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Highlights 

 Lesion-deficit inference is so far dominated by frequentist statistical mapping 

 We evaluated Bayesian lesion-deficit inference in silico and  in real deficits 

 Bayesian inference was statistically more liberal than frequentist mapping 

 It transparently handles situations with low statistical power 

 It complements the lesion mapping method portfolio with unique advantages 
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Abstract 

Statistical lesion-symptom mapping is largely dominated by frequentist approaches 

with null hypothesis significance testing. They are popular for mapping functional 

brain anatomy but are accompanied by some challenges and limitations. The typical 

analysis design and the structure of clinical lesion data are linked to the multiple 

comparison problem, an association problem, limitations to statistical power, and a 

lack of insights into evidence for the null hypothesis. Bayesian lesion deficit inference 

(BLDI) could be an improvement as it collects evidence for the null hypothesis, i.e. 

the absence of effects, and does not accumulate α-errors with repeated testing. We 

implemented BLDI by Bayes factor mapping with Bayesian t-tests and general linear 

models and evaluated its performance in comparison to frequentist lesion-symptom 

mapping with a permutation-based family-wise error correction. We mapped the 

voxel-wise neural correlates of simulated deficits in an in-silico-study with 300 stroke 

patients, and the voxel-wise and disconnection-wise neural correlates of phonemic 

verbal fluency and constructive ability in 137 stroke patients. Both the performance of 

frequentist and Bayesian lesion-deficit inference varied largely across analyses. In 

general, BLDI could find areas with evidence for the null hypothesis and was 

statistically more liberal in providing evidence for the alternative hypothesis, i.e. the 

identification of lesion-deficit associations. BLDI performed better in situations in 

which the frequentist method is typically strongly limited, for example with on 

average small lesions and in situations with low power, where BLDI also provided 

unprecedented transparency in terms of the informative value of the data. On the other 

hand, BLDI suffered more from the association problem, which led to a pronounced 

overshoot of lesion-deficit associations in analyses with high statistical power. We 

further implemented a new approach to lesion size control, adaptive lesion size 

control, that, in many situations, was able to counter the limitations imposed by the 

association problem, and increased true evidence both for the null and the alternative 

hypothesis. In summary, our results suggest that BLDI is a valuable addition to the 

method portfolio of lesion-deficit inference with some specific and exclusive 

advantages: it deals better with smaller lesions and low statistical power (i.e. small 

samples and effect sizes) and identifies regions with absent lesion-deficit associations. 

However, it is not superior to established frequentist approaches in all respects and 

therefore not to be seen as a general replacement. To make Bayesian lesion-deficit 
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inference widely accessible, we published an R toolkit for the analysis of voxel-wise 

and disconnection-wise data. 

 

Keywords 

Lesion-symptom mapping; VLSM; verbal fluency; voxel; disconnection; stroke 

 

Abbreviations:BF, Bayes factor; BLDI, Bayesian lesion-deficit inference; NHST, 

Null hypothesis significance testing; VLSM, Voxel-based lesion-symptom mapping 

1 Introduction 

Lesion-deficit inference identifies brain regions in which lesions are associated with 

the occurrence or persistence of cognitive and behavioural deficits. On the one hand, 

this information can be used in diagnosis or prognosis. On the other hand, it provides 

crucial information for mapping the functional architecture of the human brain 

because, unlike correlational methods such as fMRI or EEG, it can identify brain 

regions that are critical for cognitive function (Rorden and Karnath, 2004). Since the 

introduction of univariate statistical mapping (Bates et al., 2003; Rorden and Karnath, 

2004), this approach has dominated the field of lesion-deficit inference and has been 

used by hundreds of studies (Karnath and Rennig, 2017). The basic principle is to 

statistically evaluate the association between the lesion status of each imaging feature, 

such as each voxel in a normalised imaging space, and a measure of a post-stroke 

deficit. The method is rooted in the framework of statistical parametric mapping 

(Friston et al., 1994) and is therefore flexible and elegantly simple. Voxel-wise lesion-

deficit inference has been used with a plethora of statistical tests, such as t-tests (Bates 

et al., 2003), χ²-tests (Karnath et al., 2004), and non-parametric tests (Rorden et al., 

2007) and can easily be transferred to various imaging data of pathological brain 

aberrations, including region-wise lesion load (Behroozmand et al., 2022), functional 

network disconnectivity (Boes et al., 2015), white matter disconnection (Umarova et 

al., 2014), and indirectly estimated structural disconnection (Sperber et al., 2022). 

However, the success of univariate statistical lesion-deficit inference is 

overshadowed by several key problems. First is the multiple comparison problem. 

The repeated use of statistical tests (e.g. in each voxel of the brain) massively inflates 

α errors. This α error inflation can satisfyingly be countered by multiple comparison 

correction, for example by permutation methods (Nichols and Holmes, 2002; Mirman 

et al., 2018). Second is the association problem. The vascular supply of the brain is 
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structured hierarchically which defines typical lesion patterns (Zhao et al., 2020). 

Imagine a deficit that arises after damage to only one specific brain region. Lesions 

that damage this brain region often damage other brain regions that are supplied by a 

vascular branch within the same supply hierarchy (see Figure 1A for an illustration). 

Therefore, the deficit is also associated with damage to these other regions. The 

results of lesion-deficit mapping were found to be biased by these typical associations 

in lesion anatomy (Mah et al., 2014; Pustina et al., 2018; Sperber et al., 2019), causing 

an overshoot of lesion-deficit associations beyond the neural correlates of a deficit. 

This appears to be a general and currently unsolved limitation of any lesion-deficit 

approach, be it univariate or multivariate (Sperber et al., 2019; Sperber, 2020). Third, 

various properties of lesion-deficit data cause a statistical power problem. Statistical 

power is the probability of correctly rejecting the null hypothesis (i.e. identifying true 

lesion-deficit associations) and it depends, in addition to effect size, on sample size 

and group sizes. The sample size in neuropsychological studies with stroke patients is 

often small and the data structure is not optimal. Consider the case of binary voxel-

wise lesion data, where a voxel is either lesioned or intact. Here, a statistic usually 

compares whether the severity of the deficit differs between patients with damage in 

the voxel and patients without damage in the voxel. Statistical power is highest when 

both groups are equally sized (Kimberg et al., 2007). However, group sizes are often 

highly unequal in stroke patient samples and vary across brain regions due to the 

stroke anatomy (see Figure 1B). This problem is further amplified in samples with 

small lesions (see Figure 1C). A small average lesion size could be particularly 

problematic in contemporary studies as, thanks to innovations in intravenous 

thrombolysis and mechanical thrombectomy, brain tissue can be saved and more 

patients survive a stroke with only minor lesions and deficits (Bhaskar et al., 2018). 

Another limitation of statistical power is introduced by the partial injury of neural 

correlates within networks (Figure 1D; Rorden et al., 2009). This issue arises 

whenever lesions damage only parts of a neural correlate, which is especially 

problematic with more complex neural correlates, such as large-scale cognitive 

networks. For example, when a deficit arises after damage to either of two regions, a 

patient with the deficit after damage to one region serves as a statistical counter-

example that the deficit also arises after damage to the other region. The statistical 

power to also detect the second region as the deficit’s neural correlate is then reduced. 
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Figure 1 Limitations in LSM near here, 2 columns 

 

Until now, lesion-deficit inference was strongly dominated by frequentist null 

hypothesis significance testing (NHST). With NHST, we can only learn something 

about data if the null hypothesis h0 is rejected. Any result above the α level is not 

informative as it only indicates the absence of evidence for an effect, but not evidence 

for the absence of an effect (Dienes, 2014; Keysers et al., 2020). Bayesian inference 

follows another statistical concept that can provide evidence for either h0 or the 

alternative hypothesis h1. The basic principle in Bayesian inference is that we start 

with a prior probability for the presence of an effect. A prior probability can be based, 

for example, on subjective beliefs or previous studies, or it can be an uninformative 

default prior. Next, we look at the evidence provided by our research data and update 

the prior probability accordingly, thereby computing the posterior probability. Even 

though Bayesian methods are currently trending in neuroscience (Gallistel, 2009; 

Wagenmakers et al., 2018; Keysers et al., 2020), they are still a rare sight in lesion-

deficit inference. A few implementations either used noninformative default priors to 

map the posterior probability (Chen and Herskovits, 2010), Bayesian statistics on 

low-dimensional lesion imaging data (Bonkhoff et al., 2021; Bonkhoff et al., 2022) or 

included Bayesian network analyses (Chen et al., 2008; Duering et al., 2014; Arnoux 

et al., 2018) that go beyond the simple Bayesian inference framework. A few more 

studies mapped the Bayes factor (Achilles et al., 2017; Ulrichsen et al., 2021). The 

Bayes factor quantifies the strength of the evidence provided by data for the 

evaluation of h0 versus h1. Bayes factor mapping has the advantage that it is, to a large 

degree, independent of the prior probability and, instead, informs us only about the 

evidence provided by the data. Inference with the Bayes factor also has a practical 

advantage: for the most popular frequentist statistical tests, including t-tests, 

ANOVAs, rank tests, and correlation analysis, counterparts utilising the Bayes factor 

exist (Rouder et al., 2012; Wetzels et al., 2012; Wetzels and Wagenmakers, 2012; 

Keysers et al., 2020; van Doorn et al. 2020). Hence, inference using the Bayes factor 

should be easily accessible even to scientists that are only familiar with the common 

tests for NHST. And, of importance to lesion-deficit inference, the Bayes factor can 

be mapped within the existing framework of voxel-wise statistical mapping. 

Bayesian methods might better handle the difficulties in lesion-deficit 

inference. First, it solves the multiple comparison problem because it simply does not 
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generate α-errors. Second, Bayesian inference could be a transparent and informative 

approach to handling the statistical power problem in lesion-deficit inference. A 

switch from NHST to Bayesian inference would not necessarily increase our ability to 

gather evidence for weak and subtle effects. However, Bayesian inference could 

transparently differentiate brain areas for which our data prove the null hypothesis and 

brain areas for which our data do not provide any evidence. On the other hand, the 

statistical power problem in lesion-deficit inference might go beyond aspects that 

Bayesian inference can transparently handle. If statistical power is low due to small 

group- or sample sizes – a central issue in lesion-deficit data – effects can be 

overestimated (Button et al., 2013; Gelman and Carlin, 2014). Thus, if we too much 

rely on the advantage of Bayesian lesion-deficit inference to evaluate the presence of 

lesion-deficit associations even under the typically difficult conditions of lesion data, 

we may still overlook biases. Further, the association problem remains. How well can 

Bayesian inference indicate the absence of lesion-deficit associations if these are 

inflated within the proximity of the neural correlates of a deficit?   

In the present study, we evaluated how well Bayes factor mapping can handle 

the challenges in lesion-deficit inference. We compared classical frequentist lesion-

symptom mapping with null hypothesis significance testing to a corresponding Bayes 

factor mapping approach. First, we compared the methods for voxel-wise mapping 

with in silico data for which the ground truth of a neural correlate was precisely 

known and specifically chosen to evaluate the challenges of lesion-deficit data. 

Second, we mapped and compared voxel-wise data and structural disconnection data 

for both methods in real-world data on phonemic verbal fluency and constructive 

ability. 

 

2 Methods 

2.1. Samples and lesion data  

In the present study, we used two data samples. The first sample included 169 stroke 

patients recruited for the CogStroke study at the University Hospital Bern 

(ClinicalTrials.gov Identifier: NCT05653141). All patients suffered a first-ever 

ischemic stroke in the anterior circulation. Detailed recruitment criteria and 

demographic and clinical data are reported in the supplementary. The second sample 

included 131 stroke patients from a publicly available sample within the LESYMAP 

software (Pustina et al., 2018). For the first study part, the in silico validation of 
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Bayes Factor mapping, we included both datasets to create a large sample of 300 

stroke patients. In the second study part, the real-world comparison of Bayes Factor 

mapping and statistical mapping with significance testing, we investigated a sub-

sample of 137 patients from the CogStroke study, which were non-aphasic and 

completed the neuropsychological assessment. All patients of the CogStroke study 

gave consent for scientific data use in accordance with the revised Declaration of 

Helsinki and the study was approved by the local ethic committee. 

Lesion maps, i.e., binary topographies of the structural lesion visible on 

clinical imaging, were generated as described previously (Umarova et al., 2011) or 

were already available for the public data set. The creation of each lesion map 

included i) the delineation of the lesioned area on MRI or CT, and ii) the 

normalisation of the clinical image and the delineated map to MNI space using 

procedures appropriate for diseased brains. We resliced all lesion maps to a 1x1x1 

mm³ space. In the in silico validation, we mirrored lesions in the right hemisphere 

along the sagittal midplane to the left hemisphere to create a unilateral lesion sample 

with a high lesion overlap and, thereby, potentially high statistical power with the 

maximum sample size. Overlap topographies of all 300 lesions are shown in Figure 2, 

and of the subsample with 137 lesions in Figure 3. To illustrate the flexibility of 

Bayesian inference, we performed an additional connectome-based analysis in the 

sample with 137 lesions and mapped the structural disconnection underlying deficits 

in constructive ability and phonemic verbal fluency. Detailed methods and results are 

reported in the supplementary. 

 

Figure 2 Lesion Overlaps Sample 1 near here, 2 columns 

Figure 3 Lesion Overlaps Sample 2 near here, 2 columns 

 

 

2.2. Lesion-deficit inference with frequentist tests and Bayes factor mapping  

As a frequentist reference method with null hypothesis significance testing (NHST), 

we chose voxel-wise statistical lesion-symptom mapping in NiiStat 

(https://www.nitrc.org/projects/niistat). NiiStat uses voxel-wise general linear models 

to investigate lesion-deficit associations. An advantage of general linear models is 

their flexibility. They can be used, for example, on lesion data with binary voxel 

information (lesioned/intact), where they are equivalent to lesion-symptom mapping 
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with t-tests (as in Bates et al., 2003), but they can as well be used on continuous 

voxel- or region-wise data. We controlled for multiple comparisons with a maximum 

statistic threshold at an α-level of 0.05, which provides an approximately exact 

family-wise error correction (Nichols and Holmes, 2002) and is often considered to be 

a gold standard for multiple comparison correction in brain mapping (Karnath et al., 

2018; Pustina et al., 2018). We set the number of permutations to 1000 in the in silico 

study part to save computational resources and to 5000 in the study part on real-world 

deficits. 

We implemented Bayesian lesion-deficit inference (BLDI) by Bayes factor 

(BF) mapping with the BayesFactor package v0.9.12 (Morey et al., 2018) in R (R 

Core Team, 2022). We chose two different approaches – BLDI either with a t-test or a 

general linear model. A t-test is the intuitive first choice to compare a continuous 

variable (the deficit) between two groups (patients with a lesion in a voxel vs. patients 

without a lesion in a voxel). However, as for the frequentist null hypothesis 

significance tests in NiiStat, general linear models could achieve the same results as t-

tests, but with more flexibility, allowing the inclusion of covariates and application in 

continuous imaging data. In each voxel, we computed i) a Bayesian two-sample t-test 

(Rouder et al., 2009) comparing the severity of a deficit between all patients with a 

lesion to the voxel vs. all patients without a lesion to the voxel, and ii) a general linear 

model of the binary lesion status on the deficit score with a mixture of g priors (Liang 

et al., 2008; Rouder and Morey, 2012) to test the model with the voxel’s lesion status 

against the intercept-only model. We then mapped the resulting voxel-wise BFs back 

into MNI brain space. We evaluated the results of BF mapping by the conventions set 

by Wagenmakers and colleagues (2018) and noted moderate evidence for h1 with a 

BF > 3, strong evidence with a BF > 10, and very strong evidence with a BF > 30. 

Vice versa, we noted moderate/strong/very strong evidence for h0 at a BF < 1/3 / BF 

< 1/10 / BF < 1/30. For simplification of visualisation and analysis, we omitted the 

‘extreme evidence’ category. 

In the in silico analyses, we only analysed voxels that were damaged in at least 

five patients. In the analyses of real-world neuropsychological deficits, we lowered 

this threshold to 4 to include a larger part of the left hemisphere, which was damaged 

less often and by smaller lesions. Such a threshold value is in principle unavoidable 

since it prevents invalid statistical tests (like a t-test of 50 vs. 0 or 49 vs. 1 patients) 

and situations with extremely little data variance. Therefore, it is commonly included 
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in lesion-deficit inference, while the exact threshold varies to some degree across the 

literature (see Sperber and Karnath, 2017) and is chosen to some degree arbitrarily. 

We subjected BLDI and the NHST method to the same threshold and, additionally, 

report the amount of excluded voxels in the results. The implications of using such a 

threshold in the context of BLDI and lesion-deficit inference in general are further 

elaborated on in the discussion. 

 

2.3. Validation of Bayesian lesion-deficit inference – In silico validation 

The first study part evaluated BF mapping for lesion-deficit inference in silico, i.e., by 

computational simulation of deficits under well-controlled and transparent conditions. 

We adapted the in silico concept from several previous studies that evaluated newly 

implemented lesion-deficit inference methods (e.g., Zhang et al., 2014; Pustina et al., 

2018). The basic principle is to arbitrarily define any brain area, such as one or 

multiple regions taken from a brain atlas, as the neural correlates of a deficit. In a 

sample of patients with normalised lesion maps, a deficit is then simulated based on 

the overlap of each patient’s lesion map and the deficit’s neural correlate. In other 

words, the severity of a simulated deficit is ‘caused’ by a patient’s damage to the 

neural correlate. As we have chosen the neural correlate ourselves, we have perfect 

knowledge about the organisation of the neural correlate which, in turn, allows us to 

evaluate the performance of brain mapping methods. Precise and valid lesion-deficit 

inference should identify the neural correlates of the simulated deficits and any 

systematic deviations hint at limitations of the method. Importantly, the simulated 

deficits still originate from real stroke data and are thereby affected by the problems 

of lesion-deficit inference, such as unequal groups and spatially inflated associations 

due to stroke anatomy. The detailed concept is illustrated in Figure 4 and was as 

follows: We used parcels from the Automatic Anatomical Labelling atlas (AAL; 

Tzourio-Mazoyer et al., 2002) to define the neural correlates of simulated deficits. In 

a pre-analysis, we identified all regions in the atlas that were damaged in at least 30 

out of 300 patients to ensure that simulated deficits contain at least some variance. 

These regions might have contained parts with a lower lesion coverage than 30 out of 

300 patients, which were ignored in our simulation. Forty-five regions fulfilled this 

criterion (see online materials for details). In each simulation, we picked one of these 

areas and assessed its overlap with the lesion map of each patient. The patient’s 

deficit was then simulated from this overlap based on a sigmoidal function (see 
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supplementary for details). This measured overlap was also subjected to random 

normal noise to make deficits more representative of actual deficits (see Pustina et al., 

2018). The standard deviation of the normal noise was equivalent to an overlap of 

10% of the region. We varied simulation parameters across three experimental 

conditions: A) In the first condition, we meant to investigate the impact of the sample 

size which is one of the most central factors to statistical power and the estimation of 

effects. We either picked the entire sample of 300 patients or randomly picked 

subsamples of 100 or 50 patients. B) In the second condition, we wanted to evaluate 

the impact of small lesion size on lesion-deficit inference. We applied a median split 

for lesion size in the total sample of 300 patients and randomly picked 100 patients 

from the 150 patients below the median, i.e. half of the patients with smaller lesions. 

C) In the third condition, we wanted to find out how lesion-deficit inference performs 

in the case of partial injury of a neural correlate. Therefore, we included a second 

brain region in the simulation. Each of the 45 brain regions was paired with another, 

non-adjacent of the 45 brain regions. The second region was chosen randomly and the 

region pair was the same across all experimental conditions. The deficit was then 

simulated based on the brain region that overlapped the most with a patient’s lesion 

map. Hence, damage to only one of the two regions sufficed to cause a deficit, which 

corresponded to the previously described partial-injury problem (Rorden et al., 2009; 

Sperber et al., 2019). The second region was then ignored in the analysis, i.e. hits and 

misses were only registered for the first, but not the second region. Again, we 

randomly picked 100 patients out of the total sample for this condition. In summary, 

we performed 3 x 45 simulations in condition A (45 each for three sample sizes with 

n=300, n=100 and n=50), 45 simulations in condition B, and 45 simulations in 

condition C. The sub-samples of 50 or 100 patients were the same across the different 

methods (i.e. BLDI with general linear model versus BLDI with t-test versus VLSM 

with NHST), but they were randomly re-sampled for each simulation (i.e. between 

Simulation 1 with region 1, Simulation 2 with region 2, etc.). 

The simulated deficits were then mapped either by BF mapping with Bayesian 

t-tests, Bayes factor mapping with general linear models, or a frequentist voxel-wise 

statistical mapping with general linear models and maximum statistic permutation 

correction. We then compared each resulting topography with the brain region that 

was used in the simulation, i.e. the ground truth for the deficit’s neural correlate. We 

performed statistical analyses in R statistics and report the results of null hypothesis 
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significance tests at α = 0.05 with Bonferroni correction and the Bayesian counterpart 

in the R BayesFactor package.  

 

Figure 4 study concept near here, 2 columns 

 

2.4. Validation of Bayesian lesion-deficit inference – Real-world applications 

The second study part compared statistical lesion mapping with NHST and BLDI in 

actual post-stroke cognitive deficits. We neuropsychologically examined a sample of 

137 patients with first-ever ischemic stroke within 10 days of stroke onset in the 

patient’s native language. We assessed constructive ability as included in the CERAD 

battery (Morris et al., 1989) and phonemic verbal fluency as included in the 

Regensburg verbal fluency test (Aschenbrenner et al., 2000). For constructive ability, 

patients were instructed to copy four different line drawings of increasing complexity 

(a circle, a diamond, two intersecting rectangles, and a cube). Their performance was 

rated on an 11-point scale according to 2-4 pre-defined evaluation criteria for each 

shape. Phonemic verbal fluency was assessed by asking the patient to generate as 

many words with a specific starting letter as possible within 60 seconds. Out of a 

larger neuropsychological test battery, we chose these two tests for the different 

degrees of clinical variance they provided, which should result in different effect 

sizes. We converted the measures into Z-scores according to healthy norm data 

corrected for age, sex, and education. Patients displayed severe deficits in constructive 

ability, with an average Z-value in comparison to norm data of Z = -1.18. Deficits in 

verbal fluency were less pronounced, with an average value of Z = -0.39. The results, 

including the extent and peak of statistical maps, verified our assumption on the 

different degrees of clinical variance. 

We mapped neural correlates of both deficits after Z-value standardisation 

either with frequentist voxel-wise statistical mapping or with Bayes factor mapping 

by Bayesian general linear models. The evaluation focussed on the correspondence of 

results in favour of hypothesis h1 and the extent of areas or disconnections for which 

BLDI can provide new insights by gathering evidence for h0. 
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3 Results 

3.1. In silico validation 

The main results of the in silico study are shown in Figure 5, with additional details 

reported in supplementary tables 1-3. Example results comparing frequentist voxel-

based lesion-symptom mapping (VLSM) and Bayesian lesion-deficit inference 

(BLDI) with Bayesian general linear models are shown in Figure 6. We referenced all 

outcome variables, such as false positives, true positives, etc., to the total number of 

positives/negatives in per cent to make them comparable between simulations with 

different numbers of positives and negatives. We restricted statistical analyses to 

possible main effects that were of relevance to our conclusions. Repeated frequentist 

tests across all conditions were corrected for multiple comparisons by Bonferroni 

correction at an overall α = 0.05 and corrected p-values are reported. 

A first non-statistical, numerical investigation of the results of VLSM and 

BLDI suggested that our experimental conditions worked as intended. With larger 

sample sizes, more areas of the brain were tested, and more true and false evidence 

for h1 was created. With only small lesions in condition B, the tested areas as well as 

evidence for h1 were smaller than with unselected lesions. With a second simulation 

region in condition C, we found slightly less true evidence for h1. 

We first statistically investigated i) the proportion of true positive results in 

favour of h1, i.e. voxels with correct evidence for h1 among all voxels for which h1 

was true and ii) the proportion of false positive results in favour of h1, i.e. voxels with 

false evidence for h1 among all voxels for which h0 was true. We used paired t-tests 

to compare frequentist VLSM to BLDI with t-tests, VLSM with BLDI with general 

linear models, and the two BLDI methods. Across all conditions, BLDI with t-tests 

found more true positives (all p < 0.0001; all BFs > 1170) and more false positives 

(all p < 0.0001; all BFs > 1.1*10
7
) than VLSM. Likewise, BLDI with GLMs found 

more true positives (all p < 0.0001; all BFs > 1100) and more false positives (all p < 

0.0001; all BFs > 1.0*10
7
) than VLSM. The comparison of the two BLDI methods 

was inconclusive about simulation condition A with 300 subjects, for which no 

evidence for a difference in true positives could be found (t(44) = 2.50; p = 0.080; BF 

= 2.61). For all other conditions, differences were present (all p < 0.05; all BFs > 13) 

with more true positive results for t-tests. However, the average differences between 

the two BDLI methods were negligible, ranging from only 0.03% to 0.35% across 

conditions. The proportion of false positives was always larger for BLDI with general 
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linear models than with t-tests (all p < 0.0001; all BFs > 9.6*10
8
), but, again, 

differences were only small and, across conditions, on average between 0.10% to 

1.90%. 

We compared the proportion of voxels with correct evidence for h0 across all 

voxels for which h0 was true (i.e. negatives) between BLDI with t-tests and BLDI 

with general linear models. Paired t-tests indicated that BLDI with general linear 

models was superior across all five conditions (all p < 0.0001; all BFs > 3.5*10
11

), 

with about 10-20% more correctly classified voxels across all negatives. Voxels 

within the simulations regions (i.e. positives) for which Bayesian inference falsely 

indicated evidence for h0 were rare. While such voxels were occasionally found for 

BLDI with general linear models, they were almost absent for BLDI with t-tests, or 

even entirely absent in simulation condition A with a sample size of 50 patients. 

Because there was little to no variance for this variable in BLDI with t-tests, we 

refrained from any statistical analysis. 

In summary, BLDI methods appeared to be less conservative than VLSM with 

permutation correction, resulting in more true positives but also more false positives. 

While BLDI with general linear models was slightly less conservative than BLDI with 

t-tests, differences were negligibly small. However, BLDI with general linear models 

was considerably better at finding true evidence for h0. 

 

Figure 5 Results Simulation near here, 2 columns 

Figure 6 Results Examples near here, 2 columns 

 

Some aspects of the results deserve a special mention here. First, BFs could 

reach extremely high values. In the condition with the largest sample size, a few 

simulations could reach maximum BFs of more than 10
100

. On the other hand, the 

smallest BFs were ~0.13, i.e. no BF ever indicated more than moderate evidence for 

h0. Given this asymmetry, we performed additional tests on random data to 

investigate how small BFs can become with our given sample sizes. We report these 

tests in the supplementary. In short, even when h0 was true per definition, BFs 

indicated only moderate evidence for h0 at best. The ability to collect evidence for h0 

was worse with small samples and uneven groups, and, with optimal conditions, i.e. 

equal groups and a sample size of 300, the minimum BFs were ~0.13 and almost the 

same as in the simulations. 
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Second, the performance of all methods, both with Bayesian and null 

hypothesis significance testing, varied greatly across the 45 simulations (see 

supplementary tables 1-3). For example, while a method may be completely immune 

to false alarms in one simulation (i.e. for one specific simulation region), it may suffer 

massively in the next. 

Third, the performance of BLDI with general linear models stood out with a 

remarkably good performance in simulation condition B which included only small 

lesions. The overall area of voxels that was tested was comparatively small, which is 

not surprising given the small number of lesions affecting each voxel (see Figure 1C). 

However, for voxels that were included in the analysis, Bayesian inference could 

convincingly differentiate between h0 and h1, often with only very thin borders of 

voxels for which no evidence was found (see Figure 6 for examples). 

Fourth, aside from the analyses with the largest sample size of 300 patients, all 

analyses mapped only parts of the left brain hemisphere. Large areas, often between 

one- to two-thirds of the left hemisphere, were lesioned in less than five patients and 

were thus never statistically tested. Hence, besides areas for which the data provided 

no evidence in favour of any hypothesis in BLDI (i.e. voxels with a 1/3 < BF < 3), 

there was also no evidence in other areas because these areas simply could not be 

tested due to little to no lesions in this areas. 

  

3.2. In silico validation - posthoc re-analysis with lesion size control 

Bayes factor mapping was able to gather evidence for h0 in some areas of the brain – 

a major advantage over VLSM which does not allow any conclusions of this kind. 

However, compared to VLSM with permutation correction, we found a pronounced 

overshoot of evidence for h1 with many false positives, which would limit the use of 

BLDI in deficits with large effect sizes or large samples. Importantly, BLDI also 

gathered the most correct evidence for h0 when being used in large samples. As 

explained in the introduction, an overshoot of lesion-deficit associations is a general 

problem in lesion-deficit inference, including VLSM with null hypothesis significance 

testing. This problem affects VLSM to different degrees across multiple comparison 

correction strategies (Sperber and Karnath, 2017; Mirman et al., 2018; Pustina et al., 

2018), and the permutation approach appears to provide very decent protection 

against false positives (see also Pustina et al., 2018). Lesion size control has been 

suggested as a possible counter-strategy for analyses with a pronounced overshoot of 
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associations (Sperber, 2022). With a posthoc analysis, we aimed to evaluate if lesion 

size control can also improve the performance of BLDI in such situations. We 

reanalysed the data of simulation condition A with 100 patients with BLDI including 

lesion size control. We again used general linear models and now compared, in each 

voxel, a baseline model including the intercept and lesion size to a model that 

additionally included the binary voxel status. In other words, we tested if the voxel 

status together with lesion size significantly better explains the deficit than only lesion 

size. 

The results of the post hoc analyses are shown in Figure 7, and detailed results 

are reported in supplementary table 4. The rate of false evidence for h1 in BLDI was 

strongly improved by lesion size control (mean (uncontrolled) = 19.5%; mean 

(controlled) = 11.2%; t(44) = 5.03; p < 0.0001; BF = 2198). However, visual 

inspection of example maps (Figure 7) revealed inconsistencies in the performance of 

lesion size control across the brain. As intended with lesion size control, the areas of 

evidence for h1 often had smaller peak values and less overshoot of associations 

beyond the simulation region. However, at the same time, new areas of evidence for 

h1 appeared in other areas, and the pattern of evidence was altered across the entire 

brain. This observation was in line with a numerical decrease of correct evidence for 

h0 after lesion size control (mean (uncontrolled) = 27.6%; mean (controlled) = 

23.8%) which, however, was not significant (t(44) = 1.25; p = 0.22; BF = 0.336). In 

summary, the voxel-wise consideration of lesion size appeared to combine wanted 

and unwanted effects that, overall, did hardly improve the quality of the brain maps. 

Especially the modifications of the brain map in areas that, without lesion size 

control, indicated no evidence or evidence for h0, were detrimental to the value of 

BLDI. 

Considering these limitations of standard lesion size control, we introduced a 

modified approach termed adaptive lesion size control. This algorithm applied a 

voxel-wise control for lesion size only in voxels with a Bayes factor > 3 without 

control, i.e. voxels for which evidence for h1 was found. In voxels for which the 

uncontrolled analyses did not find evidence in favour of h1, lesion size control was 

not applied. With this modification of lesion size control, BLDI produced less false 

evidence for h1 (mean = 6.5%) than uncontrolled BLDI (t(44) = 7.07; p < 0.0001; BF 

= 1.4*10
7
), but also less than BLDI with standard lesion size control (t(44) = 9.16; p < 

0.0001; BF = 9.8*10
8
). However, it still created more false evidence for h1 than 
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VLSM with permutation correction (t(44) = 8.21; p < 0.0001; BF = 5.2*10
7
). Yet, we 

found adaptive lesion size control in BLDI to also improve the collection of correct 

evidence in favour of h0 (mean = 35.1%) compared to uncontrolled BLDI (mean = 

27.6%; t(44) = 5.53; p < 0.0001; BF = 1.0*10
4
). In summary, adaptive lesion size 

control improved BLDI both by a reduction of false positive evidence for h1 and an 

increase of true positive evidence for h0. 

 

Figure 7 Results ls control near here, 2 columns 

 

3.3. Real-world application of Bayesian lesion-deficit inference 

In the analysis of real-world deficits, we tested features with lesion damage in at least 

4 patients, which were 214586 voxels. We investigated two deficits for which we 

assumed varying clinical variance. We expected constructive ability to have high 

clinical variance and therefore a rather high statistical power, and verbal fluency to 

have low clinical variance and little statistical power. We referenced results to cortical 

brain areas with the Automatic Anatomical Labelling atlas (Tzourio-Mazoyer et al., 

2002). 

The frequentist mapping of verbal fluency found only very minimal and 

spatially restricted results. The 224 voxels (equivalent to a volume of 0.224cm³) with 

significant lesion-deficit associations (Figure 8A) were spread across three clusters in 

different right hemispheric brain areas, with the largest cluster in the rolandic 

operculum. BLDI implicated ~21,400 voxels with at least moderate evidence for h1 

and ~57,000 voxels with evidence for h0 (Figure 8B). Voxels with evidence for h1 

peaked in the rolandic operculum, and some clusters were found in the putamen and 

superior frontal regions. While most neuropsychological studies on language deficits 

focussed on the left hemisphere, some also investigated the right hemisphere with 

heterogeneous results (e.g. Stuss et al., 1998; Riello et al., 2021; Biesbroeck et al., 

2021). While some did not implicate right hemispheric correlates at all (Riello et al., 

2021; Biesbroeck et al., 2021), the present results in superior frontal areas are in line 

with the findings by Stuss and colleagues. Interestingly, BLDI could provide evidence 

that the relevance of inferior temporal regions (Riello et al., 2021; Biesbroeck et al., 

2021) is not mirrored in the right hemisphere. 
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Figure 8 Results verbal fluency near here, 2 columns 

 

The frequentist mapping of constructive ability implicated ~29,500 voxels 

with significant lesion-deficit associations (Figure 9A). These were spread across 

several grey matter regions including the superior temporal gyrus, rolandic 

operculum, post- and precentral gyrus, insula, and supramarginal gyrus. A putative 

pronounced overshoot of associations was found by BLDI (Figure 9B), with a peak 

BF of ~210,000 and ~150,000 voxels with evidence in favour of h1, and only ~9,000 

voxels with evidence for h0. While the voxel-wise map did not allow any precise 

interpretation by assessing Bayes factors >3, the nuances within the Bayes factor map, 

i.e. a differentiation between moderate, strong, or at least very strong evidence, 

highlighted several larger clusters with very strong evidence in the areas where the 

frequentist analysis found significant results. Given the assumed strong overshoot of 

lesion-deficit associations, we re-analysed the voxel-wise data by BLDI with adaptive 

lesion size control. The main cluster of the ~3,900 voxels with evidence for h1 was 

located in inferior temporal regions and the temporal pole. In the areas implicated in 

the frequentist analysis, only a few scattered tiny clusters remained.  

 

Figure 9 Results construction ability near here, 2 columns 

 

In summary, the analysis of real-world deficits supported the findings of the in silico 

study. BLDI was found to be a statistically much more liberal method than frequentist 

inference. But, still, the foci of the results were qualitatively very similar. Further, the 

performance of both methods varied across analyses. BLDI appeared to be much 

more informative when mapping a deficit with small clinical variance (verbal 

fluency), and frequentist inference when mapping a deficit with large clinical variance 

and strong effect size (constructive ability). 

 

3.4. Computational performance of Bayes factor mapping 

The Bayesian analyses that we used are computationally far more demanding than 

their non-Bayesian counterparts. The computation time for a single Bayes factor map 

surpassed the time required for frequentist mapping with null hypothesis significance 

testing, even though the latter repeated the entire analyse 1000 times for the 

permutation-derived multiple comparison correction. Still, with an average modern 
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home computer with an AMD Ryzen 5 3600 with 3.59GHz, the computation time for 

a single Bayes factor map was manageable. In the in silico validation, about 750.000 

voxels were tested in our uni-hemispheric stroke sample at an imaging resolution of 

1x1x1 mm³. Depending on the sample size, this required about 0.5-3 hours of non-

parallelised computation time. The inclusion of covariates, such as lesion size, 

increased this time as multiple models had to be computed for each voxel. 

 

4 Discussion 

We implemented different approaches to Bayesian lesion-deficit inference (BLDI) by 

Bayes factor mapping and compared them to the most common frequentist lesion-

deficit approach in an in silico experiment and the mapping of two real-world deficits, 

verbal fluency and constructive ability. The performance of BLDI, as well as the 

performance of frequentist lesion-deficit inference, varied across situations. Our 

results suggest that BLDI is a valuable addition to the method portfolio of lesion-

deficit inference with some specific and exclusive advantages, such as the ability to 

collect evidence for the null hypothesis. However, it is not superior to established 

frequentist approaches in all respects. 

 

4.1. The advantages of going Bayesian in lesion-deficit inference 

The first and likely foremost advantage of BLDI is its ability to gather evidence for 

the null hypothesis h0. While the ability of BLDI to find such evidence varies across 

several parameters, large areas with Bayes factors in favour of h0 were found in many 

analyses in the current study. This leads to new insights not provided by any other 

approach for lesion-deficit inference and which could significantly provide critical 

evidence for neuroanatomical theories. Consider, for example, the discussion of the 

anatomy of spatial neglect that went on for a long time. What shall we conclude from 

studies that locate the neural correlates of spatial neglect in the parietal cortex (Mort 

et al., 2003), the temporal cortex (Karnath et al., 2004), or the frontal cortex 

(Commiteri et al., 2007)? From a frequentist statistical perspective, these results are 

not mutually exclusive. This is a situation where BLDI could shine and clarify the 

conclusions. Are we to conclude that the neural correlate of spatial neglect is the 

parietal cortex but not the temporal cortex, or is it the parietal cortex while the sample 

provides no information about a possible role of the temporal cortex? With the help of 

Bayesian statistics, such questions could have been clarified and today’s unifying 

                  



20 

 

brain-network theories for spatial neglect might have emerged much earlier. 

Besides the evidence for h0, BLDI also provides transparent information on 

the lack of evidence. While the value of this information for creating and modifying 

scientific theories is made clear by the previous example of spatial neglect, there is 

another benefit. The usual method pipeline using frequentist lesion-deficit inference 

provides no information on how well a sample is suited to map a cognitive function 

onto the brain. Post hoc mapping of statistical power in voxel-based lesion-symptom 

mapping is in principle possible (Kimberg et al., 2007). However, it requires an 

additional topographical analysis that is only provided by some analysis tools and 

therefore a rare sight in the literature. On the other hand, BLDI provides such 

information right away within the Bayes factor map. With large areas of Bayes factors 

close to 1, i.e. Bayes factors that do not provide evidence for either h1 or h0, it 

becomes obvious that a study lacked statistical power. Further, BLDI can raise 

awareness of the blind spots of typical lesion-deficit studies. For example, stroke 

lesions in medial brain areas are rare. Hence, previous stroke studies might have 

missed finding evidence for the potential contribution of medial areas to spatial 

neglect (Herbet and Duffaut, 2022). BLDI provides topographical information on this 

lack of evidence and, thereby, does not only inform us about a general lack of 

statistical power but also about a lack of statistical power in specific regions, which 

might be typical for specific lesion aetiologies. 

The in silico study part suggested a surprisingly good performance of BLDI in 

samples with small lesions. Commonly, the size of lesions in lesion-deficit inference 

comes with a trade-off: small lesions usually provide little overlap (see Figure 1C) 

and therefore lead to largely uneven groups with low statistical power (compare to 

Kimberg et al., 2007). On the other hand, small lesions are less likely to damage 

multiple areas in unison and therefore counter the association problem (see the 

introduction and Figure 1A). Hence, some authors even suggested primarily relying 

on small lesions in lesion-deficit inference (Price et al., 2017). As BLDI transparently 

highlights potential limitations of statistical power and showed such a good 

performance in our in silico study, it appears to be a good first choice in data sets with 

small lesions. 

Contrary to p-values, Bayes factors provide a meaningful continuous measure 

for the strength of evidence. This allows a qualitative interpretation of nuances within 

a statistical brain map to some degree. Using our analysis of constructive ability as an 
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example (Figure 9), the peaks of the (uncontrolled) Bayes factor map could have been 

interpreted as the most likely centres of potential neural correlates or, if transparently 

reported and justified with the association problem, an interpretation could focus on 

areas with larger Bayes factors only. Likewise, nuances in the statistical maps can be 

used to compare the degree of evidence between brain areas or to evaluate statistical 

tendencies and trends.   

 

4.2. The peculiarities and limitations of Bayesian lesion-deficit inference 

In general, BLDI appears to be a liberal statistical method in the collection of 

evidence for the alternative hypothesis h1. In all conditions, BLDI created on average 

more false-positive evidence for h1 but also more true evidence for h1 than the 

frequentist counterpart with family-wise error correction. In hindsight, this is no 

surprise. The conventions for the interpretation of BFs are popular in, e.g., 

psychology or economics, where studies might aim to explore more subtle effects. In 

neuropsychology, effect sizes can be massively larger. For example, imagine the 

effect size in object naming between patients without any aphasic disturbances – 

which will be perfect most of the time – and patients with a naming deficit. This is not 

per se a limitation of BLDI, but an aspect that users of BLDI should be aware of. The 

in silico study found high variance in the performance of BLDI (and frequentist 

lesion-deficit inference as well) across simulations. In situations with only weak 

lesion-deficit associations, a liberal statistical test might be at an advantage, as seen in 

the mapping of verbal fluency. With stronger lesion-deficit associations, a liberal 

statistical test might overestimate the extent of neural correlates. Hence, it appears 

that BLDI suffers more from the association problem (as described in the introduction 

and Figure 1A) than frequentist inference with family-wise error correction. This 

interpretation is further supported by the results of simulation condition B, in which 

only small lesions were included in the sample. Small lesions are less likely to 

damage many brain areas in unison, and therefore they minimise the association 

problem. In this setting with only a minor impact of the association problem, BLDI 

provided surprisingly good results both in the collection of evidence for h1 and h0. Of 

note, the overshoot of evidence for h1 beyond the neural correlate of a function is no 

false positive evidence in the statistical sense. These associations truly exist in the 

data. Thus, it appears that the family-wise correction for multiple comparisons in 

frequentist statistics is very conservative, which can be advantageous in lesion-deficit 
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inference when the association problem strongly generates causally spurious 

associations.  

Several points are debated as potential general limitations of Bayesian null 

hypothesis testing (Tendeiro and Kiers, 2019; van Ravenzwaaij and Wagenmakers, 

2022). Among those points, one became highly apparent in our study: the collection 

of evidence for h0 and h1 was asymmetric. While the evidence for h1 accumulated 

quickly into extreme ranges, evidence for h0 was almost always moderate at best. As 

seen in the supplementary analyses, sample and group sizes imposed a limit on how 

small a Bayes factor in favour of h0 can become. With the sample sizes common to 

lesion-deficit inference, it is unlikely to obtain strong evidence for h0. Given that 

frequentist statistics were never even able to provide any evidence for h0 at all, we 

agree with van Ravenzwaaij and Wagenmakers (2022) that the asymmetry in the 

collection of evidence does not constitute a limitation of Bayesian inference. 

However, one should be aware that the collection of evidence for h0 has a hard limit 

imposed by sample size. 

The Bayesian approach to lesion-deficit inference that we presented in this 

work follows the framework of statistical parametric mapping (Friston et al., 1994) 

with mass-univariate testing. In mass-univariate testing, every single feature of our 

independent data – such as the status of each voxel or structural connection in the 

brain – is independently tested, which can result in the execution of many thousand 

statistical tests. However, the independent statistical assessment of brain features does 

not represent how the brain is organised by interacting brain regions within networks 

(Mah et al., 2014; Zhang et al., 2014; Toba et al., 2020). Multivariate, high-

dimensional inference methods were proposed as an alternative that is better suited to 

map the brain (Mah et al., 2014; Zhang et al., 2014; Pustina et al., 2018). It is still 

debated to what degree multivariate inference solves the limitations of mass-

univariate testing (Sperber, 2020; Ivanova et al., 2021). In any case, it appears that 

multivariate inference is superior in many situations, which include the mapping of 

deficits that originate from lesions to multiple regions or different areas of large-scale 

networks (Zhang et al., 2014; Pustina et al., 2018; Ivanova et al., 2021). Hence, 

multivariate lesion-deficit inference has advantages over BLDI by mass-univariate 

Bayes factor mapping. However, the advantages of BLDI are specific to this method 

and, to our knowledge, are not provided by any current multivariate inference method. 

Therefore, we believe that the different advantages of the two approaches should be 
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weighed on a situation-by-situation basis and that it can even be a reasonable choice 

to complement the advantages of both approaches within a multiverse analysis.  

 

4.3. Practical suggestions for the application of Bayesian lesion-deficit inference 

A very important conclusion from the current study should be that no perfect method 

for lesion-deficit inference exists. The performance of all methods varied across 

situations and conditions and, in general, both frequentist and Bayesian methods were 

affected by the spatial distribution of lesions across the brain and the varying 

coverage of lesions across regions. The current study, as well as several previous 

studies on the validity of lesion-deficit inference methods (Zhang et al., 2014; Pustina 

et al., 2018; Ivanova et al., 2021; Sperber, 2022) highlight that method performance 

varies depending on the situation and data parameters, and that for some data sets, 

each method has difficulty capturing the neural correlates of a deficit. Research 

questions and a priori assumptions on the organisation of a neural correlate factor into 

the choice of a method. But still, many data parameters are difficult to predict, such as 

lesion distribution or variance of a deficit, and could justify transparently reported 

post hoc changes in a methodological pipeline. 

Bayesian hypothesis testing introduces a new category of non-evidence 

compared to frequentist lesion-deficit inference. Bayes factors around 1 indicate that 

the data do not provide considerable evidence for any of the hypotheses h1 and h0. 

Clandestinely, many more brain features exist in lesion-deficit inference for which 

also no evidence is present, and they even already existed in the frequentist approach. 

As shown in Figure 2B and Figure 3B, only in parts of the brain sufficient variance 

exists in the imaging variable to perform a meaningful statistical test at all. This terra 

incognita of lesion-deficit inference and the ‘no evidence’ category of Bayesian 

hypothesis testing are conceptually very similar. Both could be considered in the 

generation and evaluation of theories on brain anatomy in the same way. An intuitive 

strategy to transparently differentiate both categories in data visualisation is based on 

the fact that Bayes factors are always larger than 0, and, as in the current study, zeros 

within the statistical map inform the reader about any features that were not tested. 

Our study suggests that BLDI is well-suited for lesion data samples with low 

statistical power or small lesions. Both situations are problematic in frequentist 

approaches. When statistical power is low, the first advantage of BLDI is that it is a 

relatively liberal statistical approach in the collection of evidence for h1. The second 
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advantage is that, even if the first advantage should not help in a given situation, 

BLDI is unprecedently transparent with the statistical power limitation. When lesions 

are small, we found that, within the few features that can be meaningfully tested, 

BLDI was very precise in delineating the border of a neural correlate often with good 

confidence to decide for either h1 or h0. On the other hand, BLDI can be too liberal in 

the detection of evidence for h1 when statistical power is high. Hence, changes to 

conventions for the interpretation of BFs could be considered. The interpretation of 

BFs > 3 as at least moderate evidence (Wagenmakers et al., 2011; 2018) and similar 

conventions are not universal, and, in general, existing conventions were not 

generated with the possibly huge effects of neuropsychology in mind. With 

knowledge about the data distribution of a specific neuropsychological data set in 

mind, one might decide on different conventions, e.g., to consider only evidence with 

BFs larger than 10, 30, or 100, corresponding to strong, very strong, or extreme 

evidence in the conventions suggested by Wagenmakers and colleagues (2018). More 

generally, the comparability of Bayesian and frequentist statistics not only in lesion-

deficit inference but in all kinds of imaging analyses remains a challenge. Existing 

frequentist analysis designs offer established conventions for statistical data 

interpretation, including common α-levels and multiple comparison correction 

strategies, but a straightforward conversion into Bayes factors is not possible. Hence, 

future studies are required to optimise the adaption of statistical imaging analysis with 

Bayesian statistics while maintaining comparability with previous works. 

 

4.3.1. Lesion size control 

The flexibility of Bayesian general linear models allows for the inclusion of 

covariates such as lesion size. Lesion size could potentially counteract the association 

problem (Sperber and Karnath, 2017) which, as the present study suggests, is a greater 

burden for BLDI than for frequentist approaches. However, lesion size is no true 

confound and, therefore, lesion size control is not generally valid and guaranteed to 

improve the precision of results (Sperber, 2022; see also Wysocki et al., 2022 for 

more general information on statistical control). Accordingly, the impact of standard 

lesion size control provided conflicting results. To improve its impact, we modified 

the standard approach for lesion size control. Adaptive lesion size control that only 

controlled regions for which evidence for h1 existed in the first place outperformed 

standard lesion size control, and both the ability of BLDI to collect evidence for h1 
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and h0 were improved over uncontrolled BLDI. However, the performance of this 

lesion size control still varied and, in the mapping of constructive ability, it provided 

little additional insights. As previously explained by Sperber (2022), we believe a 

flexible and transparent approach to be most suited. Given the many unpredictable 

parameters in lesion studies, it is difficult to estimate a priori the strength of lesion-

deficit associations. Therefore, we believe that it can well be justified to decide on the 

application of lesion size control post hoc, whenever topographical results appear to 

suffer from an overshoot of associations. Controlled results should be interpreted with 

caution though, as the control for lesion size could overshadow true lesion-deficit 

associations. This could well have been the case in our study when mapping 

constructive ability, where large areas were controlled away. Lesion size control 

should be most viable in samples with high statistical power, i.e. samples with large 

effect or sample sizes. Although we examined the effects of lesion size control only 

for the baseline sample of 100 patients to save computational resources, we assume 

that its effects would have been even more beneficial for the largest sample size (as in 

Sperber, 2022). 

 

4.4. Generalisation of Bayes factor mapping to other brain imaging data and test 

designs 

The wide success of univariate statistical parametric mapping is likely rooted in its 

simplicity and flexibility. It can provide an analysis framework for almost any kind of 

brain mapping in diseased brains, with the potential to include different statistical 

tests suited for all kinds of data and designs. Bayesian inference by Bayes factor 

mapping follows the same conceptual framework and thereby adapts these advantages 

of statistical parametric mapping, as well as some of its limitations as discussed in the 

previous section. In the current study, we utilised Bayesian t-tests and general linear 

models, which are both suited for the mapping of continuous variables. Analysis of 

non-continuous variables, such as binary or ordinal measures of deficits, require, e.g., 

logistic regression, ordinal regression, or contingency table tests. The Bayesian 

variants of these tests are available for example in the R BayesFactor package (Morey 

et al., 2018) or the R BFpack (Mulder et al., 2021) and can be applied in the same way 

as Bayesian t-tests. These packages also include more complex multivariate statistical 

models that allow the consideration of secondary variables, for example within 

multiple regression, MANOVAs, and general linear models. They open up the 
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opportunity to account for confounding cognitive or behavioural deficits, lesion size, 

or other clinical variables. 

Bayes factor mapping is not limited to voxel-wise lesion data. The design with 

Bayesian general linear models can be transferred, for example, to topographical 

lesion-network maps (as in Boes et al., 2015), topographical white matter alterations 

(as in Umarova et al., 2014) or structural disconnection maps (as in Foulon et al., 

2018, Griffis et al., 2021). Of course, Bayes factor mapping is not limited to 

topographic data. In the supplementary analyses, we applied it to parcel-to-parcel 

disconnection matrices and, likewise, it can be used with any other imaging feature or 

clinical variable. The few previous studies that used lesion-deficit inference with 

Bayes factors are good examples of the method’s flexibility. For example, they 

investigated the neural correlates of two different apraxia measures with a Bayesian 

analysis of variance (Achilles et al., 2017) and the association of voxel-wise 

disconnection severity with post-stroke fatigue (Ulrichsen et al., 2021). 

 

4.5. Limitations 

A major limitation of in silico studies in lesion mapping is the limited external 

validity. In silico studies can highlight general aspects, limitations, and tendencies in 

lesion-deficit inference, but they will be unable to exactly represent all the complex 

parameters of clinical data, such as the impact of interindividual differences, 

secondary variables and co-morbidity, or imperfect spatial normalisation. We 

included random noise in the in silico experiment to make the data more 

representative of such parameters, but, still, lesion-deficit associations were 

sometimes extremely high, and higher than the associations found in real-world data. 

Hence, the in silico study experiment might have been over-confident in the effect 

sizes in neuropsychological data, and, therefore, the impact of the association problem 

on BLDI might have been overestimated. In previous works of ourselves and others, 

we often encountered data for which frequentist VLSM found no significant voxels, 

even in sample sizes over 100 patients. Therefore, the limitation that BLDI is too 

liberal might be less of a burden in real samples, as we have also seen in the mapping 

of verbal fluency in the present study. Further, the degree to which our findings can 

be transferred to other stroke samples will likely vary depending on factors such as 

recruitment parameters, acute treatment, or study design. Likewise, we advise caution 
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to not draw any conclusions on the general adequacy of a method for certain brain 

regions based on our findings, as our results may also depend on sampling effects. 

 

Data availability and BLDI Software 

The study code and extended results including the statistical maps are publicly 

available at data.mendeley.com/datasets/5ztswgzhvy/2. 

We published an R-based toolkit for Bayesian lesion-deficit inference by 

Bayes factor mapping in lesion and disconnection data at 

github.com/ChrisSperber/BLDI and data.mendeley.com/datasets/k6dcbkjdcx/1. 
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Figure 1: Problems in lesion-deficit inference(A) Illustration of the association 

problem in lesion-deficit inference. For this example, assume that a lesion to the STG 

is the sole cause of a cognitive deficit. Due to the typical anatomy of stroke, the lesion 

load to the STG is associated with the lesion load in many other regions, such as the 

insula, the inferior parietal lobule, and the frontal inferior operculum. Therefore, the 

lesion load in these regions might as well be associated with the deficit. These 

associations are no direct causal relationships. However, common statistical tests are 

unable to differentiate between direct causal relationships and associations. The 

shown correlations were computed in the present sample of 300 patients. (B) 

Percentage of patients with a lesion in a voxel in a sample of 300 stroke patients. The 

statistical power of voxel-based lesion-symptom mapping is highest in voxels with 

equal groups, i.e., at a percentage of 50%, when 150 patients have a lesion and 150 

have no lesion. (C) Percentage of patients with a lesion in a voxel in a sample of 150 

stroke patients with small lesions. The sample was from the 300 patients included in 

Figure 1B after a median split of lesion size, i.e., only the 150 patients with the 

smallest lesions were included. (D) Illustration of the statistical limitations resulting 

from the partial injury of a neural correlate. See also Sperber et al. (2019) for a more 

detailed illustration of this issue. The data underlying Figures 1A-C are the 300 lesion 

maps that we used in the in silico study part. 

 

Figure 2: Lesion topography in the sample of 300 patients(A) Lesion overlap 

topography of all 300 patients included in the in silico study part. (B) The same lesion 

overlap thresholded for voxels lesioned in at least five patients, i.e. voxels included in 

the lesion-deficit analyses in the condition with the largest sample of 300 patients. 
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Even with this comparatively very large sample, some medial areas in the left 

hemisphere were not analysed at all. 

 

Figure 3: Lesion topography in the sample of 137 patients 

(A) Lesion overlap topography of all 137 patients included in the study part on real-

world deficits. The numbers above the slices indicate the z-coordinate in MNI space. 

(B) The same lesion overlap thresholded for voxels lesioned in at least four patients, 

i.e. voxels included in the lesion-deficit analyses. 

 

Figure 4: Concept of the in silico study part 

 

Figure 5: Results of the in silico study part 

Average performance of frequentist voxel-based lesion-symptom mapping (VLSM) 

and Bayesian lesion-deficit inference (BLDI) with either Bayesian t-tests or general 

linear models across all simulation conditions with 45 simulation runs each. The 

underlying data were transformed into values representing the proportion of relevant 

voxels in % across all possible positive voxels (i.e. the simulation region) respectively 

all negative voxels (i.e. all voxels outside of the simulation region that were damaged 

at least in five patients in the total sample as shown in Figure 2B). Note that the bars 

on the right represent far more voxels than the left ones. Condition A compared 

different sample sizes (50-100-300), condition B looked at small lesions only with a 

sample of 100 patients, and condition C included a second simulation region also with 

100 patients. Detailed results including standard deviation and range are reported in 

supplementary tables 1-3. 

 

Figure 6: Results of the in silico study part – example maps 

Results of the in silico study for three simulations comparing voxel-based lesion-

symptom mapping (VLSM) with null hypothesis significance testing and Bayesian 

lesion-deficit inference (BLDI) by Bayesian generals linear models (GLMs). The 

columns (A50 to C100) represent the different simulation conditions. The Bayes 

factors were binned into categories for clarity of visualisation; in practice, this is not 

advisable, as continuous Bayes factors convey meaningful information about the 

strength of evidence. Areas with moderate or strong evidence in favour of h1 are rare 

compared to areas with very strong evidence for h1 (BF > 30); they usually only 

frame the areas where there is evidence of h0 and are barely visible in the figure. 

Additional topographical results are provided in the online materials. 

 

Figure 7: The influence of lesion size control 

Results of post hoc analyses of lesion-deficit inference in simulation condition A with 

examples. In addition to Figures 5 and 6, the results of Bayesian lesion-deficit 

inference (BLDI) either with standard lesion size control or adaptive lesion size 
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control are shown. In two out of the 45 simulations, BLDI with lesion size control 

now indicated strong evidence for h0 (BF < 1/10) in at least some voxels. As such 

was still a rare occurrence, we do not report this category separately. 

 

Figure 8: Results of frequentist and Bayesian lesion deficit inference for verbal 

fluency 

(A)  Results of frequentist lesion-deficit inference with null hypothesis significance 

testing and family-wise error correction via maximum statistic permutation at α = 

0.05. Significant voxels were scarce and are highlighted in blue. (B) Results of 

Bayesian lesion-deficit inference. 

 

Figure 9: Results of frequentist and Bayesian lesion deficit inference for 

constructive ability 

Results of (A)  frequentist and (B) Bayesian lesion deficit inference. (C) Voxel-wise 

Bayesian lesion deficit inference with adaptive lesion size control. 
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