the MH algorithm in this setting
is to propose iteratively a new set of hyperparameters, which are then
accepted or rejected based on their prior probabilities and likelihoods.
We consider synthetic experimental setups in which the hydrogeolog-
ical or geophysical data average over a random field realization that
is either ergodic or non-ergodic. A random field must be stationary to
be ergodic, but not vice versa. Stationarity implies that the distribution
does not change with position. Ergodicity, on the other hand, implies
that the field realization is much larger than the characteristic scale of
heterogeneity. By the so-called ergodic setting, we consider data that
average over a scale that is much larger than the field’s scale of het-
erogeneity such that the effects of small-scale fluctuations average out.
Consequently, the data do not depend on the local properties of a given
random field realization, but on the hyperparameters only. By the non-
ergodic setting, we refer to cases when the data averaging takes place
over a scale that is smaller or comparable to the scale of heterogeneity.
This implies that the data depend not only on the hyperparameters but
also on the random field realization on which measurements are made.
That is, variations between field realizations in terms of magnitudes
and locations of high and low property values lead to different data
responses as the fluctuations do not average out. Broadly speaking,
such behavior is expected when the physical response is averaging
over length scales that are less than some ten correlation lengths of
the parameter field. In the non-ergodic setting, there are no analytical
upscaling relationships linking the data to the hyperparameters of inter-
est. If relationships assuming ergodicity or assumptions of homogeneity
are employed in such a case, bias is likely to occur in the inferred
hyperparameters (e.g., Visentini et al., 2020; Shakas and Linde, 2017).
We suggest that most measurements in hydrogeology and geophysics
take place in such a non-ergodic setting.

Equivalent properties derived from measurements of one type of
physics (e.g., the equivalent aperture describing fluid flow) generally
do not represent the equivalent property for another type of physics
(e.g., the equivalent aperture of thermal transport; e.g., Tsang, 1992).
2

This disparity occurs as soon as the underlying physics is non-linear,
implying for instance that equivalent mean properties do not corre-
spond to arithmetic mean properties (e.g., Jougnot et al., 2018; Shakas
and Linde, 2015). One solution to this problem that is pursued in
the present study is to instead infer hyperparameters while account-
ing for small-scale heterogeneity. In this way, it is possible to use
estimates derived from one type of physics to make predictions for
another type of physics. In many ergodic settings, upscaling theory
provides relevant relationships between hyperparameters and equiv-
alent properties (e.g., Renard and De Marsily, 1997; Torquato and
Haslach, 2002; Sanchez-Vila et al., 2006), while no such relationships
are available in the non-ergodic setting.

One way to infer hyperparameters in the non-ergodic setting by
MCMC methods is to parameterize the field by hyperparameters and
white noise to describe the local properties (as e.g. in Laloy et al., 2015,
Hunziker et al., 2017 and Xiao et al., 2021). The corresponding full
inversion problem involves typically many thousands of parameters,
for which either an efficient MH proposal scheme has to be designed
(e.g., Xiao et al., 2021) or dimensionality reduction arguments have
to be invoked (e.g., Laloy et al., 2015, Rubin et al., 2010). While
the first approach is very challenging (curse of dimensionality, e.g.,
Robert et al., 2018), the second approach may lead to biased estimates
(Laloy et al., 2015). An example of the application of dimensionality
reduction relevant to the current study is Shakas et al. (2018) who
inferred fracture aperture distribution and geometry by combining GPR
forward modeling with flow-and-transport simulations. Even if this
study provided reasonable estimates of the statistical properties, it was
plagued by a low acceptance rate, slow mixing of the chains and no
formal convergence despite a large number of iterations.

Instead of a full inversion, we here target the hyperparameters
of interest only. Since the local properties of the field influence the
observations in the non-ergodic setting, the field is considered a latent
(unobservable) variable. Due to the random effect the unobservable
field has on the data, we speak of a random effects model. To im-
plement a MH algorithm inferring the hyperparameters only, we have
to evaluate the likelihood of observing the data given the currently
proposed set of hyperparameters. In a random effects model, this
likelihood has generally no analytical form and is, therefore, referred to
as intractable. The pseudo-marginal (PM) method introduced by Beau-
mont (2003) and studied by Andrieu and Roberts (2009) relies on
an unbiased estimator of this intractable likelihood function that is
based on averaging over Monte Carlo samples of the latent variables.
This implies that after proposing a new set of hyperparameters, dif-
ferent field realizations with the same hyperparameters are sampled.
Then, the likelihood of each field realization can be calculated and
the intractable likelihood function is estimated by averaging over the
obtained values. Beaumont (2003) demonstrates that using such a
non-negative and unbiased estimator of the likelihood within the MH
algorithm results in an algorithm that draws samples from the same
target distribution as when using the true likelihood. In the PM method,
a high variance of the log-likelihood ratio estimator has a very strong
adverse impact on performance, but achieving a low variance often
comes at the price of using an excessive number of samples in the
Monte Carlo averaging. To obtain an efficient algorithm balancing these
two aspects, it has been shown that the standard deviation of the log-
likelihood estimator should be around 1.2–1.5 (Doucet et al., 2015).
This can be ensured by (1) properly choosing the number of samples
used in the Monte Carlo averaging and by (2) applying importance
sampling to draw the realizations of the latent variables. In the context
of state-space models, the number of samples has to increase linearly
with the number of observations, which is computationally impracti-
cal in data-rich settings (Deligiannidis et al., 2018). To address this
problem, the correlated pseudo-marginal (CPM) by Deligiannidis et al.
(2018) correlates the draws of latent variables between two subsequent
iterations, thereby, reducing the number of Monte Carlo draws needed

to ensure low-variance log-likelihood ratio approximations.
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The pseudo-marginal and correlated pseudo-marginal methods have
hardly been studied in hydrogeological and geophysical settings. In
Friedli et al. (2022), the CPM method was shown to outperform other
competing approaches to lithological tomography (Bosch, 1999), in
which geophysical data are used to directly infer (hydro)geological
properties of interest. Friedli et al. (2022) considered a very high
dimensionality of the target and latent variables under the assump-
tion of known hyperparameters. Here, the interest is instead placed
on inferring few hyperparameters while accounting for the effects of
thousands of latent variables. This leads to a very different model
setting and study objectives than Friedli et al. (2022). We assess the
performance of the CPM method with two synthetic test cases in
which we infer the hyperparameters describing (1) hydraulic property
fields using equivalent (apparent) hydraulic conductivity data and (2)
fracture aperture fields using borehole ground-penetrating radar (GPR)
reflection data. The two test cases are chosen to be representative for
transmission problems governed by diffusion (e.g., groundwater flow,
heat transport, electrical conduction) and reflection problems governed
by wave-based physics (e.g., GPR, seismics and acoustics). In the first
test case, we consider a very data-poor setting and are mainly interested
in the geostatistical mean of the field. By comparing the CPM results
with those of an MH algorithm that replaces the forward solver with
an analytical upscaling relationship that assumes ergodicity, we show
that assuming a simplified model can lead to strongly biased estimates
of the hyperparameters in the non-ergodic setting. We also demonstrate
that the CPM results are in agreement with those obtained by rejection
sampling, which is computationally feasible for this very data-poor
example. In the second test case, we consider much more data and show
that the CPM method provides accurate estimates of the geostatistical
mean and other hyperparameters. Additionally, we show how these
hyperparameters describing aperture properties inferred from GPR data
allow us to predict fracture transmissivity.

This paper is structured as follows. Section 2 introduces the CPM
methodology in the considered context. Section 3 presents the first test
case based on measurements across a hydraulic conductivity field and
Section 4 presents the second test case in which borehole GPR data are
used to infer the hyperparameters of fracture aperture fields. This is
followed by a discussion in Section 5 and conclusions in Section 6.

2. Methodology

The methodology section starts by presenting the considered ran-
dom effects model and the chosen notation of Gaussian random fields
(Section 2.1). Bayesian inference and MCMC algorithms are then de-
scribed (Section 2.2) before introducing the correlated pseudo-marginal
method (Section 2.3) and giving a brief introduction into rejection
sampling (Section 2.4). It ends with a description of the performance
assessment metrics used to evaluate the results (Section 2.5).

2.1. Random effects model

We are interested in a random field describing hydrogeological or
geophysical property distributions. A random field (spatial stochastic
process) 𝑿(𝑑, 𝜔) with 𝜔 ∈ 𝛺 is a family of random variables indexed
by the spatial location 𝑑 ∈  ⊂ R2 (Chiles and Delfiner, 2009). For
fixed 𝜔 = 𝜔0, 𝑿(⋅, 𝜔0) is a realization of the random field with 𝜔
referring to the ‘‘randomness’’ of the field. For a fixed location 𝑑 = 𝑑0,
𝑿(𝑑0, ⋅) is a real-valued random variable. For simplicity, in the follow-
ing we write 𝑿(⋅) to indicate 𝑿(⋅, 𝜔). The ‘‘true’’ hydrogeological or
geophysical property field is considered a realization of the underlying
random field. We are interested in inferring the hyperparameters 𝜽
parameterizing the geostatistical distribution of the random field 𝑿(⋅).

We consider a Gaussian random field (GRF) 𝑿(⋅) for which all
finite-dimensional distributions are multivariate Gaussians (Chiles and
Delfiner, 2009). Its distribution is determined by the mean and the
covariance function. We assume the mean function 𝜇 (⋅) to be constant
3

𝜽

even if it would be straightforward to employ a non-stationary function.
For the covariance function 𝐶𝜽(⋅, ⋅), we apply the powered exponential
xpressed here in isotropic form:

𝜽(𝑏, 𝑏′) = 𝜎2𝑒𝑥𝑝

(

−
(

‖𝑏 − 𝑏′‖
𝐼

)2𝐻
)

, (1)

whereby ‖𝑏‖ =
√

𝑏𝑇 𝑏 denotes the Euclidean norm, 𝜎 the standard
deviation, 𝐼 the integral scale and 𝐻 the Hurst exponent (with 0 < 𝐻 ≤
). For 𝐻 = 0.5, the powered exponential covariance function reduces
o the classical exponential covariance function and for 𝐻 = 1 to the
aussian (squared exponential) covariance function. We also consider
eometric anisotropy (e.g., Chiles and Delfiner, 2009), for which the
ovariance depends not only on the Euclidean distance but also on
he direction between the considered positions. We assume a known
nisotropy angle of 90 degrees and refer to the integral scale in the
ertical direction as 𝐼𝑦, which, multiplied by the anisotropy factor 𝜆,
ives the integral scale in the horizontal direction 𝐼𝑥.

To infer the 𝑃 hyperparameters 𝜽 = (𝜃1, 𝜃2,… , 𝜃𝑃 ), we have access
o 𝑇 measurements 𝒚 = (𝑦1, 𝑦2,… , 𝑦𝑇 ). As generally there exists no up-
caling relationship linking the hyperparameters to the measurements,
e formulate the problem with a random effects model using the latent

andom field 𝑿(⋅):

∼ 𝑓𝜽(⋅) 𝒀 |𝑿 ∼ 𝑔𝜽(⋅|𝑿). (2)

or the latent random field 𝑿(⋅) we use a discretized representation on
(D × D)-grid, whereby we assume the grid cells to be representative

lementary volumes (REV) for the governing physical process. We
onsider a setting in which the number of target hyperparameters 𝑃 is
uch smaller than the number of latent variables (grid cells) 𝐷2. The
easurements are described by the random variable 𝒀 = (𝑿) + 𝜀
ith  ∶ R𝐷2

→ R𝑇 denoting the physical forward solver and 𝜀 the
bservational noise. While 𝒀 refers to the random variable, 𝒚 denotes
he ‘‘true’’ measurements considered to be a realization of 𝒀 .

Assuming the latent random field to be Gaussian, we write 𝑓𝜽(𝒙) =
𝐷2 (𝒙;𝝁𝜽,𝜮𝜽) with 𝜑𝐷2 (⋅;𝝁𝜽,𝜮𝜽) denoting the PDF of a 𝐷2-variate
ormal distribution with mean vector 𝝁𝜽 = (𝜇𝜽(𝑏𝑖))1≤𝑖≤𝐷2 and covari-
nce matrix 𝜮𝜽 = (𝐶𝜽(𝑏𝑖, 𝑏𝑗 ))1≤𝑖,𝑗≤𝐷2 specified by the hyperparam-
ters 𝜽. Furthermore, we assume the observational noise 𝜀 to be
aussian, such that 𝒀 |𝑿 ∼ 𝑔𝜽(⋅|𝑿) is distributed with the PDF 𝑔𝜽(𝒚|𝒙) =
𝑇 (𝒚;(𝒙),𝜮𝒀 ), with 𝜮𝒀 being a diagonal matrix with the variance of

he observational noise on its diagonal. To generate a realization of the
2-dimensional GRF 𝑿(⋅) with mean vector 𝝁𝜽 and covariance matrix
𝜽, we rely on a pixel-based parameterization,

= 𝝁𝜽 +𝜮1∕2
𝜽 𝒁, (3)

ith 𝒁 denoting a 𝐷2-dimensional random vector consisting of 𝑖.𝑖.𝑑.
tandard normal distributed variables.

.2. Bayesian inference with Markov chain Monte Carlo

Bayes’ theorem specifies the posterior PDF 𝑝(𝜽|𝒚) of the model
arameters 𝜽 conditioned on the measurements 𝒚 as,

(𝜽|𝒚) =
𝑝(𝜽)𝑝(𝒚|𝜽)

𝑝(𝒚)
∝ 𝑝(𝜽)𝑝(𝒚|𝜽), (4)

where 𝑝(𝜽) denotes the prior PDF of the model parameters, 𝑝(𝒚|𝜽) the
ikelihood function and 𝑝(𝒚) the evidence (assumed positive). If there

is no analytical form of the posterior PDF but it is possible to evaluate
the unnormalized entity for some value of 𝜽, MCMC methods (see,
e.g., Robert and Casella, 2013) can be applied to generate realizations
drawn proportionally from the posterior PDF. The basic procedure
behind MCMC algorithms is to propose new values for the target pa-
rameters, which are then accepted or rejected with a given probability.
The Metropolis–Hastings (MH; Metropolis et al., 1953; Hastings, 1970)

method is a well-known example. At iteration 𝑗, it proceeds as follows:
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First, new values for the target parameters 𝜽(𝑗) are proposed using the
model proposal density 𝑞(⋅|𝜽(𝑗−1)). Then, the acceptance probability,

𝛼𝑀𝐻
(

𝜽(𝑗−1),𝜽(𝑗)
)

= min
{

1,
𝑞(𝜽(𝑗−1)|𝜽(𝑗))𝑝(𝜽(𝑗)|𝒚)
𝑞(𝜽(𝑗)|𝜽(𝑗−1))𝑝(𝜽(𝑗−1)|𝒚)

}

(5)

= min
{

1,
𝑞(𝜽(𝑗−1)|𝜽(𝑗))𝑝(𝜽(𝑗))𝑝(𝒚|𝜽(𝑗))

𝑞(𝜽(𝑗)|𝜽(𝑗−1))𝑝(𝜽(𝑗−1))𝑝(𝒚|𝜽(𝑗−1))

}

, (6)

is calculated and the proposed 𝜽(𝑗) is accepted (if 𝛼𝑀𝐻 (𝜽(𝑗−1),𝜽(𝑗)) ≥ 𝑉 )
or rejected (if 𝛼𝑀𝐻 (𝜽(𝑗−1),𝜽(𝑗)) < 𝑉 ) on the basis of a draw of a
uniformly distributed random variable 𝑉 ∼ Unif([0, 1]). If the proposed
𝜽(𝑗) is rejected, the MCMC chain remains at the old position (𝜽(𝑗) =
𝜽(𝑗−1)).

In order to evaluate the acceptance probability in Eq. (6), the value
of the likelihood function 𝜽 ↦ 𝑝(𝒚|𝜽(𝑗)) has to be calculated. In a
random effects model (see Section 2.1), the likelihood function is given
by,

𝑝(𝒚|𝜽) = ∫ 𝑔𝜽(𝒚|𝒙)𝑓𝜽(𝒙)𝑑𝒙. (7)

This integral often does not admit an analytical form making the direct
implementation of the MH algorithm impossible and specific algorithms
such as the correlated pseudo-marginal method are needed (outlined in
Section 2.3 below).

2.2.1. MCMC proposal scheme
To achieve an efficient MCMC algorithm, one needs a suitable

proposal density 𝑞(⋅|𝜽(𝑗−1)). Even in an inversion targeting only few
parameters, one has to choose the direction and size of the model
proposal steps carefully. Too large steps lead to a low acceptance rate,
while too small steps lead to very slow exploration of the target space;
both of these situations lead to an algorithm needing an unnecessarily
large number of iterations until convergence (see Section 2.5 below for
the assessment of convergence).

To generate model proposals, we apply the adaptive Metropolis al-
gorithm of Haario et al. (2001), in which the covariance matrix describ-
ing the Gaussian proposal distribution is updated during the MCMC run.
Despite the adaptation, the algorithm is ensured to be ergodic, although
not Markovian (Haario et al., 2001). The Gaussian proposal distribution
at iteration 𝑗 is expressed as 𝑞(𝜽(𝑗)|(𝜽(0),𝜽(1),…𝜽(𝑗−1))) = 𝜑𝑑 (𝜽(𝑗−1),𝐂(𝐣)),
with

𝐂(𝐣) =

{

𝐂(𝟎) 𝑗 ≤ 𝑗0
𝑠𝑃 (𝐶𝑜𝑣(𝜽(0),𝜽(1),… ,𝜽(𝑗−1)) + 𝜖I𝑃 ) 𝑗 > 𝑗0,

(8)

denoting the evolving covariance matrix. During the first 𝑗0 iterations,
the method uses an initial covariance matrix 𝐂(𝟎) selected according
to available prior knowledge. After this initial period, the covariance
matrix is updated with 𝐂(𝐣) = 𝑠𝑃 (𝑐𝑜𝑣(𝜽(0),𝜽(1),… ,𝜽(𝑗−1))+𝜖I𝑃 ), where 𝑠𝑃
is a parameter depending on the dimension of the target space (Haario
et al. (2001) use 𝑠𝑃 = (2.4)2∕𝑃 as in Gelman et al., 1996), 𝜖 > 0 is a
small constant and I𝑃 denotes the identity matrix of dimension 𝑃 . To
ensure an efficient calculation, Haario et al. (2001) use the recursion
formula,

𝐂(𝐣+𝟏) =
(𝑗 − 1)

𝑗
𝐂(𝐣) +

𝑠𝑃
𝑗

(

𝑗𝜽(𝑗−1) 𝜽(𝑗−1)𝑇 − (𝑗 + 1)𝜽(𝑗) 𝜽(𝑗)𝑇 + 𝜽(𝑗)𝜽(𝑗)𝑇

+ 𝜖I𝑃
)

, (9)

ith 𝜽(𝑗) = 1∕(𝑗 + 1)
∑𝑗

𝑖=0 𝜽
(𝑖) and 𝜽(𝑖) considered to be column vectors.

For a target parameter 𝜃𝑖 with bounded support [𝑎, 𝑏], one has to
ake sure that the proposed value lies within the considered interval.
herefore, we apply fold boundary handling implying that a proposal
hich passes one boundary of the support is re-entered through the
ther boundary (Vrugt, 2016), that is, similar to periodic boundary
onditions in numerical simulations.
4

.3. Pseudo-marginal and correlated pseudo-marginal method

In Section 2.2, we explained that the considered random effects
odel has an intractable likelihood function. The pseudo-marginal

nd correlated pseudo-marginal methods presented below provide a
olution to this in the form of Monte Carlo estimations of the likelihood
unction. To illustrate the presented concepts, a flow chart describ-
ng the basic procedure of the correlated pseudo-marginal method is
epicted in Fig. 1.

.3.1. Pseudo-marginal method
A MH algorithm employing a non-negative unbiased estimator of

he likelihood function samples realizations of the same target distri-
ution as one using the true likelihood (Beaumont, 2003). To exploit
his remarkable property, Beaumont (2003) proposes a MH algorithm
stimating, at each iteration, an intractable likelihood function using
onte Carlo averaging over samples of the latent variables. This ap-

roach was termed the pseudo-marginal (PM) method and analyzed
heoretically by Andrieu and Roberts (2009). The efficiency of the PM
ethod depends mainly on the variability of the likelihood estimator.
hen only one brute force Monte Carlo sample of the latent variables is

sed to estimate the likelihood, the algorithm is likely to suffer from a
ow acceptance rate caused by the high variability of the log-likelihood
stimator. This happens when the likelihood estimator can take very
ifferent values for different realizations of the latent variables. In
ur setting, this is the case if different local properties of the latent
andom field 𝑿(⋅) lead to very different data responses even if the
yperparameters of the fields are the same. The variance of the log-
ikelihood estimator can be reduced by (1) using many samples of the
atent variables and (2) selecting a well-working importance sampling
IS; e.g. Owen and Zhou, 2000) scheme to draw them from. The PM
ethod proposes the following unbiased estimator for the likelihood
(𝒚|𝜽) of Eq. (7),

�̂�𝑁 (𝒚|𝜽) = 1
𝑁

𝑁
∑

𝑛=1
𝑤𝜽(𝒚|𝑿𝑛), with 𝑤𝜽(𝒚|𝑿𝑛) =

𝑔𝜽(𝒚|𝑿𝑛)𝑓𝜽(𝑿𝑛)
𝑚𝜽(𝑿𝑛)

, (10)

where 𝑿𝑛
𝑖.𝑖.𝑑∼ 𝑚𝜽(⋅) for 𝑛 = 1, 2,… , 𝑁 with 𝑚𝜽(⋅) denoting the impor-

tance density function.
To derive the importance density 𝒙 ↦ 𝑚𝜽(⋅), we follow the approach

of Friedli et al. (2022). Therefore, we choose a distribution which
is nearly proportional to 𝒙 ↦ 𝑔𝜽(𝒚|𝒙)𝑓𝜽(𝒙) (see e.g., Owen and
Zhou, 2000 referring to the results of Kahn and Marshall, 1953). Since
it holds that 𝑝(𝒙|𝜽, 𝒚) ∝ 𝑔𝜽(𝒚|𝒙)𝑓𝜽(𝒙), we approximate the importance
density with a Gaussian expression of 𝒙 ↦ 𝑝(𝒙|𝜽, 𝒚). For details, see
Appendix A.

2.3.2. Correlated pseudo-marginal method
The efficiency of the PM method depends strongly on the number

of latent variable samples 𝑁 used to estimate the likelihood function.
If this number is too low, the variability of the log-likelihood ratio
estimator is likely to be high and the MH algorithm suffers from an
impractically low acceptance rate (Beaumont, 2003). In the context of
state-space models, Deligiannidis et al. (2018) show that 𝑁 needs to
increase linearly with the number of data 𝑇 , thereby, often implying
prohibitively high computational costs. For this reason, Deligiannidis
et al. (2018) adapted the PM method by correlating the draws of latent
variables used in the current and proposed step of the MH algorithm.
The resulting correlated pseudo-marginal method (CPM method; illus-
trated in Fig. 1) leads to a better performance as the variance of a ratio
of estimators is reduced when positively correlating the estimators of
the denominator and numerator (Koop, 1972). For a standard normal
distributed latent variable 𝒁, the CPM method draws a correlated
realization of the 𝑛th latent variable in iteration 𝑗 by,

𝒁(𝑗)
𝑛 = 𝜌𝒁(𝑗−1)

𝑛 +
√

1 − 𝜌2𝝐, with 𝜌 ∈ (0, 1) and
𝑖.𝑖.𝑑.

(11)

𝝐 = (𝜖1, 𝜖2,… , 𝜖𝐿), 𝜖𝑖 ∼  (0, 1).



Advances in Water Resources 173 (2023) 104402L. Friedli et al.
Fig. 1. Flow chart illustrating the CPM method with importance sampling at iteration 𝑗.
As numerous distributions can be obtained by transformations from
standard normal variates, the general applicability of the CPM method
is not limited by the uncorrelated Gaussian assumption (e.g. Chen
et al., 2018). For example, in our two test cases that will follow, we
generate correlated Gaussian latent variables 𝑿 with mean 𝝁𝜽 and
covariance matrix 𝜮𝜽 (or 𝝁𝑰𝑺 and 𝜮𝑰𝑺 ) by transforming correlated
standard-normally-distributed variables 𝒁 using Eq. (3). We stress that
the proposed latent variables 𝒁(𝑗)

𝑛 are only saved if 𝜽(𝑗) is accepted,
otherwise we keep 𝒁(𝑗)

𝑛 = 𝒁(𝑗−1)
𝑛 as for 𝜽(𝑗) = 𝜽(𝑗−1) in the MH algorithm.

The CPM method has two additional parameters compared to the
standard MH algorithm: the latent variable sample size 𝑁 and the
correlation parameter 𝜌. Deligiannidis et al. (2018) propose to select
𝑁 and 𝜌 such that the variance of the log-likelihood ratio estimator,

𝑊 = log
(

�̂�(𝑗)𝑁 (𝒚|𝜽)
)

− log
(

�̂�(𝑗−1)𝑁 (𝒚|𝜽)
)

, (12)

takes values between 1.0 and 2.0 for 𝜽 fixed in a region of high
posterior probability mass. In practice, decreasing the variance of the
estimator requires (1) more samples of the latent field or (2) a higher
correlation of the samples making the exploration of the latent space
slower. The range of 1.0 to 2.0 ensures a reasonable trade-off between
the variance of the estimator, the exploration of the latent space (which
would be slowed down by high 𝜌) and the computational cost (increases
with increasing 𝑁). The region of 𝜽 with high posterior mass can be
chosen based on an initial MCMC run with 𝑁 and 𝜌 selected according
to available prior knowledge. This choice can be inefficient, but will
anyway give some first information. In practice, we first fix the number
of samples 𝑁 such that it is smaller than the number of available
parallel processors. Then, we test a range of values for 𝜌 and select
one leading to 𝑉 𝑎𝑟(𝑊 ) being between 1.0 and 2.0.

2.4. Rejection sampling

Rejection sampling (RS; Ripley, 1987) is a basic Monte Carlo tech-
nique to generate independent samples from the posterior PDF. While
it often suffers from an unfeasibly low acceptance rate, it is an ex-
act sampling method (e.g., Robert and Casella, 2013) proceeding as
follows:

1. Sample 𝜽 from its prior distribution 𝑝(𝜽).
2. Sample 𝑢 from a uniform distribution over [0, 1].
5

3. Accept 𝜽 if 𝑢 ≤ 𝑝(𝒚|𝜽)
𝑆𝐿

, where 𝑆𝐿 is the supremum of the likelihood
function.

For our random effects model (Section 2.1), we estimate the intractable
likelihood 𝑝(𝒚|𝜽) by sampling one brute-force realization 𝒙 of the latent
variable field 𝑿 ∼ 𝑓𝜽(⋅) with hyperparameters 𝜽,

�̂�(𝒚|𝜽) = 𝑔𝜽(𝒚|𝒙) = 𝜑𝑇 (𝒚;(𝒙),𝜮𝒀 )

= det(2𝜋𝜮𝒀 )−1∕2 exp
(

−1
2
(𝒚 − (𝒙))𝑇𝜮−1

𝒀 (𝒚 − (𝒙))
)

. (13)

In practice, an important challenge of RS methods is the need to
estimate a tight bound 𝑆𝐿 for the likelihood function. The most conser-
vative choice is to assume a perfect data fit such that for our Gaussian
likelihood function above we get 𝑆𝐿 = det(2𝜋𝜮𝒀 )−1∕2, but this will
typically lead to an acceptance rate being close to zero. If we assume
the errors to be equal to the standard deviation of the observational
noise, we get 𝑆𝐿 = det(2𝜋𝜮𝒀 )−1∕2 exp

(

− 1
2𝑇

)

, which might lead to
some bias as some realizations are likely to have higher likelihoods.
One further possibility is to use the maximum likelihood value of the
prior samples. To achieve this, RS is run by first saving all sampled
prior realizations and their corresponding likelihood values. From this
database, the maximum likelihood value is determined and all samples
are assessed using this value. To obtain some accepted prior samples
of 𝜽 while ensuring an accurate estimate, we combine the second and
the third approach and use the maximum of those two values as the
supremum 𝑆𝐿.

2.5. Performance assessment

To assess if the CPM algorithm has converged, we use the �̂�-statistic
of Gelman and Rubin (1992) comparing the within-chain variance with
the between-chain variance of the second half of the MCMC chains.
We follow the convention that the �̂�-statistic has to be smaller or
equal to 1.2 for all model parameters. We also consider the acceptance
rates (AR), which are aimed to be between 15% and 30% as proposed
by Vrugt (2016).

We evaluate the amount of information gained by the inversion
by comparing the marginal prior and posterior PDFs of the hyper-
parameters. This is achieved using the Kullback–Leibler divergence
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(KL divergence; Kullback and Leibler, 1951) expressing the distance
between two PDFs 𝑧 ↦ 𝑝1(𝑧) and 𝑧 ↦ 𝑝2(𝑧) (assumed positive) by,

𝐾𝐿(𝑝1 ∥ 𝑝2) = ∫ 𝑝1(𝑧) log
(

𝑝1(𝑧)
𝑝2(𝑧)

)

𝑑𝑧. (14)

If 𝐾𝐿(𝑝1 ∥ 𝑝2) = 0, this means that the two PDFs are equal (almost
everywhere), while an increasing value indicates diverging distribu-
tions. For example, for a standard normal PDF 𝑝2(⋅), a KL divergence
𝐾𝐿(𝑝1 ∥ 𝑝2) = 0.1 is obtained by reducing the standard deviation
within a centered standard normal 𝑝1(⋅) to 0.7 and a KL divergence
𝐾𝐿(𝑝1 ∥ 𝑝2) = 1 is obtained by reducing the standard deviation to 0.23.
To approximate the posterior PDFs, we apply kernel density estimation
to the posterior samples (with manually adapted bandwidth).

To assess the quality of the posterior estimates, we use histograms
to visually compare the marginal distributions with the true underlying
values. Additionally, we evaluate the accuracy of the obtained posterior
samples for each hyperparameter 𝜃𝑖 (𝑖 ∈ {1, 2,… , 𝑃 }) numerically by
applying a so-called scoring rule (Krüger et al., 2021). A scoring rule
assesses the accuracy of a predictive PDF 𝑧 ↦ 𝑝(𝑧) with respect to a
true value 𝜃 by accounting for both the statistical consistency between
predictions and observations (calibration) and the sharpness of the
prediction (Gneiting and Raftery, 2007). For our test cases, we employ
the logarithmic score (logS; Good, 1952) defined by,

logS(𝑝, 𝜃) = − log 𝑝(𝜃), (15)

that is related to the Kullback–Leibler divergence (Gneiting and Raftery,
2007). If we compare two posterior estimates, the one with the lower
score is favored. In practice (as for the KL divergence), we use a kernel
density estimate of the posterior samples, which depends on the choice
of the kernel and the bandwidth of the kernel smoothing window. We
use a Gaussian kernel with manually adapted bandwidth. Our testings
show that the choice influences the specific score values, but that the
main results in terms of comparisons and conclusions are robust. If
the posterior samples do not include the true value of 𝜃, the density
estimate of 𝑝(𝜃) can be numerically zero resulting in a logarithmic
score of infinity. The logarithmic score is also available for multivariate
densities, thereby, allowing evaluation of the estimated joint posterior
PDFs of the hyperparameters.

3. Test case 1: Hydraulic conductivity field

Hydraulic conductivity is a key hydrogeological property. Particu-
larly in contamination studies, the spatial variation of hydraulic con-
ductivity plays an important role as it has a major influence on solute
movement Butler (2005). Visentini et al. (2020) rely on time-lapse
electrical resistance data during a tracer test to demonstrate that mea-
surements of equivalent electrical properties, at a given scale, can be
used to infer hyperparameters of the hydraulic conductivity field below
this scale. Here, we seek to infer the hyperparameters of a log-hydraulic
conductivity field in a data-poor setting involving only horizontally-
and vertically- averaged equivalent hydraulic conductivity data. With
such limited data, it is tempting to ignore heterogeneity or rely on
upscaling relations valid for ergodic fields, as there is little hope that
the data can constrain the field or its hyperparameters well. This ex-
ample is used to demonstrate that ignoring heterogeneity or assuming
ergodicity leads to significant errors when estimating the geostatistical
mean. Furthermore, this data-poor setting allows for comparisons with
rejection sampling (Section 2.4), thereby, demonstrating that the CPM
method targets the right posterior of the hyperparameters.

3.1. Data and inversion setting

We target a 1 m × 1 m log-hydraulic conductivity field distributed
according to a Gaussian random field 𝐺𝑅𝐹 (𝜇𝜽(⋅), 𝐶𝜽(⋅, ⋅)) with constant
mean 𝜇𝜽(⋅) and exponential covariance function 𝐶𝜽(⋅, ⋅) (Eq. (1) with
6

𝐻 = 0.5). We allow geometric anisotropy (Section 2.1) and denote the a
integral scale in the vertical direction (depth) as 𝐼𝑦 and the anisotropy
factor as 𝜆. Together with the mean and standard deviation of the log-
field, this forms the hyperparameters 𝜽 = (𝜇, 𝜎, 𝐼𝑦, 𝜆). Although we
are mainly interested in the mean, we infer the other hyperparameters
along with it, thereby, accounting for the possible non-ergodicity of
the field. The log-hydraulic conductivity field (natural logarithm) is
generated on a 100 × 100 grid (cell size is 1 cm) using a pixel-based
approach (Section 2.1).

3.1.1. Synthetic data generation
We generate noise-contaminated synthetic data in both an ergodic

and a non-ergodic setting. For the ergodic setting, we create one ‘‘true’’
field realization from which we obtain noise-contaminated data by
assuming the field to be isotropic and use 𝜽 = (𝑙𝑛(10−4), 0.5, 0.03 m, 1)
and for the non-ergodic, anisotropic case we choose 𝜽 = (𝑙𝑛(10−4), 1.5,
0.1 m, 3). The true log-hydraulic conductivity fields are shown in Fig. 2.
Due to the discretization of the field chosen to limit the number of
grid cells, the ergodic field is only nearly ergodic, implying that the
generated data will vary somewhat when considering different field
realizations with the true hyperparameters. In what follows, we will
refer to it as ergodic except when a more specific designation is needed.

For the simulated measurements, we impose a hydraulic pressure
gradient along either the horizontal or the vertical direction of the
target field and observe a flux across one boundary. This information
can then be used to calculate the equivalent horizontal and vertical
hydraulic conductivities, given by Visentini et al. (2020),

𝐾𝐻 = 1
△𝛷𝐻 ∫𝛤𝐻

−𝐾(𝐱)▽𝑥𝛷
𝐻 (𝐱)𝑑𝐱, (16)

𝐾𝑉 = 1
△𝛷𝑉 ∫𝛤 𝑉

−𝐾(𝐱)▽𝑦𝛷
𝑉 (𝐱)𝑑𝐱, (17)

here 𝐾(𝐱) denotes the hydraulic conductivity at position 𝐱 with 𝐱 =
𝑥, 𝑦)𝑇 referring to the 2-D position vector. Furthermore, △𝛷𝐻 =
𝛷𝑉 = 1 kPa denotes the constant hydraulic pressure difference

mposed along the horizontal and vertical direction, respectively and
𝐻 (𝐱) and 𝛷𝑉 (𝐱) the resulting hydraulic head. Finally, 𝛤𝐻 and 𝛤 𝑉

efer to integration paths separating the left and right and the top and
ottom boundaries, respectively.

For the ergodic and isotropic field (Fig. 2(a)), we obtain equivalent
ydraulic conductivities of 𝐾𝐻 = 𝐾𝑉 = 9.2 × 10−5 m∕s and for the
on-ergodic anisotropic field (Fig. 2(b)) we get an equivalent horizontal
ydraulic conductivity of 𝐾𝐻 = 6.6 × 10−5 m∕s and an equivalent
ertical hydraulic conductivity of 𝐾𝑉 = 4.8 × 10−5 m∕s. Finally,
e add 𝑖.𝑖.𝑑. relative errors 𝜀 to the data pairs using a centered
aussian distribution with a standard deviation given by 3% of the
orresponding values.

.1.2. Inversion settings and prior assumptions
The CPM method is implemented running three chains in parallel

ith adaptive proposals (Section 2.2.1) using an initialization period
f 𝑗0 = 100 where 𝐂(𝟎) is a diagonal matrix with (0.008, 0.008, 0.002, 0.2)
long its diagonal. For the prior PDFs of the first three hyperparameters,
e use Uniform distributions: for the mean 𝜇, we use the interval
log(10−5), log(10−3)], a range of standard deviation 𝜎 in-between [0, 2]
nd for the integral scale 𝐼𝑦 we assume [0 m, 0.5 m]. To account for
he anisotropy factor 𝜆 being asymmetric around one, we employ a
og-Uniform distribution with boundaries [0.1, 10].

To tune 𝑁 and 𝜌 in the CPM method (Section 2.3.2), we consider
he variance of the log-likelihood ratio estimator 𝑊 (Eq. (12)). Fig. 3
epicts the dependence of the variance of 𝑊 on the correlation 𝜌 for
en and fifty samples (𝑁 = 10, 50) of the latent variable 𝑿 for both the
rgodic and the non-ergodic data setting. To evaluate the variances, we
ix 𝜽 at values having high posterior probability and draw realizations
f the field by both sampling from its prior PDF 𝑓𝜽(𝒙) (noIS) and using
mportance sampling (IS, Appendix A). In the ergodic setting (Fig. 3(a)),
ll considered cases lead to variances of 𝑊 being close to the target
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Fig. 2. ‘‘True’’ log-hydraulic conductivity fields of the first test case for (a) the ergodic setting and (b) the non-ergodic setting.
Fig. 3. Variance of the log-likelihood ratio estimator 𝑊 for the first test case (hydraulic conductivity) as a function of the correlation 𝜌 with 𝜽 being fixed at values with high
posterior probability: (a) data generated with the ergodic setting and (b) data generated with the non-ergodic setting. The different markers refer to the number of latent variable
samples and if sampling is made with or without importance sampling (IS). The black horizontal lines delimit the range between 1.0 and 2.0 recommended by Deligiannidis et al.
(2018).
range between 1.0 and 2.0 recommended by Deligiannidis et al. (2018)
even for 𝜌 = 0. This is not surprising as in a purely ergodic setting,
the realization of the random field does not influence the data. For the
non-ergodic setting (Fig. 3(b)), the variance of 𝑊 is up to 103 times
higher and it is necessary to employ importance sampling. Of course,
sampling from the prior could lead to variances of 𝑊 being within
the desired range, but the required values of 𝑁 and 𝜌 would lead to
either excessively high computational costs at each iteration or very
slow mixing in the draws of the latent variables. In the limit of 𝜌 = 1,
the variance of 𝑊 is trivially equal to zero for all settings as we use
the same latent variable samples in the first and second term of 𝑊 , but
this would lead to biased results. Initial MCMC runs showed that very
diverse values of 𝜎, 𝐼𝑦 and 𝜆 have high posterior probabilities in both
the ergodic and non-ergodic data settings as, in both cases, non-ergodic
field realizations are sampled frequently by the CPM method. To ensure
a controlled variance for all values 𝜽 with high posterior probability for
both data settings, we perform importance sampling and choose 𝑁 = 50
and 𝜌 = 0.975 as it is appropriate for the more challenging non-ergodic
settings.

For comparison purposes, we also run rejection sampling (RS; see
Section 2.4) and a MH inversion assuming the parameter field to be
ergodic (referred to as simplified MH; Fig. 4). For RS, we use the same
number of field samples with corresponding forward simulations as
needed by the CPM method for convergence. For the simplified MH, we
rely on equations presented by Gelhar and Axness (1983) for the equiv-
alent hydraulic conductivities in a two-dimensional anisotropic infinite
7

Fig. 4. Flow chart illustrating the simplified MH (assuming ergodicity) procedure for
the first test case at iteration 𝑗.

domain (ensuring ergodicity) under mean uniform flow conditions:

𝐾𝐻 = 𝐾
(

1 + 𝜎2( 1 − 1 )
)

, (18)
𝐺 2 1 + 𝜆
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Fig. 5. Posterior samples obtained with the CPM method, rejection sampling (RS) and an inversion assuming ergodic conditions (simplified MH, Fig. 4) for the mean 𝜇 in the first
test case (log-hydraulic conductivity): CPM results using the data generated with the (a) ergodic setting, (d) non-ergodic setting, RS using the data generated with the (b) ergodic
setting and (e) non-ergodic setting and simplified MH using the data generated with the (c) ergodic setting and (f) non-ergodic setting. The dashed line is denoting log(𝐾𝐻 ), the
dotted line log(𝐾𝑉 ), the solid vertical line indicates the true mean value and the red horizontal line the prior PDF.
𝐾𝑉 = 𝐾𝐺

(

1 + 𝜎2( 1
2
− 𝜆

1 + 𝜆
)
)

, (19)

with 𝐾𝐺 denoting the geometric mean of the linear hydraulic conduc-
tivity field 𝐊 = exp(𝑿) (entry-wise exponential), which is the only
parameter influencing the response for isotropic fields (𝜆 = 1). It holds
that 𝐾𝐺 = exp(𝑿) with 𝑿 being the arithmetic mean of 𝑿.

3.2. Results

We consider first the posterior PDF of the geostatistical mean 𝜇
obtained with the CPM method for the data generated with the ergodic
setting (Fig. 2(a)). Only the samples obtained for the second half of
the chains, after convergence has been declared (with respect to the
�̂�-statistics, Table 1), are shown. The posterior PDF of the mean value
𝜇 in the ergodic data setting is centered around the true geostatisti-
cal mean and is clearly distinguishable from the Uniform prior PDF
(Fig. 5(a)). This is confirmed by the correspondingly low logarithmic
score emphasizing the accuracy of the posterior samples and the high
KL divergence with respect to the prior PDF (Table 1). Comparison
with the posterior samples obtained with RS (Fig. 5(b)) shows that both
methods generate similar results with comparable KL divergences to the
prior and almost equal logarithmic scores (Table 1). For the posterior
samples obtained by assuming ergodicity (simplified MH, Fig. 4), we
note a more compactly defined posterior than with CPM and RS with
values of the mean being close to the true value (c.f., Figs. 5(a)–
5(c)). Still, the logarithmic score of the mean is much higher than the
one obtained with CPM and RS (Table 1), indicating that the samples
generated under ergodic assumptions are not centered around the true
geostatistical mean and are overconfident. This somewhat paradoxical
result is a consequence of the data setting only being nearly ergodic,
demonstrating the risk of getting biased and overconfident results even
8

when the assumption of ergodicity is nearly fulfilled. The considered
measurement scale is indeed 33 times larger than the integral scale.

For the non-ergodic data setting (Fig. 2(b)), the CPM-derived pos-
terior distribution of the mean value 𝜇 contains the true value while
being shifted towards the observed equivalent properties log(𝐾𝐻 ) and
log(𝐾𝑉 ), leading to a higher logarithmic score than in the ergodic
setting (Fig. 5(d) and Table 1). The posterior samples obtained with
RS (Fig. 5(e)) are spread slightly wider than the ones of CPM, thereby,
capturing more frequently the true value and leading to a lower KL
divergence and a lower logarithmic score. We note that RS has an
acceptance rate of 0.04% in this very data-poor and non-ergodic setting.
In the non-ergodic setting, the simplified MH method leads to important
errors in the estimated mean value (Fig. 5(f)). Indeed, the posterior
samples are located around the (log-transformed) observed equivalent
properties 𝐾𝐻 and 𝐾𝑉 and are removed from the true value of the
geostatistical mean. This is reflected in a logarithmic score of infinity
(see Table 1). Importantly, while the inversion assuming ergodicity
solely samples mean values outside of the true value and has a very
small posterior width, the CPM method includes the true value in the
posterior samples (Figs. 5(d) and 5(f)).

For the other hyperparameters 𝜎, 𝐼𝑦 and 𝜆 inferred along with the
mean 𝜇, we get less well-resolved posterior estimates with both the
CPM method and RS indicating that they are only weakly resolved by
the available data. The corresponding plots are depicted in Appendix B.

4. Test case 2: Fracture aperture fields

Rock fractures play an important role as conduits (or barriers) for
flow and solute transport. Their properties have often a major influ-
ence on hydrogeologic and geotechnical processes (National Research
Council (NRC), 1996), but field characterization is inherently difficult.
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Table 1
Table summarizing the results for the first test case (log-hydraulic conductivity) obtained with the CPM
method, rejection sampling (RS) and the inversion assuming ergodicity (simplified MH; Fig. 4) for the
ergodic (Fig. 2(a)) and the non-ergodic (Fig. 2(b)) data settings: convergence refers to the iteration in the
MH methods with the �̂�-statistics being smaller than 1.2 for all parameters, the logarithmic score (LogS;
Eq. (15)) assesses the accuracy of the posterior samples with respect to the true value and the KL divergence
(Eq. (14)) is calculated for 𝑝1 being the kernel density estimate gained with the (marginal) posterior samples
and 𝑝2 being the prior PDF. The bandwidth used for the marginal kernel density estimates of 𝜇 is 0.03 for
CPM and RS and 0.005 for simplified MH.
Method CPM RS Simp. MH CPM RS Simp. MH
Dataset Ergodic Ergodic Ergodic Non-ergodic Non-ergodic Non-ergodic

Convergence 1’300 – 4’000 2’200 – 10’000
AR 15% 0.11% 20% 15% 0.04% 15%

LogS 𝜇 −0.33 −0.32 17.23 1.57 1.19 Inf
KL div. 𝜇 1.07 1.16 3.92 1.05 0.66 4.01
The high contrast between the electrical properties of the filling of
the fractures and the host rock (e.g., a water-filled fracture in granite
host rock) leads to a very strong thin-bed response in ground pene-
trating radar (GPR) data. Quite remarkably, even sub-mm apertures
yield measurable GPR responses even when the wavelength in the
host rock may be on a metric scale. Imaging and characterization of
fractures with GPR data has been studied extensively both from a
theoretical perspective (e.g., Bradford and Deeds, 2006; Deparis and
Garambois, 2008) and in controlled experiments (e.g., Grégoire and
Hollender, 2004; Tsoflias et al., 2015). In these studies, it is typically
either assumed that the aperture and material properties do not vary
over the first Fresnel zone or that the influence of heterogeneous aper-
ture fields average arithmetically in the acquired data. In a modeling
study, Shakas and Linde (2017) assess this latter simplification by
exploring a deterministic inversion in which the actual aperture field is
heterogeneous at small scales, while it is assumed to be homogeneous
when inferred for. Despite that the data can be fitted to the noise level,
they find that the estimated apertures offer only reliable approxima-
tions of the arithmetic mean of the aperture field when the correlation
length of the aperture heterogeneity is larger than the first Fresnel zone.
Since fractures are known to be highly heterogeneous with self-affine
properties, the study by Shakas and Linde (2017) suggest that many
GPR-based estimations of mean apertures are biased and unreliable.
They suggest that such heterogeneity needs to be explicitly accounted
for, but they do not propose a solution. In this second data-rich test
case, we will demonstrate how the CPM method can be used to obtain
unbiased estimates of the mean aperture and statistics pertaining to the
aperture field. We will then show how this information can be used to
predict the equivalent hydraulic transmissivity of the fractures.

4.1. Data and inversion setting

We consider a 5 m×5 m fracture aperture field 𝑿(⋅) described as an
isotropic Gaussian random field 𝐺𝑅𝐹 (𝜇𝜽(⋅), 𝐶𝜽(⋅, ⋅)) with constant mean
𝜇𝜽(⋅) and powered exponential covariance function 𝐶𝜽(⋅, ⋅) as specified
in Eq. (1). With the CPM method, we target the mean 𝜇, the standard
deviation 𝜎, the integral scale 𝐼 = 𝐼𝑥 = 𝐼𝑦 and the Hurst exponent 𝐻 .
The heterogeneous aperture field 𝑿(⋅) is simulated using a pixel-based
approach (Section 2.1) on a 50 × 50-dimensional grid (𝐷 = 50, cells of
10 cm side-lengths).

4.1.1. Synthetic data generation
The fracture aperture field from which data are generated is de-

picted in Fig. 6(a); the true hyperparameters are 𝜽 = (𝜇, 𝜎, 𝐼,𝐻) =
(0.5 cm, 0.1, 0.2 m, 0.8). We only consider a single fracture in a model
domain of 10 m × 10 m × 10 m (Fig. 6(b)). The background rock matrix
is assumed to be homogeneous with a relative electrical permittivity
of 9 and an electrical conductivity of 0.001 S∕m. For the fracture, we
assume a constant relative electrical permittivity of 81 and electrical
conductivity of 0.1 S∕m.
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To generate the synthetic GPR reflection data, we rely on the
effective-dipole method of Shakas and Linde (2015). This modeling
framework combines analytical solutions for radiation in the matrix
domain and dipole elements, corresponding to discretized sections of
the fracture, radiating as electric dipoles modulated by the thin-bed
reflection coefficients. A simple schematic of the method is represented
in Fig. 6(c) (adapted from Fig. 3 of Shakas and Linde (2017)). We
use two GPR reflection traces generated with sources and receivers
located 5 m away from the fracture and with offsets of 0 m and
2 m (Fig. 6(b)). The source signal is assumed to be vertically-oriented
with a source spectrum consisting of a Ricker wavelet with dominant
wavelength of 100 cm. With a discretization of 10 cm of the aperture
field, this results in 10 elements per dominant wavelength for which
highly accurate simulations are expected (Shakas and Linde, 2017).
The responses are generated in the frequency-domain using a frequency
range from zero to 300 MHz with a sampling step size of 1 MHz. As
in practice, the amplitude of the source wavelet is unknown, Shakas
and Linde (2017) normalize the response values in the data generation
and inversion. Here, we instead introduce an unknown factor 𝑐𝐴 by
which the responses are multiplied. This factor is equal to one for
the true data and it is inferred within the inversion. This extends the
target variables to 𝜽 = (𝜇, 𝜎2, 𝑙𝑐 ,𝐻, 𝑐𝐴). Finally, for each of the 300
complex-valued numbers representing the electric field, we add inde-
pendent realizations of Gaussian measurement noise 𝜀 with a standard
deviation of 3% of the maximal value. The inversions are performed
in the frequency-domain, but we present for visual purposes the two
corresponding traces in the time-domain (Fig. 6(d)). For completeness,
we also show the smoother traces (Fig. 6(e)) obtained by sampling over
the same frequency range with a sampling step size of 0.1 MHz.

4.1.2. Inversion settings and prior assumptions
As in the first test case, we run an adaptive Metropolis–Hastings

version of the CPM method with three chains in parallel. We specify
𝑗0 = 500 and 𝐂(𝟎) as a diagonal matrix with 0.001 on its diagonal.
Furthermore, to ensure a suitable acceptance rate, we decrease the
step size by 50%. For the prior PDFs of the hyperparameters, we use
Uniform distributions: for the mean 𝜇 we use Unif[0 cm, 1 cm], for the
standard deviation 𝜎 we use Unif[0 cm, 0.5 cm], for the integral scale 𝑙𝑐
we use Unif[0 m, 1 m], for the Hurst exponent 𝐻 we use Unif[0.1, 1] and
for the amplitude factor 𝑐𝐴 we use Unif[0.5, 2].

The importance sampling mean 𝝁𝑰𝑺 for the latent aperture field
𝑿 when the proposed 𝜽(𝑗) is the true hyperparameters is depicted in
Fig. 7(a) (see formulas in Appendix A). Fig. 7(b) depicts the dependence
of the variance of the log-likelihood ratio estimator 𝑊 (Eq. (12)) on 𝑁
and 𝜌. The importance sampling leads to a tremendous decrease of the
variance of 𝑊 (e.g., for 𝑁 = 1 and 𝜌 = 0, the variance of 𝑊 is reduced
from 106 to 102). Furthermore, increasing the number of latent variable
samples 𝑁 and the correlation parameter 𝜌 also reduces the variance of
𝑊 strongly. Following Fig. 7(b), we run the CPM algorithm with 𝑁 = 5
and 𝜌 = 0.975 in combination with importance sampling.
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Fig. 6. (a) ‘‘True’’ fracture aperture field of the second test case with 𝜽 = (0.5 cm, 0.1, 0.2 m, 0.8, 1). (b) Model domain with aperture field and transmitter–receiver layout. (c)
Schematic of the effective-dipole forward modeling framework (adapted from Fig. 3 of Shakas and Linde, 2017). GPR reflection traces (time-domain) with a sampling step size of
(d) 1 MHz and (e) 0.1 MHz.

Fig. 7. (a) Importance sampling mean 𝝁𝑰𝑺 of the aperture field for the true values of 𝜽 in the second test case (Appendix A) and (b) variance of the log-likelihood ratio estimator
𝑊 as a function of the correlation 𝜌 with 𝜽 being fixed at values with high posterior probability. The different markers refer to different numbers 𝑁 of latent variable samples
drawn with or without importance sampling (IS). The black horizontal lines delimit the range between 1.0 and 2.0 recommended by Deligiannidis et al. (2018).



Advances in Water Resources 173 (2023) 104402L. Friedli et al.
Fig. 8. Flow chart illustrating the homogeneous inversion procedure for the second
test case at iteration 𝑗.

To place the results obtained with CPM into context, we compare
them to those obtained with an inversion assuming the aperture field
to be homogeneous (illustrated with a flow chart in Fig. 8). To achieve
this, we only infer the mean aperture 𝜇 and the amplitude factor 𝑐𝐴,
which is broadly similar to the inversion setting considered by Shakas
and Linde (2017).

4.2. Results

The estimated marginal posterior PDFs of 𝜽 = (𝜇, 𝜎2, 𝑙𝑐 ,𝐻, 𝑐𝐴)
obtained with the CPM method are depicted in Figs. 9(a)–9(e). Conver-
gence is reached within 10,000 iterations with respect to the �̂�-statistic
and we display the results for the second half of the chains. The
histograms depicting the posterior samples of the mean 𝜇 (Fig. 9(a)),
standard deviation 𝜎 (Fig. 9(b)) and amplitude factor 𝑐𝐴 (Fig. 9(e))
show the strongest concentration with respect to the prior and cor-
respondingly high KL divergences (Table 2). The sample range for
the integral scale 𝐼 (Fig. 9(c)) and the Hurst exponent 𝐻 (Fig. 9(d))
is equally wide as the respective prior PDFs and the corresponding
KL divergences are rather small. Nonetheless, the integral scale is
preferentially sampled in the region of the true value. As the values of
the logarithmic score (Table 2) can generally not be compared between
hyperparameters (different width of support), they will become of
interest only in the comparison with a competing method.

Figs. 9(f) and 9(g) show the histograms of the posterior samples
for the mean 𝜇 and the amplitude factor 𝑐𝐴 obtained for the inversion
assuming a homogeneous aperture (Fig. 8). The range of the samples
is very narrow with high KL divergences with respect to the prior PDF
(Table 2) but located far from the true parameter values. This results in
infinite logarithmic scores (Table 2). As we have seen, the CPM method
accounting for heterogeneity leads to posterior samples of the mean and
amplitude factor that cover a wider range including the true values used
to generate the data as reflected in lower logarithmic scores (Table 2).
The estimates of the mean aperture 𝜇 and the amplitude factor 𝑐𝐴
are highly correlated. Fig. 9(h) shows that under the assumption of
knowing 𝑐𝐴 = 1, the range of the samples obtained with CPM for the
mean aperture would be more narrow and shifted towards the true
value of 0.5 cm. We further see that the homogeneous inversion only
explores a small part (and the wrong part) of the joint posterior model
space, leading to a logarithmic score of infinity for the estimated joint
posterior PDF (Table 2). For this second data-rich test case, rejection
sampling is unfeasible as the acceptance rate is below 0.001%.
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Table 2
Table summarizing the results for the second test case (aperture field, Fig. 6) obtained
with the CPM method and the inversion assuming homogeneity (Fig. 8): convergence
refers to the iteration with a �̂�-statistics being smaller than 1.2 for all parameters,
the logarithmic score (logS; Eq. (15)) evaluates the accuracy of the marginal and joint
posterior samples with respect to the true value and the KL divergence (Eq. (14)) is
calculated for 𝑝1 being the marginal kernel density estimate gained with the posterior
samples and 𝑝2 being the prior PDF. For the kernel density estimates of CPM, we use
the following bandwidths: 0.01 (𝜇), 0.006 (𝜎), 0.02 (𝐼), 0.04 (𝐻), 0.01 (𝑐𝐴) and 0.02
for both in the joint PDF of (𝜇, 𝑐𝐴). For the homogeneous inversion, we use 0.001 (𝜇),
0.001 (𝑐𝐴) and 0.002 for both in the joint PDF of (𝜇, 𝑐𝐴).

Method CPM Homogeneous inv.

Convergence 10’000 1’000
Acceptance rate 15% 15%

LogS 𝜇 0.60 Inf
LogS 𝜎 −1.34 –
LogS 𝐼 −1.05 –
LogS 𝐻 −0.27 –
LogS 𝑐𝐴 0.51 Inf
LogS (𝜇, 𝑐𝐴) −1.31 Inf

KL divergence 𝜇 0.96 3.31
KL divergence 𝜎 0.95 –
KL divergence 𝐼 0.35 –
KL divergence 𝐻 0.02 –
KL divergence 𝑐𝐴 1.29 3.90

4.2.1. Predictions of hydraulic transmissivity
To complement the results obtained for this GPR test case and

to strengthen the link to hydrogeology, we use the aperture field
estimates to derive equivalent hydraulic transmissivities. First, we use
the inferred mean apertures obtained with the inversion assuming the
field to be homogeneous (Fig. 9(f)). These aperture field realizations
are used to derive hydraulic transmissivities at the fracture scale using
the classical parallel plate model (Tsang, 1992),

𝑇 = (1∕(12𝜂))𝜇3, (20)

with 𝜂 = 8.9 × 10−4 Pa ⋅ s denoting the dynamic viscosity (25 degree
C) and 𝜇 being the inferred mean aperture values (in meters). The
resulting horizontal equivalent log-hydraulic transmissivities are shown
in Fig. 10 (light gray). This result is now compared with the value
obtained for the true aperture field under the assumption that the
Reynolds equation is valid, implying that we can apply Eq. (20) locally
to obtain a hydraulic transmissivity field and then solve numerically
for the resulting effective transmissivity at the fracture scale. The
results show that the true effective hydraulic transmissivity is roughly
one order of magnitude smaller and that the posterior PDF of the
homogeneous inversion (light gray) is nowhere close to include this
value. This is reflected in a infinite logarithmic score. We then sample
field realizations using the posterior PDFs of the hyperparameters
inferred with the CPM method. The resulting equivalent log-hydraulic
transmissivity values are shown in Fig. 10 (blue). This distribution is
much wider, it includes the true value, and the mean is clearly shifted
towards the true value. The corresponding logarithmic score is 0.23.

5. Discussion

Our two test cases presented in Sections 3 and 4 demonstrate the
ability of the correlated pseudo-marginal method (CPM method; Fig. 1)
to estimate the posterior PDF of the target field’s hyperparameters
(e.g., mean, standard deviation, integral scale, Hurst exponent and
anisotropy factor) while accounting for the impact of small-scale het-
erogeneity within the estimate of the likelihood function. We further
demonstrate that inversions invoking simplified assumption such as
ergodicity or homogeneity lead to biased and overconfident results
such that the inferred posteriors often do not include the true values.
Compared to previous inversion approaches targeting hyperparameters
(e.g., Laloy et al. (2015) and Xiao et al. (2021)), the CPM method
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Fig. 9. Posterior samples obtained with CPM in the second test case for the (a) mean aperture 𝜇, (b) standard deviation 𝜎, (c) integral scale 𝐼 , (d) Hurst exponent 𝐻 and (e)
amplitude factor 𝑐𝐴. Posterior samples obtained with an inversion assuming the aperture field to be homogeneous for the (f) mean aperture 𝜇 and (g) amplitude factor 𝑐𝐴. Scatter
plot of the sampled pairs of mean aperture 𝜇 and amplitude factor 𝑐𝐴 for the CPM method and the homogeneous inversion. The black lines indicate the true values and the red
horizontal lines the prior PDFs.
Fig. 10. Posterior PDF of the horizontal equivalent log-hydraulic transmissivity (log10-
scale) for heterogeneous aperture fields (second test case) sampled with the inferred
hyperparameters of the CPM method (blue) and homogeneous aperture fields generated
with the inferred mean values of the inversion assuming the field to be homogeneous
(light gray). The black vertical line indicates the value corresponding to the true
aperture field.

infers the hyperparameters only, thereby, avoiding to infer the posterior
PDF of the many thousands of latent variables. The two presented test
cases cover one data-poor transmission problem governed by diffusion
(e.g. electrical conduction, heat conduction, or groundwater flow) and
one more data-rich reflection problem governed by wave-based physics
(e.g., GPR, seismics, acoustics). The generality of these settings suggest
that the CPM method has a wide applicability in hydrogeology and
geophysics.

The first test case related to heterogeneous hydraulic conductivity
fields concerns a very data-poor setting in which only the horizontal
and vertical equivalent hydraulic conductivities are used as data points.
12
To compare the performance of the CPM method with an inversion
assuming ergodicity (referred to as simplified MH; Fig. 4), we consider
a nearly ergodic and a non-ergodic data setting. In both settings, the
geostatistical mean of the model domain can be inferred from the
equivalent conductivities using the CPM method. In the ergodic setting,
both the CPM method and the simplified MH lead to reasonable esti-
mates of the geostatistical mean, with the posterior range of the CPM
method being wider as its underlying assumptions are less restrictive
(Figs. 5(a) and 5(c)). In the non-ergodic data setting, the simplified
MH leads to important errors in the estimation of the geostatistical
mean with a posterior range far from the true value (Fig. 5(f)). For the
CPM method, the estimated posterior uncertainty is wider and the true
value of the mean is included (Fig. 5(d)). Thereby, the logarithmic score
is reduced from infinity to 1.57 when applying CPM compared with
the simplified MH (Table 1). We conclude that even in this extremely
data-poor setting, the use of simplified model assumptions leads to a
substantial bias in the mean estimate and an overconfident posterior
bound. For the other hyperparameters (standard deviation, integral
scale and anisotropy factor), we conclude that only little information
can be gained in this data-poor setting. Furthermore, we demonstrate
that the CPM results are in agreement with those obtained by rejection
sampling.

In the second test case concerning fracture aperture fields, we
limit ourselves to a non-ergodic data setting and compare the results
obtained with CPM with those of an inversion assuming the aperture
field to be homogeneous (Fig. 8). We can consider this homogeneous
inversion as either (1) an inversion inferring the geostatistical mean
under simplified model assumptions or (2) an inversion targeting the
equivalent GPR aperture. We show that the homogeneous assumption
leads to posterior samples being located far from the true geostatistical
mean value (Fig. 9(f)), demonstrating in accordance with Shakas and
Linde (2017) (1) that the geostatistical mean of the aperture field can be
very different than the equivalent GPR aperture and (2) that inferring
the geostatistical mean based on a too simple model description leads
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to biased estimates. Indeed, in such an inversion one appears to get
increasingly certain about the wrong parameter values as more data
are added or the data noise level is decreased (Brynjarsdóttir and
O’Hagan, 2014). In contrast, the CPM method accounting for non-
ergodicity and heterogeneity by inferring additionally for the standard
deviation, integral scale and Hurst exponent leads to a wider posterior
including the true value of the aperture mean (Fig. 9(a)). For this
second example, employing the CPM method leads to a reduction of the
logarithmic score from infinity to 0.60 for the posterior estimate of the
mean in comparison with the homogeneous inversion (Table 2). Addi-
tionally, CPM enables to infer information about other hyperparameters
(standard deviation and integral scale) of the field.

Probabilistic inference of hyperparameters offers the possibility to
translate from one type of equivalent property to another. We demon-
strate this by predicting the equivalent log-hydraulic transmissivity at
the fracture scale using the fracture aperture fields obtained in the sec-
ond test case (Fig. 10). The predicted values for the constant aperture
field inversion are obtained by applying the equivalent GPR aperture in
the cubic law. When deriving hydraulic properties from these constant
fields, we assume that this equivalent GPR aperture is the same as the
equivalent ‘‘cubic law aperture’’ (in the sense of Tsang, 1992), which is
the equivalent parallel plate aperture with respect to hydraulic flow
properties. These predictions are very different from those obtained
from the true aperture field when applying the local cubic law (Fig. 10).
This visualizes clearly that the equivalent aperture for one type of
physics cannot be assumed to be the same when considering another
type of physics. Actually, the equivalent aperture (in a cubic law
sense) with respect to the hydraulic data of the true aperture field is
0.47 cm, a value considerably diverging from the one inferred from
the GPR data when assuming homogeneity (about 0.9 cm). Using field
realizations sampled with the posterior PDFs of the hyperparameters
obtained by CPM lead to a wider and more accurate range of effective
log-hydraulic transmissivity values (Fig. 10). While the logarithmic
score for the transmissivity predictions obtained with the homogeneous
inversion is infinity, the one obtained with CPM is 0.23. This suggests
that while equivalent properties always refer to one specific kind of
physics, the inference of hyperparameters enables a general description
of the model domain. The CPM method is well suited to achieve this
by targeting only the hyperparameters of interest, thereby, enabling
probabilistic forecasts for different types of physics.

This study expands further the range of applications that the CPM
method can address in geoscientific settings. While Friedli et al. (2022)
used it to account for uncertainties in petrophysical relationships in the
context of hydrogeophysics, we provide here a very different problem
setting in which the CPM method is used to account for non-ergodicity
and small-scale heterogeneities when inferring hyperparameters. In
these examples, we only consider heterogeneities in two dimensions.
In field applications, the data are of course affected by heterogeneities
outside the 2-D plane of measurements (e.g., between boreholes) or
by outer-space effects (Maurer and Friedel, 2006). To further improve
the estimation and uncertainty quantification in such setups, the CPM
method could be employed to integrate out heterogeneities in three
dimensions (in the context of the present study), or in the third out-
of-plane dimension in the setting considered by Friedli et al. (2022)
or in general 2-D inversions to avoid over-confident (and possibly
biased) estimates. For the presented test cases we used a pixel-based
representation of the Gaussian latent random field. We stress that
there exist many alternative ways to represent and generate a Gaussian
random field as, for example, the fast circulant embedding technique
using a spectral representation by Dietrich and Newsam (1997). While
such an approach offers an increased efficiency in the generation of
the random field realizations, careful consideration must be given on
a case-by-case basis as to whether this could be integrated into a well-
working importance sampling strategy. Moreover, in settings where the
correlation length is of similar size as the model domain, the embedding
13

has to be extended and the efficiency is reduced. We assume the f
latent random fields to be Gaussian, simplifying the derivation of the
importance sampling density. An important topic for future research
would be to develop and assess suitable importance distributions in
non-Gaussian settings.

The efficiency of the CPM method depends strongly on the variance
of the log-likelihood ratio estimator. Especially in settings with a high
number of observations with a low signal-to-noise ratio, one needs a
well-working importance density when sampling the latent variables.
The relevance of a well-tuned importance sampling strategy becomes
clear when comparing the number of samples needed to control the
variance in the first and second test cases (Figs. 3 and 7(b)). For the
first test case, the IS density is of only moderate quality and many
samples (𝑁 = 50) are needed even for this data-poor setting. For the
second more data-rich test case with a well-defined IS density, only
a few samples (𝑁 = 5) are sufficient. If the determination of a well-

orking IS distribution is not feasible, this can be detrimental to the
pplicability of the CPM method. In such a scenario there is also the
isk of poor exploration of the latent space, namely if the likelihood
stimator depends mainly on one or two latent variable samples with
particularly beneficial small-scale structure. One solution in such a

cenario is to infer some additional main features of the latent field
ogether with the hyperparameters and then to apply the CPM method
o sample out the remaining randomness of the field. This could be done
sing the main components of a dimensionality reduction approach
nd should reduce the importance of a well-tuned IS density. We leave
his idea for future research. Recently, Wang et al. (2022) proposed
n hierarchical Bayesian inversion approach targeting first so-called
lobal variables (such as hyperparameters but also physical variables)
nd then estimating the posterior of the whole field. For the estimation
f the global variable’s posterior in a non-linear setting, Wang et al.
2022) apply a machine-learning based approach and train a neural
etwork to output the global variables given a data realization followed
y kernel density estimation of the results. Such a method relies on the
bility to estimate the hyperparameters by brute-force prior sampling
nd subsequent comparison of the resulting data with the true mea-
urements. In strongly non-ergodic settings, this can be computationally
hallenging as an unrealistically high number of prior samples would
e needed to obtain reasonable estimates. To illustrate this, Fig. 11
hows the 100 highest log-likelihood values sampled from 5000 prior
amples of the aperture field in the second test case (Section 4). We
ote that no sample was generated with a likelihood close to the true
ne (black horizontal line) implying that an unfeasible large amount
f samples would be needed to guarantee accurate hyperparameter
stimates. Indeed, even the highest sampled likelihood has a likelihood
hat is still 1044 times smaller than the true likelihood. In contrast, our
PM method using three chains need 10’000 iterations per chain for
onvergence.

. Conclusions

We consider Bayesian MCMC inversions inferring hyperparameters
e.g., mean, standard deviation and integral scales) from hydrogeolog-
cal or geophysical data. To achieve this is particularly challenging
n the non-ergodic setting, in which the data depend on the actual
eostatistical field realization under consideration and not only on
he hyperparameters. To prevent errors arising when assuming ho-
ogeneity or ergodicity, we rely on the correlated pseudo-marginal
ethod targeting the hyperparameters while integrating out the ran-
om effects of actual field realizations in the likelihood estimation.
his approach has the advantage of ensuring accurate posterior esti-
ates of hyperparameters without having to infer thousands or more
arameters as needed if the whole random field would be inferred.
o ensure efficiency, the correlated pseudo-marginal method employs

mportance sampling and correlation of the latent draws used in the
roposed and current steps of the MCMC chain. We assess the per-

ormance of this method through two synthetic test cases involving



Advances in Water Resources 173 (2023) 104402L. Friedli et al.
Fig. 11. Log-likelihood values obtained with brute-force sampling of the latent aperture field 𝑿 in Test case 2 (Section 4) when drawing prior samples from the hyperparameters;
for readability, we only show the samples with the 100 highest log-likelihood values (out of 5000 samples). The horizontal lines depict the true log-likelihood and the vertical
lines the true values of the hyperparameters.
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(1) diffusion-based physics in a data-poor setting targeting hydraulic
properties using equivalent hydraulic conductivity data and (2) wave-
based physics in a more data-rich example targeting a fracture aperture
field using single-hole ground-penetrating radar (GPR) reflection data.
By using these two examples that are representative of a broad range
of geophysical and hydrogeological problems, we demonstrate that
the correlated pseudo-marginal method provides accurate estimation
of the geostatistical mean in both ergodic and non-ergodic settings.
Furthermore, for all considered hyperparameters, we show that the
correlated pseudo-marginal method avoids over-confident and biased
posterior PDF estimates that plague inversion results obtained when
assuming ergodicity or homogeneity. Estimating hyperparameters al-
lows for a general description of property fields which is independent of
the physics under consideration, thereby, allowing ultimately to use the
estimated posterior PDFs to make predictions for other types of physics
or experimental set-ups. This is demonstrated by transforming the
fracture properties inferred by GPR data into predictions of equivalent
hydraulic transmissivity at the fracture scale.
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Appendix A. Importance sampling for CPM

As emphasized in Section 2.3.2, it is essential that the variance
of the log-likelihood ratio estimator is low to ensure efficient PM or
CPM performance. Especially in settings with large data sets with high
signal-to-noise ratios, the integrand 𝑔𝜽(𝒚|𝒙) in Eq. (7) is likely to have
a peak in a region of 𝑿 with very small probability under its prior PDF
𝒙 ↦ 𝑓𝜽(𝒙). Sampling the latent variables using the prior distribution
then leads to an inefficient algorithm. One remedy to this is impor-
tance sampling, where instead of the prior distribution, a so-called
importance distribution given by the PDF 𝒙 ↦ 𝑚𝜽(𝒙) is employed. The
importance distribution is chosen such that it preferentially generates
samples with high 𝑔𝜽(𝒚|𝒙)𝑓𝜽(𝒙) while guaranteeing that all values 𝒙, for
which 𝑔𝜽(𝒚|𝒙)𝑓𝜽(𝒙) > 0, are included in its support (Owen and Zhou,
000). It holds,

𝑔𝜽(𝒚|𝒙)𝑓𝜽(𝒙)𝑑𝒙 = ∫
𝑔𝜽(𝒚|𝒙)𝑓𝜽(𝒙)

𝑚𝜽(𝒙)
𝑚𝜽(𝒙)𝑑𝒙, (A.1)

rom which the unbiased importance sampling estimate of the likeli-
ood function in Eq. (10) is derived. To minimize the variance of the es-
imator, 𝒙 ↦ 𝑚𝜽(𝒙) should be nearly proportional to 𝒙 ↦ 𝑔𝜽(𝒚|𝒙)𝑓𝜽(𝒙)
s presented in Owen and Zhou (2000) referring to the results of Kahn
nd Marshall (1953). Since it holds that 𝑝(𝒙|𝜽, 𝒚) ∝ 𝑔𝜽(𝒚|𝒙)𝑓𝜽(𝒙), we
se for the importance density an approximation of 𝒙 ↦ 𝑝(𝒙|𝜽, 𝒚).

In Section 2.1, we specify 𝒀 = (𝑿) + 𝜀 with  ∶ R𝐷2
→ R𝑇

eing the (physical) forward solver and 𝜀 the observational noise.
f the forward solver is non-linear, there is no exact expression for
(𝒙|𝜽, 𝒚). For this reason, we approximate 𝑝(𝒙|𝜽, 𝒚) by expressing the
ap 𝒙 ↦ (𝒙) based on either an upscaling formula assuming an

nisotropic ergodic setting (test case 1) or a linearization of the forward
olver (test case 2). Following Friedli et al. (2022), we use Gaussian
istributions and a lemma about marginal and conditional Gaussians;

ee for example Bishop (2006).
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Fig. B.1. Posterior samples for the remaining hyperparameters for the first test case (log-hydraulic conductivity) using the data generated with the ergodic setting; (a) standard
deviation 𝜎, (b) integral scale 𝐼𝑦 and (c) anisotropy factor 𝜆 with CPM. (d) Standard deviation 𝜎, (e) integral scale 𝐼𝑦 and (f) anisotropy factor 𝜆 with RS. (g) Standard deviation
𝜎 and (h) anisotropy factor 𝜆 with simplified MH. The solid vertical lines indicate the true hyperparameter values and the red horizontal lines the prior PDFs. Note that for the
anisotropy factor 𝜆 we employ a logarithmic scale on the 𝑥-axis.
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Lemma 1. Marginal and Conditional Gaussians
Assume a marginal Gaussian distribution for 𝐗 ∈ R𝐷2 and a conditional

aussian distribution for 𝐘 ∈ R𝑇 given 𝐗 in the form

(𝐱) = 𝜑𝑇 (𝐱;𝝁,Λ−𝟏), (A.2)

(𝐲|𝐱) = 𝜑𝑇 (𝐲;𝐀𝐱 + 𝐛,𝐋−𝟏), (A.3)

ith 𝜑𝑇 (⋅;𝝁,𝑲) denoting the PDF of the 𝑇 -variate normal distribution with
ean 𝝁 and covariance matrix 𝑲. Then, the marginal distribution of 𝐘 and
he conditional distribution of 𝐗 given 𝐘 are given by

(𝐲) = 𝜑𝑇 (𝐲;𝐀𝝁 + 𝐛,𝐋−𝟏 + 𝐀Λ−𝟏𝐀𝐓), (A.4)

(𝐱|𝐲) = 𝜑𝐿(𝐱;Σ
(

𝐀𝐓𝐋(𝐲 − 𝐛) +Λ𝝁
)

,Σ), (A.5)

here

= (Λ + 𝐀𝐓𝐋𝐀)−𝟏.

est case 1: Hydraulic conductivity fields

We are concerned with the latent log-conductivity field 𝑿 ∼ 𝑓𝜽(𝒙) =
𝐿(𝒙;𝝁𝜽,𝜮𝜽) and, to express the measurements as a linear function

of the latent field, we use the log-transformed Eqs. (18) and (19) out
of Sanchez-Vila et al. (2006),

𝑙𝑜𝑔(𝐾𝐻 ) = 𝑿 + 𝑙𝑜𝑔
(

1 + 𝜎2( 1
2
− 1

1 + 𝜆
)
)

(A.6)

𝑙𝑜𝑔(𝐾𝑉 ) = 𝑿 + 𝑙𝑜𝑔
(

1 + 𝜎2( 1
2
− 𝜆

1 + 𝜆
)
)

. (A.7)

Then, we denote �̃� = 𝑙𝑜𝑔(𝒚) and write �̃� ≈ 𝑱𝑿 + 𝒃 with 𝑱 being a
(2, 𝐷2)-dimensional matrix with constant entries of 1 and 𝒃 = (𝑏 , 𝑏 ),
15

𝐷2 1 2 𝑝
here 𝑏1 = 𝑙𝑜𝑔
(

1 + 𝜎2( 12 − 1
1+𝜆 )

)

and 𝑏2 = 𝑙𝑜𝑔
(

1 + 𝜎2( 12 − 𝜆
1+𝜆 )

)

.
Subsequently, we approximate 𝑔𝜽(�̃�|𝒙) with 𝑔𝜽(�̃�|𝒙) = 𝜑𝑇 (�̃�;𝑱𝑿+𝒃,𝜮𝒀 ),
where 𝜮𝒀 = 𝐼2 ∗ 0.12, with 𝐼2 denoting the two by two identity
matrix. With this choice of 𝜮𝒀 , we transfer the observational error to
the log-space and artificially increase the uncertainty to account for
the errors resulting from the ergodic assumption made to derive the IS
distribution. To finally derive an approximation for 𝑝(𝒙|𝜽, 𝒚), we use
Eq. (A.5):

𝑝(𝒙|𝜽, �̃�) = 𝜑𝐿(𝒙;𝝁𝑰𝑺 ,𝜮𝑰𝑺 ), with (A.8)

𝑰𝑺 = 𝜮𝑰𝑺

(

𝑱 𝑇𝜮𝒀
−1 (�̃� − 𝒃) +𝜮−1

𝜽 𝝁𝜽

)

,

𝜮𝑰𝑺 = (𝜮−1
𝜽 + 𝑱 𝑇𝜮𝒀

−1𝑱 )−1.

Test case 2: Fracture aperture fields

We target the fracture aperture field 𝑿 ∼ 𝑓𝜽(𝒙) = 𝜑𝐿(𝒙;𝝁𝜽,𝜮𝜽) and
locally approximate 𝑝(𝒙|𝜽, 𝒚) by expressing the map 𝒙 ↦ (𝒙) based on

first-order expansion around 𝒙𝑙𝑖𝑛 (as Friedli et al., 2022),

(𝒙) = (𝒙𝑙𝑖𝑛 + 𝒙 − 𝒙𝑙𝑖𝑛) ≈ (𝒙𝑙𝑖𝑛) + 𝑱𝒙𝑙𝑖𝑛 (𝒙 − 𝒙𝑙𝑖𝑛). (A.9)

ere, 𝑱𝒙𝑙𝑖𝑛 refers to the sensitivity (Jacobian) matrix of the forward
olver corresponding to 𝒙𝑙𝑖𝑛, which is a homogeneous field with the
urrently proposed geostatistical mean (𝝁𝜽 = 𝜃1). Subsequently, we
pproximate 𝑔𝜽(𝒚|𝒙) with 𝑔𝜽(𝒚|𝒙) = 𝜑𝑇 (𝒚;(𝒙𝑙𝑖𝑛) + 𝑱𝒙𝑙𝑖𝑛 (𝒙 − 𝒙𝑙𝑖𝑛),𝜮𝒀 ).
gain, we derive an approximation for 𝑝(𝒙|𝜽, 𝒚) by using Eq. (A.5):
(̃𝒙|𝜽, 𝒚) = 𝜑𝐿(𝒙;𝝁𝑰𝑺 ,𝜮𝑰𝑺 ), with (A.10)



Advances in Water Resources 173 (2023) 104402L. Friedli et al.
Fig. B.2. Posterior samples for the remaining hyperparameters for the first test case (log-hydraulic conductivity) using the data generated with the non-ergodic setting; (a) standard
deviation 𝜎, (b) integral scale 𝐼𝑦 and (c) anisotropy factor 𝜆 with CPM. (d) Standard deviation 𝜎, (e) integral scale 𝐼𝑦 and (f) anisotropy factor 𝜆 with RS. (g) Standard deviation
𝜎 and (h) anisotropy factor 𝜆 with simplified MH. The solid vertical lines indicate the true hyperparameter values and the red horizontal lines the prior PDFs. Note that for the
anisotropy factor 𝜆 we employ a logarithmic scale on the 𝑥-axis.
𝝁𝑰𝑺 = 𝜮𝑰𝑺

(

𝑱 𝑇
𝒙𝑙𝑖𝑛

𝜮−1
𝒀

(

𝒚 − (
(

𝒙𝑙𝑖𝑛
)

− 𝑱𝒙𝑙𝑖𝑛𝒙𝑙𝑖𝑛)
)

+𝜮−1
𝜽 𝝁𝜽

)

,

𝜮𝑰𝑺 = (𝜮−1
𝜽 + 𝑱 𝑇

𝒙𝑙𝑖𝑛
𝜮−1

𝒀 𝑱𝒙𝑙𝑖𝑛 )
−1.

Since this expression is approximate due to the linearization step, we
multiply 𝜮𝒀 with a factor. Following Friedli et al. (2022), we use 1.2
as this choice led to a satisfactory performance.

Appendix B. Complementary figures concerning test case 1

Here we present the additional hyperparameter-plots of the pos-
terior samples obtained for the first test case (Section 3). Fig. B.1
shows the results obtained for the ergodic data setting (Fig. 2(a)) and
Fig. B.2 those for the non-ergodic setting (Fig. 2(b)). In the ergodic
setting, the posteriors of the standard deviation 𝜎 obtained by CPM
(Fig. B.1a), RS (Fig. B.1d) and the simplified MH (Fig. B.1g) are as
wide as the prior PDFs with the mode of the distributions being located
around the right value for all three approaches. Thereby, the posterior
obtained with the simplified MH is better defined than the ones of RS
and CPM. The integral scale is only inferred by CPM (Fig. B.1b) and
RS (Fig. B.1e) with both methods generating posterior samples still
distributed proportionally to the Uniform prior PDF. For the anisotropy
factor 𝜆, the simplified MH clearly favors values above 1 (Fig. B.1h) and
the same holds true for RS (Fig. B.1f). Finally, CPM (Fig. B.1c) samples
close to the prior PDF.

Employing the data generated with the non-ergodic setting, we
obtain posteriors favoring correctly the horizontal layering of the
16

field, whereby the estimates of RS (Fig. B.2f) and the simplified MH
(Fig. B.2h) are better defined than the one of CPM (Fig. B.2c). For 𝐼𝑦,
we again obtain estimates close to the prior for both RS (Fig. B.2e)
and CPM (Fig. B.2b). While CPM also samples 𝜎 close to the prior
(Fig. B.2a), the RS realizations show a tendency for higher values
(Fig. B.2d). Finally, the simplified MH samples values of 𝜎 (Fig. B.2g)
having a high concentration at incorrect values.
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